
9 The Theory of Special Relativity

Assign: Read Chapter 4 of Carrol and Ostlie (2006)

Newtonian physics is a quantitative description of Nature except under three circumstances:

1. In the realm of the very small (sub-atomic), deterministic Newtonian physics must
be replace byquantum mechanics,as we have already seen.

2. As we shall discuss in this section, if velocities approach the speed of light Newtonian
physics must be replace by Einstein’sspecial theory of relativity.

3. If the strength is gravitational fields is very large (much larger than that of the Earth),
Newtonian physics must be replaced by Einstein’sgeneral theory of relativity.

The special theory of relativity is a special case of the general
theory of relativity, valid if the strengths of all gravitational fields
are weak. Since the general theory contains the special theory as
a special case, it is also valid when velocities are comparable to
that of light.

What if these conditions are combined? Generally, we find that

1. If the dimensions of the system are very smalland the velocities are comparable
to light velocity, Newtonian physics must be replaced by a wedding of quantum
mechanics and special relativity calledrelativistic quantum field theory.

2. If the dimensions of the system are very smalland the gravitational fields are very
strong on these small dimensions, Newtonian mechanics must be replace by atheory
of quantum gravitythat somehow combines quantum mechanics and general relativ-
ity. No one has solved this problem yet.

In this section we introduce the basic ideas of special relativity. In a later section we shall
address the more difficult topic of general relativity.
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9.1 Postulates of the Special Theory

The special theory of relativity is built on two deceptively simple postulates:

1. Observers in different inertial frames should agree on the laws of physics (principle
of relativity).

2. The speed of light in vacuum is a constant, independent of which inertial frame from
which it is measured.

The concept of aninertial frameis central to these postulates. An inertial frame is a frame
of reference (coordinate system) in which Newton’s first law holds.

The operational test of whether one is in an inertial frame is to
throw an object. If it travels in a straight line then you are in an
inertial frame. If the path is curved, you are not observing from
an inertial frame (that is, there are external forces acting).

Two inertial frames therefore move with constant velocity with respect to each other:

v

x' x

Inertial frame 1Inertial frame 2

The transformation between two inertial frames is called aLorentz transformation.

Generally the Lorentz transformation involves a change in orien-
tation angle and a change in velocity. The special case of a trans-
formation between frames with the same orientation but different
velocities is called aLorentz boost.
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9.2 Time Dilation

To explore the nature of space and time we need something to measure time (clocks) and
something to measure distance (rulers). Consider the following schematic clock called a
light clock.

d

Rest frame In motion with velocity v  to the right

d

v∆t

δ

A light ray reflects between two parallel mirrored surfaces. Each time the light strikes one
of the surfaces, the clock ticks. Consider two cases

1. The observer is at rest with respect to the clock (left part of figure). We say that the
observation is in therest frameof the clock.

2. The observer is moving with a speedv to the left with respect to the clock, so she
sees the clock moving to the right relative to her (right side of figure). Thus, this
observer is in adifferent inertial framethan the one in the rest frame of the clock.

We now analyze what the two observers see. In the rest frame of the clock the time observed
between ticks is

�t 0 D
d

c
: (43)

But for the second observer moving with respect to the clock, the distance that the light has
to travel between ticks of the clock is notd but (from the right triangles)

ı D
p

d 2 C .v�t/2:

Thus, for thesame clockthe observer in motion relative to the clock sees a time interval
between clicks

�t D
p

d 2 C .v�t/2

c
:
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Squaring both sides and solving for�t gives

c2.�t/2 D d 2 C v2.�t/2 ! .c2 � v2/.�t/2 D d 2

! .�t/2 D
d 2

c2.1 � v2=c2/
! �t D

d

c
p

1 � v2=c2
:

Finally, substitutingd D c�t 0 from Eq. (43) above gives

�t D
c�t 0

c
p

1 � v2=c2
D

�t 0
p

1 � v2=c2
: (44)

Thus, the clocks (or any physical measure of time) do not run at the same rate in the two
systems. Letting

�0 � �t 0 (Time interval in rest frame)

� � �t (Time interval in moving frame)

This may be expressed as

� D
�0p

1 � v2=c2
D 
�0; (45)

where theLorentz
 -factor is defined by


 �
1p

1 � v2=c2
.
 � 1/: (46)

This effect is calledtime dilation,because the time� measured
in the moving frame is alwaysgreaterthan the time�0 measured
in the rest frame of the clock. The time interval�0 measured in
the rest frame of the clock is called theproper time.

Example:Time dilation effects

Consider a car going at100 km hr�1, observing a clock beside the road. The relative veloc-
ity in units of c is

v

c
D

.100 km hr�1/.1 hr=3600 s/

3 � 105 km s�1
D 9:3 � 10�8:

109



Then the difference in measured time intervals (length of clock ticks) between the rest
frame of the car� and the rest frame of the clock�0 is

�

�0

D
1p

1 � v2=c2
D

1p
1 � .9:3 � 10�8/2

D
1

p
1 � 8:6 � 10�15

' 1:

Thus the time dilation effect is negligible. But now suppose a starship coming down the
same road atv D 0:99c. Thenv2=c2 D .0:99/2 D 0:98, and we obtain

�

�0

D
1p

1 � v2=c2
D

1
p

1 � 0:98
D

1
p

0:02
' 7:1:

So from the rest frame of the starship the clock appears to be ticking about 7 times slower
than for an observer on the side of the road (rest frame of the clock).

9.2.1 Spacetime diagram

In special relativity it is convenient to introduce aspacetime diagramfor which the hori-
zontal axis is space (distance) and the vertical axis isct (which has dimensions of distance).
For example,
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(Note that to be realistic the scale of the vertical and horizontal axes would be very different
in this example.)

The lines followed by objects are calledworld linesand individ-
ual spacetime points are calledevents.

9.2.2 The twin paradox

Different paths in spacetime generally correspond to different rates of time flow. A famous
example is thetwin paradox(not really a paradox, but that is the historical name). Twins
are born on Earth. One becomes an astronaut and goes off to a distant star in a spaceship
at a speedv ' c, turns around, and comes back at the same speed. What are the ages of
the twins when they are reunited? The problem is illustrated in the following spacetime
diagram.

x

t

Twin 2

Twin 1
Distant

star

x0

t2

t2

From the diagram, the twins have not followed the same spacetime paths, so they may be
expected to age differently because of time dilation.
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Example:A Tale of Two Twins

Let’s take as a specific example of the twin paradox a trip to Sirius (about 8 light years
away), initiated when the twins are 25, withv D 0:99c for the speed of the spacecraft both
going to and coming from Sirius. Since the speed is almost lightspeed, it takes about 8
years to get to Sirius and 8 years to return, so the twin on Earth will see about2 � 8 D 16

years elapse from the departure and return of the astronaut twin; the twin who stayed on
Earth will be25 C 16 D 41 years old on the date of return. From the time dilation formula
for v=c D 0:99 we have already computed in an earlier example that

�

�0

' 7:1:

Therefore, for the astronaut twin time will pass 7.1 times slower, and he will age only
16=7:1 D 2:3 years during the trip. Upon return the astronaut twin will be25 C 2:3 D 27:3

years old but the earthbound twin will be 41 years old!

9.3 Space Contraction

By similar arguments as we made for deriving the time dilation formula, we can show that
measureddistancesdepend on the relative velocity. For example, if a rod has length`0 in
its rest frame, its length̀ measured in a frame moving with a speedv (parallel to the rod)
relative to the rod’s rest frame is

` D `0

p
1 � v2=c2 D

`0




 �

1p
1 � v2=c2

: (47)

Thus, the length of the rod is different as measured in the two frames.

This effect is calledspace contractionbecause the length̀mea-
sured in the moving frame isless thanthe length̀ 0 measured in
the rest frame. The length of the rod`0 measured in its own rest
frame is termed itsproper length.
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Example:Length contraction

Suppose a track of length 100 m. If a sprinter runs down the track with a speed of10 m s�1,
how long does the track appear to the sprinter? We have

v

c
D

10 m s�1

3 � 108 m s�1
D 3:3 � 10�8;

so the Lorentz
 -factor is


 D
1p

1 � v2=c2
D

1
p

1 � 1:1 � 10�15
' 1;

and the track appears to be 100 meters long. Now suppose the sprinter could run at a speed
of v=c D 0:5. Then


 D
1p

1 � v2=c2
D

1
p

1 � 0:25
D 1:15;

and the track would appear to be contracted to a length of

` D
`0



D

100 m

1:15
D 86:6 m:

The behavior of space contraction and time dilation withv=c is summarized in the follow-
ing figure:
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9.4 Mass and Energy

Another important result of special relativity is that the total energyE of a particle is related
to its mass (measured at rest)m and the magnitude of its momentump by

E D
p

p2c2 C m2c4: (48)

If the particle is at rest,p D 0 and we obtain the most famous equation in science:

E D mc2: (49)

Relativity implies that mass and energy are really two aspects of
the same thing, with the exchange rate between mass and energy
beingc2. Becausec2 is a very large number, even a particle at
rest contains a very large amount of energy, by virtue of its mass.

Example:Conversion of mass to energy in the Sun

The luminosity of the Sun isLˇ D 3:839 � 1026 J s�1. Assuming this to be due ultimately
to conversion of mass to energy by thermonuclear processes in its core (as we shall discuss
later), how much mass must be converted to energy each second to produce this luminosity?

In one second the Sun produces3:839 � 1026 J of energy, so

m D
E

c2
D

3:839 � 1026 kg m2s�2

.3 � 108 m s�1/2
D 4:27 � 109 kg

of mass must be converted each second to produce the solar luminosity.

9.5 The Newtonian Limit

In the limit of low velocities the results of special relativity reduce to those of Newtonian
mechanics. We have already seen this for time dilation and space contraction, where if
v=c ! 0, the Lorentz
 ! 1 and the time dilation and space contraction become negligi-
ble.
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For the relativistic energy expression

E D
�
p2c2 C m2c4

�1=2

D
�

1 C
p2c2

m2c4

�1=2

mc2

'
�

1 C 1
2

p2c2

m2c4

�
mc2

D mc2 C
p2c2mc2

2m2c4

D mc2 C
p2

2m
;

where in the third line we’ve used the binomial approximation

.1 C ˛/n ' 1 C n˛;

which is valid for small̨ , and
p2

2m
D 1

2
mv2

is the Newtonian kinetic energy.

9.6 General Relativity: An Introduction

General relativity (GR) is a much more complicated theory than special relativity. At this
point we will give a qualitative introduction to the basic ideas. In the second semester, we
shall have more to say about general relativity.

9.6.1 Generalization of the principle of relativity

The basic idea of GR is to remove the restriction in special relativity and require thatthe
laws of physics are invariant under transformations between any reference frames, whether
they are inertial or not.
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In particular, this means that we may deal with transformations
between reference frames that are accelerating with respect to
each other. This will allow us to gravitational accelerations and
forces: general relativity is a new theory of gravitation that re-
places Newton’s law of gravitation.

9.6.2 The principle of equivalence

The mathematics of GR is much more complicated than that for special relativity, but
the conceptual foundation of GR is aprinciple of equivalence, which can be stated non-
mathematically.

The starting point is the observation that in Newtonian physics there are two operational
definitions of mass:

1. Theinertial massis defined through Newton’s second law of motion:

minertial D
F

a
;

wherem is the inertial mass,F is the magnitude of the force, anda is the magnitude
of the acceleration.

2. Thegravitational massis defined through Newton’s law of gravitation:

mgrav D
r2F

GM
;

wherem is the gravitational mass,r is the separation of the mass from a gravitating
sphere like the Earth,F is the magnitude of the gravitational force,M is the mass of
the gravitating sphere, andG is the gravitational constant.

Notice the asymmetry of these definitions: the first applies for
anyforce; the second applies only for a particular force, the grav-
itational force.
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These masses for an object need not be equivalent, but theweak equivalence principleis
that

minertial D mgrav

for any object.

Einstein extended this idea to what we now call thestrong equivalence principleby using
a series of thought experiments that can be illustrated by an elevator.

Stationary elevator in a

gravitational field at the

surface of a planet

Elevator accelerated in

interstellar space far from

gravitating masses

The Strong Equivalence Principle

For an observer in free fall in a gravitational field, the results of all local
experiments are independent of the magnitude of the gravitational field.

Einstein was able to use the (strong) equivalence principle to solve important problems in
general relavity, even before he could solve the complicated equations of general relativity.
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Another way to state the principle of equivalence is that in any
small enough region in spacetime it is possible to formulate the
equations governing physical laws such that gravitation can be
neglected. This means that the special theory of relativity is valid
for that particular situation, and this in turn allows a number of
things to be deduced because the solution of the equations for
the special theory of relativity is much simpler than that for the
general theory of relativity.

9.6.3 Tests of the general theory of relativity

As long as gravitational fields are weak and velocities are low, general relavity makes the
same predictions about gravity as Newton’s theory. There are several crucial points where
the two theories make different predictions that are testable:

1. Precession of gravitational orbits

General relativity predicts deviations from Kepler ellipses, which don’t close on
themselves. This was first tested on the orbit of Mercury, which shows an anomalous
precession of its perhelion (point of closest approach) of4300 per century, exactly as
predicted by GR.
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2. Gravitational redshift

General relavity predicts that a gravitational field shifts light propagating upward in
it to longer wavelengths. (This is also equivalent to a gravitational time dilation.)
This can be tested even in the weak gravitional field of the Earth and the measured
redshift is found to be that predicted by GR.

3. Deflection of light in a gravitational field

General relavity predicts that light is deflected by a gravitational field. This can be
tested in a total solar eclipse and the amount of observed deflection is that predicted
by GR.

4. Gravitational waves should exist

Gravitational waves have not yet been observed directly because they are very diffi-
cult to detect, but they have been observed indirectly in the Binary Pulsar.

5. Frame dragging

General relavity predicts that rotating gravitational fields drag spacetime with them
in a swirling motion calledframe dragging. This effect has been observed in care-
ful analysis of satellite data, and a more precise experiment (Gravity Probe B) is
currently collecting data to test it more rigorously.
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An extreme example of frame dragging: the ergosphere of a Kerr black hole
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In the ergosphere one is still outside the event horizon but the frame dragging is so
severe that speeds exceeding that of light would be required to counteract it. There-
fore, no stationary observer is possible in the ergosphere because no matter how
much rocket power is applied, the observer will be dragged around by the whirling
spacetime.

9.6.4 Curvature of spacetime

According to general relativity, space and time can be curved, and it is this curvature that
corresponds to the gravitational field. The stronger the curvature, the stronger the gravita-
tional field.

Thus Einstein reduced gravitation to the geometry of a 4-
dimensional spactime continuum. Einstein showed that mass
caused space to curve and that objects travelling in that curved
space have their paths deflected, exactly as if a force had acted on
them.
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