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ABSTRACT 
 

Transient stability analysis has recently become a major issue in the operation of power systems 
due to the increasing stress on power system networks. This problem requires evaluation of a power 
system's ability to withstand disturbances while maintaining the quality of service. Many different 
techniques have been proposed for transient stability analysis in power systems, specially for a multi-
machine system. These methods include the time domain solutions, the extended equal area criteria, 
and the direct stability methods such as the transient energy function. However, the most methods 
must transform from a multi-machine system to an equivalent machine and infinite bus system [1]-[3], 
[5]-[6]. This paper introduces a method as an accurate algorithm to analyse transient stability for 
power system with an individual machine. It is as a tool to identify stable and unstable conditions of a 
power system after fault clearing with solving differential equations. This method is performed for an 
Northern VietNam power system. 
 
1. INTRODUCTION 
 
 Multimachine equations can be written 
similar to the one-machine system connected 
to the infinite bus. In order to reduce the 
complexity of the transient stability analysis, 
similar simplifying assumptions are made as 
follows. 
 
-Each synchronous machine is represented by 
a constant voltage source behind the direct axis 
transient reactance. This representation 
neglects the effect of saliency and assumes 
constant flux linkages.  
-The governor’s action are neglected and the 
input powers are assumed to remain constant 
during the entire period of simulation.  
-Using the prefault bus voltages, all loads are 
converted to equivalent admittances to ground 
and are assumed to remain constant.  
-Damping or asynchronous powers are 
ignored. 
-The mechanical rotor angle of each machine 
coincides with the angle of the voltage behind 
the machine reactance. 
-Machines belonging to the same station swing 
together and are said to be coherent. A group 

of coherent machines is represented by one 
equivalent machine. 
 
2. MATHEMATICAL MODEL OF 
MULTIMACHINE TRANSIENT 
STABILITY ANALYSIS 
 
 The first step in the transient stability 
analysis is to solve the initial load flow and to 
determine the initial bus voltage magnitudes 
and phase angles. The machine currents prior 
to disturbance are calculated from, [5] 
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Where 
m is the number of generators 
Vi is the terminal voltage of the ith generator 
Pi and Qi are the generator real and reactive 
powers.  
All unknow values are determined from the 
initial power flow solution. The generator 
armature resistances are usually neglected and 
the voltages behind the transient reactances are 
then obtained, [5]  
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Next, all load are converted to equivalent 
admittances by using the relation  
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To include voltages behind transient 
reactances, m buses are added to the n bus 
power system network. The equivalent 
network with all load converted to admittances 
is shown in Fig.1, [4] 

 
Fig.1 Power system representation for transient 

stability analysis 
 
Nodes n+1, n+2, . . ., n+m are the internal 
machine buses, i.e., the buses behind the 
transient reactances. The node voltage 
equation with node 0 as reference for this 
network, is  
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                                                                       (4)                                     
 
Or 
 
Ibus = YbusVbus                                                 (5) 

Where 
Ibus is the vector of the injected bus currents 
Vbus is the vector of bus voltages measured 
from the reference node.  
 
The diagonal elements of the bus admittance 
matrix are the sum of admittances connected to 
it, and the off-diagonal elements are equal to 
the negative of the admittance between the 
nodes. The reference is that additional nodes 
are added to include the machine voltages 
behind transient reactances. Also, diagonal 
elements are modified to include the load 
admittances.  
To simplify the analysis, all nodes other than 
the generator internal nodes are eliminated 
using Kron reduction formula [5]. To eliminate 
the load buses, the bus admittance matrix in (4) 
is partitioned such that the n buses to be 
removed are represented in the upper n rows. 
Since no current enters or leaves the load 
buses, currents in the n rows are zero. The 
generator currents are denoted by the vector Im 
and the generator and load voltages are 
represented by the vector E’

m and Vn, 
respectively. Then, Equation (4), in terms of 
submatrices, becomes  
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The voltage vector Vn may be eliminated by 
substitution as follows. 
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'
mmmn

t
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From (7), 
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Now substituting into (8), we have 
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The reduced admittance matrix is  
 

nm
1

nn
t
nmmm

red
bus YYYYY −−=                       (11) 

 



The reduced bus admittance matrix has the 
dimensions (m x m), where m is the number of 
generators. 
The electrical power output of each machine 
can now be expressed in terms of the 
machine’s internal voltages  
 
S*

ei = E’*
iIi, 

 
Or  
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Where 
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Expressing voltages and admittances in polar 
form, i.e., i

'
i

'
i EE δ∠=  and ijijij YY θ∠= , 

and substituting for Ii in (12), result in 
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The above equation is the same as the power 
flow equation. Prior to disturbance, there is 
equilibrium between the mechanical power 
input and the electrical power output, and we 
have  
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The classical transient stability study is based 
on the application of a three-phase fault. A 
solid three-phase fault at bus k in the network 
results in Vk = 0. This is simulated by 
removing the kth row and column from the 
prefault bus admittance matrix. The new bus 
admittance matrix is reduced by eliminating all 
nodes except the internal generator nodes. The 
generator excitation voltages during the fault 
and postfault modes are assumed to remain 
constant. The electrical power of the ith 
generator in terms of the new reduced bus 
admittance matrices are obtained from (14). 
The swing equation with damping neglected, 
for machine i becomes 
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Where 
Yij are the elements of the faulted reduced bus 
admittance matrix 
Hi is the inertia constant of machine i 
expressed on the common MVA base SB.  
If HGi is the inertia constant of machine i 
expressed on the machine rated MVA SGi, then 
Hi is given by 
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Showing the electrical power of the ith 
generator by Pe

f and transforming (16) into 
state variable mode yields 
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In transient stability analysis problem, we have 
two state equations for each generator. When 
the fault is cleared, which may involve the 
removal of the faulty line, the bus admittance 
matrix is recomputed to reflect the change in 
the networks. Next the postfault reduced bus 
admittance matrix is evaluated and the 
postfault electrical power of the ith generator 
shown by Ppf

i is readily determined from (14). 
Using the postfault power Ppf

i, the simulation 
is continued to determine the system stability, 
until the plots reveal a definite trend as to 
stability or instability. Usually the slack 
generator is selected as the reference machine 
are plotted. Usually, the solution is carried out 
for two swings to show that the second swing 
is not greater than the first one. If the angle 
differences do not increase, the system is 
stable. If any of the angle differences increase 
indefinitely, the system is unstable.  



 
Fig.2 Flow chart of transient stability analysis 

for a multimachine power system 
 
3. SIMULATION  
 
 Based on the above procedure, a 
program which is written in Matlab 
programming language. It allows to analysis 
transient stability of a multimachine network 
subjected to a balance three-phase fault. The 
program prompts the user to enter the faulted 
bus number and the line numbers of the 
removed faulty line. The machine phase angles 
are tabulated and a plot of the swing curves is 
obtained. The simulation is repeated to find a 
critical stable state with the critical clearing 
time. The transient stability analysis problem 
is applied for the real case system, 220kV and 
110 kV Northern VietNam power system with 
119 buses, 18 generator units of 5 plants 
include HoaBinh hydro power plant, ThacBa 
hydro power plant, PhaLai thermal power 
plant, NinhBinh thermal power plant, UongBi 
thermal power plant, and 28 transformers.  
 
Table 1 Analysis results summary for Northern 

VietNam power system 

 

 
Fig.3 Three-phase fault on line 2-18 

(tCCT=0.07s), the system is stable 
 

 
Fig.4 Three-phase fault on line 2-18 
(tCCT=0.07s), the system is unstable 

 

 
Fig.5 Three-phase fault on line 3-14 

(tCCT=0.08s), the system is stable 



 
Fig.6 Three-phase fault on line 3-14 
(tCCT=0.08s), the system is unstable 

 

 
 

Fig.7 Three-phase fault on line 12-24 
(tCCT=0.33s), the system is stable 

 

 
 

Fig.8 Three-phase fault on line 12-24 
(tCCT=0.33s), the system is unstable 

 

 
Fig.9 Three-phase fault on line 16-56 

(tCCT=0.14s), the system is stable 
 

 
 

Fig.10 Three-phase fault on line 16-56 
(tCCT=0.14s), the system is unstable 

 

 
 

Fig.11 Three-phase fault on line 19-78 
(tCCT=0.17s), the system is stable 

 



 
 

Fig.12 Three-phase fault on line 19-78 
(tCCT=0.17s), the system is unstable 

 
 
4. CONCLUSION    
 
 This analysis allows to assess that the 
system is stable, unstable and also allows to 
determine the critical clearing time of power 
system with three-phase faults. These results 
can be used effectively in planning or 
operation of power systems. 
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