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Abstract-This paper provides a critical review of 
frequecy-domain finite element methods and their ap- 
plications to the modeling of electromagnetic interac- 
tions in complex electronic components and systems. 
Emphasis is placed on latest advances in finite element 
grid generation practices, element interpolation func- 
tion selection, and robust, highly absorbing numerical 
grid truncation techniques for modeling electromag- 
netic interactions in unbounded domains. These ad- 
vances have helped enhance the robustness and accu- 
racy of the method. Finally, the advantages of domain 
decomposition techniques for the modeling of com- 
plex geometries are examined. Such domain decom- 
position techniques are expected to play an important 
role in the continuing effort to extend the applica- 
tions of frequency-domain finite methods beyond the 
subcomponent-level to component and system model- 
ing for electromagnetic interference and electromag- 
netic compatibility analysis and design. 

I. INTRODUCTION 

There are two attributes of the method of finite ele- 
ments that have prompted the rapid growth of its appli- 
cation to the modeling of electromagnetic interactions in 
electronic systems. One of them is its superior modeling 
versatility where structures of arbitrary shape and compo- 
sition can be modelled as precisely as the desirable model 
complexity and available computer resources dictate. The 
second, is common to all differential equation-based nu- 
merical methods, and has to do with the fact that the 
matrix resulting from the discretization of the governing 
equations is very sparse, which implies savings in com- 
puter memory for its storage as well as in CPU time for 
its inversion. Clearly, these two attributes come at the 
expense of an increase in the degrees of freedom used in 
the numerical approximation of the problem since now, 
contrary to integral equation methods, the entire space 
surrounding all sources of electromagnetic fields needs be 
incorporated in the numerical model. Nevertheless, be- 
cause of the sparsity of the resulting matrix and the sim- 
plicity with which complex geometries can be modeled, 
this increase in the degrees of freedom of the approxima- 
tion is an acceptable penalty. 

Over the past ten years, a significant volume of liter- 

ature has been generated on the application of the finite 
element method to a variety of electromagnetic scattering 
and radiation problems. The book by J.M. Jin [l] serves 
both as a tutorial on the procedures for the application of 
the finite element method to the approximation and solu- 
tion of electromagnetic boundary value problems, and as 
a rather thorough survey of the classes of problems that 
have been tackled. Considering the power of the afore- 
mentioned attributes, one would have expected that the 
method of finite elements would have gained in popularity 
among EMC/EMI engineers and would have established 
itself as the method of choice in the analysis and predic- 
tion of EM1 and the design of electromagnetically compat- 
ible systems. Nevertheless, a literature review indicates 
that this is not the case. As an example we mention that 
in a special issue of the IEEE Transactions on Electromag- 
netic Compatibility, dedicated to computational methods 
for EMI/EMC analysis, very few papers on finite elements 
appeared, and the applications presented where limited to 
rather simple problems of low complexity [2]-[3]. 

Before one attempts to search for drawbacks in the 
method of finite elements that have prevented its prolifer- 
ation as an EMI/EMC prediction tool, one has to keep in 
mind that application of electromagnetic CAD for compo- 
nent and system EMI/EMC is actually still at its infancy. 
The reason for this is that the complexity of an integrated 
electronic component, subsystem or system is such that 
accurate modeling of source, coupling mechanism, and re- 
ceiver of electroma.gnetic noise is almost prohibitive using 
a single numerical method for solving Maxwell’s equa- 
tions, irrespective of the type of the method used. More 
specifically, considering the tremendous variation in fea- 
ture size from chip, to package, to board, to cables, to 
shields, it becomes clear that the number of elements re- 
quired for the discretization of such a system for finite 
element analysis of electromagnetic interactions is out of 
the reach of today’s most powerful supercomputers. 

In view of the above and recognizing that an elec- 
tromagnetic analysis tool will be useful as a CAD tool 
only if simulation times are in the order of minutes or 
at most a few hours, this paper examines the latest ad- 
vances in the method of finite elements that are expected 
to help the method establish itself as a reliable candidate 
for EMI/EMC problem solving either at the component 
level or in conjunction with reduced-order electromagnetic 
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models of subsystems. As a matter of fact, it is this area 
where the method of finite elements can have an impor- 
tant impact. Indeed, current practices of EMI/EMC anal- 
ysis concentrate on rather simplistic, individual source-to- 
victim models, which often suffer from their inability to 
capture the impact of surrounding conducting, dielectric, 
and magnetic material topology on the electromagnetic 
interaction. The finite element method allows for the de- 
velopment of a more precise model that will lead to higher 
accuracy in noise prediction and thus facilitate the design 
of electromagnetically compatible electronic modules. 

Finally, the potential of domain decomposition meth- 
ods for reducing the complexity of the original problem 
will be examined. The basic idea behind such methods 
is the partitioning of the domain of interest into smaller 
ones and the development of the solution in a piecewise 
manner, one subdomain at a time, using different types 
of both numerical and analytic techniques. The inherent 
parallelism of such approaches combined with the smaller 
size of the subdomains makes them extremely well-suited 
for massively-parallel computation. 

II. MATHEMATICAL FRAMEWORK FOR FINITE 
ELEMENT ANALYSIS 

The focus of this paper is on the numerical approxi- 
mations of Maxwell’s equations with time-harmonic field 
variation. Therefore, the following discussion pertains to 
linear sources and materials. However, time-domain finite 
methods that can handle transient electromagnetic inter- 
actions in the presence of nonlinear sources and nonlinear 
media are possible and are currently the topic of vigorous 
research within the computational electromagnetics com- 
munity. As a matter of fact, the finite-element formula- 
tion in [2] is such that both transient and time-harmonic 
electromagnetic simulations can be effected within a sin- 
gle mathematical framework. 

In order to review the basic steps involved in the fi- 
nite element approximation of electromagnetic boundary- 
value problems, let us consider the double-curl equation 
for the electric field, E, which, in a source-free, isotropic 
and linear medium with position-dependent magnetic and 
electric properties has the form 

Vx (&VxE)+jwiE=O, 

The time dependence exp(jwt) is assumed (j = G), 
and the complex permittivity, E = c - ja/w, is used to 
account for any conduction and/or dielectric losses in the 
medium. 

For the purposes of finite element solutions, a weak form 
of (1) is required. For node baaed finite element expan- 
sions the unknown vector field is approximated in terms 

of scalar basis functions, &, 

E=CEidi, (2) 

where Ei denotes the unknown vector field value at node 
i. The relevant weak form, in the spirit of Galerkin’s 
approximation, is 

(( &V X E) x V&) + (j&E&) = 

f 
1 - -ii x (V x E)gS& 

jwp (3) 

where ( ) and $ indicate integration over the domain of 
interest and its boundary, respectively, while ii is the out- 
ward unit normal on the boundary. For edge element 
expansions, vector basis functions, Ni, are used for the 
expansion of the field, 

E = C EiNiy 

where Ei are the unknown coefficients in the expansion. 
The relevant weak form is 

(( LO X E) * (V X Ni)) + (j&E * Ni) = 
3WP 

-f 
1 

-G X (V X E) . Nids 
jwp (5) 

For two-dimensional problems, a scalar version of (3) 
is readily obtained. More specifically, for a transverse 
magnetic to z (TM,) polarization, the fields, E = bE, 
H = kH, + 9Hy, are independent of z and (3) reduces to 

(C &Vx,,> . Vxyh) + (jwtEq$) = 

f ‘(6. VE)(bjdZ jwp (6) 
where VW = S/&Z + ?a/ay. For transverse electric to 
z (TE,) polarization of the two-dimensional fields, where 
H = i?H, E = S?, + QE,, the weak form is easily found 
from (6) by duality. 

For static problems (w = 0), a scalar potential, @, is 
often introduced, and the electric or magnetic fields are 
obtained in terms of the gradient of the potential. For 
such cases, it is a weak statement of Laplace’s equation 
for the scalar potential that is being derived. 

The most well-known attribute of Galerkin’s method, 
where the solution is sought in a finite-dimensional sub- 
space of the class of admissible functions for the problem 
of interest using the same set of functions as trial and test 
functions, is the symmetry of the resulting stiffness matrix 
given a symmetric weak formulation. However, another 
important merit of Galerkin’s method is that, if a sym- 
metric weak formulation is used, Galerkin’s approximate 
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solution exactly conserves energy in the electromagnetic 
field despite the fact that it satisfies the vector Helmholtz 
equation only approximately over the domain of inter- 
est. This is easily shown starting from (5) and using the 
complex conjugate of the field, E*, as the test function 
and Faraday’s law to introduce the magnetic field in the 
boundary integral 

(( $V x E) . (V x E’)) + (jw?E . E*) = 

f 
(fi x H) . E”ds (7) 

The complex conjugation of (7), use of Faraday’s law to 
simplify the integrand in the first term on the left, and 
use of the constitutive relations B = pH, D = 1E, result 
in the following equation 

(-jwB . H’) + (jwD* . E) = 
f 

(E x H*) . iids (8) 

Clearly, the resulting expression is Poynting’s theorem for 
time-harmonic fields. Thus energy conservation in the 
electromagnetic field is satisfied exactly by the approxi- 
mate solution. 

The importance of the aforementioned result is rather 
significant. Considering the various potential sources of 
error in the development of a numerical solution to a 
boundary value problem, it is definitely advantageous to 
be able to work with a weak statement that is consistent 
with the correct physics of the field we are attempting to 
calculate. For the electromagnetic field problems of in- 
terest, the calculated field quantities will be acceptable 
only if they satisfy both energy conservation and elec- 
tric charge conservation. As a matter of fact, the latter 
has been found to be extremely important in the finite 
element solution of three-dimensional vector electromag- 
netic problems. In later sections, it is pointed out that 
modifications to the weak statement in (3) and careful se- 
lection of the vector basis functions in (5) are needed to 
prevent the contamination of the numerical solution from 
spurious fields caused by the lack of enforcement of charge 
conservation in the original weak statement. 

In order to illustrate the development of the numeri- 
cal approximation of the electromagnetic boundary value 
problem, let us consider the weak statement in (5). Sub- 
stitution of (4) into (5) and testing with each and every 
one of the vector basis functions N. results in a linear J 
system of simultaneous equations 

M 

c AijEi=fj, j=l,Z&...,M 
id 

where the elements, Aij, of the so-called stiffness matrix 
are given by 

-VxNi).(VxNj))+(jv’Ni.Nj)(lO) 

while the elements of the forcing vector are 

.fj=-f &G X (V X E) * Njds 

M is the number of degrees of freedom in 

01) 

the approxi- 
mation. One of the important attributes of the method 
of finite elements is that that the basis functions used 
have local support, i.e. they are non-zero only over a 
set of adjacent elements. This is what leads to the spar- 
sity of the resulting system since most of the elements 
Aij are zero. The forcing vector is formed by contribu- 
tions of the surface integrals over the domain boundaries. 
From the uniqueness theorem, the tangential component 
of the magnetic field, -(l/jwp)G x (V x E), on the do- 
main boundaries is all that is needed for a unique solution 
of Maxwell’s equations inside the domain. This tangen- 
tial magnetic field on the domain boundary is used to 
account for all sources exterior to the domain of inter- 
est. The surface term in (5) is used also for enforcing 
tangential magnetic field continuity conditions at mate- 
rial interfaces. As far as tangential electric field boundary 
conditions are concerned, they are taken into account in 
the construction of the basis functions. This is discussed 
in more detail in Section 4. 

III. GRID GENERATION 

Numerical grid generation is probably the most critical 
step in a finite element analysis of electromagnetic wave 
interactions. During the early stages of the application of 
the finite element method to modeling of electromagnetic 
interactions, the emphasis was on mathematical model 
and weak statement formulations and their subsequent 
use in the analysis of propagation, radiation and scat- 
tering problems in conjunction with rather simple geome- 
tries. Consequently, the important issue of automatic gen- 
eration of finite element grids appropriate for electromag- 
netic propagation and scattering problems received rather 
limited attention. Apparently, the assumption was that 
grid generation practices used in low-frequency electro- 
magnetic field modeling and/or other areas of engineeer- 
ing in which the method of finite elements was already 
being used, could be adopted without significant alter- 
atioEs. This turned out to be a rather false assumption, 
simply because the specific physics of the phenomenon 
that is being analyzed needs be taken into account be- 
fore a discrete model is built for its quantification. The 
famous sampling iheorem of modern communication the- 
ory for the sampling of a band-limited signal serves as a 
simple, yet powerful example. 

Extensive research over the past few years has led to 
the understanding and quantification of the impact of the 
discrete approximations of wave equations on the accu- 
racy and quality of the simulated wave solutions [5]-[8]. 
The findings from such analysis are now being used as 
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guidelines and/or constraints in the development of pro- 
cedures for automatic grid generation. The following is 
a list of undebatable results that are used to guide the 
construction of a finite element grid for the modeling of 
electromagnetic wave propagation, radiation and scatter- 
ing problems. 

First and foremost, the grid must provide for adequate 
wavelength resolution in order to minimize numerical dis- 
persion (i.e., artificial, discretization induced dependence 
of phase velocity on electrical grid size) and thus con- 
trol phase error. The number of degrees of freedom per 
wavelength, required to achieve a fixed accuracy, is de- 
pendent on the degree of the interpolating polynomials 
used in the, constyruction of the basis functions, the elec- 
trical size of the domain (i.e., the size of the domain in 
wavelengths), and the boundary conditions used for grid 
truncation. Furthermore, problem geometry and mate- 
rial properties impact the way the finite element grid is 
constructed. Electromagnetic fields exhibit singular be- 
havior at material wedges and corners (especially metal- 
lic), which cannot be resolved properly by the polynomial 
interpolating functions used for the finite element approx- 
imation. Thus, grid refinement or use of special elements 
are required in the vicinity of such geometric features to 
improve solution accuracy. In addition, abrupt changes 
in the electric permittivity and the magnetic permeabil- 
ity of materials need be accompanied by appropriate grid 
size changes in order to both prevent the occurrence of 
(nonphysical) numerical reflections and maintain the con- 
ditioning of the finite element matrix. Finally, the grid 
generation process should be such that element degen- 
eracy (i.e. triangles degenerating toward line segments, 
quadrilaterals approaching triangles, or tetrahedrons de- 
generating to quadrilaterals) never occurs. Such elements 
lead to ill-conditioning and may eventually render the fi- 
nite element solution useless. 

While it is often tempting to adopt the philosophy that 
the finer the grid the better the quality of the solution, 
one needs to remember that an excessively fine mesh (un- 
less needed) wastes computational resources and thus it 
should be avoided. Consequently, it is important that the 
grid generation process is such that adaptive mesh refine- 
ment is possible. In other words, for the purposes of com- 
putation efficiency, the analysis begins with the construc- 
tion of an initial mesh the density of which has been de- 
cided on the basis a specific set of constraints perinent to 
the material properties, the characteristics of the sources 
and anticipated spatial variation of the electromagnetic 
fields. A simulation is attempted using this mesh. Next, 
an error estimator is used to examine the quality of the 
solution over the entire grid and thus identify areas where 
mesh refinement is needed to improve solution accuracy. 
Such mesh refinement is then effected using appropriate 
mesh refinement schemes that maintain element quality 
and preserve mesh conformity to material boundaries. A 

new solution is then attempted with the refined grid, and 
the process is repeated until the desirable solution accu- 
racy has been achieved. 

While the manipulation of hexahedral meshes, i.e., 
meshes that use the so-called brick elements, is much sim- 
pler than that of a tetrahedral mesh, tetrahedral meshes 
are the ones that have been adopted for automatic grid 
generation. (In two dimensions, brick elements reduce to 
quadrilaterals while tetrahedra reduce to triangles.) The 
reason for this is that triangles and tetrahedra are sim- 
plices in two and three dimensions, respectively. Com- 
plete polynomial expansion functions are defined easily 
on simplex elements. Furthermore, an arbitrary domain, 
no matter how complicated it might be, can always be dis- 
cretized automatically into a set of simplex elements using 
Delaunay tesselation [9]. As a matter of fact, grid gener- 
ation software baaed on the Delaunay algorithm and its 
variants is now commercially available and is being used 
for finite element grid generation with fairly satisfactory 
results. Consequently, most of the recent advances on au- 
tomatic mesh generation and mesh refinement are based 
on Delaunay triangulation. 

With regards to automatic mesh generation, new pro- 
cedures have been developed for preventing the occurence 
of degenerate (sliver) elements, for the redistribution of 
existing nodes and/or the efficient incorporation of new 
nodes for improving the quality of the tetrahedra (i.e. 
making them as equilateral as possible), and for preserv- 
ing prescribed material boundaries during the process of 
initial mesh generation as well as during subsequent mesh 
refinement [lO],[ll]. 

As far as mesh refinement is concerned, a variety of 
procedures are currently available. At this point, it is im- 
portant to point out that in addition to the so-called h 
refinement, where new nodes are introduced in the grid 
while the order of the polynomial approximation remains 
the same, solution accuracy can be improved by increasing 
the order of the polynomial interpolation while keeping 
the number of nodes the same. This so called p refinement 
tends to be less popular than h refinement, mainly due to 
the desire of maintaining low interpolation function com- 
plexity within regions of high material complexity. How- 
ever, one should keep in mind that h refinement cannot be 
pushed to arbitrarily small element sizes. The reason for 
this is that as the mesh is progressively refined the eigen- 
value spectrum of the stiffness matrix widens; hence the 
system becomes progressively more ill-conditioned [12]. 
This progressive ill-conditioning of the stiffness matrix as 
the mesh is refined results in an increase in the round- 
off error which counteracts the decrease in approximation 
error. At some point, approximation error and round-off 
error become equal, and any further mesh refinement will 
result, in deterioration in the accuracy of the solution. As 
pointed out in [12], the round-off error does not depend 
strongly on the degree of the interpolating polynomials. 
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It depends mainly on element size, h, and, for the second- 
order problems of interest in electromagnetic modeling, 
the dependence is of the form O(he2). Consequently, the 
way to maintain accuracy and postpone the deleterious 
effect of round-off is to increase the order of the interpo- 
lating polynomials (p refinement). The numerical experi- 
ments in [13] support this conjecture in a very illustrative 
manner. 

We conclude this section by pointing out that before 
adaptive mesh refinement can be effected, a reliable a pos- 
terioti error estimate to be used as a refinement criterion 
is required. A variety of error estimators have been pro- 
posed over the past few years [14]-[171. As expected, they 
depend on the physical attributes of the fields as well as 
the choice of functions and interpolating elements used in 
the finite element approximation. 

IV. THE CHOICE OF ELEMENTS 

Most of the original applications of the finite element 
method to vectorial electromagnetic field modeling in 
three dimensions were based on the so-called nodal ele- 
ments, using field representations of the form shown in 
(2) and weak statements such as the one in (3). In 
other words, the degrees of freedom were defined to be 
the three components of the unknown fiield quantity at 
the element nodes. It was soon found that such approxi- 
mations were plagued by the occurrence of non-physical, 
spurious modes [18]. These spurious solutions manifested 
themselves as modes with nonzero divergence, and were 
caused by the inability of the aforementioned choice of 
interpolation and weak statement to enforce Gauss’ law 
for divergence-free solutions. Consequently, a variety of 
approaches were proposed for eliminating these spurious 
modes within the context of nodal elements [19]-[21]. 

A different approach to eliminating spurious modes that 
has gained popularity over the past few years is the use 
of the so-called edge elements [22]. Edge elements use 
vector basis functions of the form shown in (4). They 
have the unique property that the degrees of freedom as- 
sociated with these elements are the circulations of the 
vector field along the edges of the mesh. The impor- 
tant implication of this fact is that edge elements im- 
pose the continuity of only the tangential components of 
the unknown electric (or magnetic) field across element 
boundaries, which is obviously consistent with the phys- 
ical constraints for electromagnetic field solution unique- 
ness inside a domain. Additional advantages of edge ele- 
ments are: a) Boundary conditions at material interfaces 
are automatically enforced through the natural boundary 
condition in the weak statement (see the surface integral 
term in (5)). b) Dirichlet boundary conditions are eas- 
ily imposed along element edges. This second property 
becomes extremely useful when dealing with conducting 
boundaries, especially those that exhibit wedges and cor- 

k 

Fig. 1. Whitney l-form edge element. 

ners. 
The most popular version of these edge elements is the 

so-called Whitney l-form. It was long before the method 
of finite elements was becoming a popular tool in bound- 
ary value problem solving that Whitney described a fam- 
ily of polynomial forms on a simplicial mesh with special 
properties that made them attractive for electromagnetic 
field representations [23]. These polynomials are of, at 
most, degree one on tetrahedra. Any two p-forms are 
said to conform on a surface if they take the same val- 
ues at any given set of p vectors tangent to the surface. 
Finally, p-forms are uniquely determined by integrals on 
p-simplices. Let us consider, for example, the popular 
Whitney l-forms (Fig. 1). They are associated with mesh 
edges. Each edge in the tetrahedral mesh contributes an 
independent basis function. In other words, the degrees 
of freedom of the approximation are associated with the 
element edges; this is the reason they are called “edge el- 
ements.” For an edge e = {i, j} connecting vertices i and 
j the basis function is given by 

Ne = We = <iV<j - &V<i (12) 
where <i (i = 1,2,3,4) are the bary-centric (or simplex) 
coordinates of the tetrahedron. It is easily shown that the 
circulation of We is 1 along edge e and 0 along all other 
edges. With the unknown field quantity interpolated over 
a tetrahedron as 

6 
E=CE,We (13) 

e=l 

the aforementioned property implies that the degrees of 
freedom of the approximation are the circulations of the 
field along the edges of the tetrahedron. Two easily ob- 
tained properties are the continuity of tangential compo- 
nents across facets (element interfaces) and the zero diver- 
gence of the basis functions. In view of this last property, 
it is clear that by using edge elements the requirement for 
divergence-free numerical solutions is built in the basis 
functions. 

Despite their simplicity and their suitability for electro- 
magnetic field representation, the Whitney l-forms have 
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the drawback that, being first-order polynomials, the in- 
terpolation error in the approximated field is only first 
order. Consequently, a very fine wavelength resolution is 
required for controling numerical dispersion, which trans- 
lates to large number of unknowns. To circumvent this 
difficulty, higher-order vector finite elements have been 
proposed by several authors, starting with the pioneering 
work of Nedelec [24]. These elements are called tangential 
vector finite elements, and continue to be a topic of exten- 
sive research [25]-[28]. However, it should be mentioned 
that the number of degrees of freedom associated with 
these high-order elements on tetrahedra increases rapidly 
with the order of the element, and this is an issue that 
needs be weighted properly when trading-off computation 
complexity and computation efficiency with solution ac- 
curacy. 

However, as mentioned earlier, use of higher-order el- 
ements reduces the dimensionality of the approximation, 
improves the conditioning of the finite element system, 
and leads to increased accuracy in the numerical differen- 
tiation of the finite element solution for post-processing 
purposes. Since higher-order tangential vector elements 
are much more expensive than nodal elements, hybrid ap- 
proaches have been proposed as an alternative. The basic 
idea is to use nodal elements over those regions that in- 
volve either homogeneous media or media with smooth 
variations in their electromagnetic properties. Edge ele- 
ments, on the other hand, are used at material interfaces 
as well as in the vicinity of conducting wedges, corners 
and, in general, points where several material interfaces 
meet and thus the definition of a vector normal is not 
unique. Mur has shown that the use of such combinations 
of edge and nodal elements in electric or magnetic field- 
based finite element formulations yields optimum compu- 
tational results [29]. In such mixed-element formulations, 
it is important that the divergence-free character of the 
fields and the continuity of the flux across interelement 
boundaries are imposed explicitly in a weighted sense. 
This is necessary for the elimination of spurious modes, 
and helps increase solution accuracy and improve conver- 
gence [30]. Finally, Boyse and Seidel have used such a 
combination of edge and nodal elements in conjunction 
with the finite element approximation of a scalar and vec- 
tor potential formulation of Maxwell’s equations [31]. 

V. GRID TRUNCATION FOR UNBOUNDED PROBLEMS 

An important class of problems in EMI/EMC analysis 
deals with noise radiated out of a component or system 
or radiated noise interacting with a system with part of it 
getting scattered and part coupled to the system compo- 
nents. In order to model such electromagnetic radiation 
and scattering problems using finite methods, the domain 
of computation needs to be truncated by a (non-physical) 
mathematical boundary that encloses all radiation sources 

and/or scatterers. On this mathematical boundary an ap- 
propriate operator has to be used to effect the reflection- 
less transmission of radiation out of the domain. Such an 
operator can be effected using an integral equation state- 
ment of Huygen’s principle. A variety of such global grid 
truncation operators have been proposed [l]. Such global 
operators have the undesirable property that their numer- 
ical approximation results in a fully populated submatrix 
which, unless managed properly, penalizes the sparsity of 
the matrix resulting from the finite element approxima- 
tion inside the domain. 

To overcome this difficulty, significant effort was de- 
voted over the past few years on the development of local, 
differential equation-based operators for grid truncation 
[32]. Such local operators, often called absorbing bound- 
ary conditions (ABCs), are approximate and thus their 
performance is inferior to the one achieved by the global 
operators. However, they help retain the sparsity of the 
stiffness matrix. 

Despite the successful development and application of 
such local operators for the truncation of finite element 
grids with either nodal or edge elements, the reflection 
levels resulting from their applications have not been as 
small as needed for applications relevant to EMI/EMC 
problems. For example, it is well-known that common- 
mode currents resulting from imbalances in interconnects 
and improperly designed current return paths are signifi- 
cant contributors to radiated emissions from boards, de- 
spite their very small amplitudes. If the absorbing bound- 
ary condition causes an appreciable level of reflection, the 
spurious reflected fields may alter the common-mode cur- 
rents in the interconnects in the system and thus lead 
to totally erroneous calculations of radiated emission lev- 
els. Clearly, the availability of an almost reflectionless 
grid truncation methodology that maintains the sparsity 
of the stiffness matrix is highly desirable for EMI/EMC 
finite element modeling. 

It was only three years ago that a breakthrough was 
achieved by Berenger in this area of numerical grid trun- 
cation [33]. His aproach was based on the numerical con- 
struction of anisotropic absorbing media with the prop- 
erty that the interface between such a medium and a 
homogeneous space is (theoretically) reflectionless for all 
frequencies and all angles of incidence (except at gras- 
ing). These absorbers were called perfectly matched Zay- 
ers PMLs. Even though Berenger’s implementation of 
such PMLs involved a peculiar splitting if the field com- 
ponents so that the PMLs could be applied in conjunc- 
tion with transient electromagnetic simulations using the 
finite difference time domain method, several researchers 
explored and continue to explore alternative implemen- 
tations of PMLs that are more suitable for finite ele- 
ment applications [34]-[371. As clearly illustrated in [36], 
such PMLs may be effected using a properly constructed 
anisotropic medium. To illustrate the properties of such 
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a medium, consider the case of a planar interface paral- 
lel to the t - y plane in a Cartesian coordinate system. 
Let the medium on the left be a homogeneous, isotropic 
medium with constant permittivity E and constant per- 
meability /J. To effect a reflectionless interface the per- 
mittivity and permeability tensors of the medium on the 
right need be defined as follows, [E]/E = diag{a, a, u-l}, 

and [p-J/p = diag{a, a, s-l }. Furthermore, to effect ab- 
sorption of the transmitted wave as it propagates inside 
the PML, we choose a = 1 - jsZ, s, > 0. 

As mentioned earlier the construction of optimum 
PMLs is currently the subject of intensive research. It 
turns out that the numerical implementation of PMLs is 
not reflectionless. The origin of these reflections is the 
numerical discretization of the fields as well as the fact 
that the thickness of the PML has to be truncated for nu- 
merical purposes. From a variety of studies performed by 
several researchers on the effectiveness of the anisotropic 
PML in conjunction with finite element grid truncation in 
the frequency domain, the current state of the art could be 
summarized as follows: a) The effectiveness of the PML 
is strongly dependent on the values assigned to its ma- 
terial properties, its thickness and its distance from the 
scatterer. Typically PML thicknesses of 0.1X - 0.2X and 
distances from the scatterer of 0.2X are expected to lead to 
very good PML performance. b) The possibility exists for 
optimizing the performance of the PML for a given thick- 
ness by allowing its material properties to vary smoothly, 
in a way similar to that used in conjunction with FDTD 
simulations of transient waves. c) While a choice of the 
form a = 1 - js, s > 0, will facilitate the absorption of 
propagating waves, the absorption of waves exhibiting ei- 
ther only evanescent or both evanescent and propagating 
behavior needs to be assisted by allowing the real part of a 
to assume values greater than 1 [38]-[40]. d) The material 
properties of the PML tend to slow down the convergence 
of the iterative solvers used for the solution of the finite 
element system. 

To summarize, the use of anisotropic absorbers for finite 
element grid truncation is expected to impact significantly 
our ability to simulate time-harmonic electromagnetic in- 
teractions in unbounded regions using the method of fi- 
nite elements. However, there remains a lot of work to be 
done for this grid truncation methodology to reach its full 
potential. 

VI. DOMAIN DECOMPOSITION 

Domain decomposition is a rigorous approach for the 
solution of linear boundary value problems in complicated 
domains. As a matter of fact, it is routinely applied for 
the development of analytic solutions to boundary value 
problems in physics and engineering when geometries with 
multiple homogeneous regions connecting along separa- 
ble boundaries are present. What we consider here is an 

PEC 

Fig. 2. A longitudinal cross section of a complicated structure. Par- 
tition planes PI through P+ are used to decompose the structure in 
smaller subdomains. 

extension of the aforementioned concept to complicated, 
not-necessarily separable domains. 

The domain decomposition approach presented here is 
significantly different from other techniques of the same 
name [41],[42]. It is probably most closely related to the 
“connection scheme” of [43]; however, it is more versatile 
and more general in the type and complexity of structures 
it can model. Our presentation will concentrate on the 
motivation behind such an approach and the fundamental 
steps for its implementation. For a more concrete mathe- 
matical discussion references [44]-[45] should be consulted. 

The rationale for the use of domain decomposition is 
best explained with the aid of an example structure. Fig. 
2 illustrates a longitudinal cross section of a rather com- 
plicated shielded environment. Let us assume that the 
objective is the numerical modeling of noise interactions 
within this structure. While the development of a numer- 
ical grid for the entire structure could be attempted, it is 
rather obvious that the material complexity in the cen- 
tral part of the structure will require a much finer grid 
than the rather homogeneous end regions to maintain a 
desirable numerical solution accuracy. Furthermore, if the 
structure length is several wavelengths at the frequencies 
of interest, the size of the resulting finite element system 
could become prohibitively large for even the largest su- 
percomputers available. 

A domain decomposition approach to the solution of 
this problem proceeds as follows. First, the mathematical 
partitions Pi through P4 are used to decompose the struc- 
ture into five smaller domains Qi through Qs. Clearly, the 
choice of the partitions of Fig. 2 was influenced by the 
variability in material complexity. The power of the do- 
main decomposition approach lies on the linearity of the 
governing equations and the uniqueness theorem for the 
solution to Maxwell’s equations which is conveniently ex- 
pressed by the weak statements (3) and (5). For example, 
from (5) it is clear that E is uniquely specified inside a 
domain if the tangential magnetic field is defined every- 
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where over the domain boundary. On the basis of this 
observation, the domain decomposition approach intro- 
duces appropriate expansions for the tangential magnetic 
fields on the partitions. These expansions are in terms of 
properly selected known, linearly independent expansion 
functions, and the unknown coefficients in these expan- 
sions become the fundamental degrees of freedom of the 
problem. For each expansion function on each partition 
a solution for the electric field inside the two subdomains 
adjacent to the specific partition is generated. The set of 
interior solutions thus generated within each subdomain 
due to all the expansion function excitations on the en- 
closing partitions constitute a basis that can be used for 
the representation of the unknown field inside the subdo- 
main. In other words, using the principle of superposition, 
the unknown field inside each subdomain is represented 
as the sum of the generated interior solutions, each one 
weighted by the coefficient in the expansion for the tan- 
gential magnetic field on the partitions that is associated 
with the specific excitation function. Finally, the solution 
for the unknown coefficients in the tangential magnetic 
field expansions on the partitions is effected by enforcing 
the continuity of the tangential electric field across the 
partitions and solving the resulting linear system. 

Simply expressed, domain decomposition is a technique 
for shifting the unknowns of a large and/or complicated 
boundary value problem from the continuum of points 
within the total structure to coefficients on properly se- 
lected partitions. Its chief strength is the independence 
of the subdomains. The first consequence of this inde- 
pendence is computational flexibility. Because each sub- 
domain is modeled independently, different subdomains 
may be analyzed with different techniques. Analytic so- 
lutions may be used for separable subdomains, while finite 
methods or integral equation techniques may be used for 
subdomains of high complexity. The second consequence 
of the independence of subdomains is modularity. Many 
subdomains may be present in the structure; however, 
only some may be unique. Numerical solutions need be 
calculated only for the unique subdomains. The third 
major consequence of the independence of subdomains is 
parallelism. More specifically, two degrees of parallelism 
are present in the generation of the subdomain interior 
solutions. The solutions for different subdomains are in- 
dependent as well as the solutions for different excitation 
functions for a given subdomain. Given enough compu- 
tation resources, all these solutions may be generated in 
parallel. 

A number of additional benefits come from modeling 
smaller domains. Numerical grid generation and adaptive 
refinement is easier in smaller domains. Partitioning al- 
lows the separation of disparate mesh regions without the 
need for transition areas between fine meshes and coarse 
meshes. Accuracy of the solution can be improved also. 
Indeed, domain decomposition results in smaller matrices 

and well-conditioned matrices due to better uniformity of 
the numerical grid. Consequently, round-off error is re- 
duced and solution accuracy is improved. 

VII. DISCUSSION AND CONCLUSIONS 

Electromagnetic modeling for EMI/EMC analysis and 
design of components and systems is one of the most chal- 
lenging areas for numerical electromagnetic simulation 
specialists. Topological complexity, material variability 
variability, large variability in feature sizes and broadband 
frequency analysis, are the main reasons for the aforemen- 
tioned complexity of EMI/EMC simulations. All of these 
factors contribute to a rapid growth in the number of de- 
grees of freedom needed for the numerical approximation 
of the problem, as one attempts to increase the sophisti- 
cation and accuracy of the computer model. Very soon 
computer resource requirements exceed availability or, the 
turn-around time for numerical simulation becomes pro- 
hibitively long and thus inappropriate for use as a design 
aid. Inevitably, simplifications need to be made, and a re- 
duced model is developed with significant effort placed on 
its ability to encompass the most important contributions 
to the process under investigation. 

So far, applications of frequency-domain finite element 
methods have followed such a path. Evaluation of the ef- 
fectiveness of conducting shields with slots or seems have 
benefited from finite element modeling [3],[46]. More re- 
cently, commercially available finite element software is 
being used for multiconductor interconnect transmission- 
line parameter extraction, extraction of lumped capaci- 
tive/inductive equivalents for electrical modeling of inter- 
connect and package discontinuities; as well as electronic 
package inductance and capacitance modeling. Such mod- 
els are subsequently used for crosstalk and switching noise 
prediction in packaged electronic systems. The mod- 
eling of electronic circuits, described in terms of their 
voltages and currents, in conjunction with vectorial field 
solvers based on finite elements has been demonstrated 
also [3] ,[47]. Other recent applications include frequency- 
dependent, scattering parameter characterization of pack- 
age and interconnect discontinuities, investigation of the 
impact of the heatsink over a chip package on radiated 
emiseions from the package, as well as the prediction of 
resonances inside a shielded box for a given layout of the 
various components. 

The above list is expected to grow substantially as com- 
puting technology continues to advance rapidly, provid- 
ing us with higher computation speeds, larger memory 
resources, parallelism and distributed computing. Con- 
tinuing research in advancing the state-of-the-art in auto- 
matic grid generation and refinement, improving the per- 
formance and robustness of reflectionless grid truncation, 
and automating the application of domain decomposition 
approaches, will help enhance the power of the finite ele- 

114 



ment method to solve realistic EMI/EMC problems. 
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