SPRING 2010

即時控制系統設計 Design of Real-Time Control Systems

Lecture 22 Sampling

Feng-Li Lian

NTU-EE

Feb10 - Jun10

Figures and images used in these lecture notes are adopted from "Signals & Systems" by Alan V. Oppenheim and Alan S. Willsky, 1997 "Computer-Controlled Systems: Theory & Design" 3rd Ed. by KJ Astrom & B. Wittenmark, 1997

Outline

Feng-Li Lian © 2010 NTUEE-RTCS22-Sampling-2

- Representation of a CT Signal by Its Samples:
 The Sampling Theorem
- Reconstruction of of a Signal from Its Samples Using Interpolation
- The Effect of Under-sampling: Aliasing
- Discrete-Time Processing of Continuous-Time Signals

Computer-Controlled System (7.2)

- 1. Wait for a clock pulse
- 2. Perform A/D conversion
- Compute control variable
- 4. Perform D/A conversion
- 5. Update regulator state
- Go to step 1

The Sampling Theorem

Representation of CT Signals by its Samples

$$x_1(kT) = x_2(kT) = x_3(kT)$$

■ The Sampling Theorem:

x(t): a band-limited signal

if
$$w_s > 2w_M$$
 where $w_s = \frac{2\pi}{T}$

 \Rightarrow x(t) is uniquely determined by $x(nT), n = 0, \pm 1, \pm 2, ...,$

 $\Rightarrow 2w_M$: Nyquist rate

 w_M : Nyquist frequency

Impulse-Train Sampling:

p(t): sampling function

T: sampling period

 $w_s = rac{2\pi}{T}$: sampling frequency

$$\Rightarrow x_p(t) = x(t) p(t)$$

$$p(t) = \sum_{n = -\infty}^{+\infty} \delta(t - nT)$$

$$x_p(t) = \sum_{n=1}^{+\infty} x(nT)\delta(t-nT)$$

The Sampling Theorem

Feng-Li Lian © 2010 NTUEE-RTCS22-Sampling-7

Impulse-Train Sampling:

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(jw)$$

$$P(jw) = \frac{2\pi}{T} \sum_{k=-\infty}^{+\infty} \delta(w - kw_s)$$

From multiplication property,

$$X_p(jw) = rac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\theta) P(j(w-\theta)) d\theta$$

$$= rac{1}{T} \sum_{k=-\infty}^{+\infty} X(j(w-kw_s))$$
 $w_s < 2w_M$
 $w_s < 2w_M$

The Sampling Theorem

Feng-Li Lian © 2010 NTUEE-RTCS22-Sampling-8

Exact Recovery by an Ideal Lowpass Filter:

Outline

Feng-Li Lian © 2010 NTUEE-RTCS22-Sampling-10

- Representation of a CT Signal by Its Samples: The Sampling Theorem
- Reconstruction of a Signal from Its Samples Using Interpolation
- The Effect of Under-sampling: Aliasing
- Discrete-Time Processing of Continuous-Time Signals

Reconstruction of a Signal from its Samples Using Interpolation

Exact Interpolation:

ideal lowpass in

$$\frac{x_r(t)}{x_r(t)} = x_p(t) * h(t) \qquad \qquad h(t) = \frac{w_c T \sin(w_c t)}{\pi w_c t}$$

$$\frac{x_r(t)}{x_r(t)} = \sum_{n=-\infty}^{+\infty} x(nT)h(t-nT)$$

$$x_r(t) = \sum_{n=-\infty}^{+\infty} x(nT) \frac{w_c T}{\pi} \frac{\sin(w_c(t-nT))}{w_c(t-nT)}$$

Outline Feng-Li Lian © 2010 NTUEE-RTCS22-Sampling-14

- Representation of a CT Signal by Its Samples: The Sampling Theorem
- Reconstruction of of a Signal from Its Samples Using Interpolation
- The Effect of Under-sampling: Aliasing
- Discrete-Time Processing of Continuous-Time Signals

- Representation of of a CT Signal by Its Samples:
 The Sampling Theorem
- Reconstruction of a Signal from Its Samples Using Interpolation
- The Effect of Under-sampling: Aliasing
- Discrete-Time Processing of Continuous-Time Signals

Sampling & Reconstruction

■ Theorem 7.1: (Shannon, 1949)

- f(t): a continuous-time signal
- F(w): the Fourier transform of f(t)

$$\rightarrow F(w) = 0$$
 outside $(-w_0, w_0)$

- w_s : sampling frequency
- \Rightarrow If $w_s > 2w_0$

Then f(t) can be computed by:

$$f(t) = \sum_{k=-\infty}^{\infty} \frac{f(kh)}{w_s(t-kh)/2} \frac{\sin(w_s(t-kh)/2)}{w_s(t-kh)/2} \quad \sin(\frac{w_s(t-kh)}{2})$$

03/29/03

03/29/03

Sampling & Reconstruction

Feng-Li Lian © 2010 NTUEE-RTCS22-Sampling-34

- Note that:
 - $w_N = w_s/2$: Nyquist frequency
 - Reconstruction of signlas:

$$F(w) = 0$$
 when $w > w_N$

03/29/03

Sampling & Reconstruction

Feng-Li Lian © 2010 NTUEE-RTCS22-Sampling-35

 $F(\omega)$

Reconstruction:

•
$$F(w) = \int_{-\infty}^{\infty} e^{-iwt} f(t) dt$$

•
$$F(w) = \begin{cases} hF_s(w) & |w| \le \frac{w_s}{2} \\ 0 & |w| > \frac{w_s}{2} \end{cases}$$

Sampling & Reconstruction

Feng-Li Lian © 2010 NTUEE-RTCS22-Sampling-36

- Shannon Reconstruction:
 - For periodic sampling of band-limited signals

$$f(t) = \sum_{k=-\infty}^{\infty} f(kh) \frac{\sin(w_s(t-kh)/2)}{w_s(t-kh)/2}$$

However, it is NOT a caucal operator

Sampling & Reconstruction

Feng-Li Lian © 2010 NTUEE-RTCS22-Sampling-37

Shannon Reconstruction:

• Let's look at the impulse response:

$$h(t) = \frac{\sin(w_s t/2)}{w_s t/2}$$

- The weights are 10% after 3 samples < 5% after 6 samples
- This construction has a delay
 ⇒ Not good for control
- Only applied to periodic sampling

03/29/03

03/29/03

Sampling & Reconstruction

Feng-Li Lian © 2010 NTUEE-RTCS22-Sampling-38

Zero-Order Hold (ZOH) & First-Order Hold (FOH)

- They are caucal operators
- Predictive FOH:
- It is NOT caucal But, can be replaced by model prediction

03/29/03

Sampling & Reconstruction

Feng-Li Lian © 2010 NTUEE-RTCS22-Sampling-39

Sinusoidal signal with h = 1 and h = 0.5

Aliasing or Frequency Folding (7.4)

- Aliasing:
 - Two signals with frequency, 0.1 Hz and 0.9 Hz
 - They have the same values at all sampling instants

Aliasing or Frequency Folding

Feng-Li Lian © 2010 NTUEE-RTCS22-Sampling-41

• Fourier transform of sampled signal:

•
$$F(w) = \int_{-\infty}^{\infty} e^{-iwt} f(t) dt$$

•
$$F(w) = \int_{-\infty}^{\infty} e^{-iwt} f(t) dt$$
 • $F_s(w) = \sum_{k=-\infty}^{\infty} f(kh) e^{-ikhw}$

03/29/03

03/29/03

Aliasing or Frequency Folding

Feng-Li Lian © 2010 NTUEE-RTCS22-Sampling-42

Example 7.1: Feed-water heater in a ship boiler

- $w_s = \frac{2\pi}{2} = 3.142 \text{ rad/min}$
- $w_0 = \frac{2\pi}{2.11} = 2.978 \text{ rad/min}$
- $w_s w_0 = 0.1638 \text{ rad/min}$ $\Rightarrow T_s = 38 \text{ min}$

03/29/03

Aliasing or Frequency Folding

Feng-Li Lian © 2010 NTUEE-RTCS22-Sampling-43

Frequency Folding

Feng-Li Lian © 2010 NTUEE-RTCS22-Sampling-44

Pre-Sampling Filter in Example 7.2:

Aliasing or Frequency Folding Pre-Sampling Filter in Example 7.2: Feng-Li Lian © 2010 NTUEE-RTCS22-Sampling-45

- With a sinusoidal perturbation (0.9Hz)
- Sampling frequency = 1 Hz

03/29/03

Aliasing or Frequency Folding

Feng-Li Lian © 2010 NTUEE-RTCS22-Sampling-46

- Post-Sampling Filter:
 - Because signal from D/A is piecewise constant
 - May excite some oscillatory modes
 - So, use higher-order hold! such as piecewise linear signal

Multi-Rate Sampling (7.9)

■ Multi-rate System:

■ Switch Decomposition:

Further Readings

Feng-Li Lian © 2010 NTUEE-RTCS22-Sampling-54

Multi-rate systems

Fig. 7. TLA compensator structure.

M.C. Berg, N. Amit, J.D. Powell, "Multirate digital control system design", IEEE-TAC 33(12): 1139-1150, Dec 1988