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The 3D Accelerator Graphics Card

Traditionally:
Highly specialized processor (triangular data types, sub float
precision, no integers)

Today:
Unified shader: Autonomous compute device
SIMD / Stream architecture
Highly parallel, up to 512 threads, in order execution
Ideal for vector processing
Special programming extensions (CUDA, OpenCL)
Peta-Flop supercomputers have GPU-like architecture
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CPU vs GPU

CPU:
Cores independent
Memory accesses hidden by
caches automatically
10.6 GB/s to RAM (PC2-5300
DDR2), optimized for latency

GPU:
Cores execute same
instructions on different
memory address (warp = 32)
Memory access hidden by
coalescence and parallelism
by programmer
141.7 GB/s to RAM, optimized
for bandwidth
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GPU Memory Hierarchy

Device Memory (RAM)
Access time: Up to 600 clock cycles (= 150 float add/mult)
Remedy: Coalescence: Channel load/store instructions (zero
padding, pitch)!!
Unknowns per thread should be multiple of 4 or 2 but not 3

Shared Memory
Delivers 32 Bit per clock cycle
16 KB in 16 Banks: Bank conflict when too much data needed at
the same time or unstructured access (stride)
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GPU Memory Hierarchy

Constant Memory
Read only
Cached with broadcast if all threads access same address

Registers
8192 per Block, access 0 cycle
Shared with Shared Memory, potential bank conflicts
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Programming Paradigm

Grid Block
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Thread

Thread

Thread

Thread

Thread
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Summary GPU Computing

Good Problems:
Dense matvec, Sparse banded matvec
Fractals
FFT
Compute intensive PDE Solvers (High order FVM, Spectral
Elements, Lattice Boltzmann)
Structured meshes (cartesian)

Bad Problems:
Unstructured sparse matvec
Unstructured mixed element PDE schemes
Data intensive tasks

⇒ Numerical schemes should be designed with computer architecture
in mind.
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GPU Computing in Trier (with M. Siebenborn)

Finite Volume solver for shallow water and Euler equations, JST
Scheme, scalar dissipation, structured bodyfitted mesh
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Linear Elasticity

Deformation of a solid body under forces: Displacement vector
u ∈ R3.
Linear strain tensor

εij :=
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
Voight notation for symmetric strain tensor

ε̃ := (ε11, ε22, ε33, ε12, ε13, ε23)T =: Bu

Cauchy stress tensor: Young’s modulus E , Poisson’s ratio ν

σ =
E

(1 + ν)(1− 2ν)

2666664
1− ν ν ν
ν 1− ν ν
ν ν 1− ν

1− 2ν
1− 2ν

1− 2ν

3777775 ε̃
=: CBu
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Linear Elasticity and Finite Elements

Weak formulation

a(u, v) =

∫
Ω

(Bv)T CBu dS = L(u) ∀v ∈ V .

Matrix notation

K (Ω)u = f

Forces, loads, supports: f
Compliance

c(u) = uT f = uT Ku,

S. Schmidt, V. Schulz (University of Trier) GPU Topology Optimization July 23rd, 2009 12 / 23



Topology Optimization Problem

Mathematical Problem

min
(u,Ω)

J(u,Ω) : = uT K (Ω)u

subject to
K (Ω)u = f
Vol(Ω) = V0

How to deal with the unknown Ω?
Level-Set method: Ω is zero level of function θ

Extract zero-level curve of θ ⇒ unstructured curve⇒ unstructured
discretization of Ω

X-FEM
Special treatment of bisected elements

Solid Isotropic Material with Penalization (SIMP), aka
homogenization approach
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Solid Isotropic Material with Penalization (SIMP)

Overlay Ω with cartesian grid
Pseudo-Density in each Finite Element ρ = (ρ1, · · · , ρN)T :

min
(u,ρ)

J(u, ρ) : = uT K (ρ)u

subject to
K (ρ)u = f

N∑
e=1

ρe = V0

ρe ∈ {0,1}
Replace ρe ∈ {0,1} by ρe ∈ [0,1]

a(u, v) =
N∑

e=1

∫
Ωe

(Bv)Tρp
eCBu dS = L(u) ∀v ∈ V

Penalty parameter p
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Optimality Criteria

Lagrangian:

L =uT K (ρ)u + λ

(
N∑

e=1

ρe − V0

)
+ µT (K (ρ)u − f )

+
N∑

e=1

αe(−ρe) +
N∑

e=1

βe(ρe − 1)

Optimality condition (self-adjoint in µ):

−uT
e
∂Ke

∂ρe
ue + λ− αe + βe = 0

N∑
e=1

ρe − V0 = 0

−ρe = 0 or ρe − 1 = 0
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Optimality Criteria Method

Gradient of Lagrangian without constraint ρe ∈ {0,1}:

Be :=
1
λ

uT
e
∂Ke

∂ρe
ue = 1

Update for ρe:

ρe ←

8<: max(ρ0, ρe −m) if ρeBη
e ≤ max(ρ0, ρe −m)

ρeBη
e if max(ρ0, ρe −m) < ρeBη

e < min(1, ρe + m)
min(1, ρe + m) if min(1, ρe + m) ≤ ρeBη

e

Move-limit m > 0, damping η = 0.5
Bisection for λ
OC-Update can be interpreted as special projected gradient
method for ρe ∈ [0,1] constraint
Implemented in One-Shot, i.e. inexact gradient
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Finite Elements: CPU Code

1: Compute RefStiff[i][j] ∈ R24×24

2: uk+1 = 0
3: for all Finite Elements T do
4: for all vertices i of T do
5: t = 0
6: for all vertices j of T do
7: ig = Global-Index i
8: jg = Global-Index j
9: t = t + ρT RefStiff[i][j]uk [jg]

10: end for
11: uk+1[ig] = uk+1[ig] + t
12: end for
13: end for

Cons:
Requires 32 global load
operations per element
Requires 8 global store
operations per element
Final store must be atomic!
Prohibitive for GPU!
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Memory Coalescence

Memory access is expensive!
Strategy: Matrix-free FEM with
CG
Cartesian Mesh: nx × ny × nz
tensor mesh
Parallelism: Process matvec
per 2D slice and stream in
k -plane
Partition 2D slice in
warpsize × n blocks, where n
is determined from avaliable
shared memory
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Finite Elements: GPU Code

1: Compute RefStiff[i][j] ∈ R24×24 and copy to constant memory
2: Partition x-y -plane in warpsize × n patches, launch GPU blocks
3: Init shared memory, synchronize threads
4: for all k -planes do
5: (i , j) = Thread-ID, Res = 0 in thread register
6: Discard slice, load new one, synchronize
7: for all Elements T that have (i , j , k) as a vertex do
8: (i2, j2, k2) = local index (i , j , k) has in T
9: uthread = u(i , j , k) from shared memory

10: for all (i1, j1, k1) vertex of T do
11: Res = Res + ρT RefStiff[(i1, j1, k1)][(i2, j2, k2)]uthread
12: end for
13: end for
14: Synch threads
15: Upload Res from shared to global memory
16: end for
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3D Cantilever

180× 180× 360 mesh
46.5 · 106 unknowns
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cant_opt.mp4
Media File (video/mp4)



3D Cantilever

(cantsmooth.u3d)

80× 80× 160 mesh
Full load in k -direction
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Speed-Up

Time for 1000 CG iterations on 180× 180× 360 mesh

00:05:27,60 1
Core2Duo E6600 1 Core 05:18:27,38 58,33
Core2Duo E6600 2 Core 02:51:28,55 31,41
Core2Duo T9600 1 Core 04:37:29,92 50,82
Core2Duo T9600 2 Core 01:58:50,87 21,77

1000 CG Iterations 180x180x360 Mesh
GeForce GTX280

00:00:00,00

01:12:00,00

02:24:00,00

03:36:00,00

04:48:00,00

06:00:00,00
GeForce GTX280
Core2Duo E6600 1 
Core
Core2Duo E6600 2 
Core
Core2Duo T9600 1 
Core
Core2Duo T9600 2 
Core

S. Schmidt, V. Schulz (University of Trier) GPU Topology Optimization July 23rd, 2009 22 / 23



Conclusions and Future Work

Conclusions
GPU very fast for problems with specific structure
Programming: Easy to pick up, hard to master

Future Work
Multigrid
Fluid / structure interaction
Multi-GPU
Heterogenous CPU / GPU parallelism
Adaptive load balancing

Code avaliable
http://www.mathematik.uni-trier.de/~schmidt/gputop
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