A 2589 Line Topology Optimization Code Written for the Graphics Card

Stephan Schmidt, Volker Schulz

July 23rd, 2009

S. Schmidt, V. Schulz (University of Trier)

GPU Topology Optimization

Outline

The Graphics Card

- Processing Unit
- Memory Management
- Example Applications

Linear Elasticity and Topology Optimization

- Displacements and Compliance
- Topology Optimization Problem
- SIMP Method

3 GPU Implementation

Literature

S. Ananiev.

On equivalence between optimality criteria and projected gradient methods with application to topology optimization problem. *Multibody System Dynamics*, 13(1):25–38, 2003.

M. P. Bendsøe and O. Sigmund. Topology Optimization – Theory, Methods and Applications. Springer, Berlin, Heidelberg, New York, 2nd edition, 2004.

M. Giles.

Using NVIDIA GPUs for computational finance. http://people.maths.ox.ac.uk/~gilesm/hpc/.

O. Sigmund.

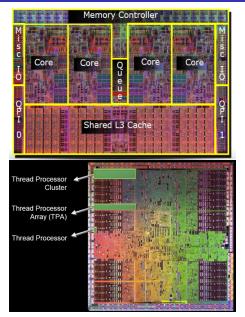
A 99 line topology optimization code written in matlab. Structural and Multidisciplinary Optimization, 21(2):120–127, 2001. Traditionally:

 Highly specialized processor (triangular data types, sub float precision, no integers)

Today:

- Unified shader: Autonomous compute device
- SIMD / Stream architecture
- Highly parallel, up to 512 threads, in order execution
- Ideal for vector processing
- Special programming extensions (CUDA, OpenCL)
- Peta-Flop supercomputers have GPU-like architecture

CPU vs GPU



CPU:

- Cores independent
- Memory accesses hidden by caches automatically
- 10.6 GB/s to RAM (PC2-5300 DDR2), optimized for latency

GPU:

- Cores execute same instructions on different memory address (warp = 32)
- Memory access hidden by coalescence and parallelism by programmer
- 141.7 GB/s to RAM, optimized for bandwidth

Device Memory (RAM)

- Access time: Up to 600 clock cycles (= 150 float add/mult)
- Remedy: Coalescence: Channel load/store instructions (zero padding, pitch)!!
- Unknowns per thread should be multiple of 4 or 2 but not 3

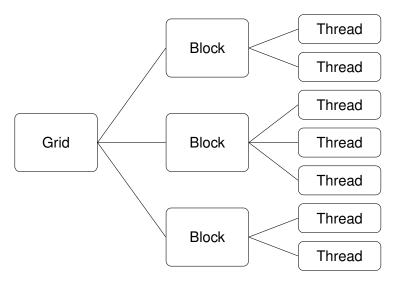
Shared Memory

- Delivers 32 Bit per clock cycle
- 16 KB in 16 Banks: Bank conflict when too much data needed at the same time or unstructured access (stride)

Constant Memory

- Read only
- Cached with broadcast if all threads access same address Registers
 - 8192 per Block, access 0 cycle
 - Shared with Shared Memory, potential bank conflicts

Programming Paradigm



Good Problems:

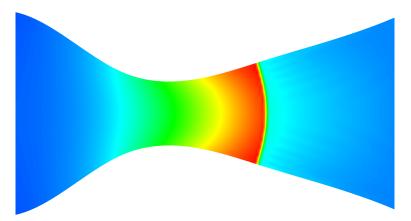
- Dense matvec, Sparse banded matvec
- Fractals
- FFT
- Compute intensive PDE Solvers (High order FVM, Spectral Elements, Lattice Boltzmann)
- Structured meshes (cartesian)

Bad Problems:

- Unstructured sparse matvec
- Unstructured mixed element PDE schemes
- Data intensive tasks

 \Rightarrow Numerical schemes should be designed with computer architecture in mind.

GPU Computing in Trier (with M. Siebenborn)



Finite Volume solver for shallow water and Euler equations, JST Scheme, scalar dissipation, structured bodyfitted mesh

Linear Elasticity

- Deformation of a solid body under forces: Displacement vector $u \in \mathbb{R}^3$.
- Linear strain tensor

$$\epsilon_{ij} := \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$

Voight notation for symmetric strain tensor

$$\tilde{\epsilon} := (\epsilon_{11}, \epsilon_{22}, \epsilon_{33}, \epsilon_{12}, \epsilon_{13}, \epsilon_{23})^T =: Bu$$

Cauchy stress tensor: Young's modulus E, Poisson's ratio ν

$$\sigma = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & \nu \\ \nu & 1-\nu & \nu \\ \nu & \nu & 1-\nu \\ & & 1-2\nu \\ & & & 1-2\nu \\ & & & & 1-2\nu \end{bmatrix} \tilde{\epsilon}$$

=: CBu

Linear Elasticity and Finite Elements

Weak formulation

$$a(u, v) = \int_{\Omega} (Bv)^T CBu \ dS = L(u) \ \forall v \in V.$$

Matrix notation

 $K(\Omega)u = f$

• Forces, loads, supports: f

Compliance

$$c(u) = u^T f = u^T K u,$$

Topology Optimization Problem

Mathematical Problem

$$\min_{\substack{(u,\Omega)}} J(u,\Omega) := u^T \mathcal{K}(\Omega) u$$

subject to
$$\mathcal{K}(\Omega) u = f$$

$$\operatorname{Vol}(\Omega) = V_0$$

How to deal with the unknown Ω ?

- Level-Set method: Ω is zero level of function θ
 - Extract zero-level curve of $\theta \Rightarrow$ unstructured curve \Rightarrow unstructured discretization of Ω
- X-FEM
 - Special treatment of bisected elements
- Solid Isotropic Material with Penalization (SIMP), aka homogenization approach

S. Schmidt, V. Schulz (University of Trier)

Solid Isotropic Material with Penalization (SIMP)

- Overlay Ω with cartesian grid
- Pseudo-Density in each Finite Element $\rho = (\rho_1, \cdots, \rho_N)^T$:

$$\min_{(u,\rho)} J(u,\rho) := u^T K(\rho) u$$

subject to
 $K(\rho) u = f$
 $\sum_{e=1}^N \rho_e = V_0$
 $\rho_e \in \{0,1\}$

• Replace $\rho_e \in \{0, 1\}$ by $\rho_e \in [0, 1]$

$$a(u, v) = \sum_{e=1}^{N} \int_{\Omega_{e}} (Bv)^{T} \rho_{e}^{p} CBu \ dS = L(u) \ \forall v \in V$$

• Penalty parameter p

Optimality Criteria

• Lagrangian:

$$\mathcal{L} = u^{T} \mathcal{K}(\rho) u + \lambda \left(\sum_{e=1}^{N} \rho_{e} - V_{0} \right) + \mu^{T} \left(\mathcal{K}(\rho) u - f \right)$$
$$+ \sum_{e=1}^{N} \alpha_{e}(-\rho_{e}) + \sum_{e=1}^{N} \beta_{e}(\rho_{e} - 1)$$

• Optimality condition (self-adjoint in μ):

$$-u_e^T \frac{\partial K_e}{\partial \rho_e} u_e + \lambda - \alpha_e + \beta_e = 0$$
$$\sum_{e=1}^N \rho_e - V_0 = 0$$
$$-\rho_e = 0 \quad \text{or} \quad \rho_e - 1 = 0$$

Gradient of Lagrangian without constraint ρ_e ∈ {0, 1}:

$$B_e := \frac{1}{\lambda} u_e^T \frac{\partial K_e}{\partial \rho_e} u_e = 1$$

Update for ρ_e:

$$\rho_{e} \leftarrow \begin{cases} \max(\rho_{0}, \rho_{e} - m) & \text{if } \rho_{e}B_{e}^{\eta} \leq \max(\rho_{0}, \rho_{e} - m) \\ \rho_{e}B_{e}^{\eta} & \text{if } \max(\rho_{0}, \rho_{e} - m) < \rho_{e}B_{e}^{\eta} < \min(1, \rho_{e} + m) \\ \min(1, \rho_{e} + m) & \text{if } \min(1, \rho_{e} + m) \leq \rho_{e}B_{e}^{\eta} \end{cases}$$

- Move-limit m > 0, damping $\eta = 0.5$
- Bisection for λ
- OC-Update can be interpreted as special projected gradient method for ρ_e ∈ [0, 1] constraint
- Implemented in One-Shot, i.e. inexact gradient

Finite Elements: CPU Code

- 1: Compute RefStiff[*i*][*j*] $\in \mathbb{R}^{24 \times 24}$
- 2: $u^{k+1} = 0$
- 3: for all Finite Elements T do
- 4: **for all** vertices *i* of T **do**
- 5: t = 0
- 6: **for all** vertices *j* of T **do**
- 7: $i_g = \text{Global-Index } i$
- 8: $j_g = \text{Global-Index } j$
- 9: $t = t + \rho_T \operatorname{RefStiff}[i][j] u^k[j_g]$
- 10: **end for**

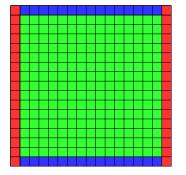
11:
$$u^{k+1}[i_g] = u^{k+1}[i_g] + t$$

- 12: end for
- 13: end for

Cons:

- Requires 32 global load operations per element
- Requires 8 global store operations per element
- Final store must be atomic! Prohibitive for GPU!

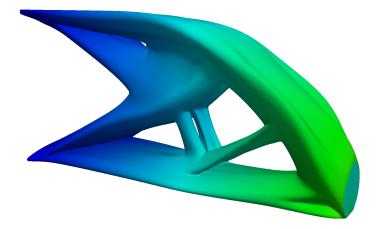
Memory Coalescence



- Memory access is expensive!
- Strategy: Matrix-free FEM with CG
- Cartesian Mesh: $n_x \times n_y \times n_z$ tensor mesh
- Parallelism: Process matvec per 2D slice and stream in *k*-plane
- Partition 2D slice in warpsize × n blocks, where n is determined from avaliable shared memory

Finite Elements: GPU Code

- 1: Compute RefStiff[*i*][*j*] $\in \mathbb{R}^{24 \times 24}$ and copy to constant memory
- 2: Partition x-y-plane in warpsize \times n patches, launch GPU blocks
- 3: Init shared memory, synchronize threads
- 4: for all k-planes do
- 5: (i, j) = Thread-ID, Res = 0 in thread register
- 6: Discard slice, load new one, synchronize
- 7: for all Elements T that have (i, j, k) as a vertex **do**
- 8: $(i_2, j_2, k_2) = \text{local index } (i, j, k) \text{ has in } T$
- 9: $u_{thread} = u(i, j, k)$ from shared memory
- 10: **for all** (i_1, j_1, k_1) vertex of T **do**
- 11: $Res = Res + \rho_T \operatorname{RefStiff}[(i_1, j_1, k_1)][(i_2, j_2, k_2)] u_{thread}$
- 12: end for
- 13: end for
- 14: Synch threads
- 15: Upload *Res* from shared to global memory
- 16: **end for**



- $\bullet~180\times180\times360$ mesh
- 46.5 · 10⁶ unknowns

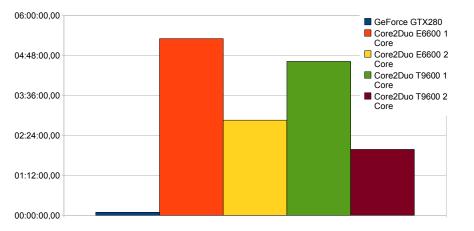
S. Schmidt, V. Schulz (University of Trier)

(cantsmooth.u3d)

- $\bullet~80\times80\times160$ mesh
- Full load in k-direction

S. Schmidt, V. Schulz (University of Trier)

Time for 1000 CG iterations on 180 \times 180 \times 360 mesh



Conclusions

- GPU very fast for problems with specific structure
- Programming: Easy to pick up, hard to master

Future Work

- Multigrid
- Fluid / structure interaction
- Multi-GPU
- Heterogenous CPU / GPU parallelism
- Adaptive load balancing

Code avaliable

http://www.mathematik.uni-trier.de/~schmidt/gputop