

A basic introduction in the CRISPR/Cas9 genome editing technique

Emma de Pater
CGEC
Cancer Genome Editing Center

CRISPR/Cas9

- CRISPR/Cas9 The immune system of bacteria
- CRISPR/Cas9 as a biomedical tool
- What to think of when you design your experiment
- Cas9 Variants
- CRISPR in the lab

Erasmus MC

Clustered Regularly Interspaced Short Palindromic Repeats

Erasmus MC z afuns

Erasmus MC 2 afuns

CRISPR/Cas9

- CRISPR/Cas9 The immune system of bacteria
- CRISPR/Cas9 as a biomedical tool
- What to think of when you design your experiment
- Cas9 Variants
- CRISPR in the lab

CRISPR/Cas9 as a tool for biomedical research

Erasmus MC zafus

Genome editing options for CRISPR/Cas9

- Generation of:
 - Mutations
 - (large) deletions
 - Integrations (reporters, tags)
 - Activation/repression of transcription

Non homologous end joining (NHEJ)

Homology directed repair (HDR)

What to think of when you design your experiment

- Cas9 delivery
- Off target effects
- Repairable cell

Scal sgRNA

Generating a patiënt specific mutation

Off target effects

Erasmus MC

CRISPR/Cas9

- CRISPR/Cas9 The immune system of bacteria
- CRISPR/Cas9 as a biomedical tool
- What to think of when you design your experiment
- Cas9 Variants
- CRISPR in the lab

How to make CRISPR/Cas9 more specific?

Cas9 nickase mutant

Erasmus MC

Base editing

How to deal with off-target effects

- Check your clone with NGS
- Redesign your guide
- HF or eCas9
- Nickase Cas9
- Use multiple clones or multiple guides
- Use a hit and run method (ribonuclearprotein transfection)
- Backcross your mouse line
- When Cas9 is loaded, fewer off-targets!

- Modification of gene expression
 - Activation (CRISPRa)
 - Repression (CRISPRi)

How it works in the lab

Visit cgec.erasmusmc.nl for a detailed protocol

- Make sure your target sequence is what you think
 - <u>www.ensembl.org</u> (and sequence verify)
- Design your guide (GG-18N-NGG)
 - crispr.mit.edu/
 - chopchop.rc.fas.harvard.edu/
- Clone your guide into proper Cas9 expression vector
- Transfect your cells
 - Cas9 is large, make sure you get ~90% efficiency with a GFP control vector
- Pick and screen <u>clones</u> by PCR/sequence verification

Erasmus MC 2 afms