A Basic Introduction to Quantum Computing: hardware, software, and applications

Larry S. Liebovitch

 people.qc.cuny.edu/faculty/Larry.Liebovitch/
Departments of Physics \& Psychology

Queens College, City University of New York
Physics Program
The Graduate Center, City University of New York
Adjunct Senior Research Scholar
Advanced Consortium on Cooperation, Conflict, and Complexity at The Earth Institute at Columbia University in the City of New York

Larry S. Liebovitch

Teaching

```
Hardware & Algorithms of Quantum Computing
    CUNY Graduate Center, Jan. 31, 2020, Fridays 2:00-4:00 PM
    access at: people.qc.cuny.edu/faculty/Larry.Liebovitch/
Courses:
    Astronomy, Complex Systems, Mathematics, Physics, Psychology
YouTube:
    Statistics: Methods in Complex Systems
    Computer Science: Smart Physics for Brilliant Computer Engineers - Season 2
```


Research

Mathematical Models \& Data Science of Complex Systems
motion of stars and gas in galaxies
gene regulatory networks
conditions needed for sustainable peace in the world

Quantum Predicts/Explains

Spectra

Chemistry

$\mathrm{n}=$ principle quantum number $\quad \ell=$ angular momentum distance of the electron from the how non-circular is the nucleus electron orbit around the nucleus

$\mathrm{m}_{\ell}=$ azimuthal quantum number how tipped up/down is the electron orbit

$m_{s}=$ spin of the electron

https://en.wikipedia.org/wiki/Hydrogen_spectral_series http://www.bariblock.eu/protezione-dalle-radiazioni/ http://sciencenotes.org/hd-periodic-table-wallpaper-muted-colors-2015//

Quantum Theory

SUCCESES

Spectra
Periodic Table
Radioactivity
Transistors
Superconductivity
Many others

FAILURES

Gravity
no quantum gravity
Molecules
cannot compute or predict structures, dynamics

Quantum Computers

Richard Feynman (1970s)
If complex quantum systems are hard to compute by conventional computers, use quantum computers to compute them.

Rationale for Quantum Computers

If we can get Quantum Computers to compute COMPLEX quantum systems.

We can use those Quantum Computers to compute MANY other equally COMPLEX systems.
cryptography
finance
weather
biology
social systems

Quantum Computers

```
BIG Companies
    Google
    IBM
    Microsoft
    Amazon
    Intel
    Alibaba Group
    Baidu
    Goldman Sachs
    Huawei
    J. P. Morgan Chase
Startups
    D-Wave Systems
    IonQ
    Regetti
    Orypt
    Tunnel
    Quantum Circuits
    Xanadu
100+ other Companies
    https://quantumcomputingreport.com/players/
```


"Quantum Supremecy"

Quantum Computers

could be 10^{28} times faster then current computers 10,000,000,000,000,000,000,000,000,000

VERY DIFFERENT hardware: NO more bits, RAM, HD, SSD
VERY DIFFERENT software: NO more C++, Python, FORTRAN COBOL

Hard Parts

UNDERSTANDING the essential PRINCIPLES of Quantum Mechanics that set the design features of
hardware
software
Getting the HARDWARE to work without (too many) errors
Creating the SOFTWARE ALGORITHMS that solve real-world problems

Different Worlds - Different Behaviors

Everyday Physics

everyday world: BIG things
motions, forces, gravity, heat deterministic measure and predict with certainty

Quantum Mechanics

hidden world: smallest things light (photons), atoms, transistors probabilities
you measure it, you change it

Quantum "Copenhagen Interpretation"

1. BEFORE you measure there are MANY possibilities.
2. WHEN you measure you find only ONE result. "the wave function 'collapses' to the measurement"
3. You can predict ONLY the PROBABILITY of a result.
4. In a Quantum Computer the things you measure are called Qubits.

ONE Qubit

1. BEFORE you measure

Qubits are BOTH [0] and [1], "superposition"
2. AFTER you measure

The Qubits ONLY are either a "0" or "1".
3. ONCE you measure, can NEVER go on computing
4. CANNOT make copies before to cheat
"no-cloning theorem"
math: if $O(\psi)=\psi+\psi$, quadratic in [0],[1] only LINEAR allowed physics: if $O(\psi)=\psi+\psi, x$ from some, p from others, Heisenberg!

Bits vs. Qubits

Classical computer
operations can be irreversible $c=X O R(a, b)$, can't get a or b back

Quantum Computer
ALL the operations are reversible and unitary

Bits vs. Qubits

Classical computer bits are ONLY 0 or 1 .

Quantum Computer

superposition
Qubits are both [0] and [1] at the same time
More computing power than your computer

Many Bits vs. Many Qubits

Classical computer
n bits
define a 2 n dimensional space $\mathrm{n}=100,2 \mathrm{n}=200$

Quantum Computer
n Qubits
define a $\mathbf{2}^{\mathrm{n}}$ dimensional space
$\mathrm{n}=100$,
$2^{n}=1,267,650,000,000,000,000,000,000,000,000$
Just a few Qubits form a much BIGGER space to work in

Importance of Dimensionality

Plenty of Room at the Top
ALL 7.5 billion people in the world:
r^{1} : 1-D line $4,000,000 \mathrm{~km}$
r^{2} : 2-D area 43 km

$$
\begin{aligned}
\mathrm{r}^{3}: 3-\mathrm{D} \text { volume } & 2 \mathrm{~km} \\
& \times 2 \mathrm{~km} \\
& \times 2 \mathrm{~km}
\end{aligned}
$$

Bits vs. Qubits

Classical computer

You can know the computation values at each step
You get a definite answer to your computation

Quantum Computer
You can't know the intermediate values in the computation (that would collapse the wave function)
ONLY get the probability of the correct answer

Bits vs. Qubits

Classical computer
Most Complex:
BPP (Bounded-error Probabilistic Polynomial)

Quantum Computer
Most Complex:
BOP (Bounded-error Quantum Polynomial) thought that BOP > BPP.

"Quantum Supremacy"

HIGH information content Each Qubit (∞ digits) both [0], [1] same time
 HIGH information content
 n QUBITS together high dimension $=2^{n}$
 MASSIVELY Parallel (sort of)
 ψ samples whole space
 SOLVE more complex problems
 $B Q P>B P P$ (maybe)

QUANTUM Computer

HARDWARE - Qubits

Anything:

QUANTUM Computer

HARDWARE - Qubits

Anything:

Anything:

- bits of electricity
- bits of magnetism
- single atoms
- dots of atoms
- wrong atoms in crystals
- light
- positions of things
- shapes of boundaries

Quantum Computer Hardware D-Wave Systems

Qubit

Notice: right-hand rule!

Cold: 0.015 K
Shielded: magnetic, radio (emf)

Many Qubits
http://www.dwavesys.com/tutorials/background-reading-series/introduction-d-wave-quantum-hardware

Quantum Computer Hardware D-Wave Systems

http://www.dwavesys.com/sites/default/files/D-Wave\ 2X\ Tech\ Collateral_1U16广.pdt http://www.dwavesys.com/resources/media-resources

Quantum Computer Hardware D-Wave Systems

WHY
 So COLD?

http://www.dwavesys.com/sites/default/files/D-Wave\ 2X\ Tech\ Collateral_1016F.pdf http://www.dwavesys.com/resources/media-resources

Temperature

Temperature T
At each Temperature ANYTHING has energy

Temperature

Temperature T
At each Temperature ANYTHING has energy
So, EVERY ONCE IN A WHILE. . .
ball

How Often when $\Delta \mathrm{E}$ BIG?

$\mathrm{m}=.15 \mathrm{~kg}$ (baseball), $\mathrm{g}=9.8 \mathrm{~ms}^{-2}, \mathrm{~h}=.10 \mathrm{~m}$,
$\mathrm{T}=293 \mathrm{~K}(68 \mathrm{~F}), \mathrm{k}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
Time Spent (high) $=\left[e^{-\Delta E / k T}\right]$ Time Spent (low)
Time Spent (high) $=\left[10^{-10,000,000,000,000,000,000}\right.$
REALLY REALLY REALLY not often
] Time Spent (low) ball

Energy Difference $\Delta E=m g h$

How COLD D-WAVE?

$$
\begin{aligned}
& \Delta \mathrm{E}=3 \times 10^{-24} \mathrm{~J} \\
& \mathrm{k}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

Time Spent (high) $/$ Time Spent (low) $\left.=\left[e^{-\Delta E / k T}\right)\right]=10^{-6}$
$\mathrm{T}=0.0157 \mathrm{~K}=15 \mathrm{mK}$
REALLY cold!

Energy Difference $\Delta E=3 \times 10^{-24} \mathrm{~J}$

IC Chips: q, E, B

Superconducting loops

A resistance-free current oscillates back and forth around a circuit loop. An injected microwave signal excites the current into superposition states.

Longevity (seconds) 0.00005

Logic success rate

99.4\%

Number entangled

9

Company support
Google, IBM, Quantum CircuitsPros
Fast working. Build on existing semiconductor industryCons
Collapse easily and must be kept cold.

Typical QUBITS

Isolated Ions

Trapped ions

Electrically charged atoms, or ions, have quantum energies that depend on the location of electrons. Tuned lasers cool and trap the ions, and put them in superposition states.
>1000
99.9\%

14
ionQ

Very stable. Highest achieved gate fidelities.

Slow operation. Many lasers are needed.
a Positions

Topological qubits

Quasiparticles can be seen in the behavior of electrons channeled through semiconductor structures. Their braided paths can encode quantum information.

N/A

N/A

N/A

Microsoft, Bell Labs

Greatly reduce errors.

2016 Science 354:1091-1093. ;e.sciencemag.org/content/339/6121/798 itation.org/doi/10.1063/1.4976737

Photonics

PsiQuantum Tundra Systems

Wave Functions

Wave Function $\psi=a_{1}[0]+a_{2}[1]$

(wave function is solution to the Quantum Mechanic Schrodinger equation).

Superposition: Wave Function is BOTH [0] and [1] and everything in-between until you measure it WHEN you measure it is EXACTLY either [0] or [1]

Born Rule

$\left|a_{1}\right|^{2}=$ probability of finding state [0] when you measure $\left|a_{2}\right|^{2}=$ probability of finding state [1] when you measure

Probability of ALL states $=1$
$\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}=1$

Quantum Operators MUST BE

UNITARY

```
\(\psi=a_{1}[0]+a_{2}[1]\)
Born Rule: \(\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2}=1\)
total Probability = 1
```


REVERSIBLE

math: Hilbert space: $u^{\dagger} u=u u^{\dagger}=1 \quad\left(\exists u^{-1} \forall \mathrm{u}\right)$ physics: Schrodinger Eq:
t-> -t no probability change: $\left|e^{i \omega t}\right|^{2}=\left|e^{-i \omega t}\right|^{2}$ not dissipative, no entropy

What to do with ONE Qubit

Qubits $\quad[0]=\left[\begin{array}{l}1 \\ 0\end{array} \quad[1]=\begin{array}{l}0 \\ 1\end{array}\right.$
Operations $\left.\left.\begin{array}{ll}a & b \\ c & d\end{array}\right] \times \begin{array}{l}e \\ f\end{array}\right]=\begin{aligned} & a e+b f \\ & c e+d f\end{aligned}$

$$
\begin{aligned}
X(N O T) & \left.=\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \\
X[0] & =\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array} \left\lvert\, \times\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]=[1]\right. \\
X[1] & =\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array} \times\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=[0]
\end{aligned}
$$

Hadamard

$$
[0]=\begin{aligned}
& 1 \\
& 0
\end{aligned} \quad[1]=\begin{aligned}
& 0 \\
& 1
\end{aligned}
$$

$\boldsymbol{H}($ Hadamard $)=\frac{1}{\sqrt{2}} \begin{array}{ll}1 & 1 \\ 1 & -1\end{array}$
$\left.\left.\left.\mathbf{H}[0]=\frac{1}{\sqrt{2}} \begin{array}{|cc|}\hline 1 & 1 \\ 1 & -1 \\ \hline\end{array} \times \begin{array}{l}1 \\ 0\end{array}\right]=\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right]=\frac{1}{\sqrt{2}} \begin{array}{l}1 \\ 0\end{array}\right]+\frac{1}{\sqrt{2}}\left[\begin{array}{l}0 \\ 1\end{array}\right]=50 \%[0]+50 \%[1]$
$\left.\left.\mathbf{H}[1]=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1 \\ \hline\end{array} \times \begin{array}{|c}0 \\ 1\end{array}\right]=\begin{array}{|c}\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}}\end{array} ~=\frac{1}{\sqrt{2}} \begin{array}{l}1 \\ 0\end{array}\right]-\frac{1}{\sqrt{2}} \begin{array}{l}0 \\ 1\end{array}\right]=50 \%[0]+50 \%[1]$
H converts [0]: to 50% [0] + 50\% [1]
H converts [1]: to 50% [0] + 50\% [1]

Bloch Sphere

 $\psi=\cos (\theta / 2)[0]+e^{i \phi} \sin (\theta / 2)[1]$

Emma Strubell An Introduction to Quantum Algorithms http://people.cs.umass.edu/~sturbell/doc/quantum_tutorial.pdf

From ONE BASIS to ANOTHER

Quantum Cryptography

100% [0] or [1] in one BASIS is 50\% [0] \& 50\% [1] in another BASIS

1. SEND A SECURE KEY from one person to another
2. TELL if someone else (an evil actor) was LISTENING IN!

NO eavesdropper because measurement changes things

Quantum Key Distribution

BB84 protocol: Charles H. Bennett and Gilles Brassard
if no one is watching

Alice's random byte	0	1	1	0	1	0	0	1
$\begin{array}{\|c\|} \hline \text { Alice's } \\ \text { random } \\ \text { sending basis } \\ \hline \end{array}$	+	+	\times	+	X	\times	X	+
Photon polarization Alice sends	\uparrow	\longrightarrow	\searrow	\uparrow	\searrow	\nearrow	\nearrow	\rightarrow
Bob's random measuring basis	$+$	\times	\times	\times	+	\times	$+$	$+$
Photon polarization Bob measures	\uparrow	\nearrow	\}	\nearrow	\rightarrow	\nearrow	\rightarrow	\rightarrow
PUBLIC DISCUSSION OF BASIS	unsecure: Alice, Bob tell + or x BASIS each photon							
Shared secret key	0		1			0		1

Alice \& Bob
DON'T
Tell $(0,1)$
ONLY
if used

+ or x
BASIS

Quantum Key Distribution
 if someone is watching!

Basis	$\mathbf{0}$	$\mathbf{1}$
+	\uparrow	\rightarrow
\times	\nearrow	\searrow

Alice's random bit	0	1	1	0	1	0	0	1
Alice's random sending basis	+	+	\times	+	\times	\times	\times	+
Photon polarization Alice sends	\uparrow	\rightarrow	\searrow	\uparrow	\searrow	\nearrow	\nearrow	\rightarrow
Eve's random measuring basis	$+$	\times	$+$	+	\times	+	\times	+
Polarization Eve measures and sends	\uparrow	\nearrow	\longrightarrow	\uparrow	>	\longrightarrow	\nearrow	\rightarrow
Bob's random measuring basis	+	X	\times	X	$+$	\times	+	+
Photon polarization Bob measures	\uparrow	\nearrow	\nearrow	】	\rightarrow	\nearrow	\uparrow	\rightarrow
PUBLIC DISCUSSION OF BASIS								
Shared secret key	0		0			0		1
Errors in key	\checkmark		X			\checkmark		\checkmark

Bob \& Alice can TELL if EVE is watching!
$3 / 4$ of the time Bob gets the WRONG bit, so if insecure compare (waste $n=72$ bits). Then $P(n)=1-(3 / 4)^{n}=0.999999999$ NO wrong bits, EVE is not listening.
https://en.wikipedia.org/wiki/Quantum_key_distribution

Quantum Key Distribution networks

DARPA (US)
SECOQC (EU)
SwissQuantum (CH)
China (QUESS satellite)
Tokyo (Japan)
Los Alamos National Laboratory (US)

+ others

What to do with TWO Qubits

$$
\begin{aligned}
& {[0]=\begin{array}{l}
1 \\
0
\end{array} \quad[0]=\begin{array}{l}
1 \\
0
\end{array}} \\
& \text { [00] }=[0] \times[0] \text { TENSOR product } \\
& \text { multiply every piece of } \mathbf{A} \text { by every piece of } \mathbf{B} \\
& \operatorname{dim}(A \times B)=\operatorname{dim}(A) \times \operatorname{dim}(B)=2 \times 2=4 \\
& \left.\left.\left.[00]=[0] \times[0]=\begin{array}{l}
1 \\
0
\end{array}\right] \times \begin{array}{|c}
1 \\
0
\end{array}\right]=\begin{array}{|c|}
1 \\
1 \\
0 \\
\hline
\end{array}\right] \begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline
\end{array} \\
& {[00]=\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}} \\
& {[01]=\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}} \\
& {[10]=\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}} \\
& {[11]=\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}}
\end{aligned}
$$

2 Qubit Operations

CNOT $=$ CONDITIONAL NOT
leave the first Qubit alone
if the first Qubit $=1$, switch the second Qubit from $(0 \rightarrow 1$ or $1 \rightarrow 0)$
CNOT $\left[a_{\text {in }} b_{\text {in }}\right]=\left[a_{\text {out }} b_{\text {out }}\right]$

$$
\begin{aligned}
& \text { if } a_{\text {in }}=0: a_{\text {out }}=a_{\text {in }}, b_{\text {out }}=b_{\text {in }} \\
& \text { if } a_{\text {in }}=1: a_{\text {out }}=a_{\text {in }}, b_{\text {out }}=\operatorname{NOT}\left(b_{\text {in }}\right)
\end{aligned}
$$

CNOT [00] = [00]
CNOT [01] = [01]
CNOT [10] = [11]
CNOT [11] = [10]

CNOT

$\left.\mathrm{CNOT}=\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$

CNOT [00] $\left.=\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]=\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0\end{aligned}=[00]$

CNOT [10] $\left.\left.=\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]=\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]=\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1\end{aligned}=$ [11]
CNOT [11] $\left.=\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array} \right\rvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1\end{aligned}=\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 0\end{aligned}=[10]$

COMBINE 2 Operations

H $\times 1=$ TENSOR product multiply every piece of H by every piece of 1 $\operatorname{dim}(H \times 1)=\operatorname{dim}(H) \times \operatorname{dim}(1)=2 \times 2=4$

$$
=\frac{1}{\sqrt{2}} \begin{array}{|cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
\hline
\end{array}
$$

NOW for some fun!

CNOT (H x 1) [00]

1	0	0	0
0	1	0	0
0	0	0	1
0	0	1	0

0 \& 1 \& 0 \& 1

1 \& 0 \& -1 \& 0

0 \& 1 \& 0 \& -1

\hline\end{array}\right|\)| 1 |
| :--- |
| 0 |
| 0 |
| 0 |$=\frac{1}{\sqrt{2}}$| 1 |
| :--- |
| 0 |
| 0 |
| 1 |$=\frac{1}{\sqrt{2}}$| 1 |
| :--- |
| 0 |
| 0 |
| 0 |$+\frac{1}{\sqrt{2}}$| 0 |
| :--- |
| 0 |
| 0 |
| 1 |

$$
=\frac{1}{\sqrt{2}}[00]+\frac{1}{\sqrt{2}}[11]
$$

"circuit diagram"
measurement

NOW for some fun!

CNOT (H x 1) [00]

$$
\begin{aligned}
& \left.\begin{array}{|cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array} \left\lvert\, \frac{1}{\sqrt{2}} \begin{array}{|cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right.\right] \begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}=\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}=\frac{1}{\sqrt{2}} \begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}+\frac{1}{\sqrt{2}} \begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array} \\
& =\frac{1}{\sqrt{2}}[00]+\frac{1}{\sqrt{2}}[11] \\
& 50 \% \text { of the time we measure [00] } \\
& 50 \% \text { of the time we measure [11] } \\
& \text { NEVER measure [01] or [10] }
\end{aligned}
$$

NOW for some fun!

CNOT (H x 1) [00]

$$
\begin{aligned}
& \begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\left|\frac{1}{\sqrt{2}} \begin{array}{|cccc|}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right| \begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}=\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}=\frac{1}{\sqrt{2}} \begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}+\frac{1}{\sqrt{2}} \begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array} \\
& =\frac{1}{\sqrt{2}}[00]+\frac{1}{\sqrt{2}}[11] \\
& 50 \% \text { of the time we measure [00] } \\
& 50 \% \text { of the time we measure [11] } \\
& \text { NEVER measure [01] or [10] }
\end{aligned}
$$

spukhafte Fernwirkung
"spooky action at a distance"
ENTANGLEMENT

IBM: https://quantumexperience.ng.bluemix.net/qx/editor

Quantum State: Computation Basis

IBM
 IBM Q 5
 Tenerife
 [ibmqx4]

Quantum Circuit

Device: Simulator

IBM IBM Q 5 Tenerife [ibmqx4]

Quantum State: Computation Basis

Quantum Circuit
$\sigma=\operatorname{sqrt}(n p q)$
$\mathrm{n}=1024$
$p=q=0.5$
$\sigma=\operatorname{sqrt}(256)=16$
$16 / 1024=0.016$
$0.503-0.497=0.006$

Making Entangled Photons

Spontaneous Downconversion

http://spookyactionbook.com/2016/02/21/faq-how-are-entangled-particles-created-video/

2-Photon Production

Ca atoms forbidden single photon transition to the ground state https://www.forbes.com/sites/chadorzel/2017/02/28/how-do-you-create-quantum-entanglement/\#529cb121732b

Micius Satellite Entanglement

Yin et al. 2017. Science 356:1140-1144.

[01] or [10]

[1]

ALWAYS [01] or [10] NEVER [00] or [11]

NOT that we measure [0] and it tells the other one to be [1] NO INFINTELY FAST ACTION AT A DISTANCE!

A continuous-wave laser diode with a central wavelength of 405 nm and a linewidth of $\sim 160 \mathrm{MHz}$ is used to pump a periodically poled KTiOPO4 (PPKTP) crystal inside a Sagnac interferometer. The pump laser, split by a polarizing beam splitter (PBS), passes through the nonlinear crystal in clockwise and anticlockwise direction simultaneously, which produces down-converted photon pairs at $\sim 810 \mathrm{~nm}$ wavelength in polarizationentangled states close to the form [01] . . Sending: .two Cassegrain telescopes 18 and 30 cm . . Receiving:China: Delingha and Lijiang, 120 and 180 cm

Public Key Encryption - RSA

Alice sends a public key to Bob Bob uses that key to send a message to Alice that ONLY Alice can read.

$$
n=p \times q
$$

if someone else can factor n into p and q they can read Bob's message!

Public Key Encription - RSA in pictures

Alice sends the public keys to Bob
Bob will use them to send a message back to Alice that ONLY Alice can read.

Alice

 Bob

$$
\begin{gathered}
\text { message }=m \\
\text { uses } \llbracket, 仓 \text { to } \\
\text { encrypt } m \text { as } \\
\mathbb{C}=m^{\mathrm{e}} \bmod (\mathfrak{n}) \\
\text { sends } \mathbb{C} \text { to Alice }
\end{gathered}
$$

Factoring Algorithms

Factoring the n of RSA-2048
$n=2048$ binary digits
Classical Computer
number of operations
$=10^{38}$
Quantum Computer

$$
\begin{aligned}
& \text { Shor's algorithm } \quad \mathbf{n}^{\mathbf{3}} \\
& =10^{10}
\end{aligned}
$$

Quantum Computer is 10^{28} times FASTER!

Shor's Algorithm to break RSA

1994
long before hardware available

Non-Quantum Part

pick a < n
find the period of $f(x)=a^{x} \bmod n$

Quantum Part

use Quantum Fourier Transforms
 to find the period r of $f(a)=a^{x} \bmod n$

Finding r is
equivalent to factoring $n=p \times q$.

Shor's Algorithm - Some Implementations

Martın-Lopez et al. 2012
$21=3 \times 7$
Nature Photonics
https://www.nature.com/articles/nphoton.2012.259.pdf photonics: calcite beam displacers and interferometers

Monz et al. 2016
$15=3 \times 5$
Science 351:1068-1070
https://science.sciencemag.org/content/351/6277/1068 ion-trap with five $\mathrm{Ca}+$ ions

$\begin{array}{lll}|0\rangle_{p}-\mathbf{H} & \mathbf{H}-\mathrm{C}-b_{0} \\ |0 \ldots 01\rangle_{q}-\mathbf{U}_{a^{4}}-\left|\psi_{b_{0}}\right\rangle_{q}\end{array}$

$15=3 \times 5$
https://arxiv.org/abs/1903.0076
16 superconducting qubits ibmqx5

Deutsch's Algorithm

http://www.cs.xu.edu/~kinne/quantum/deutche.html
https://physics.stackexchange.com/questions/3390/can-anybody-provide-a-simple-example-of-a-quantum-computer-algorithm

Input -> Output
 (x, y)-> ($\left.x^{\prime}, y^{\prime}\right)$ where $x, y, x^{\prime}, y^{\prime}=(0,1)$

Task

$f(0)=f(1)$ SAME output for DIFFERENT inputs INDEPENDENT
$\mathbf{f}(0) \neq \mathbf{f}(1)$ DIFFERENT output for DIFFERENT inputs DEPENDENT
Classical Computer
TWO operations: to tell if INDEPENDENT vs. DEPENDENT
Quantum Computer:
ONE operation can tell if INDEPENDENT vs. DEPENDENT
but it cannot tell
independent: whether $f(0)=f(1)=0$ or $f(0)=f(1)=1$
dependent: \quad whether $f(0)=0, f(1)=1$ or $f(0)=1, f(1)=0$

Deutsch-Jozsa Algorithm

https://en.wikipedia.org/wiki/Deutsch-Jozsa_algorithm
Input: $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)\left(x_{2}, y_{2}\right) \ldots\left(x_{n}, y_{n}\right)$
$n\left(x_{i}, y_{i}\right)$ pairs of inputs that are 0,1
Output: (x^{\prime}, y^{\prime})
1 pair (x^{\prime}, y^{\prime}) where $x^{\prime}=0,1 ; y^{\prime}=0,1$
Task
SAME output for ALL inputs INDEPENDENT DIFFERENT output for DIFFERENT inputs DEPENDENT

Classical Computer
$2^{\mathrm{n-1}}+1$ operations
Quantum Computer:
ONE operation

Grover's Algorithm

Database with n data elements

$$
n=10^{10}
$$

Classical Computer
number of operations n
$=10^{10}$

Quantum Computer

$$
\begin{aligned}
& \text { Grover's algorithm } n^{1 / 2} \\
& =10^{5}
\end{aligned}
$$

Quantum Computer is 10^{5} times FASTER!

https://en.wikipedia.org/wiki/RSA_Factoring_Challenge

REALITY CHECK

Shor's Algorithm

Already Post-Quantum Cryptography Companies designing quantum resistent encryption

Orypt, CryptoNext, QuBalt, ...
Deutsch-Jorzsa Algorithm \& Others
Nice "toy" problem, real world applications?

Grover's Algorithm

Real data is really unordered
hash functions: Blockchain (Bitcoin and elsewhere) biological systems: "content addressable" $O(n=1)$

Shor, Deutsch, Grover Algorithms \& Feynman, Deustch, Simon, \& others TREMENDOUSLY IMPORTANT

That WORK (40 years ago) has NOW led to REAL quantum computers and REAL algorithms. Basic research created NEW, unexpected, valuable possibilities for the REAL WORLD.

When Does Quantum Computing Happen?

It's Already Happened!

- Quantum Computer ECOSYSTEM
- lots lots $\$ \$ \$$ China >> US >> EU
- creating new chips, solid state, photonics
- creating new algorithms: find min, machine learning

The importance of DOD cold war spending and the moon landing wasn't landing on the moon, it was: IC chips CPUs, DRAM, HD, LCDs, Li-ion batteries, DSP, HTTP, HTML, GPS, touch screens, AI (M. Mazzucato).

If Quantum Computers Do Happen

- Feynman: quantum systems: molecules, drugs
- high dimensional: physics, chem, bio, psych, social
- science: weather, metamaterials,
- organizations: logistics, social patterns
- finance: fintech

What Happens Next?

"It's tough to make predictions, especially about the future."
 -Lawrence Peter "Yogi" Berra

