A Basic Introduction to Quantum Computing: hardware, software, and applications

Larry S. Liebovitch

people.qc.cuny.edu/faculty/Larry.Liebovitch/

Departments of Physics & Psychology

Queens College, City University of New York **Physics Program**

The Graduate Center, City University of New York

Adjunct Senior Research Scholar

Advanced Consortium on Cooperation, Conflict, and Complexity at The Earth Institute at Columbia University in the City of New York

Larry S. Liebovitch 2020, New York, NY, USA

Larry S. Liebovitch

Teaching Hardware & Algorithms of Quantum Computing CUNY Graduate Center, Jan. 31, 2020, Fridays 2:00 – 4:00 PM access at: people.qc.cuny.edu/faculty/Larry.Liebovitch/ Courses: Astronomy, Complex Systems, Mathematics, Physics, Psychology YouTube: Statistics: Methods in Complex Systems Computer Science: Smart Physics for Brilliant Computer Engineers – Season 2

Research

Mathematical Models & Data Science of Complex Systems motion of stars and gas in galaxies gene regulatory networks conditions needed for sustainable peace in the world

Quantum Predicts/Explains

Ly-α

100 nm

Spectra

Chemistry

m_l = azimuthal quantum number
how tipped up/down is the electron orbit

l = angular momentum
 how non-circular is the
 electron orbit around the nucleus

m_s = spin of the electron

https://en.wikipedia.org/wiki/Hydrogen_spectral_series http://www.bariblock.eu/protezione-dalle-radiazioni/ http://sciencenotes.org/hd-periodic-table-wallpaper-muted-colors-2015//

Quantum Theory

SUCCESES

Spectra Periodic Table Radioactivity Transistors Superconductivity Many others

FAILURES

Gravity no quantum gravity Molecules cannot compute or predict structures, dynamics

Quantum Computers

Richard Feynman (1970s)

If complex quantum systems are hard to compute by conventional computers, use quantum computers to compute them.

Rationale for Quantum Computers

```
If we can get Quantum Computers to compute
COMPLEX quantum systems.
We can use those Quantum Computers to
compute MANY other equally COMPLEX
systems.
     cryptography
     finance
     weather
     biology
     social systems
```

Quantum Computers

BIG Companies

Google

IBM

Microsoft

Amazon

Intel

Alibaba Group Baidu

Goldman Sachs

Huawei

J. P. Morgan Chase

Startups

D-Wave Systems

IonQ

Regetti

Qrypt

Tunnel

Quantum Circuits

Xanadu

100+ other Companies

https://quantumcomputingreport.com/players/

"Quantum Supremecy"

Quantum Computers

VERY DIFFERENT hardware: NO more bits, RAM, HD, SSD VERY DIFFERENT software: NO more C++, Python, FORTRAN COBOL

Hard Parts

UNDERSTANDING the essential PRINCIPLES of Quantum Mechanics that set the design features of

hardware software

Getting the HARDWARE to work without (too many) errors

Creating the SOFTWARE ALGORITHMS that solve real-world problems

Different Worlds - Different Behaviors

Izzy, Al, Jimmy, Ludva

Everyday Physics

everyday world: **BIG** things motions, forces, gravity, heat deterministic measure and predict with certainty

Marie, Niels, Erwin, Paul

Quantum Mechanics

hidden world: **smallest** things light (photons), atoms, transistors probabilities you measure it, you change it

Quantum "Copenhagen Interpretation"

- **1. BEFORE** you measure there are **MANY** possibilities.
- **2. WHEN** you measure you find only **ONE** result. "the wave function 'collapses' to the measurement"

3. You can predict **ONLY** the **PROBABILITY** of a result.

4. In a Quantum Computer the things you measure are called **Qubits.**

ONE Qubit

- BEFORE you measure Qubits are BOTH [0] and [1], "superposition"
- **2. AFTER** you measure The Qubits **ONLY** are either a "0" or "1".
- **3. ONCE** you measure, can **NEVER** go on computing
- **4. CANNOT** make copies before to cheat "no-cloning theorem" math: if $O(\psi) = \psi + \psi$, quadratic in [0],[1] only LINEAR allowed physics: if $O(\psi) = \psi + \psi$, x from some, p from others, Heisenberg!

Bits vs. Qubits

Classical computer

operations can be irreversible c = XOR(a,b), can't get a or b back

Quantum Computer

ALL the operations are reversible and unitary

Bits vs. Qubits

Classical computer bits are ONLY 0 or 1.

Quantum Computer

superposition **Qubits** are both [0] and [1] at the same time More computing power than your computer

Many Bits vs. Many Qubits

Classical computer

n bits
define a 2n dimensional space
n = 100, 2n = 200

Quantum Computer

n Qubits define a 2ⁿ dimensional space n = 100, 2ⁿ = 1,267,650,000,000,000,000,000,000,000,000 Just a few Qubits form a much BIGGER space to work in

Importance of Dimensionality

Plenty of Room at the Top

ALL 7.5 billion people in the world:

r¹: 1-D line 4,000,000 km

r²: 2-D area 43 km x 43 km

waitbutwhy.com https://waitbutwhy.com/2015/03/7-3-billion-people-one-building.html r³: 3-D volume 2 km x 2 km x 2 km

Bits vs. Qubits

Classical computer

You can **know** the computation values at each step You get a **definite answer** to your computation

Quantum Computer

You **can't know** the intermediate values in the computation (that would collapse the wave function) ONLY get the **probability** of the correct **answer**

Bits vs. Qubits

Classical computer

Most Complex: BPP (Bounded-error Probabilistic Polynomial)

Quantum Computer

Most Complex: BQP (Bounded-error Quantum Polynomial) thought that BQP > BPP.

"Quantum Supremacy"

HIGH information content Each Qubit (∞ digits) both [0], [1] same time

 $\frac{HIGH \text{ information content}}{n \text{ QUBITS together}}$ $high \text{ dimension} = 2^{n}$

<u>MASSIVELY Parallel (sort of)</u> *w* samples whole space

<u>SOLVE more complex problems</u> BQP > BPP (maybe)

[0]

QUANTUM Computer

Anything:

- bits of electricity
- bits of magnetism
- single atoms
- dots of atoms
- wrong atoms in crystals
- light
- positions of things
- shapes of boundaries

Quantum Computer Hardware D-Wave Systems

Qubit

Notice: right-hand rule!

Cold: 0.015 K Shielded: magnetic, radio (emf)

Many Qubits

http://www.dwavesys.com/tutorials/background-reading-series/introduction-d-wave-quantum-hardware

Quantum Computer Hardware D-Wave Systems

http://www.dwavesys.com/sites/default/files/D-Wave%202X%20Tech%20Collateral_1016F.pdt http://www.dwavesys.com/resources/media-resources

Quantum Computer Hardware D-Wave Systems

WHY So COLD?

http://www.dwavesys.com/sites/default/files/D-Wave%202X%20Tech%20Collateral_1016F.pdf http://www.dwavesys.com/resources/media-resources

Temperature

Temperature T At each Temperature ANYTHING has energy

Temperature

Temperature T At each Temperature ANYTHING has energy

So, EVERY ONCE IN A WHILE. . .

How Often when $\Delta E BIG$?

How COLD D-WAVE?

 $\Delta E = 3 \times 10^{-24} J$ $k = 1.38 \times 10^{-23} \text{ J/K}$ Time Spent (high) / Time Spent (low) = $[e^{-\Delta E / kT}] = 10^{-6}$ T = 0.0157 K = 15 mK**REALLY cold!** [1] **Energy Difference** $\Delta E = 3 \times 10^{-24} J$ [0]

IC Chips: q, E, B

Superconducting loops

A resistance-free current oscillates back and forth around a circuit loop. An injected microwave signal excites the current into superposition states.

Longevity (seconds) 0.00005

Logic success rate 99.4%

Number entangled

9

Company support

Google, IBM, Quantum Circuits

Pros

Fast working. Build on existing semiconductor industry.

Cons

Collapse easily and must be kept cold.

Typical QUBITS

Isolated lons

Trapped ions

>1000

99.9%

14

ionQ

gate fidelities.

are needed.

Electrically charged atoms, or ions, have quantum energies that depend on the location of electrons. Tuned lasers cool and trap the ions, and put them in superposition states.

Very stable. Highest achieved

Slow operation. Many lasers

Topological qubits

Quasiparticles can be seen in the behavior of electrons channeled through semiconductor structures. Their braided paths can encode quantum information.

N/A

N/A

N/A

Microsoft, Bell Labs

Greatly reduce errors.

Existence not yet confirmed.

Photonics

PsiQuantum **Tundra Systems**

2016 Science 354:1091-1093. :e.sciencemag.org/content/339/6121/798 itation.org/doi/10.1063/1.4976737 prg/pdf/1004.0326.pdf

Wave Functions

Wave Function $\psi = a_1[0] + a_2[1]$

LOOK!: NO bra-kets!

(wave function is solution to the Quantum Mechanic Schrodinger equation).

Superposition: Wave Function is **BOTH** [0] and [1] and everything in-between until you measure it WHEN you measure it is **EXACTLY** either [0] or [1]

Born Rule

 $|a_1|^2 = probability of finding state [0] when you measure <math>|a_2|^2 = probability of finding state [1] when you measure$

Probability of ALL states = 1 $|a_1|^2 + |a_2|^2 = 1$

Quantum Operators MUST BE

UNITARY

 $\psi = a_1[0] + a_2[1]$ Born Rule: $|a_1|^2 + |a_2|^2 = 1$ total Probability = 1

REVERSIBLE

math: Hilbert space: u[†]u = uu[†] = 1 (∃ u⁻¹ ∀u)
physics: Schrodinger Eq:
 t -> -t no probability change: |e^{iωt}|² = |e^{-iωt}|²
 not dissipative, no entropy

What to do with ONE Qubit

Hadamard

$$\begin{bmatrix} 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
H (Hadamard) = $\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$
H $\begin{bmatrix} 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 50\%[0] + 50\%[1]$
H $\begin{bmatrix} 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \times \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix} - \frac{1}{\sqrt{2}} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 50\%[0] + 50\%[1]$
H converts $\begin{bmatrix} 0 \end{bmatrix}$: to 50% $\begin{bmatrix} 0 \end{bmatrix} + 50\%[1]$
H converts $\begin{bmatrix} 1 \end{bmatrix}$: to 50% $\begin{bmatrix} 0 \end{bmatrix} + 50\%[1]$

Bloch Sphere

 $ψ = cos(θ/2) [0] + e^{iφ} sin(θ/2) [1]$

Emma Strubell An Introduction to Quantum Algorithms http://people.cs.umass.edu/~sturbell/doc/quantum_tutorial.pdf

From ONE BASIS to ANOTHER

$$\mathbf{H} = \text{Hadamard} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

+ BASIS	x BASIS
[0] 100%	[0] 50% [1] 50%
[1] 100%	

https://en.wikipedia.org/wiki/Quantum_key_distribution

Quantum Cryptography

100% [0] or [1] in one BASIS is **50% [0] & 50% [1]** in another BASIS

- 1. SEND A <u>SECURE</u> KEY from one person to another
- <u>TELL</u> if someone else (an evil actor) was LISTENING IN! NO eavesdropper because measurement changes things

Quantum Key Distribution

BB84 protocol: Charles H. Bennett and Gilles Brassard

if no one is watching

Alice's random byte	0	1	1	0	1	0	0	1
Alice's random sending basis	+	+	×	+	×	×	×	+
Photon polarization Alice sends	t	→	7	t	7	1	1	→
Bob's random measuring basis	+	×	×	×	+	×	+	+
Photon polarization Bob measures	t	1	7	/	→	1	→	→
PUBLIC DISCUSSION OF BASIS	uns	ecure: /	Alice, B	ob tell +	⊦ or x B	ASIS ea	a ch pho	oton
Shared secret key	0		1			0		1

Alice & Bob DON'T Tell (0,1) ONLY if used + or x

BASIS

https://en.wikipedia.org/wiki/Quantum_key_distribution

Basis **Quantum Key Distribution** 0 1 if someone is watching! Х Alice's random bit 0 0 1 0 0 1 1 1 Alice's random sending basis ++ ++× X X X t Photon polarization Alice sends ↗ ↗ \rightarrow 1 1 \rightarrow +Eve's random measuring basis ++++X X X **Polarization Eve measures and** t 1 1 1 sends Bob's random measuring basis +X ++X X X +**Photon polarization Bob** 1 1 1 measures PUBLIC DISCUSSION OF BASIS Shared secret key 0 0 0 1 Errors in key X 1

Bob & Alice can TELL if EVE is watching!

https://en.wikipedia.org/wiki/Quantum_key_distribution

Quantum Key Distribution networks

DARPA (US)

SECOQC (EU)

SwissQuantum (CH)

China (QUESS satellite)

Tokyo (Japan)

Los Alamos National Laboratory (US)

+ others

What to do with TWO Qubits

$$\begin{bmatrix} \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{1} \\ \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{1} \\ \mathbf{0} \end{bmatrix}$$

 $[00] = [0] \times [0] \text{ TENSOR product}$ multiply every piece of **A** by every piece of **B** dim (A × B) = dim (A) × dim(B) = 2 × 2 = 4 (dim (n qubits) = 2ⁿ) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$

$$\begin{bmatrix} \mathbf{00} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{01} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{10} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} \mathbf{11} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

2 Qubit Operations

CNOT = CONDITIONAL NOT

```
leave the first Qubit alone if the first Qubit =1, switch the second Qubit from (0 \rightarrow 1 \text{ or } 1 \rightarrow 0)
```

```
CNOT [a_{in}b_{in}] = [a_{out}b_{out}]

if a_{in} = 0: a_{out} = a_{in}, b_{out} = b_{in}

if a_{in} = 1: a_{out} = a_{in}, b_{out} = NOT(b_{in})

CNOT [00] = [00]

CNOT [01] = [01]

CNOT [10] = [11]

CNOT [11] = [10]
```

CNOT

$$CNOT = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

CNOT operates on 2 Qubits so it must be dim = 4.

CNOT [ab] if a=1, change b

$$\mathbf{CNOT} \ [\mathbf{00}] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = [\mathbf{00}] \qquad \mathbf{CNOT} \ [\mathbf{01}] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{01} \end{bmatrix}$$

$$\mathbf{CNOT} \ [\mathbf{10}] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} = [\mathbf{11}] \qquad \mathbf{CNOT} \ [\mathbf{11}] = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} = [\mathbf{10}]$$

COMBINE 2 Operations

H x**1** = **TENSOR** product multiply every piece of **H** by every piece of **1** dim (**H** x**1**) = dim (**H**) x dim(**1**) = 2 x 2 = 4

NOW for some fun!

CNOT (H x 1) [00]

$$=\frac{1}{\sqrt{2}}$$
 [00] $+\frac{1}{\sqrt{2}}$ [11]

"circuit diagram" measurement [0] H [0] [0] [0] [0] [1] controlled qubit [11]

NOW for some fun!

CNOT (H x 1) [00]

$$=\frac{1}{\sqrt{2}}$$
 [00] $+\frac{1}{\sqrt{2}}$ [11]

50% of the time we measure [00]50% of the time we measure [11]

NEVER measure [01] or [10]

NOW for some fun!

CNOT (H x 1) [00]

$$=\frac{1}{\sqrt{2}}$$
 [00] $+\frac{1}{\sqrt{2}}$ [11]

50% of the time we measure [00]50% of the time we measure [11]

NEVER measure [01] or [10]

spukhafte Fernwirkung "spooky action at a distance" ENTANGLEMENT

IBM: https://quantumexperience.ng.bluemix.net/qx/editor

IBM IBM Q 5 Tenerife [ibmqx4]

Quantum State: Computation Basis

Quantum Circuit

Device: Simulator

IBM IBM Q 5 Tenerife [ibmqx4]

Quantum Circuit

 $\sigma = sqrt(npq)$ n = 1024 p = q = 0.5 $\sigma = sqrt(256) = 16$ 16/1024 = 0.0160.503-0.497=0.006

Making Entangled Photons

Spontaneous Downconversion

http://spookyactionbook.com/2016/02/21/faq-how-are-entangled-particles-created-video/

2-Photon Production

Ca atoms forbidden single photon transition to the ground state

https://www.forbes.com/sites/chadorzel/2017/02/28/how-do-you-create-quantum-entanglement/#529cb121732b

Micius Satellite Entanglement

Yin et al. 2017. Science 356:1140-1144.

<u>ALWAYS</u> [01] or [10] NEVER [00] or [11] <u>NOT</u> that we measure [0] and it tells the other one to be [1] NO INFINTELY FAST ACTION AT A DISTANCE!

A continuous-wave laser diode with a central wavelength of 405 nm and a linewidth of ~160 MHz is used to pump a periodically poled KTiOPO4 (PPKTP) crystal inside a Sagnac interferometer. The pump laser, split by a polarizing beam splitter (PBS), passes through the nonlinear crystal in clockwise and anticlockwise direction simultaneously, which produces down-converted photon pairs at ~810 nm wavelength in polarization-entangled states close to the form [01] . . Sending: .two Cassegrain telescopes 18 and 30 cm . . Receiving:China: Delingha and Lijiang, 120 and 180 cm

Public Key Encryption – RSA

Alice sends a public key to Bob Bob uses that key to send a message to Alice that ONLY Alice can read.

$n = p \times q$

if someone else can factor n into p and q they can read Bob's message!

Public Key Encription – RSA in pictures

Alice sends the public keys to Bob Bob will use them to send a message back to Alice that ONLY Alice can read.

Factoring Algorithms

Factoring the n of RSA-2048 n = 2048 binary digits

Classical Computer number of operations = 10^{38}

$$e^{7\sqrt[3]{n}}$$

Quantum Computer

Shor's algorithm $= 10^{10}$

n³

Quantum Computer is 10²⁸ times FASTER!

https://en.wikipedia.org/wiki/RSA_Factoring_Challenge

Shor's Algorithm to break RSA

1994

long before hardware available

Non-Quantum Part

pick a < n find the period of f(x) = a^x mod n

Quantum Part

use Quantum Fourier Transforms to find the period r of $f(a) = a^x \mod n$

Finding r is equivalent to factoring $n = p \times q$.

https://en.wikipedia.org/wiki/Shors_algorithm Mermin. 2007. Quantum Computer Science (Cambridge Univ. Press)

Shor's Algorithm – Some Implementations

Martın-Lopez et al. 2012

21 = 3 x 7 Nature Photonics <u>https://www.nature.com/articles/nphoton.2012.259.pdf</u> photonics: calcite beam displacers and interferometers

Monz et al. 2016 15 = 3 x 5 Science 351:1068-1070 <u>https://science.sciencemag.org/content/351/6277/1068</u> ion-trap with five Ca+ ions

Amico et al. 2019 15 = 3 x 5 <u>https://arxiv.org/abs/1903.0076</u> 16 superconducting qubits ibmqx5

Deutsch's Algorithm

http://www.cs.xu.edu/~kinne/quantum/deutche.html

https://physics.stackexchange.com/questions/3390/can-anybody-provide-a-simple-example-of-a-quantum-computer-algorithm

Input -> Output (x,y) -> (x',y') where x, y, x', y' = (0,1)

Task

f(0) = f(1) SAME output for DIFFERENT inputs INDEPENDENT $f(0) \neq f(1)$ DIFFERENT output for DIFFERENT inputs DEPENDENT

Classical Computer

TWO operations: to tell if INDEPENDENT vs. DEPENDENT

Quantum Computer:

ONE operation can tell if **INDEPENDENT** vs. **DEPENDENT**

but it cannot tell independent: whether f(0)=f(1)=0 or f(0)=f(1)=1dependent: whether f(0)=0, f(1)=1 or f(0)=1, f(1)=0

Deutsch-Jozsa Algorithm

https://en.wikipedia.org/wiki/Deutsch-Jozsa_algorithm

Input: $(x_1,y_1) (x_2,y_2) (x_2,y_2) \dots (x_n,y_n)$ n (x_i,y_i) pairs of inputs that are 0, 1

Output: (x',y') 1 pair (x',y') where x' = 0,1; y' = 0,1

Task

SAME output for ALL inputs **INDEPENDENT** DIFFERENT output for DIFFERENT inputs **DEPENDENT**

Classical Computer 2ⁿ⁻¹ + 1 operations

Quantum Computer: ONE operation

Grover's Algorithm

Database with n data elements $n = 10^{10}$

Classical Computer number of operations $n = 10^{10}$

Quantum ComputerGrover's algorithm $n^{1/2}$ = 10^5

Quantum Computer is 10⁵ times **FASTER!**

https://en.wikipedia.org/wiki/RSA_Factoring_Challenge

REALITY CHECK

Shor's Algorithm

Already Post-Quantum Cryptography Companies designing quantum resistent encryption Qrypt, CryptoNext, QuBalt, . . .

Deutsch-Jorzsa Algorithm & Others

Nice "toy" problem, real world applications?

Grover's Algorithm

Real data is really unordered hash functions: Blockchain (Bitcoin and elsewhere) biological systems: "content addressable" O(n=1) Shor, Deutsch, Grover Algorithms & Feynman, Deustch, Simon, & others TREMENDOUSLY IMPORTANT

That WORK (40 years ago) has NOW led to REAL quantum computers and REAL algorithms. Basic research created NEW, unexpected, valuable possibilities for the REAL WORLD.

When Does Quantum Computing Happen?

It's Already Happened!

- Quantum Computer ECOSYSTEM
 - Iots lots \$\$\$ China >> US >> EU
 - creating new chips, solid state, photonics
 - creating new algorithms: find min, machine learning

The importance of DOD cold war spending and the moon landing wasn't landing on the moon, it was: IC chips CPUs, DRAM, HD, LCDs, Li-ion batteries, DSP, HTTP, HTML, GPS, touch screens, AI (M. Mazzucato).

If Quantum Computers Do Happen

- Feynman: quantum systems: molecules, drugs
- high dimensional: physics, chem, bio, psych, social
- science: weather, metamaterials,
- organizations: logistics, social patterns
- finance: fintech

What Happens Next?

"It's tough to make predictions, especially about the future."

-Lawrence Peter "Yogi" Berra