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A Beginner’s Guide to Factor Analysis:  

Focusing on Exploratory Factor Analysis 

An Gie Yong and Sean Pearce 
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The following paper discusses exploratory factor analysis and gives an overview of the 

statistical technique and how it is used in various research designs and applications. A 

basic outline of how the technique works and its criteria, including its main 

assumptions are discussed as well as when it should be used. Mathematical theories 

are explored to enlighten students on how exploratory factor analysis works, an 

example of how to run an exploratory factor analysis on SPSS is given, and finally a 

section on how to write up the results is provided. This will allow readers to develop a 

better understanding of when to employ factor analysis and how to interpret the tables 

and graphs in the output. 

 

 
 
The broad purpose of factor analysis is to summarize 

data so that relationships and patterns can be easily 

interpreted and understood. It is normally used to regroup 

variables into a limited set of clusters based on shared 

variance. Hence, it helps to isolate constructs and concepts. 
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Factor analysis uses mathematical procedures for the 

simplification of interrelated measures to discover patterns 

in a set of variables (Child, 2006). Attempting to discover the 

simplest method of interpretation of observed data is known 

as parsimony, and this is essentially the aim of factor 

analysis (Harman, 1976).  

Factor analysis has its origins in the early 1900’s with 

Charles Spearman’s interest in human ability and his 

development of the Two-Factor Theory; this eventually lead 

to a burgeoning of work on the theories and mathematical 

principles of factor analysis (Harman, 1976). The method 

involved using simulated data where the answers were 

already known to test factor analysis (Child, 2006). Factor 

analysis is used in many fields such as behavioural and 

social sciences, medicine, economics, and geography as a 

result of the technological advancements of computers.  

The two main factor analysis techniques are Exploratory 

Factor Analysis (EFA) and Confirmatory Factor Analysis 

(CFA). CFA attempts to confirm hypotheses and uses path 

analysis diagrams to represent variables and factors, 

whereas EFA tries to uncover complex patterns by exploring 

the dataset and testing predictions (Child, 2006). This 

tutorial will be focusing on EFA by providing fundamental 

theoretical background and practical SPSS techniques. EFA 

is normally the first step in building scales or a new metrics. 

Finally, a basic guide on how to write-up the results will be 
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outlined. 

A Look at Exploratory Factor Analysis 

What is Factor Analysis? 

Factor analysis operates on the notion that measurable 

and observable variables can be reduced to fewer latent 

variables that share a common variance and are 

unobservable, which is known as reducing dimensionality 

(Bartholomew, Knott, & Moustaki, 2011). These un-

observable factors are not directly measured but are 

essentially hypothetical constructs that are used to represent 

variables (Cattell, 1973). For example, scores on an oral 

presentation and an interview exam could be placed under a 

factor called ‘communication ability’; in this case, the latter 

can be inferred from the former but is not directly measured 

itself.  

EFA is used when a researcher wants to discover the 

number of factors influencing variables and to analyze 

which variables ‘go together’ (DeCoster, 1998). A basic 

hypothesis of EFA is that there are m common ‘latent’ factors 

to be discovered in the dataset, and the goal is to find the 

smallest number of common factors that will account for the 

correlations (McDonald, 1985). Another way to look at factor 

analysis is to call the dependent variables ‘surface attributes’ 

and the underlying structures (factors) ‘internal attributes' 

(Tucker & MacCallum, 1997). Common factors are those that 

affect more than one of the surface attributes and specific 

factors are those which only affect a particular variable (see 

Figure 1; Tucker & MacCallum, 1997).  

Why Use Factor Analysis? 

Large datasets that consist of several variables can be 

reduced by observing ‘groups’ of variables (i.e., factors) – 

that is, factor analysis assembles common variables into 

descriptive categories. Factor analysis is useful for studies 

that involve a few or hundreds of variables, items from 

questionnaires, or a battery of tests which can be reduced to 

a smaller set, to get at an underlying concept, and to 

facilitate interpretations (Rummel, 1970). It is easier to focus 

on some key factors rather than having to consider too many 

variables that may be trivial, and so factor analysis is useful 

for placing variables into meaningful categories. Many other 

uses of factor analysis include data transformation, 

hypothesis-testing, mapping, and scaling (Rummel, 1970). 

What are the Requirements for Factor Analysis?  

To perform a factor analysis, there has to be univariate 

and multivariate normality within the data (Child, 2006). It 

is also important that there is an absence of univariate and 

multivariate outliers (Field, 2009). Also, a determining factor 

is based on the assumption that there is a linear relationship 

between the factors and the variables when computing the 

correlations (Gorsuch, 1983). For something to be labeled as 

a factor it should have at least 3 variables, although this 

depends on the design of the study (Tabachnick & Fidell, 

2007). As a general guide, rotated factors that have 2 or 

fewer variables should be interpreted with caution. A factor 

with 2 variables is only considered reliable when the 

variables are highly correlated with each another (r > .70) 

but fairly uncorrelated with other variables.  

The recommended sample size is at least 300 

participants, and the variables that are subjected to factor 

analysis each should have at least 5 to 10 observations 

(Comrey & Lee, 1992). We normally say that the ratio of 

respondents to variables should be at least 10:1 and that the 

factors are considered to be stable and to cross-validate with 

a ratio of 30:1. A larger sample size will diminish the error in 

your data and so EFA generally works better with larger 

sample sizes. However, Guadagnoli and Velicer (1988) 

proposed that if the dataset has several high factor loading 

scores (> .80), then a smaller small size (n > 150) should be 

sufficient. A factor loading for a variable is a measure of 

how much the variable contributes to the factor; thus, high 

 
 

Figure 1.  Graphical representation of the types of factor in factor analysis where numerical ability is an 

example of common factor and communication ability is an example of specific factor.   
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factor loading scores indicate that the dimensions of the 

factors are better accounted for by the variables. 

Next, the correlation r must be .30 or greater since 

anything lower would suggest a really weak relationship 

between the variables (Tabachnick & Fidell, 2007). It is also 

recommended that a heterogeneous sample is used rather 

than a homogeneous sample as homogeneous samples 

lower the variance and factor loadings (Kline, 1994). Factor 

analysis is usually performed on ordinal or continuous 

variables, although it can also be performed on categorical 

and dichotomous variables
1
. If your dataset contains 

missing values, you will have to consider the sample size 

and if the missing values occur at a nonrandom pattern. 

Generally speaking, cases with missing values are deleted to 

prevent overestimation (Tabachnick & Fidell, 2007). Finally, 

it is important that you check for an absence of 

multicollinearity and singularity within your dataset by 

looking at the Squared Multiple Correlation (SMC; 

Tabachnick & Fidell, 2007). Variables that have issues with 

singularity (i.e., SMC close to 0) and multicollinearity (SMC 

close to 1.0) should be removed from your dataset. 

Limitations 

One of the limitations of this technique is that naming 

the factors can be problematic. Factor names may not 

accurately reflect the variables within the factor. Further, 

some variables are difficult to interpret because they may 

load onto more than one factor which is known as split 

loadings. These variables may correlate with each another to 

produce a factor despite having little underlying meaning 

for the factor (Tabachnick & Fidell, 2007). Finally, 

researchers need to conduct a study using a large sample at 

a specific point in time to ensure reliability for the factors. It 

is not recommended to pool results from several samples or 

from the same sample at different points in time as these 

methods may obscure the findings (Tabachnick & Fidell, 

2007). As such, the findings from factor analysis can be 

difficult to replicate.  

Theoretical Background:  

Mathematical and Geometric Approach 

Broadly speaking, there are many different ways to 

                                                                 
1
 The limitations and special considerations required when 

performing factor analysis on categorical and dichotomous 

variables are beyond the scope of this paper.  We suggest 

referring to ‘Recent Developments in the Factor Analysis of 

Categorical Variables’ by Mislevy (1986) and ‘Factor 

Analysis for Categorical Data’ by Bartholomew (1980) for 

further explanation. 

 

express the theoretical ideas behind factor analysis. 

Therefore, we will just focus on basic mathematical and 

geometric approaches.  

Mathematical Models  

In the ‘classical factor analysis’ mathematical model, p 

denotes the number of variables (X1, X2,…,Xp) and m denotes 

the number of underlying factors (F1, F2,…,Fm). Xj is the 

variable represented in latent factors. Hence, this model 

assumes that there are m underlying factors whereby each 

observed variables is a linear function of these factors 

together with a residual variate. This model intends to 

reproduce the maximum correlations. 

  (1) 

where . 

The factor loadings are aj1, aj2,…,ajm which denotes that aj1 

is the factor loading of jth variable on the 1st factor. The 

specific or unique factor is denoted by ej. The factor loadings 

give us an idea about how much the variable has 

contributed to the factor; the larger the factor loading the 

more the variable has contributed to that factor (Harman, 

1976). Factor loadings are very similar to weights in multiple 

regression analysis, and they represent the strength of the 

correlation between the variable and the factor (Kline, 1994). 

Factor analysis uses matrix algebra when computing its 

calculations. The basic statistic used in factor analysis is the 

correlation coefficient which determines the relationship 

between two variables. Researchers cannot run a factor 

analysis until ‘every possible correlation’ among the 

variables has been computed (Cattell, 1973). The researcher 

examines if variables have some features in common and 

then computes a correlation or covariance matrix (Rummel, 

1970). Generally, a factor analysis performed using a 

correlation matrix produces standardized data, thus it is 

recommended for variables that are not meaningfully 

comparable (e.g., items from different scales). On the other 

hand, factor analysis performed using a covariance matrix is 

conducted on variables that are similar (e.g., items from the 

same scales). The correlation matrix is often used because it 

is easier to interpret compared to the covariance tables, 

although there is not a strict requirement for which matrix to 

use (Fung, 1995).  

The diagonal element of the matrix is always the value 1 

(i.e., the correlation of a variable within itself). In principal 

components analysis, the diagonal values of the correlation 

matrix, 1s, are used for the analysis. Conversely, 

computation for the factor analysis techniques involves 

replacing the diagonal element of the matrix with the prior 

communality estimates (h2). The communality estimate is the 

estimated proportion of variance of the variable that is free 
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of error variance and is shared with other variables in the 

matrix. These estimates reflect the variance of a variable in 

common with all others together. Factor analysis is also 

rooted in regression and partial correlation theory so 

analyzing it from this perspective may shed light on the 

theories behind this technique (McDonald, 1985). 

To understand how factor analysis works, suppose that 

Xi,Xj,…,Xp are variables and F1,F2,…,Fm are factors. For all 

pairs Xi and Xj, we want to find factors such that when they 

are extracted, there is an absence of partial correlation 

between the tests – that is, the partial correlations are zero 

(Jöreskog & Sörbom, 1979). The basic idea behind this model 

is that factor analysis tries to look for factors such that when 

these factors are extracted, there remain no intercorrelations 

between any pairs Xi and Xj because the factors themselves 

will account for the intercorrelations. This means that for all 

pairs of any two elements, Xi, Xj,…,Xp, are conditionally 

independent given the value of F1,F2,…,Fm. Once a correlation 

matrix is computed, the factor loadings are then analyzed to 

see which variables load onto which factors. In matrix 

notation, factor analysis can be described by the equation 

� = �	�	�′ +	��, where R is the matrix of correlation 

coefficients among observed variables, P is the primary 

factor pattern or loading matrix (P’ is the transpose), C is the 

matrix of correlations among common factors, and U2 is the 

diagonal matrix or unique variances (McDonald, 1985).   

The fundamental theorem of factor analysis, which is 

used in the common factor analysis model, is illustrated in 

the equation , where Rmxm 

denotes the correlation matrix, U2mxm is the diagonal matrix 

of unique variances of each variable, and F
mxp 

 represents the 

common factor loadings. The left-hand side of the equation 

represents the correlation matrix of the common parts. Since 

U
2 

is the unique variances, when we subtract this out of R 

then it gives us the common variance (Rummel, 1970). 

Finding F
mxp 

can be solved by determining the eigenvalues 

and eigenvectors of the matrix. Essentially, this equation 

describes which variable is a linear combination of which 

common factors.  

Geometrical Approach  

Factor analysis can be examined through a geometrical 

approach to gain a better understanding of how the 

technique works. In a coordinate system, the factors are 

represented by the axes and the variables are lines or vectors 

(Cattell, 1973). When a variable is in close proximity to a 

certain factor, this means that the variable is associated with 

that particular factor. When there are more than three 

factors, this exceeds the three-dimensional space thus the 

dimensions are represented in hyperspace (Harman, 1976). 

Figure 2 shows two factors and the variables plotted as a 

function of the factors.  

The factor axes act as a reference frame to determine 

where the data-variable vectors can be placed by giving 

factor loadings or coordinates – that is, the numerical labels 

on the axes represent factor loadings (Comrey & Lee, 1992). 

The length of the vector is equal to the square root of the 

communalities; variance explained by the common factors. 

Using Pythagorean Theorem ( ) the squared 

hypotenuse can be found if the other two variables are 

known by the following formula: . The cosine 

of the angle between the variable and the factor gives insight 

to the correlation between each variable and each factor 

(Gorsuch, 1983). The correlation between a vector and one of 

the factors or with another variable (vector) can be 

determined as a function of the angle between them. In the 

equation , the length of the vector is 

represented by h. The length of the first vector times the 

length of the second one times the cosine of the angle 

between the two vectors will give the correlation. Since all 

the variance in a factor is included in the dimension that it 

defines, its length is 1.0 (Gorsuch, 1983).  

Variance  

Factor analysis uses variances to produce communalities 

between variables. The variance is equal to the square of the 

factor loadings (Child, 2006). In many methods of factor 

analysis, the goal of extraction is to remove as much 

common variance in the first factor as possible (Child, 2006). 

The communality is the variance in the observed variables 

which are accounted for by a common factor or common 

variance (Child, 2006). The communality is denoted by h2 and 

is the summation of the squared correlations of the variable 

with the factors (Cattell, 1973). The formula for deriving the 

communalities is  where a equals 

the loadings for j variables. Using the factor loadings in 

Table 1, we then calculate the communalities using the 

aforementioned formula, thus 

 = 0.78. The values in the table represent the 

factor loadings and how much the variable contributes to 

Table 1. The sums of square of each factor loading (artificial data) for variable1 can be used to produce the 

communality score for that variable 

 Factor1 Factor2 Factor3 Factor4 

Variable1 0.56 0.43 0.41 0.33 
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each factor - in this case, it contributes the most to Factor1. 

The calculated communality shown above means that 78% 

of variable1 can be predicted based on the knowledge of the 

four factors; hence, the communality is the variance 

accounted for by the common factors. A particular set of 

factors is said to explain a lot of the variance of a variable if 

it has a high communality (Kline, 1994). Often times 

variables with low communalities (less than .20 so that 80% 

is unique variance) are eliminated from the analysis since 

the aim of factor analysis is to try and explain the variance 

through the common factors (Child, 2006).  

A second type of variance in factor analysis is the unique 

variance. The unique variance is denoted by u2 and is the 

proportion of the variance that excludes the common factor 

variance which is represented by the formula 

(Child, 2006). In the case of the example above, if we know 

that the communality is 0.78, then . 

Hence, we can say that 22% of the variance is specific to 

variable1. Unique variance can be split into specific variance 

and error variance, the latter referred to as the unreliability 

of the variance (Harman, 1976). The communality, the 

specificity and the unreliability comprise the total variance 

of a variable. The formula  

 is used to represent the total variance in factor 

analysis models.  

In terms of the variance, the unique factors are never 

correlated with the common factors; however, the common 

factors may be uncorrelated or correlated with each other 

(Harman, 1976). Generally, the cumulative percentage of 

variance is extracted after each factor is removed from the 

matrix, and this cycle continues until approximately 75-85% 

of the variance is accounted for (Gorsuch, 1983). The 

percentage variance tells us how much each factor 

contributed to the total variance.  

Components of Factor Analysis 

Factor Extraction  

Factor analysis is based on the ‘common factor model’ 

which is a theoretical model. This model postulates that 

observed measures are affected by underlying common 

factors and unique factors, and the correlation patterns need 

to be determined. There is an array of extraction methods
2
 

available, but we will briefly touch on a few commonly used 

techniques that are available on SPSS. Maximum Likelihood 

attempts to analyze the maximum likelihood of sampling 

the observed correlation matrix (Tabachnick & Fidell, 2007). 

Maximum Likelihood is more useful for confirmatory factor 

analysis and is used to estimate the factor loadings for a 

population. The Principal Axis Factor method is based on 

                                                                 
2
 A useful summary of extraction methods can be found in 

Table 13.7 (p. 633) in ‘Using Multivariate Statistics (5th ed.)’ 

by Tabachnick and Fidell (2007). 

 

 
Figure 2.  A geometrical representation of factor analysis in two-dimensional space where the blue triangles 

load onto factor 1 and the green triangles load onto factor 2. 
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the notion that all variables belong to the first group and 

when the factor is extracted, a residual matrix is calculated. 

Factors are then extracted successively until there is a large 

enough of variance accounted for in the correlation matrix 

(Tucker & MacCallum, 1997). Principal Axis Factor is 

recommended when the data violate the assumption of 

multivariate normality (Costello & Osborne, 2005).  

Principal Components analysis is used to extract 

maximum variance from the data set with each component 

thus reducing a large number of variables into smaller 

number of components (Tabachnick & Fidell, 2007). 

Principal Components analysis is a data reduction technique 

and the issues of whether it is truly a factor analysis 

technique has been raised (Costello & Osborne, 2005). That 

is, Principal Components produces components whereas 

Principal Axis Factor produces factors. There are also 

differences in how the correlation matrix is constructed and 

how the communalities are calculated when comparing 

these techniques (Kline, 1994; Tucker & MacCallum, 1997). 

Researchers may use Principal Components analysis as the 

first step to reduce the data, then follow-up with a ‘true’ 

factor analysis technique. Overall, the factor loadings are 

fairly similar and you will need to perform rotation 

regardless of the extraction technique (Tabachnick & Fidell, 

2007). It is best to pick the extraction technique based on 

your research question and the ease of interpretation.  

Rotation Methods  

Factors are rotated for better interpretation since 

unrotated factors are ambiguous. The goal of rotation is to 

attain an optimal simple structure which attempts to have 

each variable load on as few factors as possible, but 

maximizes the number of high loadings on each variable 

(Rummel, 1970). Ultimately, the simple structure attempts to 

have each factor define a distinct cluster of interrelated 

variables so that interpretation is easier (Cattell, 1973). For 

example, variables that relate to language should load 

highly on language ability factors but should have close to 

zero loadings on mathematical ability.  

Broadly speaking, there are orthogonal rotation and 

oblique rotation
3
. Orthogonal rotation is when the factors 

are rotated 90° from each other, and it is assumed that the 

factors are uncorrelated (DeCoster, 1998; Rummel, 1970). 

This is less realistic since factors generally are correlated 

with each other to some degree (Costello & Osborne, 2005). 

Two common orthogonal techniques are Quartimax and 

                                                                 
3
 A summary of the rotation techniques can be found in 

Table 13.9 (p. 639) in ‘Using Multivariate Statistics (5th ed.)’  

by Tabachnick and Fidell (2007). 

 

Varimax rotation. Quartimax involves the minimization of 

the number of factors needed to explain each variable 

(Gorsuch, 1983). Varimax minimizes the number of variables 

that have high loadings on each factor and works to make 

small loadings even smaller.  

Oblique rotation is when the factors are not rotated 90° 

from each other, and the factors are considered to be 

correlated. Oblique rotation is more complex than 

orthogonal rotation, since it can involve one of two 

coordinate systems: a system of primary axes or a system of 

reference axes (Rummel, 1970). Additionally, oblique 

rotation produces a pattern matrix that contains the factor or 

item loadings and factor correlation matrix that includes the 

correlations between the factors. The common oblique 

rotation techniques are Direct Oblimin and Promax. Direct 

Oblimin attempts to simplify the structure and the 

mathematics of the output, while Promax is expedient 

because of its speed in larger datasets. Promax involves 

raising the loadings to a power of four which ultimately 

results in greater correlations among the factors and 

achieves a simple structure (Gorsuch, 1983).  

Interpretations of Factor Loadings  

When interpreting the factors, you need to look at the 

loadings to determine the strength of the relationships. 

Factors can be identified by the largest loadings, but it is also 

important to examine the zero and low loadings in order to 

confirm the identification of the factors (Gorsuch, 1983). For 

example if you have a factor called ‘anxiety’ and variables 

that load high on this factor are ‘heartbeat’ and 

‘perspiration’, you also need to make sure that a variable 

such as ‘lethargy’ does not load onto this factor. There 

should be few item crossloadings (i.e., split loadings) so that 

each factor defines a distinct cluster of interrelated variables. 

A crossloading is when an item loads at .32 or higher on two 

or more factors (Costello & Osborne, 2005). Depending on 

the design of the study, a complex variable (i.e., an item that 

is in the situation of crossloading) can be retained with the 

assumption that it is the latent nature of the variable, or the 

complex variable can be dropped when the interpretation is 

difficult. Another option is to choose a significant loading 

cut-off to make interpretation easier. The signs of the 

loadings show the direction of the correlation and do not 

affect the interpretation of the magnitude of the factor 

loading or the number of factors to retain (Kline, 1994).  

Researchers will also need to determine the cut-off for a 

statistically meaningful rotated factor loading. A general 

rule to determine the reliability of the factor is to look at the 

relationship between the individual rotated factor loading 

and the magnitude of the absolute sample size. That is, the 

larger the sample size, smaller loadings are allowed for a 
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factor to be considered significant (Stevens, 2002). According 

to a rule of thumb, using an alpha level of .01 (two-tailed), a 

rotated factor loading for a sample size of at least 300 would 

need to be at least .32 to be considered statistically 

meaningful (Tabachnick & Fidell, 2007). A factor loading of 

.32 gives us approximately 10% of the overlapping variance 

% overlapping variance = (Factor loading)2. The choice of cut-off 

may depend on the ease of interpretation including how 

complex variables are being handled.  

Number of Factors to Retain 

Extracting too many factors may present undesirable 

error variance but extracting too few factors might leave out 

valuable common variance. So it is important to select which 

criterion is most suitable to your study when deciding on 

the number of factors to extract. The eigenvalues and scree 

test (i.e., scree plot) are used to determine how many factors 

to retain. One criterion that can be used to determine the 

number of factors to retain is Kaiser’s criterion which is a rule 

of thumb. This criterion suggests retaining all factors that 

are above the eigenvalue of 1 (Kaiser, 1960). Another 

criterion is based on Jolliffe’s criterion which recommends 

retaining factors above .70 (Jolliffe, 1986). It has been argued 

that both criteria may result in overestimation in the number 

of factors extracted (Costello & Osborne, 2005; Field, 2009); 

therefore, it is suggested to use the scree test in conjunction 

with the eigenvalues to determine the number of factors to 

retain.  

The scree test (see Figure 3) consists of eigenvalues and 

factors (Cattell, 1978). The number of factors to be retained is 

the data points that are above the break (i.e., point of 

inflexion). To determine the ‘break’, researchers draw a 

horizontal line and a vertical line starting from each end of 

the curve. The scree test is only reliable when you have a 

sample size of at least 200. In situations when the scree test 

is hard to interpret (e.g., clustered data points at the point of 

inflexion), you will need to rerun the analysis several times 

and manually set the number of factors to extract each time 

(Costello & Osborne, 2005). The number of factors to extract 

should be set once at the number based on the a priori factor 

structure, once at the number of factors predicted by the 

scree test, at the numbers above and below the number 

based on the a priori factor structure, and at the numbers 

above and below the number of factors suggested by the 

scree test. You would end up with a set of four numbers if 

the number of factors from the scree test is different from the 

predicted number of factors, or a set of three numbers if the 

number of factors from the scree test is identical to the 

predicted number of factors. To determine the number of 

factors to retain, you will need to pick the solution that 

 

Figure 3. Example of scree test or scree plot for data that most likely have 3 underlying factors. 

Point of 

inflexion 
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provides the most desirable rotated factor structure. Factors 

that have less than three variables, many complex variables 

and item loadings that are less than .32 are generally viewed 

as undesirable.  

Factor Scores 

A factor score can be considered to be a variable 

describing how much an individual would score on a factor. 

One of the methods to produce factor score is called Bartlett 

method (or regression approach) which produces unbiased 

scores that are correlated only with their own factor. 

Another method is called the Anderson-Rubin method which 

produces scores that are uncorrelated and standardized. The 

method that you choose will depend on your research 

question, but the Bartlett method is the most easily 

understood (Tabachnick & Fidell, 2007). Factor scores can be 

treated as variables for further statistical analyses of 

variables (e.g., ANOVA) or can be used to overcome the 

issue of multicollinearity as uncorrelated variables can be 

produced. 

SPSS Tutorial 

We begin our tutorial with an example of a national 

survey
4
 that investigates the perception of food risks 

amongst Canadians (see Figure 4). In this study, we intend 

to determine the underlying construct of how Canadians 

perceive food risk; hence, the research question is ‘what are 

the underlying mechanisms or factors that can produce correlation 

amongst the different types of food risk perception within the 

Canadian population?’ 

                                                                 
4
 The original data collection was funded by PrioNet Center 

of Excellence, the McLaughlin Chair in Psychosocial Aspects 

of Health and Risk, and a SSHRC grant to Louise Lemyre, 

Ph.D., FRSC, with the collaboration of Dr. Daniel Krewski.   

 

Running Exploratory Factor Analysis on SPSS 

Prior to running EFA, we confirmed that all the 

requirements were met for EFA. In the SPSS dialog box, go 

to Analyze � Dimension Reduction � Factor… to launch the 

Factor Analysis dialog box (see Figure 5). We will move the 

variables from the left-hand box to the right-hand Variables 

box.  

Step 1: Descriptives. We will select all the options in the 

Descriptives dialog box (see Figure 5). The description of each 

option is provided in Table 2. 

Step 2: Extraction. We will select Principal axis factoring and 

the following options in Figure 5. Correlation matrix is used 

by default whereas Covariance matrix is used when the 

variables are commensurable. We have the option of 

customizing the eigenvalue cut-off so we will use Kaiser’s 

criterion of 1.0. If you have any theoretical reasoning that 

you should be able to extract a particular number of factors, 

then select the Fixed number of factor option. We will select 

Unrotated factor solution and Scree plot to aid our 

interpretation. The Unrotated factor solution gives you the 

Unrotated pattern matrix which can be used to compare the 

factors before and after rotation.  

Step 3: Rotation. For Rotation (see Figure 5), we will select 

Varimax as it is a recommended rotation technique to use 

when you start exploring the dataset. You may select 

oblique rotation if there is pre-existing evidence that the 

factors are correlated. Rotated Solution gives you the output 

for rotated factor interpretation and the output varies 

depending on the type of rotation you pick. Loading plot(s) 

are selected to produce a factor loading plot. Finally, the 

Maximum Iterations for Convergence is used to determine the 

number of times SPSS will search for an optimal solution. 

The default value is 25 which is usually sufficient for most 

analyses. If the value is too low for your analysis, you can 

pick a larger value when you have a large dataset. In our 

example, we can pick a larger value since we have a large 

Table 2. Options available in the ‘Factor Analysis: Descriptive’ dialog box in SPSS, and the descriptions of 

each option 

 

Options Descriptions 

Univariate descriptives Mean and standard deviation 

Initial solution Communalities estimate for the factors 

Coefficient R-matrix 

Significance levels Significance value matrix for the R-matrix 

Determinant Test for multicollinearity or singularity 

KMO and Bartlett’s Kaiser-Meyer-Olkin measure of sampling adequacy and Bartlett’s 

test 

Inverse Provides inverse of the correlation matrix 

Reproduced Correlation matrix for the model 

Anti-image Anti-image matrix of covariance and correlation 
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dataset. 

Step 4: Factor score and options. We will ask SPSS to 

produce factor scores (see Figure 5) as new variables using 

Anderson-Rubin method by selecting Save as variables. SPSS 

will then create new columns with the factors scores in your 

dataset. The Display factor score coefficient matrix shows the 

correlation between factors and the coefficients used to 

produce the factor scores through multiplication – this is not 

a mandatory option for interpretation. 

Step 5: Options. We will set the missing values option and 

the coefficient display format. Next, we will select Exclude 

cases listwise (see Figure 5) to prevent overestimation of 

factors within our large dataset. For the ease of 

interpretation, we will select Sorted by size to display the 

loadings in a descending order and Suppress small coefficients 

using an Absolute value below .32. 

Finally, we go back to the main dialog box and click OK 

to run the analysis. 

Interpretation of the SPSS Output 

Preliminary Interpretation 

We will need to determine if our dataset is suitable for 

EFA. If you notice issues at this stage, you should resolve 

the issue and rerun the analysis. First, we check if there is a 

patterned relationship amongst our variables by referring to 

the Correlation matrix (see Figure 6). Variables that have a 

 

Figure 4.  Questions about Canadians’ perception of potential food risk taken from the National Public Survey on Risk 

Perceptions and Risk Acceptability of Prion Disease and Food Safety (Lemyre et al., 2008).  Reprinted with permission. 
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large number of low correlation coefficient (r < +/- .30) 

should be removed as they indicate a lack of patterned 

relationships. Furthermore, correlations that are above r = +/- 

.90 indicate that your data may have a problem of 

multicollinearity. As a follow-up, check if the Determinant 

score is above the rule of thumb of .00001 as this indicates an 

absence of multicollinearity. You may also use the 

Haitovsky’s test (1969) to test if your Determinant score is 

significantly different from zero which indicates an absence 

of multicollinearity. If your data have an issue of 

multicollinearity, you will need to determine the item that is 

causing the problem and remove it from the analysis. We 

found that our example does not have an issue of 

multicollinearity and there seem to be patterned 

relationships amongst the variables.  

Second, we will look at the Bartlett’s Test of Sphericity (see 

Figure 7; significant level of p < .05) to confirm that our 

example has patterned relationships. Indeed, these tests 

show that we do have patterned relationships amongst the 

variables (p < .001). Finally, we will determine if our 

example is suitable for EFA by looking at the Kaiser-Meyer-

Olkin Measure (KMO) of Sampling Adequacy (see Figure 7; cut-

off above .50) and the diagonal element of the Anti-

Correlation matrix that has the ‘a’ superscript (see Figure 8; 

cut-off of above .50). If this requirement is not met, this 

means that distinct and reliable factors cannot be produced. 

Hence, you may want to increase the sample size or remove 

the item that is causing diffused correlation patterns as 

indicated by the diagonal value in the Anti-Correlation 

matrix. Our example is suitable for EFA as the KMO is .94 

 

Figure 5.  Sub-dialog options used in step 1 to 5 for running EFA on SPSS. 
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and the individual diagonal elements were > .90. 

Factor Extraction and Rotation 

We will look at the Total Variance Explained table (see 

Figure 9) to determine the number of significant factors. It is 

important to note that only extracted and rotated values are 

meaningful for interpretation. The factors are arranged in 

the descending order based on the most explained variance. 

The Extraction Sums of Squared Loadings is identical to the 

Initial Eigenvalues except factors that have eigenvalues less 

 
 

Figure 6. Truncated SPSS output for Correlation matrix.  The Determinant score available below this matrix 

is not shown. 

 
Figure 7. SPSS output for KMO and Bartlett’s Test. 

 

  
 

Figure 8.  Truncated SPSS output for the Anti-image correlation portion obtained from the Anti-image 

Matrices.  The Anti-Image covariance portion is not shown 
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than 1 are not shown. These columns show you the 

eigenvalues and variance prior to rotation. The Rotation 

Sums of Squared Loadings show you the eigenvalues and 

variance after rotation. We will use the rotated eigenvalues 

and scree plot (see Figure 10) to determine the number of 

significant factors.  

We can calculate the averaged extracted communalities
5
 

(see Figure 11) to determine the eigenvalue cut-off based on 

which criteria to follow. However, we will stick to Kaiser’s 

criterion in this example for simplicity. Both methods 

indicate that we have 3 ‘meaningful’ factors. Next, we will 

                                                                 
5
 The Kaiser Criterion is said to be reliable when: a) the 

averaged extracted communalities is at least more than .70 

and when there are less than 30 variables, or b) the averaged 

extracted communalities is equal or above .60 and the 

sample size is above 250 cases (Field, 2009). 

check if the model is a good fit by looking at the summary of 

the percentage of the non-redundant residuals at the 

Reproduced Correlation Matrix (see Figure 12). A model that is 

a good fit will have less than 50% of the non-redundant 

residuals with absolute values that are greater than .05 

which is true for our example. We can also compare the 

Reproduced Correlation Matrix with the original Correlation 

Coefficients Matrix. If the model is a good fit, we should 

expect small residuals between the two matrices. 

The Factor Matrix shows you the factor loadings prior to 

rotation whereas the Rotated Factor Matrix shows you the 

rotated factor loadings (see Figure 13). As illustrated in the 

figure, using rotation and suppressing small coefficients 

help with the interpretation. The factor loadings show that 

our factors are fairly desirable with at least 3 variables per 

factors that are above .32. However, our factors consist of 

many complex variables. At this step, we can choose a 

 
 

Figure 9. Truncated SPSS output for the total variance explained for extracted factors. 

 

 
Figure 10.  SPSS output for scree plot indicating that the data have three factors. 
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different significant loading cut-off of .40 based on 

pragmatic reasoning. To resolve the issue of non-significant 

loading item (e.g., imported food), we can rerun the analysis 

without that item or we can pick a lower cut-off if we cannot 

afford to exclude that item from our study. 

Factor Plot produced using SPSS is only useful for 

interpretation when there are two or less factors (i.e., factors 

are represented in three-dimensional space when there are 

three factors whereas factors are represented in hyperspace 

when there are more than three factors). Hence, our Factor 

Plot (see Figure 14) is not useful for interpretation in this 

case because we have three factors. In sum, our example has 

three factors: a) industrial food processing risks (factor1), b) 

animal-borne food risks (factor2), and c) food packaging 

risks (factor3). Food additives and artificial sweet are 

complex variables as they load onto both factor1 and factor3 

and factor1 and factor2, respectively. 

Is the Rotation Technique Used Suitable?  

To determine whether a rotation technique is suitable, 

we will look at the Factor Transformation Matrix’s off 

diagonal elements (see Figure 15). A suitable rotation 

technique will result in a nearly symmetrical off-diagonal 

element which is not true in this case. Hence, orthogonal 

rotation may not be a suitable rotation technique. This 

indicates that food risk perception factors may be correlated 

which is more theoretically realistic. Accordingly, we can 

repeat the analysis using an oblique rotation, but it will not 

be demonstrated in this tutorial for brevity. It is important to 

note that oblique rotations are more difficult to interpret. 

Therefore, Field (2009) suggests ignoring the Factor 

Transformation Matrix during interpretation of orthogonal 

rotation methods if you are not familiar with factor analysis 

techniques. 

Final Steps: Naming the Factors, Writing the Results, and 

Factor Scores 

Naming of factors is more of an ‘art’ as there are no rules 

for naming factors, except to give names that best represent 

the variables within the factors. An example of the write-up 

is outlined in Figure 16 with a truncated table reporting the 

rotated factor loading. Depending on your research 

questions, you may want to extend your findings. For 

instance, you may want to use the factor scores (see Figure 

17) in a regression to predict behavioral outcomes using 

food risk perceptions. You could also run a Confirmatory 

Factor Analysis (CFA) to validate the factorial validity of the 

models derived from the results of your EFA. Finally, you 

 
Figure 11.  SPSS output for Communalities. 

 

 

 
Figure 12.  Truncated SPSS output for the summary of non-redundant residuals available below the Reproduced 

Correlation Matrix (not shown). 
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could perform reliability testing if you are using factor 

analysis to validate or construct a questionnaire. 

Conclusion 

Factor analysis is used to identify latent constructs or 

factors. It is commonly used to reduce variables into a 

smaller set to save time and facilitate easier interpretations. 

There are many extraction techniques such as Principal Axis 

Factor and Maximum Likelihood. Factor analysis is 

mathematically complex and the criteria used to determine 

the number and significance of factors are vast. There are 

two types of rotation techniques – orthogonal rotation and 

oblique rotation. Orthogonal rotation (e.g., Varimax and 

Quartimax) involves uncorrelated factors whereas oblique 

rotation (e.g., Direct Oblimin and Promax) involves 

correlated factors. The interpretation of factor analysis is 

based on rotated factor loadings, rotated eigenvalues, and 

scree test. In reality, researchers often use more than one 

extraction and rotation technique based on pragmatic 

reasoning rather than theoretical reasoning.  
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Figures 16 and 17 follows. 

 

 
Figure 14.  SPSS output for Factor Plot for three factors 

illustrated in two-dimensional space. 

 

 
Figure 15.  SPSS output for Factor Transformation Matrix to 

determine if the chosen rotation technique is sufficient for 

this data. 
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Figure 16.  Results write-up for EFA with a truncated table.  A truncated table is shown for conciseness and 

you are required to report the complete table in an actual write-up. 

 
Figure 17. SPSS output for factor scores derived from the example. 


