
Next Presentation:

Art holds a PhD from Michigan State University,
has been a SAS user since 1974, is president of
the Toronto Area SAS Society and has received
such recognitions as the SAS Customer Value
Award (1999), SAS-L Hall of Fame (2011), SAS
Circle of Excellence (2012) and, in 2012, was
recognized as being the first SAS user to have
been awarded more than 10,000 points on the
SAS Discussion Forums

Presenter: Arthur Tabachneck

A Better Way to Flip (Transpose) a SAS® Dataset

A Better Way to Flip (Transpose)
a SAS® Dataset

 Robert Vergile Joe Whitehurst
 Lexington, MA Atlanta, GA

 Arthur Tabachneck Xia Ke Shan
 Thornhill, ON Canada Beijing, China

What the %transpose macro is

How the macro works

The macro's benefits

Presentation Overview

It's a SAS macro

Looks and feels almost exactly like
PROC TRANSPOSE

Doesn't have all of the capabilities of PROC
TRANSPOSE as it was designed for just one
purpose: to convert tall files into wide files

Has virtually the same options and statements
as PROC TRANSPOSE + a few more

What the %transpose macro is

Is easier to use than PROC TRANSPOSE

Runs significantly faster than
PROC TRANSPOSE

Have you ever had to flip a SAS dataset
from being tall to being wide?

idnum date var1

1 2001JAN SD

1 2001FEB EF

1 2001MAR HK

2 2001JAN GH

2 2001APR MM

2 2001MAY JH

i.e., from:

flipping a SAS dataset

to:

idnum var1_2001JAN var1_2001FEB var1_2001MAR var1_2001APR var1_2001MAY

1 SD EF HK

2 GH MM JH

proc transpose

 data=have

 out=want (drop=_:)

 prefix=var1_;

 by idnum;

 var var1;

 id date;

run;

if you have, you are probably already familiar with
PROC TRANSPOSE

Not hard, but you need to know

and that you have to specify a prefix

which are statements
which are options

that you have to "drop" unwanted system variables

%transpose(data=have, out=want,

 by=idnum, var=var1,

 id=date, delimiter=_)

would you be interested in knowing how to
 obtain the same result with the following code?

runs 10 times faster than PROC TRANSPOSE

No system variables to drop

No need for a prefix (var names automatically included)

No need to differentiate between options and statements

as they are all of the form: parameter=value,

it may look like the PROC TRANSPOSE code, but:

easier to code (less to type)

if you needed to flip a more complex
SAS dataset from being tall to being wide

i.e., from:
idnum date var1 var2

1 31MAR2013 1 SD

1 30JUN2013 2 EF

1 30SEP2013 3 HK

1 31DEC2013 4 HL

2 31MAR2013 5 GH

2 30JUN2013 6 MM

2 30SEP2013 7 JH

2 31DEC2013 8 MS

to:

idnum var1

Qtr1

var2

Qtr1

var1

Qtr2

var2

Qtr2

var1

Qtr3

var2

Qtr3

var1

Qtr4

var2

Qtr4

1 1 SD 2 EF 3 HK 4 HL

2 5 GH 6 MM 7 JH 8 MS

flipping a more complex SAS dataset

proc transpose data=have out=tall ;

 by idnum date;

 var var1-var2;

 format date qtr1.;

run;

Again, you could use PROC TRANSPOSE
but it would require two steps

First you have to make the table even taller (i.e.,
 one record for each by variable and var combination)

That will create a taller file
(i.e., 1 record for each by variable and var combination)

That will create a taller file
(with var names now in _NAME_ and values in COL1)

proc transpose data=tall out=want (drop=_:)

 delimiter=_Qtr;

 by idnum;

 id _name_ date;

 var col1;

run;

Then, to make the table wide
(i.e., one record for each by variable)

You need to run PROC TRANSPOSE a 2nd time

result:

idnum var1

Qtr1

var2

Qtr1

var1

Qtr2

var2

Qtr2

var1

Qtr3

var2

Qtr3

var1

Qtr4

var2

Qtr4

1 1 SD 2 EF 3 HK 4 HL

2 5 GH 6 MM 7 JH 8 MS

But there are some problems with the method

The numeric variables are now character variables

and if the first idnum was missing data for one date

idnum date var1 var2

1 31MAR2013 1 SD

1 30JUN2013 2 EF

1 31DEC2013 4 HL

2 31MAR2013 5 GH

2 30JUN2013 6 MM

2 30SEP2013 7 JH

2 31DEC2013 8 MS

idnum var1

Qtr1

var2

Qtr1

var1

Qtr2

var2

Qtr2

var1

Qtr3

var2

Qtr3

var1

Qtr4

var2

Qtr4

1 1 SD 2 EF 3 HK

2 5 GH 6 MM 7 JH 8 MS

the output variable order will be a bit distorted

%transpose(data=have, out=need, by=idnum,

 id=date, format=qtr1., delimiter=_Qtr,

 var=var1-var2)

would you be interested in knowing how to
 obtain the right result with the following code?

only requires one step

only needs one pass through the data

doesn't produce distorted results

can run more than 50 times faster than

PROC TRANSPOSE

How about if you knew that the macro:

How the macro works
if we have: dataset have

idnum date var1 var2

1 31MAR2013 1 SD

1 30JUN2013 2 EF

1 30SEP2013 3 HK

1 31DEC2013 4 HL

2 31MAR2013 5 GH

2 30JUN2013 6 MM

2 30SEP2013 7 JH

2 31DEC2013 8 MS

How the macro works
and we need: dataset need

idnum var1

Qtr1

var2

Qtr1

var1

Qtr2

var2

Qtr2

var1

Qtr3

var2

Qtr3

var1

Qtr4

var2

Qtr4

1 1 SD 2 EF 3 HK 4 HL

2 5 GH 6 MM 7 JH 8 MS

and we submit:

%transpose(data=have, out=want, by=idnum,

 id=date, format=qtr1., delimiter=_Qtr,

 var=var1-var2)

How the macro works:

data work.want (drop=date ___: var1-var2);
 set work.have (keep=idnum date var2 var1);
 by idnum notsorted;
 retain want_chr want_num;
 array have_chr(*)$ var2; array have_num(*) var1;
 array want_chr(*)$ var2_Qtr1 var2_Qtr2 var2_Qtr3 var2_Qtr4;
 array want_num(*) var1_Qtr1 var1_Qtr2 var1_Qtr3 var1_Qtr4;
 if first.idnum then call missing(of want_chr(*));
 ___nchar=put(date,labelfmt.)*dim(have_chr);
 do ___i=1 to dim(have_chr);
 want_chr(___nchar+___i)=have_chr(___i);
 end;
 if first.idnum then call missing(of want_num(*));
 ___nnum=put(date,labelfmt.)*dim(have_num);
 do ___i=1 to dim(have_num);
 want_num(___nnum+___i)=have_num(___i);
 end;
 if last.idnum then output;
run;

labelfmt is a format, created by the macro,

and reflects the ordered names of the

transposed variables (i.e., from 1 to n)

: if sort parameter had been equal to yes, the macro would
have run PROC SORT and created a temporary sorted file

: the macro creates and runs a datastep like the following:

: the macro drops unnecessary variables as early as possible

%transpose(libname_in=, libname_out=,

 data=, out=,

 by=, prefix=,

 var=, autovars=,

 id=, var_first=,

 format=, delimiter=,

 copy=, sort=,

 drop=, guessingrows=)

and you can use almost all the features
 that you can with PROC TRANSPOSE

plus some additional ones

the %transpose() features
parameter: libnames

the names of the SAS libraries where your data reside and

where you want the transposed file written

%transpose(libname_in=, libname_out=,

 data=, out=,

 by=, prefix=,

 var=, autovars=,

 id=, var_first=,

 format=, delimiter=,

 copy=, sort=,

 drop=, guessingrows=)

* * * * * * F E A T U R E * * * * * *

While data and out can be assigned 1 or 2 level filenames

if your input or output files often use certain libraries

you can assign them to these parameters as defaults

the %transpose macro's features

the %transpose() features
parameter: autovars

determines whether char(acter), num(eric) or all variables

should be transposed if the var parameter is null

%transpose(libname_in=, libname_out=,

 data=, out=,

 by=, prefix=,

 var=, autovars=,

 id=, var_first=,

 format=, delimiter=,

 copy=, sort=,

 drop=, guessingrows=)

* * * * * * F E A T U R E * * * * * *

Where PROC TRANSPOSE will only include all numeric

variables if there is no var statement,

this parameter lets you indicate if you want all numeric

variables, all character variables or simply all variables

the %transpose macro's features

the %transpose macro's features
parameter: var_first

determines which is named first in transposed variables:

YES: prefix var name delimiter id value

%transpose(libname_in=, libname_out=,

 data=, out=,

 by=, prefix=,

 var=, autovars=,

 id=, var_first=,

 format=, delimiter=,

 copy=, sort=,

 drop=, guessingrows=)

the %transpose macro's features
parameter: var_first

determines which is named first in transposed variables:

YES: prefix var name delimiter id value

NO: prefix id value delimiter var name

%transpose(libname_in=, libname_out=,

 data=, out=,

 by=, prefix=,

 var=, autovars=,

 id=, var_first=,

 format=, delimiter=,

 copy=, sort=,

 drop=, guessingrows=)

parameter: sort
whether the input dataset should be sorted (YES or NO):

the %transpose macro's features

%transpose(libname_in=, libname_out=,

 data=, out=,

 by=, prefix=,

 var=, autovars=,

 id=, var_first=,

 format=, delimiter=,

 copy=, sort=,

 drop=, guessingrows=)

* * * * * * F E A T U R E * * * * * *

If set to YES this parameter will insure that

your data are automatically presorted

run proc sort before another proc only to
discover that the file hadn't been sorted?

forgotten to run proc sort before running
another proc that required sorted data?

run a proc that only used a few of a file's
variables, but didn't include a keep dataset
option to limit the amount of data that had
to be processed?

How many of you have ever:

run proc sort before another proc but
didn't include a keep dataset option to
limit the amount of data that had to be
processed?

Compare the performance of the following three sets
of almost identical code run on a file with 40,000

records and 1,002 variables
PROC SORT data=have out=need;
 by idnum date;
run; took 6.96 seconds CPU time

DATA need;
 set need;
 name="var1";
run; took 3.67 seconds CPU time

PROC TRANSPOSE data=need out=want (drop=_:)
 delimiter=_Qtr;
 by idnum;
 var var1;
 id _name_ date;
 format date Qtr1.;
run; took 1.51 seconds CPU time

Compare the performance of the following three sets
of almost identical code run on a file with 40,000

records and 1,002 variables
PROC SORT data=have (keep=idnum date var1) out=need;
 by idnum date;
run; took 0.48 seconds CPU time

DATA need;
 set need;
 name="var1";
run; took 0.06 seconds CPU time

PROC TRANSPOSE data=need out=want (drop=_:)
 delimiter=_Qtr;
 by idnum;
 var var1;
 id _name_ date;
 format date Qtr1.;
run; took 0.43 seconds CPU time

Compare the performance of the following three sets
of almost identical code run on a file with 40,000

records and 1,002 variables

%transpose(var=var1,
 id=date,
 format=Qtr1.,
 sort=yes,
 delimiter=_Qtr)

took 0.46 seconds CPU time
i.e., twice as fast as the optimized code and
25 times faster than the non-optimized code

the %transpose macro's features

parameter: guessingrows

the number of rows to be read to determine the correct
order for the set of transposed variables

%transpose(libname_in=, libname_out=,

 data=, out=,

 by=, prefix=,

 var=, autovars=,

 id=, var_first=,

 format=, delimiter=,

 copy=, sort=,

 drop=, guessingrows=)

* * * * * * F E A T U R E * * * * * *

With PROC TRANSPOSE the transposed variables

will be in the order they are initially found in the data

this parameter controls the order based on the

values found in the first guessingrows' records

the %transpose macro's features

parameter: all parameters

%transpose(libname_in=, libname_out=,

 data=, out=,

 by=, prefix=,

 var=, autovars=,

 id=, var_first=,

 format=, delimiter=,

 copy=, sort=,

 drop=, guessingrows=)

* * * * * * F E A T U R E * * * * * *

Since they are all macro named parameters you have direct

control over their default values

If you set them to commonly used values, they don't have to

be declared UNLESS you want to change their value

less typing thus fewer errors

contains some features that would be
nice to see available with all SAS procs

easier to learn than PROC TRANSPOSE

runs faster than PROC TRANSPOSE

Benefits of the approach

more likely to provide the desired results

insures that you ALWAYS get the benefit
of a critical SAS efficiency method

What the %transpose macro is 

The macro's benefits 

How the macro works 

Presentation Overview

http://www.sascommunity.org

The macro, paper and Powerpoint can be found at:

http://www.sascommunity.org/wiki/SAS_Global_Forum_2012_Presentations

http://www.sascommunity.org

The macro, paper and Powerpoint can be found at:

http://www.sascommunity.org

The macro, paper and Powerpoint can be found at:

http://www.sascommunity.org

The macro, paper and Powerpoint can be found at:

Your comments and questions

are valued and encouraged

Arthur Tabachneck, Ph.D.
President, myQNA, Inc.
Thornhill, ON
art297@rogers.com

Joe Whitehurst
High Impact Technologies
Atlanta, GA
joewhitehurst@gmail.com

Xia Ke Shan
Beijing, China
xiakeshan@yahoo.com.cn

Contact the Authors

Robert Virgile
Robert Virgile Associates, Inc.
Lexington, MA
rvirgile@verizon.net

