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Abbreviations   
  
MOS – main olfactory system 

VNO – vomeronasalorgan 

OR – olfactory receptor 

V1R, V2R – vomeronasal receptor, types 1 & 2 

TM – trans membrane 

MSA – multiple sequence alignment 

AA – amino acid 

DNA – desoxyribonucleic acid 

ML – Maximum Likelihood 

HMM – hidden Markov model 

PIM – percent identity matrix 

AOS – average overlap score 

LRT – likelihood ratio test
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Abstract  

Background 

  
The origin of vertebrate sensory systems still contains many mysteries and thus 

challenges to bioinformatics. Especially the evolution of the sense of smell maintains 

important puzzles, namely the question whether or not the vomeronasal system is 

older than the main olfactory system. Here I compare receptor sequences of the two 

distinct systems in a phylogenetic study, to determine their relationships among 

several different species of the vertebrates.  

Results 

 
Receptors of the two olfactory systems share little sequence similarity and prove to be 

a challenge in multiple sequence alignment. However, recent dramatical 

improvements in the area of alignment tools allow for better results and high 

confidence. Different strategies and tools were employed and compared to derive a 

high quality alignment that holds information about the evolutionary relationships 

between the different receptor types. The resulting Maximum-Likelihood tree 

supports the theory that the vomeronasal system is rather an ancestor of the main 

olfactory system instead of being an evolutionary novelty of tetrapods.  

Conclusions 

The connections between the two systems of smell perception might be much more 

fundamental than the common architecture of receptors. A better understanding of 

these parallels is desirable, not only with respect to our view on evolution, but also in 

the context of the further exploration of the functionality and complexity of odor 

perception. Along the way, this work offers a practical protocol through the jungle of 

programs concerned with sequence data and phylogenetic reconstruction. 
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Background  
 
Progress in genome sequencing projects of many different species enables us to 

construct more reliable estimates of evolutionary processes. Given its fundamental 

role in animal behaviour, the exploration of the sense of smell is of substantial 

scientific and general interest, not only since the Nobel prize in medicine or 

physiology 2004 was awarded to Linda Buck and Richard Axel for the discovery of 

olfactory receptors and the elucidation of the physiology of the sense of smell. A 

better understanding of the evolution of this sensory apparatus and the relationships of 

its distinct subsystems is therefore within reach, using advanced bioinformatic 

methods on the large amounts of chemosensory sequence data. OR proteins are 

encoded by the largest and most diverse gene family in the vertebrate genome, which 

consists of more than a thousand different genes in mammals (1). These are 

distributed in tandem clusters on the vertebrate chromosomes, revealing a record of 

evolutionary processes that have led to rapid expansion of the olfactory subgenome, 

gene duplication and conversion, extensive gene loss by pseudogenization, and 

diversifying selection (2-5).  This superfamily is subject to a broad variety of 

bioinformatics research areas, e.g. genomics, phylogenetic reconstruction and 

structure prediction. Such challenges make those special GPCRs an interesting case 

for research. 

 
Molecular biological background 
 
Olfaction is subserved by two anatomically and functionally distinct systems, the 

main olfactoy system (MOS) and the accessory olfactory system which includes the 

vomeronasal organ (VNO) as the sensory surface (6-8).  Both systems hold receptors 

of the superfamily of G-protein-coupled receptors, GPCRs, a vast protein family that 

encompasses a wide range of functions (including vision, neurotransmission and 
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endocrine processes). They show considerable diversity at the sequence level, on the 

basis of which they can be classified into distinct groups. The MOS expresses odorant 

receptors (1,10) that belong to the family of rhodopsin GPCRs, like the V1 receptors 

(V1R) (11). V2 receptors (V2R)(12-14) of the VNO belong to the glutamate family 

and are predominantly utilized for pheromone-detection (15,16).  

 
Pheromones (17) are semio-chemicals communicated by individuals within one 

species, which release stereotyped behavioural or physiological responses in the 

recipient. Pheromones are used by almost all animals. These scents are usually blends 

of a few types of molecules in species specific ratios (18,19). V1Rs appear to show 

very high affinity and specificity in ligand binding(15,20). However, pheromone-

perception does not seem to be limited to the VNO, as some pheromone-induced 

behaviours are not perturbed by removal of the VNO (21-24), but are rather mediated 

by the MOS (25,22). Single V1R genes in humans and goats are even known to be 

expressed in the MOS (27,28). Conversely, some ‘common’ odorants can also be 

detected by the VNO (29,30), implying that these two olfactory systems might have 

functional overlap (31). It should also be mentioned that the complexity of the VNO 

morphology and the degree of its involvement in communication varies substantially 

among different mammals (33), and the VNO-mediated functions differ from species 

to species (34). 

 
In comparison, ORs, V1Rs and V2Rs are coded by three complex gene superfamilies, 

which lack obvious sequence similarity, and yet seem to be organized in conceptually 

similar ways. These commonalities not only include their genomic organization 

(35,36), compact gene structure, and monoallelic expression (37-38) - of one (or a 

few) genes per neuron (40-44, all reviewed in 45). But also do the three receptor types 
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Fig. 1:  sketch of predicted OR 
and V1R secondary structure. 
Yellow marks the region where 
odorant ligands are likely to bind. 

share certain structural similarities. Until today, the only crystal structure available of 

a GPCR fold is that of bovine rhodopsin (26,32), to which many GPCR family 

members cannot be modelled with accuracy. 

 
As to be seen in figures 1 and 2, the GPCR fold 

comprises seven transmembrane (7TM) -helices, 

with a cytosolic C-terminus, and an extracellular N-

terminus, that can be very long in V2Rs (12-

14,46,47). In principle, however, structure-function 

relationships for rhodopsin-like GPCRs are well 

established: extra cellular ligands are thought to bind 

within the 7TM region, inducing conformational changes that are linked to the 

binding of intracellular G-protein heterotrimers (48,32). Ligand binding in V2Rs is 

assumed to occur within the globular extracellular domain. Nevertheless, the 

understanding of structure-function relationships for specific GPCRs is far from 

complete. Furthermore are V1R genes intronless, while the large N-terminus in V2Rs 

is encoded by multiple exons, with the 7TM region 

contained within a single exon. Very few receptors 

have been deorphaned to date (reviewed in 45), but 

V2-like receptors in goldfish have been shown to 

bind arginine and lysine (50), suggesting amino acid-

binding properties rather than binding of volatile 

organic compounds. This observation is supported by 

the homology between V2R extracellular regions and 

bacterial proteins with amino acid-binding properties (51,52). 

 

Fig. 2 sketch of predicted V2R secondary 
structure  in complex with M10 (blue) and 
β2m (pink). 
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Evolutionary background 

Evolutionarily, early tetrapods were probably the first animals to have separate 

olfactory and vomeronasal organs (53). Due to the existence of both systems solely in 

tetrapods and the aqueous content of the VNO, Broman (54) supposed their VNO to 

be homologous with the nasal chemosensory system of fishes and that the MOS arose 

later as an adaption to terrestrial life. In contradiction to that, the olfactory bulb in 

fishes and the main olfactory bulb of tetrapods reveals very similar axonal 

projections, so that Bertmar later inverted Broman’s hypothesis, suggesting that the 

VNO arose in tetrapods as an adaptation to terrestrial life (55). This hypothesis 

remains controversial, since the VNO is generally present in aquatic salamanders, 

caecilians, and frogs (reviewed in 56, 57,58). The presence of the VNO in both 

amphibians and amniotes indicates that the system must have been present in the last 

common ancestor of these two groups, which was probably aquatic (59,60). This 

work will provide more evidence, on the basis of receptor sequence data, that the 

VNO really is the evolutionarily older organ. 

 
Bioinformatics background 

During the past years, sequence databases were boosted and expanded exponentially. 

Genome sequencing projects of more and more species are completed, dramatically 

increasing the scope in which answers to our scientific questions can be found. 

Furthermore, bioinformatic tools and methods have been developed and improved 

tremendously, with increasing accuracy, speed, and tenability. Especially in the field 

of multiple sequence alignment (MSA), programs became very sophisticated. These 

achievements are of great value to this work, since multiple alignments of OR and 

V1R sequences proved to be quite difficult to construct, due to their rather distant 

relatedness.  
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On the other hand, these rapid developments in the recent past also mean that there 

now is a multitude of programs and routines, aggravating the choice of the best suited 

tools. In most cases, the user has to compare and evaluate many different methods that 

tackle the same problem. It might be tempting to simply trust the result a program 

comes up with, but quite frequently another method will find a contradicting solution. 

It’s one of the aims of this work to find a suitable path through the contemporary 

jungle of programs in this field.  

 
The approach of this work can roughly be described as follows: In the first step, a data 

set of annotated amino acid (AA) sequences was established, containing about 1700 

OR and 220 V1R sequences. Their separate MSAs were used as a basis to filter out 

closely related sequences, to reduce redundancy and to find representative subsets. 

The remaining 100 sequences of each kind were then realigned together, so that 

regions of positive selection could be identified and excised accordingly. Then a raw 

tree was constructed upon that final alignment, since more than 200 sequences exceed 

the computable maximum for the envisaged maximum likelihood approach by far. To 

obtain a reliable tree, at most eleven sequences may be contained in the dataset, to 

allow a feasible exhaustive search. The coarse tree helped to make a biologically 

reasonable choice of those eleven, and maximum likelihood calculation was used to 

determine the best tree among more than 34 million. 
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Results  
 

Sequence retrieval 

 
To build the fundament for a reliable phylogenetic reconstruction, the input datasets 

were chosen with great care. For the MSA, AA sequences were preferred over DNA 

sequences, because AAs allow to survey evolutionary history more deeply than 

nucleotides due to the fact that they show similarity in addition to identity. Also does 

it seem reasonable to exclude V2 receptors from the alignment, since they belong to a 

completely different family of GPCRs due to their long extracellular which most 

likely is involved in ligand binding. Several thousand sequences of ORs and V1Rs 

can be found in the gene and genome databanks, and a restriction to vertebrates does 

not decrease their number prominently. Therefore, to also impose a strict quality 

measure on the data, the input sequences were limited to those introduced in 

previously published work. Table 1 gives an overview of the number and sources of 

those annotated sequences. Of course, pseudogenes and partial sequences were 

excluded as well, since they are relieved from selective pressures, and would certainly 

import more noise to the estimation than information content. 

 
 Canis  Danio  Gallus  Xenopus  Mus.  Bos Opossum Primates Lamprey 
 
V1R 

 
8 (b) 

    
104 (h) 

 
32 (b) 

 
49 (b) 

  

 
V1R-
like 
 

  
7  (g) 

      
13 (f) 

 

V3R     8  (a)     
 
OR 

 
90 (e) 

 
86 (c)  
9 (d)   

 
78 (c) 

 
411 (c) 

 
1037 (c) 

    
10  (j) 

Table 1: annotated sequences (see references for sources) 
 
 
Taken together, the starting datasets eventually comprise about 1700 OR- and 220 

V1R sequences, which were subject to further selection and preparation in the next 

stages. 
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Eliminating sites of positive selection using PAML 

Much care was invested into the question, whether or not, and if yes, how to pre-

process data. It is much about the issue, what kind of information can be expected 

from the sequence data, and how to reduce noise caused by hypervariable regions.  

The reason for this deliberation is the way, in which adaptive evolution can be 

expected to have created the great variety of GPCRs in general, but also the diversity 

of odorant receptors, that are involved in processes as diverse as foraging, 

reproductive behaviour, and predator avoidance. In general, most AA sites of a 

protein are subject to strong functional constraints, which are not equally distributed 

over the sequences in many cases. According to most studies of molecular evolution, 

adaptive changes occur at only a subset of sites (61). The diversifying selective 

pressure, however, causes such regions to evolve more rapidly than the rest of the 

sequence, usually to expand functionality of the resulting protein. In order to focus on 

the evolutionary path of whole gene families hidden behind the strong patterns of 

diversifying evolution of its individual members, it appears reasonable to exclude 

such sites, that underlie positive selection, from the multiple alignment of – in this 

case - olfactory  and vomeronasal receptors. Ultimately, the inferred phylogeny 

should not reveal the evolution of discriminatory details of smell perception, but 

rather the relationships between different fundamental types of receptors, distinct 

from their odorant specificity. 

 
A rational measure for the kind of selective pressure on a protein-coding gene is the 

ratio () of non-synonymous (amino acid replacement) versus synonymous (silent) 

substitution rates (62).  Three different categories of selective pressure can be 

distinguished, by means of Negative, purifying selection reduces the fixation rate 

of unfavourable non-synonymous mutations, keeping  below 1, whereas mutations 
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are called neutral when they are fixed at the same rate as silent substitutions, i.e. when 

 equals 1. Positive, diversifying selection, however, yields  values above 1, since 

non-synonymous mutations tend to be fixed at a higher rate than silent ones. To detect 

sites under this positive selective pressure, PAML was applied, Phylogenetic Analysis 

by Maximum Likelihood (63). This software package allows to compare different 

models, endorsing positive selection if models of neutral and purifying selection can 

be rejected and if significantly exceeds 1 (64,65). For more detailed descriptions, 

see the “methods” section. 

Besides PAML, several results from previous publications were incorporated to get a 

broader picture of the approximate distribution of sites under positive selection.  A 

variety of studies (see table 2) was focusing on the question, which residues are 

involved in odorant binding activity, using different techniques to determine such 

subsequences. In most cases these regions are under diversifying, positive selection, 

which explains the great diversity of olfactory receptors and the ability of vertebrates 

to perceive thousands of different odours. These works were integrated and their 

results marked on a multiple alignment of representative sequences, together with the 

results of my own PAML analysis. Incorporating these hits, the information gathered 

here guided the process of deciding which subsequences to exclude from the final 

alignment. This way, the results of different studies support the excision of certain 

regions of the alignment. 
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Fig. 3: MUSCLE (81) alignment of olfactory receptors previously involved in binding site studies (for details see 
table 2). Colouring pattern: transmembrane helices highlighted in dark grey, extra cellular loops shown in light 
grey, positions marked in red are expected to be involved in ligand binding to some extent. Boxed regions were 
excluded from the final alignment to reduce noise caused by hypervariable subsequences (see text for details). 
Stars below the alignment point out conserved regions, two dots show nearly conserved regions and one dot marks 
sites with different residues that share chemical attributes (hydrophobicity et cetera). The positions of TM helices 
are shown according to the structure of bovine rhodopsin.            
 
As illustrated in figure 3, the hits do not show an a random distribution over the 

sequence alignment, but rather form distinct clusters at certain locations. Even though 

multiple methods were applied in the publications incorporated, they have one aspect 

in common: the search for the putative binding site of ORs. Their distinct approaches 

are listed in table 2, but can be divided into two groups: docking simulation studies 

(MOR-EG and M-I7) and studies detecting variability (DrOR15.9, OR45 and 

MOR36-1). However, not all these information are of equal importance to the 

decision which regions to excise. It may certainly be assumed that not all residues 

involved in ligand binding are extraordinarily variable, even positions that appear 

conserved in this alignment were described as part of the binding pocket by the 

docking simulation studies. Therefore, only non-conserved, hypervariable positions 

located within hypervariable clusters were chosen for the excision. Restraints 

appeared necessary in order to limit sequence loss exceeding an approximate one third 

of the original alignment length, and to exclude false positives, since all applied 

methods exhibit certain drawbacks. These disadvantages range from rhodopsin as a 

model for ORs in structure-based approaches, up to the point of weaknesses of model 

assumptions in sequence-based methods. Finally, even two of my own results (shown 
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in the first sequence of figure 3) were spared from excision since this area was not 

proposed by any other study. The other two statistically significant results of my 

PAML analysis, however, fall into two of the very obvious clusters that were cut out 

from the alignment.  

 
Receptor Description Approach Sites Reference 
 
Dr3OR15.9 
(danio rerio)   

 
PAML results 
inferring 
positive 
selected sites 
 

 
ML calculation of extremely 
variable sites using PAML 
(63) 
See Methods for details. 

 
W46  N47  V154  V196 

 
this work 

OR45 
(mouse, 
NP_667174.1) 
 

PAML results 
of 5 OR 
subfamilies 
combined 

Extensive ML calculation of 
extremely variable sites using 
PAML (63) 
 

D5  N6  D18  G25  M26  
I32  A33  V86  R88  
E91  R92  G101  A105  
W106  T112  Q134  
T139  T142  I153  C161  
Y162  I164  L165  K177  
A200  H220  I206  R233  
A255  T269  I256  R308  
Y312 
 

Emes 
2004 
(64) 

MOR-EG 
(mouse, 
AAL61116.1)   
    

residues in the 
predicted 
binding pocket 
 

functional analysis of several 
site-directed mutants, ligand 
docking simulation studies, 
rational receptor design with 
predictable changes in ligand 
affinity. 
 

F102  F105  C106  F108  
V109  E112  S113  L116  
E181  F182  T205  F206  
N207  S210  T211  L212  
I215  A248  I251  F252  
L259  T280  I283 

Katada 
2005 
(65) 

M-I7       
(mouse, 
AAD13307.1) 

residues within 
3.5Å of 
ligands in final 
models 
 

3D prediction of structure and 
ligand docking studies using 
MembStruck and HierDock, 
prediction of responses to 56 
odorants and comparison with 
experimental data 
 

F109  L110  G113  
C114  T115  E116  
C117  K164  F205  I209  
I255  A258  A259  I263  
L278  V279  V281  
L282  Y283    

Hall 2004 
(66) 

MOR36-1 
(mouse, 
AAL61401.1) 

predicted 
functional 
residues 
 

alignment & analysis of 1441 
OR sequences, assuming 
binding-involved residues to 
be conserved among pairs of 
orthologous receptors and 
considerably less conserved 
among paralogous pairs.   
 

L87  M115  V118  H119  
T122  A123  S126  
G127  V166  I170  F173  
Y192  H195  G213  
S217  V220  S221  
Y266  G269  S301  I302  
L305 

Man 2003 
(67) 

  
Table 2: Details about figure 3: Different studies unveiling residues possibly involved in OR ligand binding. Site 
numbers are according to each sequence and may differ from positions in alignments (fig.3 & fig.4) due to 
sequence shifts caused by gaps. 
 

Table 2  provides an overview of the literature that was taken into account in this part 

of the project. Distinct receptors were subject to these different approaches, they are 
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shown in a multiple alignment in figure 3, to get an overview of the suspicious AA 

sites in relation to each other.   

 
Earlier work regarding the search for the binding pocket (Vaidehi, Floriano, Singer, 

Ashar, 68-71) was not taken into account, due to the reduced reliability of docking 

simulation studies using the low resolution structure of rhodopsin (7.5 Å). These lines 

had to be drawn to achieve a justifiable extent of accuracy, - even though it is clear 

that in the end it will not be possible to eliminate the noise due to hypervariability 

completely - , but its reduction is sensible matter.  

 
Figure 5 illustrates the approximate locations of 

segments within the receptor that will be excised 

from the sequence data. In general, there are seven 

helices located in the lipid bilayer, forming a kind of 

pocket to bind certain ligands. The closer to the 

intracellular side, the narrower the pocket gets, 

opening up towards the extra cellular side. This 

simple sketch of the structure can be assumed in analogy to rhodopsin and other 

GPCRs of this kind. Thus the localization of the chosen regions is biologically 

plausible located in the upper half or middle of some helices, where ligand interaction 

most certainly takes place (see fig. 1). Furthermore, most studies do not expect the 

first two helices to be candidates for domains involved in ligand binding. Marking the 

proposed candidates of binding-pocket involvement into a schematic presentation of 

an olfactory receptor, the following details catch the eye: 

(1) The amino and carboxy terminals are not suspected to interact with ligands, 

neither the first TM helix. (2) Other loops, and helices 2 and 7 have no or very few 

Fig. 5: OR topology layout, regions 
that will be excluded from the sequence 
alignment marked in red 
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suspicious amino acids that have been mentioned by no more than one study. (3) Most 

likely to form the binding pocket are helices 3, 4, 5 and 6, as suggested by the 

majority of previous studies and my results.  As to be seen in Fig. 5, the aminoacids 

predicted to form the binding pocket cluster within the  in a two thirds of each of the 

helices 3, 4, 5 and 6 facing the extracellular side. These clusters that are presumably 

under positive selection will be excluded from the alignment to prevent misleading 

conclusions about the phylogeny of the olfactory receptors apart from the 

developments in smell-detection. 

When combining the final alignment, it will be necessary to extract the very same 

regions from all other aligned ORs, which presents a challenge regarding the V1Rs. 

Even though these receptors are similar to ORs of the main olfactory system, there is 

reason to expect differences in ligand interaction:  

ORs are known to feature a broad spectrum of ligands that cause different levels of 

activation (9).  V1Rs, however, are much more specific in ligand affinity, which is 

biologically sensible. So there is a discrepancy in the way in which the two kinds have 

a very similar structure and still differ in specificity, which might most likely be due 

to slightly different ways of ligand binding. 

Thus the procedure has to be carried out on V1Rs as well, determining the regions 

which should be excluded from the alignment. If they differ (and that is likely), they 

have to be cut out from the ORs of the main olfactory system as well. 

 

Applying the truncation process to V1Rs 

Regarding the vomeronasal receptors, considerably less literature exists exploring the 

parts of the protein possibly involved in ligand interaction. Fig. 6 illustrates the 

localization of hypervariable residues according to PAML. Both sequences are 
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representatives for sets of 10-22 sequences involved in the calculation, V1RB8 in my 

case, and V1RA10 in the work of Emes et al (64). This time the results do not 

obviously cluster together, possibly due to the distance between the datasets. 

However, it appears helpful to find support for some biologically plausible situated 

hits (almost all are found in tm domains) within the noisy regions of olfactory 

receptors.  

 
 
Fig. 6: Alignment of two reference V1Rs to show PAML results of this project (V1RB8) and of Emes et al.’s 
research (V1RA10). Alignment made using MUSCLE. Positions of TM helices calculated using TMHMM (72) 
and marked in grey, sites under positive selection, according to PAML, highlighted in red.  
 
 
The alignment between receptors of the main olfactory and the vomeronasal system is 

quite a challenge. Achieving a biologically meaningful alignment is very difficult and 

this high goal is situated much further down the road of this work. However, it is 

necessary to get some information about the approximate correlations of these two 

receptor types, in order to exclude the same regions from both kinds of sequences. At 

this point it is very unlikely to match exact positions with high certainty. However, a 

rough secondary structure alignment helps to guide the process. It provides sufficient 

information about the relative localizations of hypervariable regions. The positions of 

the TM domains were estimated using the online program TMHMM (72), which was 

tested on the OR sequences as well, to find out how much this prediction method 

differs from the results of the structural alignment method using rhodopsin. It turned 

out that TMHMM gave a very reliable prediction in this case (data not shown).  
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Figure 7 illustrates the way in which the distinct types of receptors – ORs and V1Rs 

were set into approximate correlation based upon their domain structure. Now many 

of the marked V1R positions (Fig. 3) fall into the obvious clusters already found in 

ORs. Two of the previously chosen regions to exclude were expanded and one small 

new one introduced (amino terminus of TM helix 4), since more clues coincided on 

these areas. Especially the clusters in helices six and seven gained support through the 

V1R results, which make the extension of excludable areas reasonable. Shown in 

figure 7 in black-lined boxes, those regions sum up to almost 70 residues. Thus less 

than one third of the receptor sequence will be cut out from the alignment. 

 

 
 
Fig. 7: Domain-based correlation between roughly aligned V1R and OR sequences. Manually inserted gaps 
marked with ‘# ‘. Colouring scheme according to fig. 1.  Approximate regions to cut out are shown in boxes, 
relative to domain structure.  
 

Reducing redundancy – FILTER 

Filter is a custom-made perl program I designed to adjust the level of similarity 

among sequences within one dataset and exclude redundant data due to highly similar 

sequences. Based upon a sequence percent identity matrix (PIM) constructed by 

ClustalX, any degree of similarity can be chosen, and sequences exceeding that 

threshold will be removed from the dataset. In short, the program evaluates the PIM 
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matrix above the diagonal for scores higher than the threshold. The corresponding 

sequences are memorized and all others written into a new file, which now contains 

sequences that are more distantly related than the threshold. This value was initially 

set to 60, because subfamilies are defined as sequences, that share more than 60% 

identities on the amino acid level. However, maintaining one member of each 

subfamily, these reduced datasets still contained too many sequences to be feasible in 

upcoming MSA calculations. About 100 sequences for each kind – OR and V1R – 

appeared reasonable. Therefore the threshold was set to 40% in OR sequences, and 

45% in V1R sequences, yielding  a little over 100 sequences for both datasets. The 

source code of filter.pl along with comments is provided as additional file “filter.pdf”. 

The multiple sequence alignment  

A lot of attention in the field of bioinformatics has always been focused on the MSA 

problem, mainly because MSAs play a central role in the annotation of genomes (73). 

Several new and accurate alignment methods have been introduced (74-76), that are 

applied and compared in this work.   

 
Among the various different approaches to the MSA problem, at least in theory, 

hidden Markov models (HMM) present a very sound solution to multiple sequence 

alignments, using statistical models to describe evolutionary processes. The states of a 

HMM can be viewed as representing the sequence of columns in a multiple sequence 

alignment, with provisions for arbitrary position-dependent insertions and deletions in 

each sequence. The models are trained on a family of protein sequences using an 

expectation-maximization algorithm and a variety of algorithmic heuristics. A trained 

model can then be used to generate multiple alignments. There are two popular 
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implementations of HMMs for MSA: SAM and HMMER (77,78), and according to 

Wistrand and Sonnhammer (49), SAM performs better in several aspects.  

 
Looking at the extreme complexity of the optimality landscape of a MSA-problem 

containing several hundreds of sequences, it seems advisable to use an existing MSA 

(derived from heuristic methods), instead of unaligned sequences as a starting point 

for the HMM training. Then it might be more likely to end up near the global 

maximum, instead of some local optimum. However, all efforts to change settings and 

parameters did not yield any improvement of the given MSA, even worse, it 

obviously decreased the quality of the initial MSAs. Personal communication to 

Kevin Carplus, who is one of the authors of SAM, finally reassured that it is 

technically very unlikely to improve an existing MSA with a HMM, due to several 

reasons. Not only are the programs in the SAM package fine tuned for applications in 

structure prediction, and not thoroughly tested on generating MSAs, but also have 

heuristic methods (MUSCLE et cetera) become much more powerful in the recent 

past, so that they are now the best choice for generating high quality MSAs ( reviewed 

in 57). 

Program MSA Strategy 
 
Clustal (79) 

 
Profile-based progressive MSA, implementation similar to Feng-Doolittle method 
 

 
Mafft (80) 
 

 
Tree generation via fast Fourier transform, tree-based iteration to refine the alignment 
by optimizing the weighted sum of pairs objective function 

 
Muscle (81) 

 
Iterative refinement method, initial rough draft of alignment built, using a crude 
guide tree to construct progressive alignment, profiles aligned upon log expectation 
score 

 
Praline (82) 

 
Homology extended MSA strategy, sequences are psi-blasted against the databases 
and together with their hits converted into profiles that are progressively aligned 

 
Probcons 
(83) 

 
Initial alignment using a pair-HMM generated with the maximum expected accuracy 
objective function, guide tree based upon sums of posterior probabilities, 
subalignments combined via sum of pairs, iterative refinement of the final alignment 
 

Table 4: overview of different popular approaches to the MSA problem.  
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The computational problem of generating MSAs is to define a model of sequence 

evolution that assigns probabilities to elementary sequence edits (i.e. character 

changes) and seeks a most probable directed graph in which edges represent edits and 

terminal nodes are the observed sequences. Until today, no feasible method for 

finding such a graph is known.  The heuristic approach is to seek an MSA that 

optimizes the sum of pairs (SP) score, i.e. the sum of pairwise alignment scores. 

However, this task is NP complete (89) and can be achieved by dynamic 

programming with time and space complexity O(LN) in the sequence length L and 

number of sequences N (90). There is another alternative, a progressive method 

(91,92), which first estimates a tree and then constructs a pairwise alignment of the 

sequences within the subtrees found at each internal node. A subtree is represented by 

its profile, i.e. a multiple alignment is treated as a sequence by regarding each column 

as an alignable symbol. Most modern heuristics make use of this successful strategy. 

 
Over the past 15 years, dozens of MSA programs and algorithms have been proposed. 

In order to compare them and measure accuracy, benchmark test sets have been 

designed, in the form of databases of precompiled alignments to which the alignments 

generated by test algorithms are compared. BAliBASE is the first large-scale purpose-

built benchmark (93), and the five methods listed above are among the best-scoring 

ones. With input data as diverse as OR and V1R sequences, it is unsurprising that the 

output alignments do yield differences. Thus the dilemma, again, is to find the method 

that yields the most reasonable alignment.   

 
If the best algorithm cannot be selected a priori, then it becomes a viable strategy to 

employ several alignment algorithms to construct alternative solutions, and 

subsequently to select the best among these. Fortunately, a recent publication (84) not 
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only discusses these subjects, but also provides a tool (MUMSA) – accessible via 

online server – that compares several alignments. According to Lassmann and 

Sonnhammer, it is good to provide as many different alignments for this process, as 

possible, meaning MSAs of the same data-set, retrieved by different MSA-generating 

programs. The following methods were applied: CLUSTALX (79), MAFFT (80), 

MUSCLE (81), PRALINE (82) and PROBCONS (83). Unfortunately the set of 

sequences was too large for the complete praline process, after nine days the allowed 

memory consumption exceeded 1.5 GB, thus the praline alignment remains provisory.  

 
MSA quality assessment  
 
Three different approaches were applied to get impressions of the quality of the 

alignments: sequence logos (114), MUMSA (84), and information content evaluation 

via PAUP (88). Sequence logos are a graphical representation of an MSA, which 

consist of stacks of symbols, one stack for each position in the sequence. While the 

height of symbols within the stack indicates the relative frequency of each AA at that 

position, the overall height of the stack represents the sequence conservation at that 

position. Thus, a sequence logo provides a richer and more precise description of a 

conserved position, than would a consensus sequence, and is very helpful in getting  a 

visual impression about the quality of an MSA an the patterns within.  

The praline alignment, for example, shows fewer gaps than the ones derived by the 

other methods, but obviously fails to clearly identify conserved regions, as to be seen 

in the sequence logos.  
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Fig 8: Sequence logo of PRALINE MSA (excerpt) 
 
 

 

Fig. 9: Sequence logo of MUSCLE MSA (excerpt) 

Next to each other, the sequence logos of the MSAs by MUSCLE (fig. 9) and 

PROBCONS (fig. 10) look very similar, in contrast to the rather flat PRALINE MSA 

(fig. 8). However, PROBCONS introduced a multitude of gaps when using default 

parameter settings, producing single columns of residues that lack biological sense. 
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Fig. 10: sequence logo of PROBCONS MSA (excerpt) 

 
The MSA by CLUSTAL looks similar to the MUSCLE one, but in the sequence logo 

presentation the differences become clearer:  

 
Fig. 11: Sequence logo of CLUSTAL MSA (excerpt) 

In figure 11 (CLUSTALX), especially the beginning of the MSA does not exhibit as 

strong patterns as the alignments by MAFFT (fig. 12) or MUSCLE (fig. 9). Therefore, 

conserved regions were obviously not aligned sufficiently well in CLUSTAL.  
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Fig. 12: Sequence logo of MAFFT MSA (excerpt) 

 

The sequence logos were made of MSAs in which columns were eliminated 

containing more than 80% gaps. Here, only the beginning and a middle part of each 

logo are shown, featuring the MAYDRY motif typical of olfactory receptors. 

For complete logos see additional files 2-6. 

 
A more qualitative approach to assess and compare the quality of MSAs is a program 

called MUMSA (84), that aims at facilitating the decision, which alignment of the 

same input sequences is the most appropriate for the purpose at hand. It employs 

solely the criterion of inter-consistency, the similarity between alternate pairwise 

alignments of the same sequences. Basically, the program searches for regions which 

are identically aligned in different alignments, assuming that these are more reliable 

than regions that differ from MSA to MSA. Thereby, the method also estimates the 

difficulty of the alignment case and assesses the quality of individual alignments. 

Lassmann et. al. assume that in difficult cases alignment programs will generate more 

dissimilar alignments than in trivial cases. 
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0,547653
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0,690435

0,633875

0,641555857

0,06538527

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

AOS score 

clustal

mafft45

mafft30

muscle

muscle_max2

probcons

mean

sdIt has been shown on the Balibase 

benchmark set that even methods 

with a low average accuracy 

outperform the best methods in 

many individual cases (81). Thus, 

as recommended, several different 

methods were applied; MUSCLE  

and MAFFT were even run several times. Motivation for this was the fact that the 

alignments generated prior to the respective iterative refinement are often quite 

different from the final alignment. Here, MUSCLE was restricted to two iterations of 

refinement steps, and MAFFT was applied in two different run modes (medium and 

slow) using two different Matices, PAM30 and PAM45, for rather distantly related 

sequences. Altogether, six different alignments were generated as input for MUMSA: 

probcons, muscle_max2, muscle, mafft30, mafft45, and clustal. Figure 11 shows the 

MUMSA multiple overlap scores, with the values of standard deviation and mean on 

top, average overlap score (AOS) below. Obviously, none of the alignment scores is 

significantly below or above the mean, only the score of the MSA by ClustalX clearly 

appears worse than the rest, however without significant statistical support.  

Ultimately, the results of MUMSA indicate that the input MSAs are of similar quality, 

except maybe ClustalX, and the differences between them are too smal to allow a 

statistically sound preference. The AOS of 0.55, however, clearly states that my 

alignment case is rather difficult. Basically, this is a crude measure of how dispersed 

alignments are in the space of all solutions, approaching 1 in simple alignment cases 

with similar alignments, and 0 in difficult cases.  

 

Fig. 11:  MUMSA multiple overlap scores 
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The MOS scores, however, appear more encouraging. Lassmann et. al. state that a 

cutoff of 0.8 MOS is practical for trusting the quality of an alignment, while 0.5 MOS 

or less implies that the alignment is probably incorrect. Except the scores of ClustalX 

and PROBCONS, all other scores are just below 0.7, which is not yet completely 

convincing, but closer to the trustworthy 0.8 cutoff than to the 0.5 threshold of 

unreliability.  In summary, MUMSA failed to clearly differentiate between superior 

and inferior alignments in this case, which indicates that the best methods produced 

comparable results. This outcome, however, should not be surprising, because 

otherwise the choice of program would have been trivial beforehand. After all, there 

is yet another way to distinguish between different levels of alignment quality.  

 
Phylogenetic Analysis Using Parsimony (PAUP) is one of the most widely used 

software packages for the inference of evolutionary trees. One of its features is the 

generation and evaluation of random trees, which in turn provides insight into the 

information content of an MSA. The tree-lengths are calculated and represented in a 

diagram, a bell-shaped curve. If the MSA contains information, this curve will reveal 

a skewness, leaning to one side instead of being perfectly symmetrical. As a negative 

control, I checked the information content of the sequences after permutation (using 

PHYLIP).  Shown in figure 12, the skewness value remains close to zero in this case. 

For more details about the calculation of skewness and inference of information 

content, see “methods”. 

 
As to be seen in figure 12, the skewnessvalues for the different MSAs according to 

PAUP are also nearly equally distributed, and, except for the negative control 

(permuted data), no alignment score is significantly above or below the mean. Even 

though the differences between the scores never exceed two standard deviations, it is 
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obvious that MUSCLE and 

CLUSTAL received highest 

scores, which are quite similar. 

Altogether, neither MUMSA nor 

PAUP offer substantial statistical 

support to prefer any of the six 

alignments. Nevertheless, a 

reasonable decision needs to be 

made, even if the choices obviously fail to differ significantly. Out of the three 

approaches to assess alignment quality, PAUP’s calculation of the information 

content should be regarded as the most important measure, because the information 

accumulated in an alignment should certainly be maximized, since this is the desired 

output of these efforts. Thus the hierarchy of criteria used is the following, in 

decreasing order: information content, multiple overlap and finally, consistency of 

sequence logos. Now, according to PAUP, the alignments by MUSCLE and 

CLUSTAL yield the highest information content. However, CLUSTAL’s alignment 

scores much lower on MUMSA, and visual inspection of the sequence logo also 

reveals the drawbacks of this alignment. Thus the final choice is the alignment by 

MUSCLE, shown in additional file 7. Following guide tree construction, the 

fundamental step of the program MUSCLE is pairwise profile alignment, which is 

used first for progressive alignment and then for refinement.  

 

An excerpt of the complete MUSCLE alignment, featuring eleven representative 

sequences, is shown in figure 13. Here, sites are excluded that reveal gaps in more 

than 2 columns.  

Fig. 12 : skewness values calculated by PAUP  
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Fig. 13: Excerpt of the MUSCLE multiple sequence alignment, viewed in the CLUSTALX editor. Eleven 
representative sequences are shown, numbers 2-5 of the VNO, 6-11 of the MOS. The first sequence will be used as 
outgroup in upcoming tree calculations. Residue colouring patterns are those of the CLUSTALX editor standards. 
 
 

Tree search  

All previous steps aimed at generating an optimal alignment. Finally, this work can 

now be taken to the next level, the search for the maximum likelihood tree, based 

upon this alignment. In general, the tree-seeking scientist has the following 

approaches to choose from, depending on the optimality criterion employed: 

parsimony, distance data, and maximum likelihood.  
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The strategies based upon distance data are also called a phenetic approaches (94). 

Here, data are clustered according to their similarities, minimizing the total distance 

among taxa in the output tree. There has been a long-standing controversy over 

whether distance data contain reliable information that can be used to infer 

phylogenies. After all, distance methods should only be applied if the characters used 

to compute the distance are unlikely to demonstrate convergence (95,96).  

When applying parsimony every character is evaluated and the preferred tree 

topology is the one that minimizes the total amount of evolutionary change that has 

occurred. Maximum parsimony is a very simple approach, and is popular for this 

reason. However, it is not statistically consistent. Particularly it assigns every 

exchange the same cost without regard of AA similarity, thereby disregarding a lot of 

information contained in the MSA. Thus, they collapse the information content of 

every sequence pair to one number, the distance/similarity. That way, it is not 

guaranteed to produce the true tree with high probability, given sufficient data.  

 
Maximum likelihood is a general methodology in the field of mathematical statistics, 

which can also be applied to the task of estimating phylogenies. Basically, the idea is 

to maximize the Bayesian likelihood that a given model generated the observed 

sequence data. More detailed, the question becomes: Given a formula describing the 

probability that different types of AA substitutions will occur, and given a particular 

tree, how likely am I to obtain this particular set of AA sequences? Simulation and 

other theoretical studies have shown that when rates of change vary among lineages, 

maximum likelihood can outperform parsimony methods in recovering the correct 

tree (reviewed in 97).  
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The reasons to prefer the Maximum Likelihood approach are the following. ML 

estimation often has lower variance than other methods, ie. it is frequently the 

estimation method least affected by sampling error, and it is statistically well founded. 

Also does it tend to be robust to many violations of the assumptions in the 

evolutionary model, it evaluates different tree topologies and uses all the sequence 

information. Thus, even with very short sequences, ML methods tend to outperform 

alternative approaches such as parsimony or distance methods. Basically, merely two 

serious implementations of ML estimation in tree reconstruction exist, TREE-

PUZZLE (101)  and MOLPHY (102).  

 
In any case, the search for the optimal tree is an NP-hard problem, because the 

number of possible trees grows polynomially in the number of taxa. Simply put this 

means that time - and/or memory resources necessary to solve it will not suffice for 

more than an extremely limited set of taxa. Therfore, most methods employ heuristics 

in some step of the calculation.  

 
As the name already states, TREE-PUZZLE makes use of a heuristic method, the 

quartet-puzzling algorithm (85).  Quartet trees are unrooted and feature four taxa. In 

its first step, all quartet tree topologies are generated from the set of sequences and 

evaluated to get a set of quartets, which are best supported by the underlying sequence 

alignment. According to their posterior probability weights in the ML estimation, 

quartet topologies are chosen and recursively combined to generate intermediate trees. 

Finally, a ML consensus tree is created based upon those partial trees.  

 
For my 230 sequences, this procedure took several days on a local PC. MOLPHY on 

the other hand is the implementation of an exhaustive tree search algorithm. Therefore 

the number of sequences this program mode is still feasible for, is very limited. To 
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optimise the signal-to-noise ratio, the data set should certainly be as large as time and 

memory resources allow for a sophisticated ML analysis. Since the  number  of  

possible  tree  topologies  increases explosively  with  the  number  of  taxa (86), it is a 

serious problem to find the best tree  among  the huge  number of alternatives. Until 

today, this complex calculation cannot be carried out for more than eleven sequences 

in an exhaustive tree search, since more than 34 million trees need to be evaluated in 

that case. Thus the rough draft tree estimation by TREE-PUZZLE serves the purpose 

of providing the information needed to chose eleven representative sequences. This 

tree is shown in fig. 14 on the next page, with taxa of OR sequences coloured in red, 

and those of V1R sequences coloured in blue. The eleven sequences chosen for 

further tree search are highlighted in yellow, featuring six OR sequences of the 

lamprey and the zebrafish (danio rerio), and  five V1R sequences of the mouse and 

the zebrafish.  The criterium for selecting those eleven representatives is the intention 

to use sequences that do not cluster together closely but are rather placed in different 

branches of the big tree. One of the lamprey receptors was chosen as outgroup in the 

data set of the eleven representative sequences, but proved unsuited for this task. 

Presumably it is not older than most other sequences, since it usually clustered 

together with olfactory sequences in narrow branches. Thus, in the further tree search 

process, a new outgroup was substituted for one of the mouse receptors.  
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Fig. 14 (previous page): Preliminary tree of OR (red) and V1R (blue) sequences that are no closer related to each 
other than 40% and 45%. This phylogram is based upon the alignment by MUSCLE and was calculated by TREE-
PUZZLE. The tree visualization program used is TREEVIEW X. Based upon this tree, eleven representative 
sequences (highlighted in yellow) were chosen for further tree calculations. Next to these, written in black, is the 
name they are called in further explorations, for the sake of recognition. Taxa names without access numbers are 
named according to Niimura (103). 
_____________________________________________________________________ 

 
Among others, the MOLPHY package features a program called PROTML, that 

applies the ML estimation to AA sequences. The method is an advanced version of 

Felsenstein’s DNAML. The straightforward approach to inferring a tree would be to 

evaluate  all possible tree topologies one after another and pick the one which gives 

the highest maximum likelihood.  Again, this is computationally prohibitive. 

Therefore, the exhaustive tree search was performed using approximate likelihood, 

which basically carries out a tree search applying a criterion that is computationally 

less expensive than maximum likelihood but chooses similar trees. The top 1000 trees 

were then evaluated via ML, to choose the best tree. Even thought Molphy is capable 

of both steps, the evaluation of the 1000 best trees was left to PAML, since the AA 

substitution matrixes are more up-to date in this program package.  

 
Table 5 shows the top ten trees according to 

the PAML estimations. The ranking is based 

upon their ML scores, assigning tree number 

394 the highest likelihood to be the correct 

tree. However, differences between the ML 

scores are very small. Regarding the statistical 

support, PAML provides a score called pRELL,  

bootstrap proportions, calculated via the RELL method (109), as well as the method of 

Shimodaira and Hasegawa (110) with a correction for multiple comparison. This measure is 

applied in order to assess the significance of the difference in significance of likelihood scores  

Tree number ML score pRELL 
394 -5748.017 0.081 
428 -5748.586 0.060 
488 -5748.733 0.056 
411 -5748.964 0.055 
979 -5749.016 0.123 
391 -5749.184 0.006 
536 -5749.236 0.051 
251 -5749.365 0.005 
443 -5749.399 0.044 
507 -5749.532 0.044 

Table 5: Top ten trees according to PAML 
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Fig. 15:  Maximum Likelihood tree of eleven representative sequences of ORs and V1Rs.  

 

of the tree topologies of the 1000 trees evaluated. Tree 394 (fig. 15) features the best 

likelihood value (-5748.017), and the second best pRELL (0.081). Since the sum of all 

pRELL values of these trees becomes 1, this is actually a high score. Furthermore, only 121 

tree topologies have a pRELL greater than zero. Out of these, 99 trees support the main 

feature of the V1Rs branching off earlier than ORs  and their scores add up to 0.945 pRELL 

or 95.8%. The top ten trees listed in table 5 also share this feature, additional file 8 shows 

their topologies in detail.  

 
The above phylogram can be regarded as the final result of this work. It presents 

evolutionary relationships between receptors of the main olfactory system and the 

vomeronasal system.  The new outgroup was chosen with some consideration, since it 

should be related to all other sequences without being to closely related or biased 

towards one of the two groups. STE2 is an evolutionary ancient receptor found in 

yeast, which clearly belongs to the GPCR superfamily (112), and according to 

INTERPRO (99) the STE2 receptor bears its own unique '7TM' signature, without 

obvious sequence similarity to other GPCR families. For all other chordate GPCRs it 

is a priori unclear whether they are ancestors or descendants of chemosensory 

receptors.  A protist GPCR however cannot be derived from chordate chemoreceptors,  
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Fig. 16: Radial tree representation of the ML tree with receptor groups marked in different colours (outgroup – 
red, ORS – yellow, V1Rs – blue) 
 
 
 
which makes it an acceptable outgroup of an early ancestor. Fig. 15 and 16 also reveal 

the way in which the two major groups, ORs and V1Rs are separated. Interestingly, 

the branch of the VRs diverges evolutionarily earlier, indicating the ancestral 

character of the vomeronasal system. Nevertheless, the exact ranking of sequences 

within the two major subtrees is of negligible importance to the meaning of this work.   

 

Discussion  
 
In this project I sought the answer to a scientific question, assessing and applying the 

best bioinformatic methods available today. This involved sequence retrieval from 

databanks, exploration and extraction of regions under positive selection from the 

sequence material, reduction of the number of sequences according to their similarity, 

multiple sequence alignment and maximum likelihood estimation to find the tree that 
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supports the data best. Since this work is based on sequence data and programs, and 

conducted solely on the computer, careful estimation and interpretation of the results 

at every step was of great importance. Embedded in a life science environment it is 

easier to identify wrong results than with calculations based upon models that 

represent nature always as an approximation. But methods of statistical evaluation 

were improved along with bioinformatics programs. Therefore, the answer to the 

question, which system of smell is the evolutionarily older one, can be provided with 

a certain amount of reliability.  

 
Initially, a basis of information was generated, and sequence data of both kinds of 

receptors (olfactory and vomeronasal) were retrieved from the databanks. Here, the 

quality criteria were the following: Pseudogenes and partial sequences were not 

considered, since they evolve at different rates due to the lack of selective pressure. 

Furthermore, only sequences were gathered, that have been annotated in previously 

published papers, to make sure the input sequence data is as reliable as possible. The 

source organisms were chosen as representatives of the chordates. Few genomes have 

been sequenced yet, and of those, e.g. frog, mouse, dog, the complete olfactory 

subgenome was taken into the further calculations, to maximize the spectrum of 

sequences.  

 
To avoid possible false interpretations of the phylogenetic reconstruction, this 

sequence data was carefully pre-processed.  Presenting the largest gene family in 

vertebrates, the sequences of olfactory receptors feature a lot of variation, in analogy 

of the multitude of ligands their receptors recognize. This variation is usually 

restricted to the locations of binding sites, since the selective pressure is greatest upon 

them. Therefore, it seemed advisable to exclude such regions under positive, 
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diversifying selection pressure from the alignment. Otherwise the resulting 

evolutionary tree would rather describe the evolution of smell detection, instead of the 

divergence of different receptor families. Here, a maximum likelihood approach 

(PAML) was used to identify sites within the sequences that underlie positive 

selection. To not completely rely on the program’s results, several other publications 

about the location of binding sites and regions under diversifying selective pressure 

were integrated to back up each other. Thus, several subsequences could be excised 

with relatively high confidence. When mapping these clusters of sites proposed to be 

under positive selection onto the secondary structure presentation of such a GPCR, it 

seems biologically plausible that these regions are likely to be involved in ligand 

interaction.  

 
Another step of preparing the dataset for the generation of an MSA was the reduction 

of the large number of sequences to feasible datasets suited for further calculations. 

To avoid the unnecessary loss of information, only sequences were discarded that 

revealed a certain level of similarity to others. Therefore, I wrote a program in PERL, 

to define the level of similarity and automatically exclude those sequences that are 

above this threshold. In the case of ORs, the level of sequence similarity is now <= 

40%, and among the V1Rs, <= 45%.  

 
The next challenge was the generation of a multiple sequence alignment. ORs and 

V1Rs are known to be very difficult to align, due to their rather distant relatedness. 

Furthermore, several different MSA programs of similarly good performance and 

reliability are available. Here, the top five MSA methods were applied, and the 

resulting MSAs compared using three different approaches. Their quality was 

assessed regarding the information content, the interconsistency, and the impression 
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of their sequence logos.  In spite of the fact that several different means of quality 

evaluation were applied, it turned out that four of the five MSAs were similarly good. 

Thus the alignment chosen for further calculations (by MUSCLE) lacks statistical 

support, even though it was assigned high scores. 

 
Finally, based upon this MSA, the phylogenetic tree was reconstructed. Here, 

Maximum likelihood estimations were applied, implemented in the programs 

MOLPHY and PAML. Presumably, this is the most accurate way to do so, regarding 

the drawbacks of distance based methods and the parsimony approach. For this task 

the sequences had to be reduced to a maximum of eleven, to keep the calculation 

feasible. MOLPHY evaluated all >34 million possible trees according to approximate 

likelihood, and PAML then evaluated the best 1000 trees among those, using 

maximum likelihood. Reason for the two programs to share the task is the fact that 

MOLPHY is the only program that performs an exhaustive tree search employing 

ML, and PAML, on the other hand, is better in evaluating the best trees, using more 

up-to-date substitution matrixes. Even though a best-scoring tree was proposed, the 

differences in ML scores among the top ten trees are very small, and the bootstrap 

values acceptable. Therefore, it is difficult to choose a single tree to be the optimal 

representation of the data. However, it is not necessary to define this best tree, since 

the highest scoring trees share the main feature: V1Rs branch off earlier than ORs 

from the common root, implying that vomeronasal receptors are actually older than 

receptors of the MOS. Thus, the details of the internal branches of subtrees are of 

minor importance to this general message, which many of the best trees have in 

common, providing sufficient statistical support.  
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This answer to my scientific question is to be seen within the context of the sequence 

data used, and the limitations of the programs applied. When looking for such weak 

evolutionary signals, one has to carefully evaluate, at what point the price for more 

sensitivity is too much loss of reliability. By applying and comparing several different 

programs at each step of this work, I tried to minimise this effect. Ultimately, this is 

about the best possible way to solve such problems today. 

Conclusion 
 
It should be mentioned that some researchers in different fields earlier also suggested 

reconsideration of this aspect of our understanding of evolution. The morphologist H. 

Eisthen, for example, argues for the idea of the MOS of teleost fishes to actually be 

more like a combination of an olfactory and vomeronasal system (100). To make a 

final judgement whether or not the VNO is older than the MOS, clearly goes beyond 

the scope of this project, which can only provide inspiration and support for this 

thesis. However, from the viewpoint of a bioinformatician, it certainly seems like the 

vomeronasal receptors evolved before those of the main olfactory system.  

Methods  
 
In the following the programs are listed that were employed using the standard 

parameter settings and/or were described sufficiently in the “results” section: 

 CLUSTALX version 8.3 (79) 

 MAFFT version 5 (75) 

 PRALINE (82) 

 PROBCONS (74) 

 TREEVIEW version 1.6.6  

 TREE PUZZLE version 5.1 (101) 
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 PHYLIP version 3.65  

 MOLPHY version 2.3 (102) 

 SAM version 3.2 (113) 

 TMHMM version 2.0 (72) 

 WEBLOGO (87)  

 

Detection of positive selection sites using PAML version 3.15 
 
To argue for positive selection, models of  

neutral evolution and purifying selection  

must be rejected, including to be  

significantly greater than 1 (104,105). 

The software package PAML by Z. Yang (106,107) offers many possibilities to assess 

such information and compare different models. A Markov process is used to describe 

substitutions between 61 non-stop codons. The PAML subprogram CODEML 

evaluates the relative fit of codon substitution models with actual data by likelihood 

ratio (LR) statistics, which are assumed to be 2 distributed with degrees of freedom 

equal to the difference in the number of parameters between models. LR tests for 

positive selection compare a model in which there is a class of sites with > 1  

against a model that does not allow for this class.  

The olfactory sequences employed to mark positions of positive selection belong to 

the genome of the zebrafish (Danio rerio), and present a subset of 10 sequences that 

cluster together with high bootstrap values. The representative sequences were 

derived from the data sets provided by Niimura & Nei. It may be assumed that regions 

dN/dS =  nonsynonymous/ silent substitution 

  

negative (purifying) selection 
neutral selection 
positive (diversifying) selection 
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exhibiting positive selection are similar among olfactory receptors, since those share a 

common tertiary structure and functional domains for ligand binding.  

The analysis was performed based upon several site-specific models in which 

selective pressure varies among different sites but the site-specificity is identical 

across all lineages: 

Model Descr iption 

M0 null model with a single  ratio among all sites 

M1 “nearly neutral” model, with two categories of site with fixed ratios of 0 and 1 

M2 “selection” model, with three categories of site, two with fixed ratios of 0 and 1, a third 
estimated ratio 

M3 “discrete” model, three categories of site with the  ratio free to vary for each site 

M7 “beta” model, eight categories of site, with eight ratios in the range of 0-1 taken from a 
discrete approximation of the beta distribution 

M8 “beta plus “ model, expanding model 7 by an additional category of site with an  ratio 
that is free to vary from 0 to greater than 1 

 

Table 6: Overview of models used in PAML 

PAML calculates the Maximum likelihood estimates for all parameters and the 

ratios that are free to vary under these models, as well as the proportion of sites 

with each ratio, as shown in table 7 (values in bold indicate positive selection.). Then 

an empirical Bayes approach is used to predict the most likely  class for each site, 

with the posterior probability providing a measure of reliability. 

 

Model Parameter estimates ln L Positively selected sites 

One ratio (M0)  -4035.79 None 

Nearly neutral (M1) 0.13    

p1 =  0.67   p2 = 0.33 

-3986.60 not allowed 

Selection (M2) 0.13   

5.69 

p1 =  0.67   p2 =  0.32 

p3 =  0.00 

-3986.24 1 site  

Discrete (M3) 0.05   0.40 -3984.79 33 sites 
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1.51 

p1 =  0.37   p2 =  0.48 

p3 =  0.14 

Beta (M7) p = 0.34  

q = 0.65 

-3988.08 not allowed 

Beta + ) p0 = 0.89    p =  0.72  

q =  1.89 

(p1= 0.12)  

 =  1.56 

-3984.95 16 sites 

 

Table 7: Maximum likelihood estimates of dN/dS ratios () using PAML: site-specific models over all 10 lineages 
Values in bold indicate positive Selection, that subsequently needs to be tested for significance using LR statistics 
(table 8). 
 

The likelihood ratio tests (LRT) listed in table 7 help determine whether particular 

models provide a significantly better fit to the data than other related models. They 

are compared to critical values of the Chi square distribution with the appropriate 

degrees of freedom (108). P values for sites potentially under positive selection were 

obtained using a Bayesian approach in PAML.  

LR- comparing the one-ratio model M1 

with the discrete model M3 is a test of 

variable selective pressures among 

sites.  

To specifically test for a portion of 

sites evolving by positive selection, LRTs are conducted to compare M1 with M2 and 

M7 with M8. Positive selection is indicated when a freely estimated  parameter is >1 

and the LRT is significant. Therefore, the model suggested by the data is M8, as to be 

seen in tables 7 and 8. 

Under this model, the following sites are estimated to significantly (P>0.95) be 

subject to positive selective pressure:  W46, N47, V154, V196 (using Dr3OR15.9 as 

Table 8 Likelihood ratio tests of models presented in table 6 

Models 
compared 

Likelihood ratio statistic: 
-2(L1-L2) 

P 
value 

df 

M1 versus 
M2 

0.71 0.70 2 

M1 versus 
M3 

3.61 0.46 4 

M7 versus 
M8 

6.26 0.04 2 
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reference). These results were derived using 10 closely related Danio rerio ORs as 

input. Examined in context with previous results,  it appears likely that W46 and N47, 

situated in the first TM helix, are false positives, possibly indirectly influenced by 

other positively selected amino acids. None of the many experimental studies ever 

considered this helix as part of the pocket. V154 and V196 are found in helix 5, which 

is certainly part of the binding site, according to most studies in this area.  

    A second run of PAML using more sequences (26) yielded no significant hits, 

indicating that further distance within the data introduces too much noise to draw 

reliable conclusions. It has to be pointed out though, that these results were derived by 

applying and comparing site-specific models only.  

Model 
type 

  Description 

Lineage 
specific 

 

variable on 
lineages, 

fixed on sites 

Adapive evolution during a certain time interval is found, but it 
detects positive selection for a lineage only if the average dN over all 
sites is higher than the average dS , thus it assumes that all sites were 
subject to identical selective pressure. 

Codon 

/site 
specific 

Variable on sites, 
fixed on lineages 

Detects positive selection at individual sites only if the average dN 
over all lineages is higher than the average dS, assuming constant 
selection pressure over time / along the tree. 

Branch-
site 

Sites & lineages useful if adaptive evolution occurred at a few time points and affected 
a few sites. 

 

Table 9: overview of model types implemented in PAML. 

 

In this case, the lineage-specific models are not very useful, since we expected the 

selective pressure to vary equally in all lineages. Therefore, the branch-site model 

does not seem reasonable in this case.  (111). 

The final decision, which subsequences to exclude from the alignment, was based on 

the combination of my results and those of the previous experimental and theoretical 

studies.  
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The multiple sequence alignment – MUSCLE version 3.6 

 
In summary, the following steps were carried out to derive an OR-V1R multiple 

sequence alignment: Annotated sequences from previous studies were collected and 

combined. Based upon their a priori multiple alignment (MUSCLE (76)) a percent 

identity matrix was generated (CLUSTALX), which in turn served as input for my 

self-written program FILTER. It allows to exclude sequences from the data set that 

exhibit more sequence similarity to another sequence, than a certain threshold. To 

retain equal numbers of OR and V1R sequences, OR-sequences are now no closer 

related than 45%, and V1Rs 40%.  After the “redundant” data was eliminated, the 

sequences left were realigned, and truncated according to the estimations of sites 

under positive selection (PAML). Deciding, which regions to exclude, was a rather 

complicated undertaking and is described separately. Finally, the prepared input data 

was aligned employing several different multiple alignment programs: CLUSTALX, 

MAFFT, MUSCLE, PRALINE and PROBCONS. The best alignment among their 

outcomes was chosen, based upon the three criteria information content (PAUP), inter 

consistency (MUMSA), and appearance of sequence logos.  

 

PAUP version 4.0  – skewness as measure of information content 

 

The word “skewness” addresses the shape of the frequency distribution of tree lengths 

a set (100000) of randomly generated trees evaluated for a given alignment. A 

biologically senseless multiple alignment holding no information would yield a 

perfect bell-shaped curve, more or less symmetrical. The presence of  information 

content, however, has a skewing effect upon that curve, as to be seen in figure 17: 

Fig. 17 (next page): tree length frequency distribution based upon the alignment by muscle. 100000 random trees 
generated and evaluated by PAUP (88) Version 4.0b10 for Macintosh. 
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3127.00000 /----------------------------------------------------------------------- 
3133.06000 | (1) 
3139.12000 | (2) 
3145.18000 | (0) 
3151.24000 | (0) 
3157.30000 | (0) 
3163.36000 | (1) 
3169.42000 | (0) 
3175.48000 | (1) 
3181.54000 | (0) 
3187.60000 | (0) 
3193.66000 | (0) 
3199.72000 | (1) 
3205.78000 | (6) 
3211.84000 | (0) 
3217.90000 | (3) 
3223.96000 | (4) 
3230.02000 | (5) 
3236.08000 | (4) 
3242.14000 | (11) 
3248.20000 | (5) 
3254.26000 | (16) 
3260.32000 | (14) 
3266.38000 | (11) 
3272.44000 | (8) 
3278.50000 | (19) 
3284.56000 | (18) 
3290.62000 |# (30) 
3296.68000 |# (31) 
3302.74000 |# (44) 
3308.80000 |# (43) 
3314.86000 |# (57) 
3320.92000 |# (65) 
3326.98000 |## (82) 
3333.04000 |## (126) 
3339.10000 |## (122) 
3345.16000 |## (127) 
3351.22000 |### (135) 
3357.28000 |### (174) 
3363.34000 |#### (202) 
3369.40000 |#### (231) 
3375.46000 |##### (237) 
3381.52000 |###### (302) 
3387.58000 |####### (365) 
3393.64000 |######## (401) 
3399.70000 |######## (419) 
3405.76000 |########## (498) 
3411.82000 |########### (576) 
3417.88000 |############# (650) 
3423.94000 |############## (742) 
3430.00000 |############### (802) 
3436.06000 |##################### (1074) 
3442.12000 |################### (1001) 
3448.18000 |##################### (1086) 
3454.24000 |######################## (1261) 
3460.30000 |########################### (1376) 
3466.36000 |############################## (1541) 
3472.42000 |################################ (1684) 
3478.48000 |#################################### (1864) 
3484.54000 |##################################### (1915) 
3490.60000 |######################################## (2070) 
3496.66000 |########################################### (2220) 
3502.72000 |############################################## (2369) 
3508.78000 |################################################# (2547) 
3514.84000 |################################################### (2619) 
3520.90000 |######################################################### (2952) 
3526.96000 |######################################################## (2904) 
3533.02000 |####################################################################### (3682) 
3539.08000 |################################################################ (3299) 
3545.14000 |################################################################# (3396) 
3551.20000 |################################################################## (3414) 
3557.26000 |##################################################################### (3599) 
3563.32000 |#################################################################### (3546) 
3569.38000 |################################################################### (3496) 
3575.44000 |###################################################################### (3609) 
3581.50000 |################################################################### (3492) 
3587.56000 |################################################################# (3389) 
3593.62000 |################################################################# (3383) 
3599.68000 |############################################################ (3105) 
3605.74000 |######################################################## (2906) 
3611.80000 |##################################################### (2740) 
3617.86000 |################################################# (2523) 
3623.92000 |############################################# (2332) 
3629.98000 |######################################## (2065) 
3636.04000 |########################################## (2158) 
3642.10000 |############################## (1533) 
3648.16000 |######################## (1258) 
3654.22000 |#################### (1045) 
3660.28000 |################ (828) 
3666.34000 |############# (659) 
3672.40000 |########## (511) 
3678.46000 |####### (347) 
3684.52000 |#### (230) 
3690.58000 |### (169) 
3696.64000 |## (89) 
3702.70000 |# (64) 
3708.76000 |# (35) 
3714.82000 | (16) 
3720.88000 | (5) 
3726.94000 | (1) 
3733.00000 | (2) 
           \----------------------------------------------------------------------- 
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Additional file 1 – filter .pdf 
Self-written program with comments. (Original perl file available from author upon 
request.)(PDF file) 
 
Additional file 2 – clustal_logo.pdf 
Sequence logo of MSA by CLUSTAL, excluding alignment regions that feature more 
than 20% gaps.(PDF file) 
 
Additional file 3 – mafft_logo.pdf 
Sequence logo of MSA by MAFFT, excluding alignment regions that feature more 
than 20% gaps.(PDF file) 
 
Additional file 4 – muscle_logo.pdf 
Sequence logo of MSA by MUSCLE, excluding alignment regions that feature more 
than 20% gaps.(PDF file) 
 
Additional file 5 – praline_logo.pdf 
Sequence logo of MSA by PRALINE, excluding alignment regions that feature more 
than 20% gaps.(PDF file) 
 
Additional file 6 – probcons_logo.pdf 
Sequence logo of MSA by PROBCONS, excluding alignment regions that feature 
more than 20% gaps.(PDF file) 
 
Additional file 7 – muscle_alignment.pdf 
Picture of multiple alignment by MUSCLE as seen in the editor ALNEDIT.  
(PDF file) 
 
Additional file 8 – trees.pdf 
Topologies of the top ten trees according to PAML estimations. 
(PDF file) 
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