Head First,

dJavascript
Programming

A Bra,i-Friendly Guide

\ ' A learner’s guide to
3 \ JavaScript programming

Watch out for
common JavasScript
traps and pitfalls

Launch your
programming
career in
one chapter §

Avoid
embarrassing |
typing conversion | .
mistakes

Bend your mind
around 120 puzzles ¥
& exercises

Learn why everything
your friends know about
functions & objects is
probably wrong

Eric Freeman & Elisabeth Robson

Head First JavaScript Programming Extra
by Elisabeth Robson

Copyright © 2014 Elisabeth Robson. All rights reserved.
All Head First elements, graphics, images and style copyright © O’Reilly Media, Inc.

No objects were harmed in the making of this eBook.

O’Reilly Ebooks—Your bookshelf on your devices!

PDF DAISY

When you buy an ebook through oreilly.com you get lifetime access to the book, and
whenever possible we provide it to you in five, DRM-free file formats—PDF, .epub,
Kindle-compatible .mobi, Android .apk, and DAISY —that you can use on the devices of
your choice. Our ebook files are fully searchable, and you can cut-and-paste and print
them. We also alert you when we’ve updated the files with corrections and additions.

Learn more at ebooks.oreilly.com

You can also purchase O’Reilly ebooks through the
iBookstore, the Android Marketplace, and Amazon.com.

Extra keeping track of this

. . *
this and function references

I try so hard to keep this
happy, but every now and
then, he just seems to change who he
is completely. I don't know what I'm
doing wrong...

Keeping track of this can be tricky. You're programming along,
everything’s going fine, and then, bam!; this doesn’t behave at all like you think it
should. You know this is supposed to be set to the object whose method you've
called, but sometimes... well, this just isn’t what you expect it to be. this is
especially mysterious when you're calling a method outside of its ordinary context (the
object it belongs to). We'll take a look at when that can happen, and ways to make

sure this is set to exactly the object you want it to be in these situations.

this is an extra

webville

Welcowme to Webville Lounge.

We've got a DJ that knows how to play sounds:

var dj = {
playsound: function() {
console.log("Playing ", this.sound);
},

sound: "bells"

The D\) has \')us{: one mc{’)\od,
?la\/sound, whith ?la\/s the sound
fhat's stoved in the sound property.

And we’ve got a controller that makes sure the DJ plays the
right sound at the right time:

var controller = {
start: function() {
setInterval (dj.playsound, 1000) ;
}

"t

The controller also has Jjust one method.
The start method uses setintevval 4o eall

the DJ's playsound method every second so
we 3:'(: a \rcPca‘{:ing sound.

extra: keeping track of this

Test drive the W and controller ===

Let’s take the Webville Lounge for a spin and see some D] action going on. Create a simple
HTML file, add some code to start the controller, and see your music come to life:

<html>
<head>
<title>Webville Lounge</title>

£— We've added the JavaSeript
to a basie HTML page.

<script>
var dj = {
playsound: function() {
console.log("Playing ", this.sound);
b,
sound: "bells"
};
var controller = {
start: function() {

setInterval (dj.playsound, 1000) ;

}s
window.onload = function() { €— And we added the ¢ode to

controller.start() ; 9et the controller started
}i onte the page loads.
</script>
</head>
<body></body>
</html>

Cancel the concert; we've got a problew... JovSorpl cono

Playing undefi
For some reason the playsound function isn’t playing the “bells” ¢ 1ned

sound (or rather, in our simplified version of a D], displaying Playing undefined
Playing undefined

“bells” in the console).

What went wrong??? Mo, it looks like the sound j Playing undefined

isn't defined when we call the Playing undefineq
?la\/muhd method.

you are here » 5

thinking about this

6

Sue, I think we need to take a
closer look at the code. Something's
definitely not quite right; for some
reason the sound property is undefined
when we call playsound.

But we know sound is
defined; its value is the string
"bells”. I'm wondering if perhaps
this isn't what we think it is when
setInterval calls playsound?

Sue

Mary: Hmm. We know the rule is that this is set to the object whose method we’re
calling, right? And we’re definitely calling the playsound method in the dj object.

Sue: If you look more closely at the code, we’re not actually calling dj .playsound
ourselves. The setInterval function is doing that for us. We’re just passing the
dj.playsound method to setInterval.

Mary: True. But shouldn’t the method call work in exactly the same way?

Sue: You’d think so, but I did some testing. I tried calling dj .playsound directly from
the window.onload function and it worked fine. So there’s something about the way
we’re passing the method to setInterval that’s causing it not to work.

window.onload = function() {
conrtrotter—start)—
: Playin
dj.playsound(); a&—— This works fine.. —7 ying bells

JavaScript console

};

Mary: Interesting. Okay, well I think we need to take a closer look at what happens
when we pass dj .playsound to setInterval. Clearly, we’re missing something...

Extra

extra: keeping track of

A closer look at the code...

Let’s take a closer look at the code to see what it’s doing, and maybe we can
figure out what went wrong in the playsound method. (Make sure you read
the flow of execution in the correct order, starting at 1.)

var dj = {
playsound: function() { e~ We know that the playsound

console.log("Playing ", this.sound); method is getting called (because

b, we see “Playing...” over and over,
sound: "bells" but this.sound is undefined.
}i
var controller = {
start: function() { L— @ The start method calls setinterval,
setInterval (dj.playsound, 1000); passing a reference to the method
} dj.playsound and a time interval, so
. dj.playsound will be called again

and again every 1 second.
window.onload = function() {
controller.start() ; —0 @ The first thing that happens after the
}; page is loaded is we call the start
method in the controller object.

This all seems straightforward. But look again at step 2: what, exactly, are we a— Chetk out Head First
passing to setInterval when we pass dj .playsound? If you remember how JavaSc\rich PYOsv'ammin
setInterval (and setTimeout) work, you’ll know that what we’re passing is Pages 192193, page 409,
a reference to a function. But, what exactly is that reference in our case? all of Chapter 10 if you

need a retresher.

- @?RA“«
TAWEWR

Before turning the page, think about what dj.playsound is. Remember that in
JavaScript, functions are objects. So we’re actually passing a reference to an
object—an object that happens to be a function. When setinterval calls that
function, how will setinterval know that the function it's calling is actually a
method in the dj object?

function references

Function references

First, let’s take a look at what the dj object contains. The dj object
has two properties: the playsound property is set to a method, and

the sound property is set to a string: function()

console.log("Playing "

this.sound) ;

var dj = {

playsound: function() {

%

[

console.log("Playing ", this.sound); —
playsound
v, p(/ The playsound property
N tontains an obieet vef: :
. perien \¢ . eterente: a
sound: "bells e pointer to a f)

unétion objc{,{:.

i The sound vrove\r{z)
‘ tontains 3 skring, bells .

sound </

When we pass dj .playsound to setInterval, like this:
setInterval (dj.playsound, 1000);

what we’re passing is what the playsound variable references,
which is a function object:

; . 1 \a\,sovmd-
2 ‘ e— This is the value of dy¥
o NN _:—Jc';s f;e Lhing that gets passed
_ this.sound); ; {o sc‘t‘h‘tﬁvva\'

Now, imagine that the implementation of setInterval looks

something like this: / Obviously, we don’t know exactly

how setlnterval is implemented
because it's internal to the
browser’s JavaSeript engine, but we
do know that at some point it ealls
the ‘Func{:ion You pass in.

function setInterval (theFunction, milliseconds) {
// after milliseconds has passed, call theFunction:
theFunction() ;

}

So, what is setInterval calling? It’s calling playsound, but without the dj object.

8 Extra

extra: keeping track of this

The value that gets assigned 4o theFunetion
parameter of setinterval (in our imagined
implementation) is the value that’s stoved in
the dj's playsound property.

function() {
console.log ("Playing "
this.sound) ; 3

function setInterval (theFunction, milliseconds) {
// after milliseconds has passed, call theFunction:
theFunction() ;

Co when setinterval calls theFunction heve...

it's almost c%ad’.l‘l like if we called H\c ‘(:uhc{‘,i:n’—ﬁ
"‘;la\/sow\d without the d) ob\')cc{:, like this:

Ah! Now I see the problem. setInterval
is calling the method like a function. And

because we're calling playsound as a function
instead of as a method, this doesn't get set

to the dj object. For a vefresher on how this

heck
ks in method ealls, ¢k
\::L ;\c‘;d Fiest JavaSevipt

% . _205
ZE Programming, Pages 2042
- You’ve got it.

Usually, when we call a method of an object, we call it like this:
dj.playsound() ;

When we call playsound as a method of the dj object, then this is correctly set
to the dj object in the body of the playsound method, so everything works fine.

But here, setInterval is getting passed the right method, but isn’t calling that
method as a method; instead setInterval is calling it as a function, just as if you
tried to call playsound like this:

playsound() ;
Without the “dj.” in front of the call to playsound, there’s no object to set this to.

So, what is this set to when setInterval calls playsound, if it’s not set to the
dj object? Good question. Let’s find out...

you are here » 9

figuring out what this is

What is this when setlnterval calls the function?

We know that when setInterval calls the function we pass it, it’s calling a function
that looks like this: This is what the ylaysound method looks .
T~ like onte it gets passed 4o setinterval. This

happens behind the stenes of tourse, betause
console.log("Playing ", this.sound) - cay\’{; e nside ScHn&wa‘.

function() {

}

And because setInterval is calling the function without the dj object (in other
words, setInterval is calling the function as a function, not as a method), the this
in the body of playsound doesn’t get set to the dj object.

So what 1s this set to in playsound? Is it undefined? Or set to something
else? We can find out by adding a line of code to display the value of this when
playsound is called:

playsound: function() {

console.log (" (playsound) This is: ", this);

~ We've adding this line of eode so we
G tan see what this is set £o when the
} Lunction is ealled by setinterval.

console.log("Playing ", this.sound);

Go ahead and add this line to your code and let’s see what the value of this is
in the playsound method when it’s called by setInterval.

A quick test drive... s==9

Now, when we run the code, we can see that this in the playsound

JavaScript console

method is set to the window object. window is the default value for this (Playsound) This is;

in your code. Because setInterval is calling playsound as a function Window {top: Window,
rather than as a method of the dj object, the value of this isn’t changed window: Window, location:
from the window object to another object (like it is when you call a method Location, externa]:

of an object). Object, chrome: Object. }

So now the question is: how do we make sure that setInterval calls
playsound as a method of the dj object instead of as a function?

_ @%harpen your pencil
& function testThis() {

To see that this is set to the window object in a console.log("This is: ", this);
regular function call, try running this code in the }

console (you can just copy and paste the code into
your browser console):

testThis () ;

10 Extra

extra: keeping track of this

Making sure this gets set correctly when the
playsound method is called by setlnterval

There are a couple of different ways we can make sure that this is set to the correct
object when playsound is called by setInterval. We’ll step through both.

The first is straightforward. We know that the easiest way to get this set to the correct
object is to call playsound as a method of dj. So, what if we pass a simple anonymous
function to setInterval that does exactly that? Let’s see how that might work.

First, we’ll change the call to setInterval like this:

Don"‘: ‘Forgc{: ‘l:o add O aPccr
setInterval (function() { dj.playsound(); }, 1000); dj.playsound! We rca”\/ do vant

to ¢call the method £his time.

Now when we call setInterval, we pass the anonymous function, which
setInterval calls every 1 second:

= The value that 5c{:s assigned to theFunetion

parameter of setinterval (in our imagined
im?ltmcn{:a":ion) is the anonymous fund‘l:ion
that ealls dj-playsound.

~ function () {

dj.playsound () ;

function setInterval (theFunction, milliseconds) {
// after milliseconds has passed, call theFunction:

theFunction () ;

N,} playsound: function() {

console.log("Playing ", sound) ;
}

function 0O {

When setinterval calls theFunttion,
it's calling the anonymous unttion
we passed in, whith then ealls
d\').vla\/sound, like this:

dj.playsound() ;

it

- playsound: function() :

When the anonymous function (named theFunction inside setInterval W e
in our imaginary implementation) is called, then the dj . playsound method

1s called. But now, instead of being called as a function, playsound is being
called as a method of the dj object. So the dj object 1s assigned as the value

of this in the body of playsound, just like it would be when you normally dj
call a method of an object.

you are here » 11

test drive

Test drive the new controller code ====

Let’s give the code a try and see if it fixes our music controller.
Make sure you’ve made the updates to the code, like this:

var dj = {

We've vemoved the extra tonsole.log line

/ that we wevre using o display
of this; guess we've pretty ton

new tode will work!

{:ian{: the

playsound: function() {

console.log("Playing ", this.sound);

},

sound: "bells"
}i And we've updated the call to setlnterval +o pass
var controller = { f the anonymous function as the Fivst argument.

start: function() {

setInterval (function() { dj.playsound(); }, 1000);

}

b Don't forgc‘l: the 0.

window.onload = function () {

controller.start();

};

And, when you load the page, you should see your DJ object working
just like it should, displaying the “bells” sound every 1 second.

t}lel‘e are no °
Dumb Questions

Q,: There’s really no way for setinterval
to figure out that playsound is a method
of the dj object? It seems like setnterval
ought to be able to figure that out from
the name “dj.playsound”.

- No, setinterval really can't figure that
out. To setinterval, playsound looks like
just a regular function that's disconnected
from any particular object. There’s nothing
in the function object that says “l belong to
the dj object”. The fact that we use “dj.” in

“dj.playsound” when we pass the function
doesn’t mean the function object has any
information about the dj object in it.

12 Extra

Q; Remind me how to stop the interval
timer?

A: For now, just close the browser
window to stop the code running. Remember
that setInterval returns a timer object you
can save in a variable. To stop the timer, you
can pass it to the clearInterval function. We'll
improve the controller code to add a stop
method that does this shortly.

JavaScript console

Playing bells
Playing bells
Playing bells
Playing bells
Playing bells

extra: keeping track of this

Using bind to set the value of this

Another way to make sure that this has the correct value when playsound is called from

setInterval is to set the value yourself using bind. bind is a method you can use on any

function. You pass bind an object that you want to use as this in the body of that function.

o Fora vefresher

Now, if you've read Head First favaScript Programming, you might think that sounds a bit like I vead
on Lall, rea

the call method. But there’s an important difference. With call, we specify the object to

use for this in the function we’re calling, and that function gets called right away. C.hay{:" I3 in Head
Fiest JavaSevipt
With bind, the function doesn’t get called; instead, a new function is returned. The new P\rogramming.

function is exactly like the original one, except that the value of this in the new function
is bound (set) to the object you specified in bind. Let’s take a look at an example to compare
call and bind.

Let’s modify the example from page 10, testThis, to use call, like this:

function testThis() {

console.log("This is: ", this);
} v We've added a variable dog, that is
var dog = { an ob‘jec{: with one Pro\?cv'{:\/ name.

e £y that we want to use

; We tan speti w e |

Be) L/\ {-)fe dzg \;b\')cc\{: as the value Lor this in JESeplconsol
testThis.call (dog) ; the body of testThis by using eall, and This ia.

passing the dog objett.

This ealls testThis vight away, and we see
dolg in he console as the value of this.

Object {name: "Fidon}

ZRcmmbcwr, if we don't sycti«c\/ a
value for this in test This, the value
defaults 4o the window ob\)e(:{:.

Now, change the code to use bind instead:

function testThis () {

console.log("This is: ", this);

}
var dog = { Now we've using the bind method, and
name: "Fido" Passing dog. testThis doesn’t get called JavaScri
g at this point; instead bind veturns a new) (B s
g{‘cum‘:{:ion with £his bound o dog. This is: Object {name: "Fidor)
var newFunction = testThis.bind(dog) ;
newFunction () ; . to
T To tall testThis, we now have ZM)/hcn we eall newFuneti
call the Lunetion that was veturned ge £ the same Yc:ulzhas ':;; v\:c

£rom bind, newFunttion.

you are here » 13

using bind

14

How does that help us? In our setInterval
example, we don't want to call the function;
we want to pass it to setInterval.

That’s exactly why we’re going to use bind.

You're right; we don’t want to call dj .playsound; we want
setInterval to do that. But we want setInterval to call playsound
with the dj object assigned to this. In other words, we want to pass
setInterval a function in which this is bound to the dj object.

We can create a new function that is exactly like playsound with this
bound to the dj object like this:

dj.playsound.bind(dj)

We’re calling bind on the dj . playsound method, and passing the dj
object to bind to this. It looks a bit weird, but that’s exactly what we
need to pass to setInterval:

var newPlaysound = dj.playsound.bind(dj) ;
setInterval (newPlaysound, 1000) ;

Now what we’re passing to setInterval is a reference to a function in
which this is bound to to the dj object:

L= But this in the

The funetion we pass bOdY of the
to setintevval is :)“5{3 'Func{:ion is bound
like Ylaysou\nd. _— dj to the d\) Ob‘)cc{;.

function setInterval (theFunction, milliseconds) {

// after milliseconds has passed, call theFunction:

theFuncti ;
eFunction () S~ So when setlnterval ealls

the function, i
ine because this is bound € tunttion, it works

}
to the torreet object.

Extra

extra: keeping track of this

Test drive the controller with bind ===

Once again, update your code and reload the page and let’s see if
our new solution using bind works:

var dj = {
playsound: function() {

console.log("Playing ", this.sound);

},
sound: "bells"
}; i lines
s /_\ Notice, we've Combmtfi g\c :c;w;\l|
start: function() { ke YYCV.‘WS Yage‘c‘l\nc (Lmd -
setInterval (dj.playsound.bind(dj), 1000) ; passing the vesult 0 hebr
| call diveetly inko setinterval:
};

window.onload = function () {

controller.start();

};

And our new code works perfectly: we see the “Playing bells”

message in the console, which means this is correctly bound to /7
the dj object when playsound is called from setInterval.

therejare no
b Questions

Q: | remember from Head First
JavaScript Programming that we could
pass arguments to the function we were
calling with the call method. Can we pass
arguments along with bind?

A: Yes, you can. Just as with call, any
additional arguments you pass to bind are
passed as arguments to the function when
it's called. So if you changed the playsound
method to take one argument, say the volume
to play the sound, you'd use bind like this:
dj.playsound.bind (dj, "loudly")
When setlnterval calls playsound, it will pass
“loudly” along as an argument.

Q: Which solution is better: using an
anonymous function to wrap a call to
dj.playsound, or using bind?

A: Neither is better, and in this situation,
they do exactly the same thing: allow you

to bind the dj object to this in the body of
playsound. In both solutions, you're creating a
new function.

In some situations, you'll find one of these
solutions is more suited than the other, but in
this case, either one works fine.

JavaScript console

Playing bells
Playing bells
Playing bells
Playing bells
Playing bells

you are here » 15

improving webville lounge

Adding start and stop buttons to Webville Lounge

At this point, youre probably sick of having to close the browser window to get your DJ
to stop playing the bells, so let’s add both a start and stop button to the page so you have
more control. The start button will call controller.start to start the music, and we’ll
add a new stop method to the controller that the stop button will call to stop the music.

Begin by updating your HTML to add the two buttons, start and stop:

<html>
<head>
<title>Webville Lounge</title>
<script>
// JavaScript code here...

</script>
</head>
<body>

<button id="start">start</button>

<button id="stop">stop</button> ’f You need a vefresher on sc‘(:‘l:ing up
</body> l‘;"zk handlers for form elements like
</html> wEtons thetk out pages 356359 i,

Head First JavaSeripf Programming.

Next, we’ll add code to the window.onload handler to add click handlers to both buttons. é/
We’ll also remove the code to call controller.start from window.onload, because
now we’ll call this method when we click on the start button.

We've getting the button

window.onload = function() { element ob\)a{,s from
controtier—startt— the DOM using their ,
ids, “start” and “stop
vespectively.

var startButton = document.getElementById("start") ;

startButton.onclick = controller.start;

Nog:‘,c that we've using methods
' in the controller 3 i
stopButton.onclick = controller.stop; handlers! This is Qﬁ:ﬁ; i"":r
. betause as long as what we've

| | N > 3ssi9ning to the onclick proper-ty of
This might seem weird, but it's veall {hc. same thing asl.d‘iqcmmg :{-Cwl\ii{':owhc the button is 3 func{;ionPrcEcrc;/c:,
at the top level and assigning that funetion to the ontlick property, the button il call that function

do on page 359 of Head First JavaSeript Programming; In both cases, Weve e, vou click on the bubba

assigning) Lunction \rc£crcncc {o the ontlick Pro\?cr‘{:yﬁ a Lunction 1o eall

when the tlick event otturs.

var stopButton = document.getElementById("stop") ;

16 Extra

extra: keeping track of this

Finally, we need to modify the controller a bit. We’ll add a new property, timer, that will store
the timer we create in the start method; modify the start method so we save the interval
timer we’re creating; and add a new method, stop, that will clear the interval timer:

var controller = { save the timer, and use it

ty to
T < V‘ch jcifcat\;:o{\::v:cz tveated in the start method:

start: function() {

this.timer = setInterval (dj.playsound.bind(dj), 1000) ;
b,
stop: function() {

clearInterval (this.timer); "™ To slop the timer, we simply pas

. ’ s
: it to the tlearinterval funetion.
}i

Okay, that should do it! Let’s reload the page and...

Wait just a moment. I
think we're going to have
exactly the same problem we
had before, aren't we?

Great catch; yes we are.

/ ﬁ * We've got a different situation, but the problem is basically the same. We’re
referencing a method in an object, and storing that function in the onclick

property of a button:
startButton.onclick = controller.start;
| unction() {
) What gets assigned to the ontliek property is 3 g

Lunetion veferente o the start Lunction. Just setInterval(...

like before, the start Lunetion has no i:«-@o\rméﬁon
albou‘{: the controller ob\')c(:{: in whith it’s defined. j

When you click on the button, and the click handler function is called, it’ll be
called as a function, not as a method.

Once again, we’re losing the correct binding for this in the body of our
method; this time, in the method we’re calling as the click handler—that is, in
our start method (and likewise for the stop method).

you are here »

17

click handlers and this

@ The click handler problem up close

@ First, we get a reference to the controller.start method:

startButton.onclick = controller.start;

unction() {

this.timer =
, setInterval(...)
c—

start

Then, we assign that reference to the onclick property of
the start button object:

startButton.onclick = controller.start;

unction (6): 21

startButton { this.timer =
setInterval(...

onclick:

@ You click on the start button, which causes the button to
call the function referenced in its onclick property:

« click > / function() {

o @% timer = setInterval (dj .playsound.bind(dj) , 1000) ;
} 14

\/ this is not bound o the

Thg sta.rt method is callgd asa function, so the coptroller D onbeoller ob3c6£~~- but what is it
object is not bound to this in the body of the function. " bourd to? The window ob\')CC{Z?

18 Extra

extra: keeping track of this

What is the valuve of this in a click handler?

We’re pretty darn sure that this will not be bound to the controller object in
the start function when you click the button. But what is this bound to in this
case? Is it the window object like before (since window is the default value for this),
or is it something else? Let’s do a litle more testing to find out.

Temporarily change your code to set the startButton’s onclick property to a
function that simply displays the value of this in the console, like this:

window.onload = function() {

var startButton = document.getElementById("start");

\ All we've done is {cm\?oraril\/ vemove the
line £hat sets the elick handler property

of the button to the controller.start
console.log (" (startButton) This: ", this); thod, and - ckead, we've sc{:{:ing & 4o

. an anonymous Lunetion that dis\?\a\/s the
value of this in the tonsole.

startButton.onclick = function() {

var stopButton = document.getElementById("stop")
stopButton.onclick = controller.stop;

}s

Make sure you’ve updated your code (including adding the stop method to the
controller like we showed a couple of pages ago). Reload the page and take a look
at the output in the console:

Heve's what we see in the tonsole (Ch\rome).‘zﬂ JavaScript console

(startButton) This:

Interesting! It looks like the default value for this in the
startButton’s click handler is the startButton object (note <button id="gtay
that Chrome displays this object using HI'ML, rather than
JavaScript).

t">start</buttons

That’s actually the case for all DOM click handlers. That is, the

default value for this in any click handler is the object whose click handler you
called. In other words, it works just like a regular method call. You’ve called the
button’s onclick method, so the value of this in that method is bound to the
button object.

Before you turn the page to see our solution, try to fix the code using one of the
solutions we used before so that this is bound to the controller object in the start

ExeacisQ function when you click the button.

you are here » 19

final test drive

Fixing the start and stop buttons st===

While it’s often handy to have this refer to the object you clicked in the click
handler function, in this particular case, we really want this to refer to the
controller object in both the start and stop methods. We can fix the code in a
couple of different ways, just as you saw before. We can either wrap the calls to the
respective methods in anonymous functions, or we can use bind. We’re going to go
with using anonymous functions this time (since we used bind before). Again, in this
case, it doesn’t matter which solution you choose as both accomplish the same thing:
they both set this to the controller object in the start and stop methods.

window.onload = function() {

var startButton = document.getElementById("start");
startButton.onclick = function() {

controller.start() ; Don'{: £°r56£ the 0.

~—

b e

var stopButton = document.getElementById("stop")
stopButton.onclick = function() {
controller.stop() ;
}i
}i

The controller code doesn’t change (from page 17). Make these changes, reload
the page and give the buttons a try!

Now, when you elick on JavaSCfipt console

wdick” ,
the start button, You Il Playing bells

laying every |
see bells playing every Playing bells
setond..-
Playing bells

Playing b

. > g bells
ick? ~

« C\ y— --and when you elick stop, Playing bells

\,ou’ll see the bells stop
playing. Sueeess!! N

JavaScript console

might see the vesults displayed (5) Playing bel]
like this instead. This J'ust "/_> S
means “\rc?ca{: +his line 5 times.

Depending on Your browser, you

20 Extra

extra: keeping track of

Well done!

Not only have you solved the mystery of what happens to this in two
situations: passing a method to setInterval (and setTimeout too!) and using
amethod as a click handler function; you’ve also learned how to use bind.

That’s a lot for one project, so sit back, relax, put on some good music and give
yourself a good pat on the back.

Thanks for helping
us out! Webville Lounge
couldn't have had the concert
without you...

21

the for

The complete code

Below you’ll find the complete code for our solution. You can also find it online at
https://github.com/bethrobson/Head-First-JavaScript-Programming/ tree/master/ extras
in the file timer.html, and a link to the project at http://wickedlysmart.com.

<html>

<head>

<title>Webville Lounge</title>

<script>

var dj = {
playsound: function() {

console.log("Playing ", this.sound);

}I

sound: "bells"

var controller = {
timer: null,
start: function() {
this.timer = setInterval(dj.playsound.bind(dj), 1000) ;
b,
stop: function() {
clearInterval (this. timer) ;

};

window.onload = function() {
var startButton = document.getElementById("start");
startButton.onclick = function() {
controller.start() ;
}i
var stopButton = document.getElementById("stop")
stopButton.onclick = function() {
controller.stop() ;
}i
}i

</script>
</head>
<body>
<button id="start">start</button>
<button id="stop">stop</button>
</body>
</html>

22

https://github.com/bethrobson/Head-First-JavaScript-Programming/tree/master/extras
http://wickedlysmart.com

extra: keeping track of

You mean we're done? Aren't you

going to show us how to play a real
sound when we click start? That would
be much more exciting...

We agree!

But that’s a whole ‘nother project. Stay tuned at
wickedlysmart.com for more music... coming soon.

In the meantime, practice keeping track of this by
working through the projects in Head First favaScript
Programming again and make sure you know what
this is bound to in all those examples.

Or invent a few examples of your own! Let us know
what you discover.

23

http://wickedlysmart.com

O’REILLY

Want to read more?

You can buy Head First JavaScript Programming
at oreilly.com in print and ebook format.

Buy 2 books, get the 3rd FREE!
Use discount code: OPC10

All orders over $29.95 qualify for free shipping within the US.

It's also avalable at your favorite book retailer,
including the iBookstore, the Android Marketplace,
and Amazon.com.

Spreading the knowledge of innovators oreilly.com

24

Extra

http://oreil.ly/1mvCjfE
http://amzn.to/1nBlul0

