
Elisabeth Robson & Eric Freeman

Launch your
programming

career in
one chapter

A learner’s guide to
JavaScript programming

Avoid
embarrassing

typing conversion
mistakes

Learn why everything
your friends know about

functions & objects is
probably wrong

Watch out for
common JavaScript

traps and pitfalls

Head First

Bend your mind
around 120 puzzles

& exercises

JavaScript
Programming

Eric Freeman & Elisabeth Robson

A Brain-Friendly Guide

ExtraExtra

Head First JavaScript Programming Extra

by Elisabeth Robson

Copyright © 2014 Elisabeth Robson. All rights reserved.

All Head First elements, graphics, images and style copyright © O’Reilly Media, Inc.

No objects were harmed in the making of this eBook.

this is an extra   3

this and function references

Extra keeping track of this

I try so hard to keep this
happy, but every now and

then, he just seems to change who he
is completely. I don’t know what I’m

doing wrong...

Keeping track of this can be tricky. You’re programming along,

everything’s going fine, and then, bam!; this doesn’t behave at all like you think it

should. You know this is supposed to be set to the object whose method you’ve

called, but sometimes... well, this just isn’t what you expect it to be. this is

especially mysterious when you’re calling a method outside of its ordinary context (the

object it belongs to). We’ll take a look at when that can happen, and ways to make

sure this is set to exactly the object you want it to be in these situations.

4   Extra

webville lounge

var dj = {

 playsound: function() {

 console.log("Playing ", this.sound);

 },

 sound: "bells"

};

var controller = {

 start: function() {

 setInterval(dj.playsound, 1000);

 }

};

Welcome to Webville Lounge.
We’ve got a DJ that knows how to play sounds:

And we’ve got a controller that makes sure the DJ plays the
right sound at the right time:

The DJ has just one method,
playsound, which plays the sound
that’s stored in the sound property.

The controller also has just one method. The start method uses setInterval to call the DJ’s playsound method every second so we get a repeating sound.

you are here 4   5

extra: keeping track of this

Test drive the DJ and controller
Let’s take the Webville Lounge for a spin and see some DJ action going on. Create a simple
HTML file, add some code to start the controller, and see your music come to life:

JavaScript console
Playing undefined
Playing undefined
Playing undefined
Playing undefined
Playing undefined

<html>

<head>

<title>Webville Lounge</title>

<script>

var dj = {

 playsound: function() {

 console.log("Playing ", this.sound);

 },

 sound: "bells"

};

var controller = {

 start: function() {

 setInterval(dj.playsound, 1000);

 }

};

window.onload = function() {

 controller.start();

};

</script>

</head>

<body></body>

</html>

We’ve added the JavaScript
to a basic HTML page.

And we added the code to get the controller started once the page loads.

Cancel the concert; we’ve got a problem...
For some reason the playsound function isn’t playing the “bells”
sound (or rather, in our simplified version of a DJ, displaying

“bells” in the console).

What went wrong??? Hmm, it looks like the sound
isn’t defined when we call the
playsound method.

6   Extra

thinking about this

Sue, I think we need to take a
closer look at the code. Something’s
definitely not quite right; for some

reason the sound property is undefined
when we call playsound.

But we know sound is
defined; its value is the string

“bells”. I’m wondering if perhaps
this isn’t what we think it is when

setInterval calls playsound?

Mary: Hmm. We know the rule is that this is set to the object whose method we’re
calling, right? And we’re definitely calling the playsound method in the dj object.

Sue: If you look more closely at the code, we’re not actually calling dj.playsound
ourselves. The setInterval function is doing that for us. We’re just passing the
dj.playsound method to setInterval.

Mary: True. But shouldn’t the method call work in exactly the same way?

Sue: You’d think so, but I did some testing. I tried calling dj.playsound directly from
the window.onload function and it worked fine. So there’s something about the way
we’re passing the method to setInterval that’s causing it not to work.

Mary: Interesting. Okay, well I think we need to take a closer look at what happens
when we pass dj.playsound to setInterval. Clearly, we’re missing something...

Mary

Sue

window.onload = function() {

 controller.start();

 dj.playsound();

};

This works fine...

JavaScript console
Playing bells

you are here 4   7

extra: keeping track of this

var dj = {

 playsound: function() {

 console.log("Playing ", this.sound);

 },

 sound: "bells"

};

var controller = {

 start: function() {

 setInterval(dj.playsound, 1000);

 }

};

window.onload = function() {

 controller.start();

};

A closer look at the code...
Let’s take a closer look at the code to see what it’s doing, and maybe we can
figure out what went wrong in the playsound method. (Make sure you read
the flow of execution in the correct order, starting at 1.)

1 The first thing that happens after the
page is loaded is we call the start
method in the controller object.

2 The start method calls setInterval,
passing a reference to the method
dj.playsound and a time interval, so
dj.playsound will be called again
and again every 1 second.

3 We know that the playsound
method is getting called (because
we see “Playing...” over and over,
but this.sound is undefined.

This all seems straightforward. But look again at step 2: what, exactly, are we
passing to setInterval when we pass dj.playsound? If you remember how
setInterval (and setTimeout) work, you’ll know that what we’re passing is
a reference to a function. But, what exactly is that reference in our case?

Check out Head First
JavaScript Programming
pages 192-193, page 409, all of Chapter 10 if you need a refresher.

Before turning the page, think about what dj.playsound is. Remember that in
JavaScript, functions are objects. So we’re actually passing a reference to an
object—an object that happens to be a function. When setInterval calls that
function, how will setInterval know that the function it's calling is actually a
method in the dj object?

8   Extra

function references

function() {

 console.log("Playing ",

 this.sound);

}

When we pass dj.playsound to setInterval, like this:

what we’re passing is what the playsound variable references,
which is a function object:

playsound

var dj = {

 playsound: function() {

 console.log("Playing ", this.sound);

 },

 sound: "bells"

};

Function references
First, let’s take a look at what the dj object contains. The dj object
has two properties: the playsound property is set to a method, and
the sound property is set to a string:

sound

“bells”

function() {

 console.log("Playing ",

 this.sound);

}

The playsound property
contains an object reference: a pointer to a function object.

The sound property
contains a string, “bells”.

setInterval(dj.playsound, 1000);

Now, imagine that the implementation of setInterval looks
something like this:

This is the value of dj.playso
und.

It’s the thing that gets pa
ssed

to setInterval.

function setInterval(theFunction, milliseconds) {

 // after milliseconds has passed, call theFunction:

 theFunction();

}

So, what is setInterval calling? It’s calling playsound, but without the dj object.

Obviously, we don’t know exactly how setInterval is implemented because it’s internal to the browser’s JavaScript engine, but we do know that at some point it calls the function you pass in.

you are here 4   9

extra: keeping track of this

Ah! Now I see the problem. setInterval
is calling the method like a function. And
because we’re calling playsound as a function
instead of as a method, this doesn’t get set

to the dj object.

function setInterval(theFunction, milliseconds) {

 // after milliseconds has passed, call theFunction:

 theFunction();

}

function() {

 console.log("Playing ",

 this.sound);

}

The value that gets assigned to theFunction parameter of setInterval (in our imagined implementation) is the value that’s stored in the dj’s playsound property.

playsound();

So when setInterval calls theFunction here...

... it’s almost exactly like if we called the function

playsound without the dj object, like this:

You’ve got it.

Usually, when we call a method of an object, we call it like this:

 dj.playsound();

When we call playsound as a method of the dj object, then this is correctly set
to the dj object in the body of the playsound method, so everything works fine.

But here, setInterval is getting passed the right method, but isn’t calling that
method as a method; instead setInterval is calling it as a function, just as if you
tried to call playsound like this:

 playsound();

Without the “dj.” in front of the call to playsound, there’s no object to set this to.

So, what is this set to when setInterval calls playsound, if it’s not set to the
dj object? Good question. Let’s find out...

For a refresher on how this
works in method calls, check
out Head First JavaScript
Programming, pages 204-205.

10   Extra

figuring out what this is

function() {

 console.log("Playing ", this.sound);

}

What is this when setInterval calls the function?
We know that when setInterval calls the function we pass it, it’s calling a function
that looks like this:

And because setInterval is calling the function without the dj object (in other
words, setInterval is calling the function as a function, not as a method), the this
in the body of playsound doesn’t get set to the dj object.

So what is this set to in playsound? Is it undefined? Or set to something
else? We can find out by adding a line of code to display the value of this when
playsound is called:

playsound: function() {

 console.log("(playsound) This is: ", this);

 console.log("Playing ", this.sound);

}

This is what the playsound method looks
like once it gets passed to setInterval. This
happens behind the scenes of course, because
we can’t see inside setInterval.

A quick test drive...

Go ahead and add this line to your code and let’s see what the value of this is
in the playsound method when it’s called by setInterval.

We’re adding this line of code so we can see what this is set to when the function is called by setInterval.

JavaScript console
(playsound) This is:
Window {top: Window,
window: Window, location: Location, external:
Object, chrome: Object…}

Now, when we run the code, we can see that this in the playsound
method is set to the window object. window is the default value for this
in your code. Because setInterval is calling playsound as a function
rather than as a method of the dj object, the value of this isn’t changed
from the window object to another object (like it is when you call a method
of an object).

So now the question is: how do we make sure that setInterval calls
playsound as a method of the dj object instead of as a function?

To see that this is set to the window object in a
regular function call, try running this code in the
console (you can just copy and paste the code into
your browser console):

function testThis() {
 console.log("This is: ", this);
}
testThis();

you are here 4   11

extra: keeping track of this

setInterval(function() { dj.playsound(); }, 1000);

Making sure this gets set correctly when the
playsound method is called by setInterval
There are a couple of different ways we can make sure that this is set to the correct
object when playsound is called by setInterval. We’ll step through both.

The first is straightforward. We know that the easiest way to get this set to the correct
object is to call playsound as a method of dj. So, what if we pass a simple anonymous
function to setInterval that does exactly that? Let’s see how that might work.

First, we’ll change the call to setInterval like this:

function() {

 dj.playsound();

}

function setInterval(theFunction, milliseconds) {

 // after milliseconds has passed, call theFunction:

 theFunction();

}

The value that gets assigned to theFunction parameter of setInterval (in our imagined implementation) is the anonymous function that calls dj.playsound.

Now when we call setInterval, we pass the anonymous function, which
setInterval calls every 1 second:

function() {
 dj.playsound();
}

When setInterval calls theFunction,
it's calling the anonymous function
we passed in, which then calls
dj.playsound, like this:

When the anonymous function (named theFunction inside setInterval
in our imaginary implementation) is called, then the dj.playsound method
is called. But now, instead of being called as a function, playsound is being
called as a method of the dj object. So the dj object is assigned as the value
of this in the body of playsound, just like it would be when you normally
call a method of an object.

playsound: function() {

 console.log("Playing ", this.sound);

}

dj {
 playsound: function() {
 ...
 },
 sound: "bells"
}

dj

Don’t forget to add () after dj.playsound! We really do want to call the method this time.

12   Extra

test drive

var dj = {
 playsound: function() {
 console.log("Playing ", this.sound);
 },
 sound: "bells"
};
var controller = {
 start: function() {
 setInterval(function() { dj.playsound(); }, 1000);
 }
};
window.onload = function() {
 controller.start();
};

Test drive the new controller code
Let’s give the code a try and see if it fixes our music controller.
Make sure you’ve made the updates to the code, like this:

We’ve removed the extra console.log line
that we were using to display the value
of this; guess we’re pretty confident the
new code will work!

And we’ve updated the call to setInterval to pass the anonymous function as the first argument.

JavaScript console
Playing bells
Playing bells
Playing bells
Playing bells
Playing bells

And, when you load the page, you should see your DJ object working
just like it should, displaying the “bells” sound every 1 second.

 Q: There’s really no way for setInterval
to figure out that playsound is a method
of the dj object? It seems like setInterval
ought to be able to figure that out from
the name “dj.playsound”.

A: No, setInterval really can’t figure that
out. To setInterval, playsound looks like
just a regular function that’s disconnected
from any particular object. There’s nothing
in the function object that says “I belong to
the dj object”. The fact that we use “dj.” in

“dj.playsound” when we pass the function
doesn’t mean the function object has any
information about the dj object in it.

 Q: Remind me how to stop the interval
timer?

A: For now, just close the browser
window to stop the code running. Remember
that setInterval returns a timer object you
can save in a variable. To stop the timer, you
can pass it to the clearInterval function. We’ll
improve the controller code to add a stop
method that does this shortly.

Don’t forget the ().

you are here 4   13

extra: keeping track of this

Using bind to set the value of this
Another way to make sure that this has the correct value when playsound is called from
setInterval is to set the value yourself using bind. bind is a method you can use on any
function. You pass bind an object that you want to use as this in the body of that function.

Now, if you’ve read Head First JavaScript Programming, you might think that sounds a bit like
the call method. But there’s an important difference. With call, we specify the object to
use for this in the function we’re calling, and that function gets called right away.

With bind, the function doesn’t get called; instead, a new function is returned. The new
function is exactly like the original one, except that the value of this in the new function
is bound (set) to the object you specified in bind. Let’s take a look at an example to compare
call and bind.

Let’s modify the example from page 10, testThis, to use call, like this:

Now, change the code to use bind instead:

function testThis() {

 console.log("This is: ", this);

}

var dog = {

 name: "Fido"

};

testThis.call(dog);

For a refresher
on call, read
Chapter 13 in Head
First JavaScript
Programming.

JavaScript console
This is: Object {name: "Fido"}

We've added a variable dog, that is
an object with one property name.

function testThis() {

 console.log("This is: ", this);

}

var dog = {

 name: "Fido"

};

var newFunction = testThis.bind(dog);

newFunction();

JavaScript console
This is: Object {name: "Fido"}

We can specify that we want to use
the dog object as the value for this in
the body of testThis by using call, and
passing the dog object.

This calls testThis right away, and we see
dog in the console as the value of this. Remember, if we don't specify a

value for this in testThis, the value
defaults to the window object.

Now we're using the bind method, and
passing dog. testThis doesn't get called
at this point; instead bind returns a new
function with this bound to dog.

To call testThis, we now have to
call the function that was returned
from bind, newFunction.

When we call newFunction, we get the same result as above.

14   Extra

using bind

How does that help us? In our setInterval
example, we don’t want to call the function;
we want to pass it to setInterval.

That’s exactly why we’re going to use bind.

You’re right; we don’t want to call dj.playsound; we want
setInterval to do that. But we want setInterval to call playsound
with the dj object assigned to this. In other words, we want to pass
setInterval a function in which this is bound to the dj object.

We can create a new function that is exactly like playsound with this
bound to the dj object like this:

 dj.playsound.bind(dj)

We’re calling bind on the dj.playsound method, and passing the dj
object to bind to this. It looks a bit weird, but that’s exactly what we
need to pass to setInterval:

 var newPlaysound = dj.playsound.bind(dj);

 setInterval(newPlaysound, 1000);

Now what we’re passing to setInterval is a reference to a function in
which this is bound to to the dj object:

function setInterval(theFunction, milliseconds) {

 // after milliseconds has passed, call theFunction:

 theFunction();

}

function() {

 console.log("Playing ",

 this.sound);

} dj

The function we pass
to setInterval is just
like playsound.

But this in the
body of the
function is bound
to the dj object.

So when setInterval calls the function, it works fine because this is bound to the correct object.

you are here 4   15

extra: keeping track of this

Test drive the controller with bind

var dj = {
 playsound: function() {
 console.log("Playing ", this.sound);
 },
 sound: "bells"
};
var controller = {
 start: function() {
 setInterval(dj.playsound.bind(dj), 1000);
 }
};
window.onload = function() {
 controller.start();
};

Once again, update your code and reload the page and let’s see if
our new solution using bind works:

JavaScript console
Playing bells
Playing bells
Playing bells
Playing bells
Playing bells

Notice, we’ve combined the two lines

on the previous page into
 one by

passing the result of the
 bind method

call directly into setInte
rval.

And our new code works perfectly: we see the “Playing bells”
message in the console, which means this is correctly bound to
the dj object when playsound is called from setInterval.

Q: I remember from Head First
JavaScript Programming that we could
pass arguments to the function we were
calling with the call method. Can we pass
arguments along with bind?

A: Yes, you can. Just as with call, any
additional arguments you pass to bind are
passed as arguments to the function when
it’s called. So if you changed the playsound
method to take one argument, say the volume
to play the sound, you’d use bind like this:
 dj.playsound.bind(dj, "loudly")
When setInterval calls playsound, it will pass

“loudly” along as an argument.

Q: Which solution is better: using an
anonymous function to wrap a call to
dj.playsound, or using bind?

A: Neither is better, and in this situation,
they do exactly the same thing: allow you
to bind the dj object to this in the body of
playsound. In both solutions, you’re creating a
new function.

In some situations, you’ll find one of these
solutions is more suited than the other, but in
this case, either one works fine.

16   Extra

improving webville lounge

Adding start and stop buttons to Webville Lounge
At this point, you’re probably sick of having to close the browser window to get your DJ
to stop playing the bells, so let’s add both a start and stop button to the page so you have
more control. The start button will call controller.start to start the music, and we’ll
add a new stop method to the controller that the stop button will call to stop the music.

Begin by updating your HTML to add the two buttons, start and stop:

<html>

<head>

<title>Webville Lounge</title>

<script>

 // JavaScript code here...

</script>

</head>

<body>

 <button id="start">start</button>

 <button id="stop">stop</button>

</body>

</html>

Next, we’ll add code to the window.onload handler to add click handlers to both buttons.
We’ll also remove the code to call controller.start from window.onload, because
now we’ll call this method when we click on the start button.

window.onload = function() {

 controller.start();

 var startButton = document.getElementById("start");

 startButton.onclick = controller.start;

 var stopButton = document.getElementById("stop");

 stopButton.onclick = controller.stop;

};

If you need a refresher on setting up click handlers for form elements like buttons, check out pages 358-359 in Head First JavaScript Programming.

We’re getting the button
element objects from
the DOM using their
ids, “start” and “stop”
respectively.

Notice that we’re using methods in the controller as our click handlers! This is totally fine because as long as what we’re assigning to the onclick property of the button is a function reference, the button will call that function when you click on the button.

This might seem weird, but it’s really the same thing as defining a function
at the top level and assigning that function to the onclick property, like

 we
do on page 359 of Head First JavaScript Programming. In both cases, we’re
assigning a function reference to the onclick property: a function to call
when the click event occurs.

you are here 4   17

extra: keeping track of this

function() {

 this.timer =

 setInterval(...);

}

Finally, we need to modify the controller a bit. We’ll add a new property, timer, that will store
the timer we create in the start method; modify the start method so we save the interval
timer we’re creating; and add a new method, stop, that will clear the interval timer:

var controller = {

 timer: null,

 start: function() {

 this.timer = setInterval(dj.playsound.bind(dj), 1000);

 },

 stop: function() {

 clearInterval(this.timer);

 }

};

Okay, that should do it! Let’s reload the page and...

Wait just a moment. I
think we’re going to have

exactly the same problem we
had before, aren’t we?

Great catch; yes we are.

We’ve got a different situation, but the problem is basically the same. We’re
referencing a method in an object, and storing that function in the onclick
property of a button:

 startButton.onclick = controller.start;

When you click on the button, and the click handler function is called, it’ll be
called as a function, not as a method.

Once again, we’re losing the correct binding for this in the body of our
method; this time, in the method we’re calling as the click handler—that is, in
our start method (and likewise for the stop method).

What gets assigned to the onclick property is a
function reference to the start function. Just
like before, the start function has no information
about the controller object in which it’s defined.

To stop the timer, we simply pass it to the clearInterval function.

We add a property to save the timer, and use it

to store the timer created in the start method.

18   Extra

click handlers and this

The click handler problem up close

function() {

 this.timer =

 setInterval(...);

}

startButton.onclick = controller.start;

1 First, we get a reference to the controller.start method:

start

2 Then, we assign that reference to the onclick property of
the start button object:

startButton {

 ...

 onclick:

 ...

}

function() {

 this.timer =

 setInterval(...);

}

startButton.onclick = controller.start;

3 You click on the start button, which causes the button to
call the function referenced in its onclick property:

function() {
 this.timer = setInterval(dj.playsound.bind(dj), 1000);
}

<< click >>

call

4 The start method is called as a function, so the controller
object is not bound to this in the body of the function. ?

this is not bound to the
controller object... but what is it
bound to? The window object?

you are here 4   19

extra: keeping track of this

What is the value of this in a click handler?
We’re pretty darn sure that this will not be bound to the controller object in
the start function when you click the button. But what is this bound to in this
case? Is it the window object like before (since window is the default value for this),
or is it something else? Let’s do a litle more testing to find out.

Temporarily change your code to set the startButton’s onclick property to a
function that simply displays the value of this in the console, like this:

JavaScript console
(startButton) This:
<button id=​"start">​start​</button>​

window.onload = function() {

 var startButton = document.getElementById("start");

 startButton.onclick = controller.start;

 startButton.onclick = function() {

 console.log("(startButton) This: ", this);

 };

 var stopButton = document.getElementById("stop");

 stopButton.onclick = controller.stop;

};

Make sure you’ve updated your code (including adding the stop method to the
controller like we showed a couple of pages ago). Reload the page and take a look
at the output in the console:

Interesting! It looks like the default value for this in the
startButton’s click handler is the startButton object (note
that Chrome displays this object using HTML, rather than
JavaScript).

That’s actually the case for all DOM click handlers. That is, the
default value for this in any click handler is the object whose click handler you
called. In other words, it works just like a regular method call. You’ve called the
button’s onclick method, so the value of this in that method is bound to the
button object.

Here’s what we see in the console (Chrome).

All we’ve done is temporarily remove the
line that sets the click handler property
of the button to the controller.start
method, and instead, we’re setting it to
an anonymous function that displays the
value of this in the console.

Before you turn the page to see our solution, try to fix the code using one of the
solutions we used before so that this is bound to the controller object in the start
function when you click the button.

20   Extra

final test drive

Fixing the start and stop buttons
While it’s often handy to have this refer to the object you clicked in the click
handler function, in this particular case, we really want this to refer to the
controller object in both the start and stop methods. We can fix the code in a
couple of different ways, just as you saw before. We can either wrap the calls to the
respective methods in anonymous functions, or we can use bind. We’re going to go
with using anonymous functions this time (since we used bind before). Again, in this
case, it doesn’t matter which solution you choose as both accomplish the same thing:
they both set this to the controller object in the start and stop methods.

window.onload = function() {

 var startButton = document.getElementById("start");

 startButton.onclick = function() {

 controller.start();

 };

 var stopButton = document.getElementById("stop");

 stopButton.onclick = function() {

 controller.stop();

 };

};

Don’t forget the ().

The controller code doesn’t change (from page 17). Make these changes, reload
the page and give the buttons a try!

JavaScript console
Playing bells
Playing bells
Playing bells
Playing bells
Playing bells

<< click >> Now, when you click on
the start button, you’ll
see bells playing every 1
second...

<< click >> ...and when you click stop,
you’ll see the bells stop
playing. Success!!

JavaScript console
(5) Playing bells

Depending on your browser, you
might see the results displayed
like this instead. This just
means “repeat this line 5 times.”

you are here 4   21

extra: keeping track of this

Well done!

Not only have you solved the mystery of what happens to this in two
situations: passing a method to setInterval (and setTimeout too!) and using
a method as a click handler function; you’ve also learned how to use bind.

That’s a lot for one project, so sit back, relax, put on some good music and give
yourself a good pat on the back.

Thanks for helping
us out! Webville Lounge

couldn’t have had the concert
without you...

22   Extra

the code for webville lounge

<html>
<head>
<title>Webville Lounge</title>
<script>
var dj = {
 playsound: function() {
 console.log("Playing ", this.sound);
 },
 sound: "bells"
};

var controller = {
 timer: null,
 start: function() {
 this.timer = setInterval(dj.playsound.bind(dj), 1000);
 },
 stop: function() {
 clearInterval(this.timer);
 }
};

window.onload = function() {
 var startButton = document.getElementById("start");
 startButton.onclick = function() {
 controller.start();
 };
 var stopButton = document.getElementById("stop");
 stopButton.onclick = function() {
 controller.stop();
 };
};

</script>
</head>
<body>
 <button id="start">start</button>
 <button id="stop">stop</button>
</body>
</html>

The complete code
Below you’ll find the complete code for our solution. You can also find it online at
https://github.com/bethrobson/Head-First-JavaScript-Programming/tree/master/extras
in the file timer.html, and a link to the project at http://wickedlysmart.com.

https://github.com/bethrobson/Head-First-JavaScript-Programming/tree/master/extras
http://wickedlysmart.com

you are here 4   23

extra: keeping track of this

You mean we’re done? Aren’t you
going to show us how to play a real

sound when we click start? That would
be much more exciting...

We agree!

But that’s a whole ‘nother project. Stay tuned at
wickedlysmart.com for more music... coming soon.

In the meantime, practice keeping track of this by
working through the projects in Head First JavaScript
Programming again and make sure you know what
this is bound to in all those examples.

Or invent a few examples of your own! Let us know
what you discover.

http://wickedlysmart.com

24   Extra

oreilly.comSpreading the knowledge of innovators

Want to read more?

You can buy this book at oreilly.com
in print and ebook format.

Buy 2 books, get the 3rd FREE!
Use discount code: OPC10

All orders over $29.95 qualify for free shipping within the US.

It’s also available at your favorite book retailer,
including the iBookstore, the Android Marketplace,

and Amazon.com.

You can buy Head First JavaScript Programming
at oreilly.com in print and ebook format.

It’s also avalable at your favorite book retailer,
including the iBookstore, the Android Marketplace,

and Amazon.com.

http://oreil.ly/1mvCjfE
http://amzn.to/1nBlul0

