A Brief Introduction to Causal Inference and Causal Diagrams

Alireza Akhondi-Asl
MSICU Center For Outcomes
Department of Anesthesiology, Critical Care and Pain Medicine

Learning Objectives

Conditional
Dependency/Independency
in Causal Graphs

Statistical
implications of the model

Identification of Causal Effects from DAGs

Using
Observational
data for causal inference

Causal Inference

Reasoning about the causal effect of a treatment

Potential Outcome

Outcome under a potential treatment.
What might have occurred under different treatments

Difference between the potential outcome when the treatment is received and potential outcome when the treatment is not received.

Fundamental limitation of Causal Inference

We observe only a potential outcome.

Randomized Control Trial (RCT)

- All factors are random except the treatment

RCT vs
 Observational Study

- Any change in the outcome is due to treatment (Causal Effect)

Why Observational Studies?

- Unethical
- Impractical
- Impossible
- Data is available

Observational Studies

Treatment selection is influenced by subject characteristics.

Baseline characteristics are systematically different.

We should account for it when we are estimating the treatment effect.

If we know the data generation model,
we might be able to identify causal effect from observational data!

Structural Causal Model (SCM)

- Describes our assumptions about the relevant features of the world and the interaction of these features.
- How variables are assigned
- If our assumptions are wrong, the model will be wrong
- Causal effect from observational data
- Every SCM is associated with a DAG

Graphs

Nodes and Edges

Undirected Graph

Directed Graph

Adjacent Nodes

Not Adjacent Nodes

Path

Directed Path

Parent - Child

Ancestor - Descendant

Cycle

Directed Acyclic Graph (DAG)

DAGs

Graphically show the assumed data generation process

Nonparametric

- No assumption about the form of the function and distribution

Intuitive

DAGs

Strong Mathematical Support

Testable Implications of Assumptions

Identification of Causal Effect

- Obtaining causal effect from observational data.

Minimality
 Assumption

- We only need to know the parents
- We don't need to know A and B

Minimality
 Assumption

- Adjacent nodes are dependent.
- C and E, for example

Error Terms/Omitted Factors

Error Terms/Omitted Factors

Error Terms/Omitted Factors

Unmeasured Variable

Different Configurations

Chain

Chain

Unblocked Path \equiv Flow of Association

Path is unblocked

Chain

Path is unblocked

Chain

Path is unblocked

Chain

Conditioning on B

Chain

Conditioning on B

Path is Blocked

Chain

Conditioning on B

Path is Blocked

Fork

Fork

Path is unblocked

Fork

Path is unblocked

Fork

Path is unblocked

Fork

Conditioning on B

Fork

Conditioning on B

Path is Blocked

Fork

Conditioning on B

Path is Blocked

Fork

Conditioning on B

Path is Blocked

Collider

Collider

Collider

No Association

Collider

Blocked Path

- Conditioning on a set \mathbf{Z} blocks a path between A and B :
- When there is a w or wn in the path and in \mathbf{Z}
- If there is a collider; and collider or its descendants are not in \mathbf{Z}.

Two variables A and B are d-separated by variables in \mathbf{Z}, if all paths between them are blocked by Z.

Two variables are d-connected if and only if they are not d-separated.

When A and B are d-separated by Z, A and B are independent conditional to \mathbf{Z}.

Consider all paths between two nodes as pipes.

- Even if one pipe is unblocked, some water can pass from one node to another.
- To block a pipe, you only need to block it in one place.

Example

Example

Example

Example

Example

 TEACHING HOSPITAL

Example

Example

Example

Example

Example

Example

Example

Example

Example

Example: X and Y are d-separated

Example: X and Y are d-separated

Example: X and Y are d-separated

Model Testing and Causal Discovery

- d-separation can be used to identify statistical implications of the model
- We can test them!
- $Y=r_{X} X+r_{x 1} X 1+r_{x 3} X 3$
- Y and X are independent, given $X 1$ and X3.
- $r_{x}=0$
- If $r_{x} \neq 0$, model is wrong.
- Causal Discovery or Causal Structure Search

Causal Discovery

Can we learn the DAG from the observed data? No

We need to assume that we have measured all common causes of all variables (Expert Knowledge).

Software tools assume that you have observed all common causes.

Observationally Equivalent but Causally Distinct

Assume that the causal model is correct

Causal effect from Observational data

 causal effect from observational data.
Association is Causation!

Intervention vs. Conditioning

Intervention: We alter the system

Conditioning: We focus on a subset of data.

Our perception of the system changes not the system

Do-Operator

- Intervention: $P(Y=y \mid d o(X=x))$
- Everyone in the population
- Causal Effect
- Conditioning: $P(Y=y \mid X=x)$
- Subset of population with $X=x$
- $P(Y=y \mid d o(X=x), Z=z)$
- Both intervention and Conditioning

Do-operation and Graph Manipulation

Do-operation and Graph Manipulation

Do-operation and Graph Manipulation

Intervene and do(X=x)

Do-operation and Graph Manipulation

Manipulate the graph and remove all inputs to X

Do-operation and Graph Manipulation

Graphical Identification Criteria

In Observational studies, we cannot manipulate the graph

However, we can sometimes emulate the manipulation.

氖 Graphical Identification Criteria

- Sets of rules that can be used to check if and how the causal effect is identifiable from the model.

The Backdoor Criterion

- "Given an ordered pair of variables (X, Y) in a directed acyclic graph G, a set of variables Z satisfies the backdoor criterion relative to $(X$, Y) if no node in Z is a descendant of X, and Z blocks every path between X and Y that contains an arrow into $X^{\prime \prime}$ Pearl, Judea et al. (2016): Causal inference in statistics. A primer.
- Block all spurious paths: Backdoors
- Leave all directed paths untouched.
- Don't create any spurious paths

$$
P(Y=y \mid d o(X=x))=\sum_{z} P(Y=y \mid X=x, Z=z) P(Z=z)
$$

The Backdoor Criterion

- "Given an ordered pair of variables (X, Y) in a directed acyclic graph G, a set of variables Z satisfies the backdoor criterion relative to (X, Y) if no node in Z is a descendant of X, and Z blocks every path between X and Y that contains an arrow into $X^{\prime \prime}$ Pearl, Judea et al. (2016): Causal inference in statistics. A primer.
- Block all spurious paths: Backdoors
- Leave all directed paths untouched.
- Don't create any spurious paths

Adjustment Formula

$$
P(Y=y \mid d o(X=x))=\sum_{z} P(Y=y \mid X=x, Z=z) P(Z=z)
$$

Inverse Probability Weighting

$$
P(Y=y \mid d o(X=x))=\sum_{z} \frac{P(Y=y, X=x, Z=z)}{P(X=x \mid Z=z)}
$$

Inverse Probability Weighting

$$
P(Y=y \mid d o(X=x))=\sum_{z} \frac{P(Y=y, X=x, Z=z)}{P(X=x \mid Z=z)}
$$

Inverse Probability Weighting

$$
P(Y=y \mid d o(X=x))=\sum_{z} \frac{P(Y=y, X=x, Z=z)}{\substack{P(X=x \mid Z=z) \\ \text { Propensity Score }}}
$$

Example: Causal Effect of X on Y

Example

$$
P(Y=y \mid d o(X=x))
$$

Example

Example

Pearl, Judea et al. (2016): Causal inference in statistics. A primer.

Example

Do-calculus and identifiability of Causal Estimand

Backdoor criterion is a sufficient criterion.

There are other criteria that can be used such as Front-door Criterion

- It is also a sufficient criterion.

Do-Calculus rules solve this problem. If there is a way to identify a causal effect, we can find it.

- Necessary and Sufficient

Some Examples
 From Literature

Simpson's Paradox

Treatment	Male	Female	Total
Yes	$81 / 87(93 \%)$	$192 / 263(73 \%)$	$273 / 350(78 \%)$
No	$234 / 270(87 \%)$	$55 / 80 \quad(69 \%)$	$289 / 350(83 \%)$

Pearl, Judea et al. (2016): Causal inference in statistics. A primer.

Simpson's Paradox

Treatment	Male	Female	Total
Yes	81/87 (93\%)	192/263 (73\%)	273/350 (78\%)
No	234/270 (87\%)	55/80 (69\%)	289/350 (83\%)

Simpson's Paradox

Treatment	Male	Female	Total
Yes	$81 / 87(93 \%)$	$192 / 263(73 \%)$	$273 / 350(78 \%)$
No	$234 / 270(87 \%)$	$55 / 80 \quad(69 \%)$	$289 / 350(83 \%)$

$$
\begin{gathered}
P(Y=y e s \mid d o(X=y e s))=\sum_{z=\{\text { male,female }\}} \frac{P(Y=y e s, X=y e s, Z=z)}{P(X=y e s \mid Z=z)} \\
P(Y=y e s \mid d o(X=n o))=\sum_{z=\{\text { male,female }\}} \frac{P(Y=y e s, X=n o, Z=z)}{P(X=n o \mid Z=z)}
\end{gathered}
$$

Simpson's Paradox

X: Treatment	Y:Recovered	Z: Gender	Number	$P(X, Y, Z)$
Yes	Yes	Male	81	0.116
Yes	Yes	Female	192	0.274
Yes	No	Male	6	0.01
Yes	No	Female	71	0.101
No	Yes	Male	234	0.334
No	Yes	Female	55	0.079
No	No	Male	36	0.051
No	No	Female	25	0.036

Simpson's Paradox

$$
\begin{gathered}
P(X=y e s \mid Z=\text { male })=\frac{P(X=\text { yes }, Z=\text { male })}{P(Z=\text { male })}=\frac{0.116+0.01}{0.116+0.01+0.334+0.051}=0.233 \\
P(X=\text { yes } \mid Z=\text { female })=\frac{P(X=\text { yes }, Z=\text { female })}{P(Z=\text { female })}=\frac{0.274+0.101}{0.274+0.101+0.079+0.036}=0.765 \\
P(X=\text { no } \mid Z=\text { male })=1-0.233=0.767 \\
P(X=\text { no } \mid Z=\text { female })=1-0.765=0.235
\end{gathered}
$$

Simpson's Paradox

$$
\begin{array}{r}
P(Y=y e s \mid d o(X=y e s))=\sum_{z=\{\text { male,female }\}} \frac{P(Y=y e s, X=y e s, Z=z)}{P(X=y e s \mid Z=z)} \\
=\frac{0.116}{0.233}+\frac{0.274}{0.765}=0.498+0.358=0.856 \\
P(Y=y e s \mid \text { do }(X=n o))=\sum_{z=\{\text { male,female }\}} \frac{P(Y=y e s, X=n o, Z=z)}{P(X=n o \mid Z=z)} \\
=\frac{0.335}{0.767}+\frac{0.079}{0.235}=0.437+0.336=0.773
\end{array}
$$

$$
P(Y=y e s \mid d o(X=y e s))-P(Y=y e s \mid d o(X=n o))=0.856-0.773=0.083
$$

Simpson's Paradox

$$
\begin{array}{r}
P(Y=y e s \mid d o(X=y e s))=\sum_{z=\{\text { male,female }\}} \frac{P(Y=y e s, X=y e s, Z=z)}{P(X=y e s \mid Z=z)} \\
=\frac{0.116}{0.233}+\frac{0.274}{0.765}=0.498+0.358=0.856 \\
P(Y=y e s \mid d o(X=n o))=\sum_{z=\{\text { male,female }\}} \frac{P(Y=y e s, X=n o, Z=z)}{P(X=n o \mid Z=z)} \\
=\frac{0.335}{0.767}+\frac{0.079}{0.235}=0.437+0.336=0.773
\end{array}
$$

$$
P(Y=y e s \mid d o(X=y e s))-P(Y=y e s \mid d o(X=n o))=0.856-0.773=0.083
$$

Simpson's Paradox

Treatment	Low BP	High BP	Total
Yes	$81 / 87$ (93\%)	$192 / 263$ (73\%)	$273 / 350$ (78\%)
No	$234 / 270$ (87\%)	$55 / 80 \quad$ (69\%)	$289 / 350(83 \%)$

Simpson's Paradox

Treatment	Low BP	High BP	Total
Yes	$81 / 87 \quad$ (93\%)	192/263 (73\%)	$273 / 350(78 \%)$
No	$234 / 270(87 \%)$	$55 / 80 \quad(69 \%)$	$289 / 350(83 \%)$

Simpson's Paradox

Treatment	Low BP	High BP	Total
Yes	$81 / 87$ (93\%)	$192 / 263$ (73\%)	$273 / 350(78 \%)$
No	$234 / 270(87 \%)$	$55 / 80 \quad(69 \%)$	$289 / 350(83 \%)$

$$
P(Y=y e s \mid d o(X=y e s))-P(Y=y e s \mid d o(X=n o))=-0.05
$$

Maternal Smoking is a strong predictor of newborn mortality and low birthweight

However, in newborns with low birthweight, maternal smoking is associated with lower mortality.

- Does this mean that maternal smoking is good for low birthweight newborns!?

Newborn Mortality and Maternal Smoking

Newborn Mortality and Maternal Smoking

S: Maternal Smoking
M: Mortality
L: Low Birth Weight
U: Birth Defect

Newborn Mortality and Maternal Smoking

S: Maternal Smoking
M: Mortality
L: Low Birth Weight
U: Birth Defect

Newborn Mortality and Maternal Smoking

S: Maternal Smoking
M: Mortality
L: Low Birth Weight
U: Birth Defect

- A group of 47 editors of 35 respiratory, sleep, and critical care journals
- They urge authors to consider using causal models (DAGs)

PERSPECTIVE

Control of Confounding and Reporting of Results in Causal Inference Studies
Guidance for Authors from Editors of Respiratory, Sleep, and Critical Care Journals
David J. Lederer ${ }^{1,2 *}$, Scott C. Bell ${ }^{3 *}$, Richard D. Branson ${ }^{4 *}$, James D. Chalmers ${ }^{5 *}$, Rachel Marshall ${ }^{6 *}$, David M. Maslove ${ }^{7 *}$, David E. Ost ${ }^{8 *}$, Naresh M. Punjabi ${ }^{9 *}$, Michael Schatz ${ }^{10 *}$, Alan R. Smyth ${ }^{11 *}$, Paul W. Stewart ${ }^{12 *}$, Samy Suissa ${ }^{13 *}$, Alex A. Adjei ${ }^{14}$, Cezmi A. Akdis ${ }^{15}$, Élie Azoulay ${ }^{16}$, Jan Bakker ${ }^{17,18,19}$, Zuhair K. Ballas ${ }^{20}$, Philip G. Bardin ${ }^{21}$ Esther Barreiro ${ }^{22}$, Rinaldo Bellomo ${ }^{23}$, Jonathan A. Bernstein ${ }^{24}$, Vito Brusasco ${ }^{25}$, Timothy G. Buchman ${ }^{26,27,28, ~}$ Sudhansu Chokroverty ${ }^{29}$, Nancy A. Collop ${ }^{30,31}$, James D. Crapo ${ }^{32}$, Dominic A. Fitzgerald ${ }^{33}$, Lauren Hale ${ }^{34}$, Nicholas Hart ${ }^{35}$, Felix J. Herth ${ }^{36}$, Theodore J. Iwashyna ${ }^{37}$, Gisli Jenkins ${ }^{38}$, Martin Kolb ${ }^{39}$, Guy B. Marks ${ }^{40}$, Peter Mazzone ${ }^{41}$, J. Randall Moorman ${ }^{42,43,44}$, Thomas M. Murphy ${ }^{45}$, Terry L. Noah ${ }^{46}$, Paul Reynolds ${ }^{47}$, Dieter Riemann ${ }^{48}$, Richard E. Russell ${ }^{49,50}$, Aziz Sheikh ${ }^{51}$, Giovanni Sotgiu ${ }^{52}$, Erik R. Swenson ${ }^{53}$, Rhonda Szczesniak ${ }^{54,55}$, Ronald Szymusiak ${ }^{56,57}$, Jean-Louis Teboul ${ }^{58}$, and Jean-Louis Vincent ${ }^{59}$

Lederer, David J. et al. (2019): Control of Confounding and Reporting of Results in Causal Inference Studies. Guidance for Authors from Editors of Respiratory, Sleep, and Critical Care Journals. In Annals of the American Thoracic Society

ICU

Admission

Other Topics

Reading Suggestions

- Gaskell, Amy L.; Sleigh, Jamie W. (2020): An Introduction to Causal Diagrams for Anesthesiology Research. In Anesthesiology 132 (5), pp. 951-967.
- Pearl, Judea; Mackenzié Dana (2018): The book of why. The new science of cause and effect. New York: Basic Books.
- Pearl, Judea; Glymour, Madelyn; Jewell, Nicholas P. (2016); Causal inference in statistics. A primer / Judea Pearl, Madelyn Glymour, Nicholas Jewell. 1st. Hoboken, New Jersey: John Wiley \& Sons.
- Rosenbaum, Paul R. (2017): Observation and Experiment. An introduction to causal inference / Paul R. Rosenbaum. Cambridge, Massachusetts: Harvard University Press.
- Gelman, Andrew; Hill, Jennifer; Vehtari, Aki (2021): Regression and other stories. Cambridge: Cambridge University Press (Analytical methods for social research).
- Miguel A Hernan; James M. Robins (2020): Casual Inference. What If.

HARVARD MEDICAL SCHOOL

Summary

Controlling for all covariates are generally wrong.

With expert knowledge, we can model data generation process using DAGs.

Using DAGs

- Check our assumptions
- Identify causal effect from observational data

Thank you!

