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98 N. PRIVAULT 

1. Introduction 

Let r(H) = 63TL>O Ho” denote the symmetric Fock space over the 
Hilbert space H, where HO’” consists of the space of symmetric tensors in 
the tensor product H‘I’“, endowed with the norm ]I . ]]sO,, = n!]] . ]]&8n, 
n E N. The annihilation operator V- : I’(H) -+ l?(H) @ H is 
defined by 0-f”” = nf ‘(“-r) @ f, n E N, while the creation 
operator Vf : I’(H) @ H -3 l?(H) satisfies V+ fen @3 g = f”” 0 g, 
YL E N. Those operators are extended by polarization, linearity and 
closability to their respective domains in I’(H) and I’(H) @ H. In case 
H = L’(R+), the two main probabilistic interpretations of I’(L”(R+)) 
are the Wiener and Poisson interpretations, which are constructed by 
identifying f,, E L’(R+)“’ with its multiple stochastic integral with 
respect to the Wiener or Poisson processes. It is well-known, cf. e.g. [4], 
[5], that in these probabilistic interpretations the annihilation operator acts 
on random variables by shifts of the Brownian, resp. Poisson trajectories. 
On the other hand, on the Poisson space, trajectories can be perturbed 
by time changes, and this yields another construction of the stochastic 
calculus of variations, cf. [2], [6]. The purpose of this paper is first to 
determine the action on Fock space of perturbations by time changes of 
the Poisson process. It turns out that the corresponding operator can be 
written as V + V-, where V has a relatively simple description on 
Fock space. Since V is expressed on the Fock space, it is a natural 
question to ask about its action on Wiener space. The results obtained are 
summarized in the table below. 

Type of perturbation and properties Wiener case Poisson case 

Shifts of trajectories Operator on Fock space v- c- 

Absolute continuity ZLC. not a.c. 

Operator on Fock space 0. f $-i-o- V’ +r 
Time changes 

Absolute continuity not a.c. &C. 

In this table some information has been added concerning the absolute 
continuity of the considered transformations with respect to the Wiener and 
Poisson probability measures. Transformations by deterministic shifts of 
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A CALCULUS ON FOCK SPACE AND ITS PROBABILISTIC INTERPRETATIONS 99 

trajectories are absolutely continuous with respect to the Wiener measure 
(from the Cameron-Martin theorem), but not with respect to the Poisson 
measure, since the standard Poisson process has fixed height jumps. On 
the other hand, the action of deterministic time changes on trajectories 
is absolutely continuous with respect to the Poisson measure (from the 
Girsanov theorem on Poisson space), but not with respect to the Wiener 
measure since a time changed Brownian motion does not have the standard 
quadratic variation. Consequently some smoothness has to be imposed on 
Wiener and Poisson functionals in order to perturb them by time changes, 
in particular they need to be defined everywhere, and on Fock space this 
corresponds to the assumption that the considered functionals have finite 
developments with smooth kernels. The operators obtained in this way can 
be extended by closability. The calculus introduced in this paper differs 
from the chaotic calculus of [6] which uses the polynomials of Laguerre 
instead of Hermite and can not be based on the Fock space. 

This paper is organized as follows. In Sect. 2, definitions and preliminary 
results are stated. In Sect. 3 we define the operators V’-’ and V”. and show 
that they give a non-commutative decomposition of the number operator 
on Fock space. Sect. 4 is devoted to the Wiener space interpretation of 
V’- . In Sect. 5, we obtain the Poisson probabilistic interpretation of our 
calculus from the explicit chaotic expansions of functionals of the Poisson 
process jump times. Part of the results of this paper have been announced 
in [8]. In the Poisson space case a different approach to this calculus 
can be found in [3]. 

2. Preliminaries and notation 

For A E B(R+), let sd : L2(R+) -+ L”(R+) denote the projection 
operator defined by 7r~J = 1.4f, f E L2(R+). Let also 7rt] = T]~.~], 
=[t = V>‘4~ and fit =I 7ritf, ft] = nt]f, t E R+, f E L2(R+). The 
exponential vector c(f), f E L2(R+), or Wick exponential, is defined as 

F(f) = c -$Y. 
MN 

The vector space generated by exponential vectors E(f) with f E 
Ci(R+) is denoted by Z. We denote by @ the Fock space I’( L2 (R+ )) on 
L2 (R+), and call S the set of elements of @J which are in a finite number 
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loo N. PRIVAULT 

of chaos and whose developments involve only functions which are C1 
with compact supports. We let I’(U) : Cp t a’, densely defined on S as 

W) = en>() UO”, 
denote the second quantization of any operator U : L2(R+) -+ L2(R+) 
defined on Ci (R+). We say that F E @ is -TA-measurable if I’(n.k)F = F, 
A E B(R+), and let S([a, b]), 0 < (I < b, denote the elements of S that 
are $+I-measurable. All operators considered in this work are densely 
defined on SUZ and closable. We denote by ( . , . ) the scalar product 
on a. 

DEFINITION 1. - The adjoint U* : @ @ L” (R+) --+ @ of an operator 
U : @ -+ Q! @ L2(R+) is said to be an extension of the stochastic integral 
if ry7q)U~ = rpsl)v;, 0 5 s 5 t, t E R+. 

The space of square-integrable adapted processes is defined to be the 
completion in Cp @ L2(R+) of the set of simple adapted processes of 
the form 

k=n-1 
c qt&+l[~ Fi E S([O, ti]), i = 1, . . . . n! tl < , . . < t,,, n E N. 
k=l 

For G E S([O, a]), we have 

J 
x = 0 l[a,q(~)(G V,F)ds = (V+(q,,qG)J), F E S. 

Hence U* is an extension of the stochastic integral if and only if 
U* and V+ coincide on the square-integrable adapted processes. If the 
Fock space is identified to the L2-space of a stochastic process (Yt)tc~+ 
with stationary independent increments, such as the Wiener and Poisson 
processes considered below, then the above property means that U* 
coincides with the stochastic integral with respect to (Yt)teR+ on the 
square-integrable adapted processes. The following result shows that the 
Clark formula can be stated in general using the adjoint of an extension of 
the stochastic integral. It can be proved using the same argument as in [6]. 
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PROFQSITION 1. - If U* is an extension of the stochastic integral on Fock 
space, then the application F H (I’(T~~)U~F)~~R+ is continuous from @ 
to Q 8 L2(R+), and arty F E Q can be represented as 

F = (F, 1) + U*(I+q)U.F). 

As a consequence, the formula of [9] can be extended as follows. 

hOPOSITION 2. - rfu : CT> --f Cp 8 L2 (R+) is the adjoint of an extension 
of the stochastic integral and 

j7 E n 1107q(v-)v), 
nEN 

then the chaotic development of F can be written as 

(1) F = (F, 1) + c s(Li,+,((V-)“W I)), nEN 
where &+I = {(tl, ..,,&+I) E RI;+’ : tl < . Se < &+I}, and s(fil), 
fn E L2(R+> , @n denotes the symmetrization of fil in n variables. 

3. A non-commutative decomposition of the number operator 

In this section we define the operators Va and V‘+ and remark that 
their sum gives the number operator. Some connections between V”, VF, 
the number operator and the non-commutative stochastic calculus have 
been studi;d in [S]. Let ;I, h E L2(R+), denote the function defined as 

it(t) = J h(s)ds, and let f’(t) = &f(t), t E R+, f E C,!(R+). Let U 

denote the0 set of elements of Q, @ L2(R+) of the form xi:; Fi @ h;, with 
h, . . . . h,, E C:(R+), and Fl, . . . , F, E S, n E N. 

DEFINITION 2. - We define the linear operators V’-’ : + -+ @ @ L2(R+) 
on S and V@ : Q, @ L2 (R+) -+ @ on U by 

qy” = +jyt o p-1) and Ve(foR @I h) = n(f ;)’ o f”@--l), 

f, h E CF(R+), n E N, t E R+, and by linearity and polarization of 
these expressions. 
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102 N. PRIVAULT 

We note that for fi-( E C: (R;) symmetric, 0;. f,, can be defined as the 
symmetrization in n variables of 

;=r/ 

-c 1[,.,[ww&, . . . A). 
i=l 

PROPOSITION 3. -Both V”, ‘7’” are closable, and V& : @@L2(R+) ---f QJ 
is adjoint of V” : @ + Cp @ L2(R+). 

Proof. - By polarization, we need to prove the following. 

(VSforL3g07’ @ h)*;jjL2(R+) = -n J 0 J(f[t 0 foin-1’,g071)~~~~+)~nh(t)dt 

= -n2(fo(n-1),go(7~-1))L20U(n-Li J/u%)~w f’(49(sWt 

= -na(fo(n-1),go(“-1))L2(R+),i~-1) J x, f’(t)9(t> ii (Wt 0 = n2(fo(rr-1),go(rr-1))LZ(R+)Oc,l~~) J lx f(t)& 9)‘Wt 

= (f"", V'(gon 8 h)), f,g, h E &R+), 
hence the relation (VF, U) agpp+) = (F,V@(u)), F E S, u E U. The 
closability of V@ and V”” follows from this relation and from the density 
of S and l4. 0 

For h E L2(R+), let u;1 denote the number operator defined by linearity 
and polarization as 

agfon = n(fh) o for’-‘, f E c:(R+), n E N, 

and let a;, at be defined as 

cforl = PfoR, h)LyR+),az = V”‘(f”“@h), n E N, f,g E L”(R+) 

PROPOSITION 4. - The above dejinitions give a non-commutative 
decomposition of a;I into the sum of a gradient operator and its adjoint: 

a;: = ai‘ + a;, h E L”(R+). 

Proof. - We have (V’-‘f’” , h)p(R+) + Vi3(fon @ h) = nf”(n-l) o 
(fh) = &fon, n E N, f E C,!(R+). 
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PROPOSITION 5. - The exponential vector c(f), f E L2(R+) f~ L4(R+), 
is in the domain of V” if &w tf’(t)2dt < CO. In this case, VP<(t) = 
-.f;] 0 Itf)~ and 

IlWf)ll~i;_~L”(R+) = (~)f&R+)+/a t.f'tt)2dt) expttf7 fb(R+))s 
0 

Proof - We have 

= nn!(f, f)“-l I 0 
=’ tf’(t)2dt + ;(n - l)n!(f, f)“-2 im f4(t)dt, 

and 

4. Wiener space interpretation 

tit tWL2tR+h) d lenote the classical Wiener space, with Brownian 
motion (&)tER+. Multiple stochastic integrals are defined as 

in(&) = n! lK It” . . . /dl’ f&,. . . J&h, . . .d&,, 

fn E L2(R+>““. These integrals provide an isometric isomorphism 
between L2 (IV, p) and @, since 

E[hdid9m>] = l{n=m}(fn,gm)L2(R+)““, 
fn E L2(R+)On, gm E L2(R+)““. 
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104 N. PRJS’AULT 

This identification will be assumed throughout this section. We are 
interested here in the properties of ‘7” in the Wiener interpretation of @. 
We recall that V- is identified to a derivation operator which satisfies 

(V-F, fb(R+) = !$ 
F(B.+ESdh(s)ds)-F, FES 

> 
E 

hEL2(R 
+ ) 

) 

cf. e.g. [4], [lo] and the references therein. 

LEMMA 1. - On the Wiener space, V’-’ satisjies the relation 

(2) Vf(FG) = FV;‘G + GVFF - V,FV,G, t E R+, F, G E S. 

Proof. - We are using the multiplication formula for the Wiener multiple 
integrals: 

fn(fon)&(g) = t?+l(fon ‘9) + ~(f,g)L’(R+)in-l(f”-l), 
f,g E L”(R+), n E N. 

We first show that 

v~(~n(fo”)&(g)) = v”(fn+*(fon og) + n(f,g)fnn-l(fo’“-l’)) 
= -fn+l(git 0 f”“) - nfn+l(f;t 0 g 0 f”‘“-l’) 

- n(n - l)(f, 9) LZ(R+)fd(f(t o f”‘“-“‘) 
= -&+&-it 0 foc7’-‘) 0 g) - n(g, fi~)L’(R+)in_l(f”ll-‘)) 

- t&+1 (f”” 0 g;J 

- + - l)(f, g)L”(R+)in-l(f”‘n-2) ’ $, 

- +.f, @L2(R+) fn-l (f”‘“-l’) 

+ n(f(,, !h(R+)fn-l(f 
o(n-1) 

> 

+ n(& f)LZ(R+)~~,-1(6°(11-1’) 

= -dn(fit 0 f o’“-1’)i~(g) - i,(fon)e(gi,) 

- nf(t)g(t)~~-l(f”‘“-l)) 

= &(g)v;3~n(fo”) + ~n((fon)V;~~~(g) - V,i;l(g)V;$?((f”“), 

t E R+. 
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A CALCULUS ON FOCK SPACE AND ITS PROBABILISTIC INTERPRETATIONS 105 

Using the fact that on Wiener space V- is a derivation, we can now 
work by induction to show that the formula holds for functionals that are 
polynomials in Wiener multiple stochastic integrals. Assume that for some 
k 2 1, and t E R+, 

Then 

teR+. iI 
For h E L2(R+), with su&R+ lh(X)I < 1, let r’h (t) = t + J; h(s)& 

t E R+. 

DEFINITION 3. - We define a mapping 7h : W t W, t, E E R+, as 

(3) 
-1 Th(‘d) =‘dovh , h E L2(R+), SUP Ih(x)I < 1. 

.rcR+ 

The transformation ‘& acts on the trajectory of (B,)&R+ by change of 
time. Although ‘&h is not absolutely continuous with respect to the Wiener 
measure, the functional F o 7h is well-defined for F E S, since elements 
of S are defined trajectory by trajectory. 
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106 N. PRIVAULT 

PROPOSITION 6. - We have for F E S, under the Wiener identification of a: cc 
J ( h(t) 

0 
0;;’ + ;o;V; 

> 
Fdt = - !iO ;(F 0 %7;-h - F). 

Proof. - We first notice that as a consequence of Lemma 1, the 
operator OF + a 0; 0, is a derivation operator on S, t E R+ . Moreover, 
7-h is multiplicative, hence we only need to treat the particular case of 
F = f*(f). We have 

A(f) 0 I,, - h(f) = J o31 fW%&W) - b(f) 
J cc f(+h(s))d& - J O" f(sPs 

= j= (f(t++(s;s) -f(t)jdBr. 

After division by E > 0, this converges in L2(W, ,u) as E + 0 to 

h(s)dsdBt = lx h(t) lx f’(s)dB,dt 

J 
!x =-- h(t)V$+&(f)dt 

0 oc =I-- J ( h(t) 
0 

Of + ;o;V; &(f)dt. Cl 
> 

5. Poisson space interpretation 

Before dealing with the Poisson interpretation of Ve, we will need to 
compute the explicit chaotic decom 

2 
osition of functionals of the Poisson 

process jump times. Let Tk = ClzO-’ pi, lc > 1, denote the sequence of 
jump times of a standard Poisson process (Nt)tER+ on a probability space 
(a, F, P). The Poisson multiple stochastic integral of h, E L2 (R)‘“, 
space of symmetric square-integrable functions on RR, can be written as 

(4) 

I;,(h,,)=IL!~m~~...~~h,(tl,...,t,,)d(Nt. -t$..d(K, -tn). 
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As on the Wiener space, we have the isometry 

(~(fd&m)h~~~) = l{,=,}(f,,g,)LZ(R+)On, fit E L2(R+)07’, 

which provides an isometric isomorphism between L2(13) and Cp. This 
identification will be used in the remaining of this paper. From [5], the 
operator V- satisfies 

(5) VtF = F(N + $.-I) - F(N.), a.s., t E R+, F E S, 

hence 

(6) V-(FG) = FV-G + GV-F + V-GV-G, F, G E S. 

There exists a different approach to the calculus of variations on 
Poisson space, cf. [2], [6], which consists in defining a closable operator 
D : L2(B) --+ L2(B) ~3 L2(R+) by time changes: 

(~F&z(~+) = -;Ii 
Fol,h-F 

E , h E L2(R+), 

where the transformation I& is defined as in (3, by application of a time 
change to the Poisson process trajectories. This is equivalent to 

1:=11 

(7) DF=-‘C~~~~(T~,...:T,,)~~O,T,~, FES, 
r;=O 

for F = f(Tl, . . . . Tn). The following proposition extends to functionals 
of jump times the result of [6] which was only proved for jump times. 

PROPOSITION 7. - For I; > 1, the chaotic development off(Tk) is given as 

where f,“(tl , . . . , tlL) = c$(j)(tl v ... v &),tl, . . . , t, E R+, and 

(8) d(f)(t) = f(t>a”--h(t) + (f, l[t.c~[~~Pk)L~(R+), t E R+, n 2 1. 
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For f E Cz (R+ ) we also have 

4(f)(t) = - 
J 

t 3o f’(s)a”-lp&)ds. 

LEMMA 2. - We have for f E C!: (R) and n 2 1 

V~ixf(T7?) =DS”tf(Tn-1) - ~s”tf(Tz> 

- l{~<t}l[T,-,,T,,(S v t)f’(s v q> a.s*> s> t E R+. 

Proof. - We have 

- l[T,-,,T,,](t)f’(t)), 
P-as. 

Proof of Prop. 7. - Since the adjoint of a ext_ends the stochastic integral, 
cf. [2], [6], we can apply Prop. 2 with U = D. Let us first assume that 
f E Ci(R+). We have 

Now, from Lemma 2, for n 2 2 and 0 5 tl < ... < t7,, 

hence 
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and we can show (8) by induction, for n 2 2: 

fD1, . . ..tn) = f,“I,‘(h ,..‘&-2,tn) - f:-l(tl ,...,tn-2,trJ, 

J 

cc 
=- f’(S)r2pk-l (s)ds + 

t* s 
y f’(s)an-2p~(s)ds 
n 

=- 
s 

t @’ f’(s)an-lp~(s)ds. 

The conclusion is” obtained by density of the Ccl functions in 
L2(R+,m(W), k 2 1. 

0 
We note the relation 

(9) 

(f>(t), t E R+, f E L2(R+,pdWt). 
We now prove that t7C3 + V- is identified to the operator 6 under the 

Poisson identification of @ and L2 (B). 

LEMMA 3. - On the Poisson space, Ve satisjies the relation 

(10) V,O(FG) = FV:‘G + GVfF - V,FV,G, t E R+, F, G E S. 

Note that Vs and V-- satisfy the same relation on Wiener space, cf. (2). 
Proof. - We need .the following multiplication formula for Poisson 

multiple stochastic integrals, known as the Kabanov formula: 

E2(f”“)&(g) = I,+l(fon og) + n(f,g)K-l(f”“-l) 

+n~((fd 0 fen-*), f,g E L4(R+>. 

We first show that 

vp(L(f”“)r;(g)) = K(f”“)V$&) + I;(g)V,‘ll;,(f”“) 

-V,&(g)V,l,(f”“), t E R+, 
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with f,g E C,‘(R+) and (f, f)L2C~+J = 1. We have 

- n(g[t> fh(R,) Tn-l(fo(n-l’) 

= -nln+1(fif 0 f”(n-l) 0 g) - I;l+l.(gj, 0 f”“) 

- n(n - l)Qfj, 0 (fg) 0 po(+) 

- &((gfr:) 0 f”‘“-l’) - n&((fg[J 0 j-O’“-1’) 

+ n.f(t)g(t)L (f”‘“-l’) 

- n(n - w, 9) L2(R+&-l(fjl o f”‘“-2’) 

= V~(z2+1(f0” 0 g) + n~(,(f”‘“-l’ 0 (fg)) 

+ n(f~ dP(R+) In-l(fo’“-” >> + Tf(MGL (f”‘“-l’) 

= V?(I,(f”“)&(.9)) + V,&(g)V,l;,(foR), f,g E Cc@+>. 

We now make use of (6) to prove the result on S by induction. Assume 
that (10) holds for F = z, (f”” ) and G = FI (g)k for some k 1 1. Then 
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- v;&(g)v;T~(g)“v;~(fO”) 

= &(g)“‘lv~Tn(fon) + Tn(fon)v~(&(g)“+l) 

- v,(&(9)“+‘)V,zt(fon), 

tER+. q 

PROPOSITION 8. - Under the Poisson probabilistic interpretation of @, 
z, = v@ + v-. 

Proof - From Lemma 3, we know that (V@ + V-) is a derivation 
operator. Thus it is sufficient to show that (V- + V@)f(Tk) = fif(Tk), 
k 2 1. We have from Prop. 7 

(V, + q%f(%) == (0, + v?> c &f3: nEN 
:= c IL-1 (f,“<., f)) n>l (n - v - 
- - n>l tn : ,yInh @ Id c @(n-l&p) 

where Id : L2 (R+ ) -+ L2(R+) denotes the identity operator. Now from 
(9)T 

fit+1 (6 t1, . * . ) tn) - nq 63 I~(n-lb&tl, . ..) tn> 
=CX l”,+df)(tl ‘1 *. . ” tn ” t> - l{t<tlv...vt,} (dxf’) 

+ Q$+l(f))(tl V f * . V tn) 

=Ly ~+l(f)lltl’\l...Vt,<t) - 4(f’)(tl V * * ’ V tn)l{tlV...Vt,>t} 

= c$(-$)(tl V ... V tn), n 2 1. 

NOW from Prop. 7, IYk(--S(t)(tl V . . . V tn) is precisely the n-th chaos 

term of the expansion of -lio,~kjf’(Tk), n E N. Hence V- + V@ = 5,. 
0 
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112 N. PRIVAULT 

Since both V+ and g coincide with the It6 integral on adapted processes, 
it follows from Prop. 8 that V@ vanishes on adpated processes. By duality 
this implies that the adapted projection of V@ is zero. 

PROPOSITION 9. - On the Poisson space, we have for f E CF (R+ ): 

Proof. - We have 

<(f) = rxp( - Jrn f(s)ds) J-J (1 + f(TkN, 
0 k>l 

hence 

x l-I (1 + f(Tk)). 
k>l 

As an application of this calculus, we obtain the following absolute 
continuity criterion for Poisson stochastic integrals. 

hOPOSITION 10. - Let f E L2(R+) such that so” tf’(t)2dt < 00 and 

lim J p&)dt = 0. 
n+cQ {f’dl} 

Then the law of~ooo f(t)d(Nt - t) is absolutely continuous with respect 
to the Lebesgue measure. 

This condition is satisfied in particular {f’ = 0) has finite Lebesgue 
measure. 
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Proof. - From the proof of Prop. 5, & (f) E &m(o). We have 

hence 

If the law of & (f) were not absolutely continuous, then according to 
the criterion of [l], (c:F. [7] for its Poisson space version), there would 
exist A E F such that P(A) > 0 and ]]~&(f)l]r2cR+, = 0, everywhere 
on A. The above calculation implies then that f’(Tk) = 0 on A, k 2 1. 
Hence T,,(A) c {f’ = 0}, n 2 1, and from (ll), 

I 

co 

lim 
n--*cc 0 1T,(A)(t)P&)dt = 0. 

This contradicts the fact that 

kr,(~,(t)~n(t)dt = P({w E fl : T,,(w) E Z,(A)}) 2 P(A) > 0, 

n>l. 0 
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