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98 N. PRIVAULT

1. Introduction

Let I'(H) = €B,,>o H®" denote the symmetric Fock space over the
Hilbert space H, where H°" consists of the space of symmetric tensors in
the tensor product H-", endowed with the norm || - {|%.. = n!|| - ||4en,
n € N. The annihilation operator V~ : I'(H) — I'(H) ® H is
defined by V™ f" = nfo"~l & f n € N, while the creation
operator V* : I'(H) ® H — T'(H) satisfies VT f" ® ¢ = f" o g,
n € N. Those operators are extended by polarization, linearity and
closability to their respective domains in I'(H) and I'(H) ® H. In case
H = L[*(Ry,), the two main probabilistic interpretations of I'(L?(R))
are the Wiener and Poisson interpretations, which are constructed by
identifying f, € L?(Ry)°" with its multiple stochastic integral with
respect to the Wiener or Poisson processes. It is well-known, cf. e.g. {4],
[5], that in these probabilistic interpretations the annihilation operator acts
on random variables by shifts of the Brownian, resp. Poisson trajectories.
On the other hand, on the Poisson space, trajectories can be perturbed
by time changes, and this yields another construction of the stochastic
calculus of variations, cf. [2], [6]. The purpose of this paper is first to
determine the action on Fock space of perturbations by time changes of
the Poisson process. It turns out that the corresponding operator can be
written as V' + V7, where V- has a relatively simple description on
Fock space. Since V - is expressed on the Fock space, it is a natural
question to ask about its action on Wiener space. The results obtained are
summarized in the table below.

Type of perturbation and properties Wiener case Poisson case
Shifts of trajectories Operator on Fock space v v
Absolute continuity a.c. not a.c.
Operator on Fock space | v'» 4 Ly—-v~— AVARINTE v
Time changes — i
Absolute continuity not a.c. a.c.

In this table some information has been added concerning the absolute
continuity of the considered transformations with respect to the Wiener and
Poisson probability measures. Transformations by deterministic shifts of
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A CALCULUS ON FOCK SPACE AND ITS PROBABILISTIC INTERPRETATIONS 99

trajectories are absolutely continuous with respect to the Wiener measure
(from the Cameron-Martin theorem), but not with respect to the Poisson
measure, since the standard Poisson process has fixed height jumps. On
the other hand, the action of deterministic time changes on trajectories
is absolutely continuous, with respect to the Poisson measure (from the
Girsanov theorem on Poisson space), but not with respect to the Wiener
measure since a time changed Brownian motion does not have the standard
quadratic variation. Consequently some smoothness has to be imposed on
Wiener and Poisson functionals in order to perturb them by time changes,
in particular they need to be defined everywhere, and on Fock space this
corresponds to the assumption that the considered functionals have finite
developments with smoath kernels. The operators obtained in this way can
be extended by closability. The calculus introduced in this paper differs
from the chaotic calculus of [6] which uses the polynomials of Laguerre
instead of Hermite and can not be based on the Fock space.

This paper is organized as follows. In Sect. 2, definitions and preliminary
results are stated. In Sect. 3 we define the operators V"' and V' and show
that they give a non-commutative decomposition of the number operator
on Fock space. Sect. 4 is devoted to the Wiener space interpretation of
V. In Sect. 5, we obtain the Poisson probabilistic interpretation of our
calculus from the explicit chaotic expansions of functionals of the Poisson
process jump times. Part of the results of this paper have been announced
in [8]. In the Poisson space case a different approach to this calculus
can be found in [3].

2. Preliminaries and notation

For A € B(Ry), let 74 : L2 (R4+) — L?(R) denote the projection
operator defined by 7.f = 14f, f € L*(Ry). Let also T = Mog
7['[1 = 7r[t,oo[’ and f[t == 7T[tf, ft] = 7rt]f, t e R+, f € L2(R+) The
exponential vector £(f), f € L2(R.), or Wick exponential, is defined as

. 1 on
(=3 ="
neN
The vector space generated by exponential vectors £(f) with f €

Cl(Ry) is denoted by =. We denote by ® the Fock space I'(L%(R..)) on
L*(R.), and call S the set of elements of & which are in a finite number
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100 N. PRIVAULT

of chaos and whose developments involve only functions which are C!
with compact supports. We let I'(U) : & — @, densely defined on S as

r'u) = ®n20 U,

denote the second quantization of any operator U : L?(R;) — L?(R4)
defined on C} (R4.). We say that F € & is F4-measurable if I'(74)F = F,
A € B(Ry), and let S([a,b]), 0 < a < b, denote the elements of S that
are F, p-measurable. All operators considered in this work are densely
defined on S|JZ and closable. We denote by (-, -) the scalar product
on &.

DeriNITION 1. — The adjoint U* : & @ L*(R4) — & of an operator
U:®— &® L*(Ry.) is said to be an extension of the stochastic integral
fT(mg)Us = T(r)V;, 0 < s < t,t € Ry,

The space of square-integrable adapted processes is defined to be the
completion in ® ® L?(R,) of the set of simple adapted processes of
the form

k=n-—1
Z El[tiati-f-l[’ F; e S([O, ti]), i=1,..,n,t1 <...<t,,neN.
k=1

For G € 5([0,a]), we have

(U (1ayG), F) = /0 10()(G, U, F)ds
:/ l[aqb](s)(G, VS F)ds = (V+(l[a’b]G),F), Fes.
0

Hence U™ is an extension of the stochastic integral if and only if
U* and V' coincide on the square-integrable adapted processes. If the
Fock space is identified to the L2-space of a stochastic process (¥:)icRr .
with stationary independent increments, such as the Wiener and Poisson
processes considered below, then the above property means that U*
coincides with the stochastic integral with respect to (Y3);cr, on the
square-integrable adapted processes. The following result shows that the
Clark formula can be stated in general using the adjoint of an extension of
the stochastic integral. It can be proved using the same argument as in [6].
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A CALCULUS ON FOCK SPACE AND ITS PROBABILISTIC INTERPRETATIONS 101

ProposiTiON 1. — If U* is an extension of the stochastic integral on Fock
space, then the application F — (U(m)UsF)ser, is continuous from ®
to ® ® L*(R4), and any F € ® can be represented as

F=(F1)+ U*(I‘(vr_])U.F).
As a consequence, the formula of [9] can be extended as follows.

ProposITION 2. — If U : ® — ® ® L*(R.) is the adjoint of an extension
of the stochastic integral and

7 e () Dom((V7)"U),
neN
then the chaotic development of F can be written as

(1) F=(F,1)+ Y s(a,,((V)"UF1)),
neN

where Apy1 = {(t1,...,tn41) € Ri"‘l st < oo < tpg1) and s(fr),
fa € L2(R4)®™, denotes the symmetrization of f, in n variables.

3. A non-commutative decomposition of the number operator

In this section we define the operators V= and V¥ and remark that
their sum gives the number operator. Some connections between V=, V7,
the number operator and the non-commutative stochastic calculus have

been studied in [8]. Let ;)1, h € L*(Ry), denote the function defined as

o t

h(t) = / h(s)ds, and let f'(t) = L f(t), t € Ry, f € CL(Ry). Let U
0

denote the set of elements of & ® L?(R..) of the form Z;;’ F, ® h;, with
hi,.hn € CX(R4), and F,...,Fr € S, n € N.

DEFINITION 2. — We define the linear operators V< : ® — & @ L*(R)
onS and V¥ : & @ L*(Ry) — ® on U by

vn{a on _ ¢l o{n—1) d v@ on ) = LY, o({n—1)
PPt = —nfhof and VE(f @ h) =n(fh) o fO7,

fih € CHR4), n € N, t € Ry, and by linearity and polarization of
these expressions.
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102 N. PRIVAULT

We note that for f, € C}(R) symmetric, V; f, can be defined as the
symmetrization in n variables of
i=n

=) Lo ()i fu (b, - ).
=1

ProposITION 3. ~ Both V=, V¥ are closable, and V¥ : ®QL*(Ry) — @
is adjoint of V° : & — ® ® L*(Ry).
Proof. — By polarization, we need to prove the following.

- x
(Viﬁfonhgon ® h)@:})L‘Z(RJr) = _n/o (f[,t o fo(n~1),gon)L2(R+)on h(t)dt
o0 oo
= —n2(£D ) e [ hO) [ 7 gl dsde
t
. X o
— —nz(fo(n_l),go(ll—1>)L2(R+)0(n—l) /0 f/(t)g(t) h (t)dt

= n? (2D g R et A F(t)(hg) (t)dt
= (f°n7 V%(gon ® h)>7 fvg’ h e CI}(R+)7

hence the relation (V' F,u)g5r2(r,) = (F, V¥ (u)), F € S, u € U. The
closability of V= and V' follows from this relation and from the density
of S and Y. d

For h € L?(Ry), let af denote the number operator defined by linearity
and polarization as

ay fo" =n(fh)o fo"71 fecClRy), neN,

and let a},a} be defined as

ay, £ = (VI " W) a(r, ), a;, = VE(f"®h), n€N,f,ge L*(Ry).

ProposiTion 4. — The above definitions give a non-commutative
decomposition of a;, into the sum of a gradient operator and its adjoint:

a) = a; +a’, heLl*(Ry)
Proof. — We have (V533f°",h)L2(R+) + V@(fon ® h) = nfo(n—l) o
(fh) = a3 f°", n € N, f € C}(Ry).
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A CALCULUS ON FOCK SPACE AND ITS PROBABILISTIC INTERPRETATIONS 103

PROPOSITION 5. — The exponential vector Ef), fe LARy)N L4(R+)
is in the domain of V< if [°tf'( (t)%dt < oo. In this case, VFE(t) =

—fy 0 &(f), and
2 1 2 o Y
IVE€NNscr2m,) = ( §||J’||L4(R+)+/0 tf(t) dt) exp((f, flr2(r.)):

Proof. — We have
) s [* 1))2
”v‘ﬁf0n||L2(R+ yon@L2(R,) = /O “f[t o fO(n )||L2(R+)°ndt

= 0= DL D, [ 76 s
+n*(n = 1)(n = DA, Nixk,) /0 (/t f’(S)f(S)dS)Zdt
=, 1770 [ e£ @R+ o= 0t 0 [ o

0
and

Vo€ = 3 S D ([ 0P+ 25

n>1

= (%(f’ f)Lz(R+) + /0 tf,(t)zdt) exp((/, f)Lz(R+))‘ U

4. Wiener space interpretation

Let (W, L?(R.), 1) denote the classical Wiener space, with Brownian
motion (Bt)t€R+ Multiple stochastic integrals are defined as

fn)—n'/ / fn t],...,tn)dBtl...dBtn,

fn € L*(R4)°". These mtegrals provide an isometric isomorphism
between L*(W, ) and &, since

E[jn(fn)jm(gm)] = 1{n=m}(fn,gm)L2(R+)°"a
fo € D*(Ry)", gm € LX(Ry)™.
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104 N. PRIVAULT

This identification will be assumed throughout this section. We are
interested here in the properties of V= in the Wiener interpretation of ®.
We recall that V™ is identified to a derivation operator which satisfies

F(B. +e¢ f;h(s)ds) — F

, FeS, he L} (Ry),

(VT Eh)2r,) = lin
cf. e.g. [4], [10] and the references therein.

LemMA 1. — On the Wiener space, V“ satisfies the relation

(2) VZ(FG)=FV;G+GVyF-V;FV;G, te Ry, F,GeS.

Proof. — We are using the multiplication formula for the Wiener multiple
integrals:

L™ (9) = Loa (£ 0 9) + £, 9) 2, Tn-1 ("7,
f,ge L}(Ry), neN.

We first show that

VeIV (g)) = VE (Tag1(F°" 0 9) + n(f, 9) Tna (£°"71))
= —Iny1(gy 0 /o) = nhuy1(flyogo For
—n(n = 1)(f,9)rar.yIn-1(ffy 0 £°7%)
= —nfn+1(f['t o fo"=V 6 g} — n(g, f[’t)LZ(R+)fn—1(f°("‘l))
- An+1(f°" © !th)
—n(n = 1)(f,9)rar, ) In-1(F7"72 0 fi)
- n(f, gft)m(m)fn—l(fc’("_l))
+ "(f[ltaQ)LZ(R+)jn—l(fo(n—1))
+ "(gfﬁf)Lz(R+)fn—1(f°("_l>)
= —nly(ffy o ") i(g) = In(F°") (g},)
—nf()g(t) a1 (207
= (@ Vi Ln(f") + Ln(£°") Vi fi(g) — Vi Ii(g) Vi T ("),
t € Ry.
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A CALCULUS ON FOCK SPACE AND ITS PROBABILISTIC INTERPRETATIONS 105

Using the fact that on Wiener space V™ is a derivation, we can now
work by induction to show that the formula holds for functionals that are
polynomials in Wiener multiple stochastic integrals. Assume that for some
k>1 and t € Ry,

Vi (I (f) (), = Ln(fM)VE (T1(9)*) + hi(9)* Vi Tn(Fo)
_vt_fn(fo")v;(jl(g)k)'

Then

Ve Un (£ R (9

= () Ve (I (") T (9)%) + Ln(£°")1(9)¥ V5 Ti(g)
— Vi h(g)Vy (Li(g)* In(f°"))

= hi(g)(I1(9)* VP L (£°") + L (£°™)VE (F1(9)")
= V7 (h(9)")Vy L(fom))
+ L(f")11(9)* Vi Ti(g) - Vi Li(g) (h(g) Vi Ln(f°™)
+ L (f")V; (11(9)"))

= h(@FIVEL (") + L () VE (T (g)+)
= Vi (" vy Lu(Fom),

t€R+. O

For h € L*(R4.), with Supger, [A(7)| < 1, let vp(t) =t + fg h(s)ds,
t € Ry.

DEFINITION 3. — We define a mapping T, : W — W, t,e € Ry, as

3) Th(w) =wov, ', heL*(Ry), sup |h(z)| <1.
TER+

The transformation 7, acts on the trajectory of (B),cg, by change of
time. Although 7}, is not absolutely continuous with respect to the Wiener
measure, the functional F o 7}, is well-defined for F € S, since elements
of S are defined trajectory by trajectory.
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106 N. PRIVAULT

PROPOSITION 6. — We have for F' € S, under the Wiener identification of ®:
*° S | 1
/ h(t)(V?’%——iV;V;)th:—lin(l]g(FoTeh - F).
0 £=

Proof. — We first notice that as a consequence of Lemma 1, the
operator V + %Vt' V; is a derivation operator on S, t € R;. Moreover,
T.; is multiplicative, hence we only need to treat the particular case of
F = L(f). We have

~

B(f) o Tn - Bi(f) = /0 " ()aBW3 () - h(f)
= [ e, - [ s,

_ /0°° (f(t+e/0t h(s)ds) —f(t))dB,.

After division by € > 0, this converges in L2(W, 1) as ¢ — 0 to

/Ooc £(t) /Ot h(s)dsdB, :/Ooo ht) /t°° F/(s)dBadt
= [ wovihna

- /0oo h(t) (v;f + %v;v;)fl(f)dt. 0

5. Poisson space interpretation

Before dealing with the Poisson interpretation of V=, we will need to
compute the explicit chaotic decqmgosition of functionals of the Poisson
process jump times. Let T3 = 220-1 7i, k > 1, denote the sequence of
jump times of a standard Poisson process (Nt ),cg, on a probability space
(Q, F,P). The Poisson multiple stochastic integral of h, € L?(R)°",

space of symmetric square-integrable functions on R"”, can be written as

) . -
j'n(h'n) = n!/ /" /2 hn(tl,...,tn)d(Ntl —tl)-“d(Ntn —tn).
0 0 0

TOME 123 — 1999 — N° 2



A CALCULUS ON FOCK SPACE AND ITS PROBABILISTIC INTERPRETATIONS 107

As on the Wiener space, we have the isometry

(fn(.fn)yfm(gm))L?(B) = l{nzm}(.fnagm)L2(R+)om fn S L2(R+)on’

which provides an isometric isomorphism between L?(B) and ®. This
identification will be used in the remaining of this paper. From [5], the
operator V~ satisfies

(5)  ViF =F(N. + 1) - F(N), as,t€Ry, FES,

hence

6) V(FG)=F7 G+GV F+V~GV~G, F,GES.

There exists a different approach to the calculus of variations on
Poisson space, cf. [2], [6], which consists in defining a closable operator
D : L*(B) — L*(B) & L*(R4) by time changes:

~ FoTyp-F
(DF,h)paqm,) = = lim ——2——

e—0

, he L*(Ry),

where the transformation 7, is defined as in (3), by application of a time
change to the Poisson process trajectories. This is equivalent to

k=n

™ DF == 8 f(Th,....Tu)lpx,), Fe€S,
k=0

for F = f(T1,...,T). The following proposition extends to functionals
of jump times the result of [6] which was only proved for jump times.

ProposITION 7. — For | > 1, the chaotic development of f(T},) is given as

£(T) = BT+ 3 a7,

n>1
where f¥(t1,... ta) = X ()t V- Vin),t1,...,tn € Ry, and

®) ax(£)(t) = £ o)+ (f, r.oo[O"PE) 12(R, ) £ € Ry, 12 1.

BULLETIN DES SCIENCES MATHEMATIQUES



108 N. PRIVAULT
For f € C}(R,) we also have
A(N® == [ F©o ns)is
¢

LemMMA 2. — We have for f € CX(R) and n > 1

Vi Ds f(Tn) =Dgve f(Tu—1) — Dove f(Ty)

— 1{s<t}1[Tn_1,Tn](3 \ t)fl(s Vt), a.s., s,t€Ry.

Proof. — We have

ViDsf(To) = =11, ()1, _ () (Ta=1) = 1o 1,1(8) ' (T))
=Yz, 1) (g () (t) = Lo1,1(8) f (Tn))
= Lrco) Lz () (Tn) — Yo7, _ ) (8)f (Tu-1),)
+ Lsett (Lo ) (O (T) = 1.1,y (8)F (Ta1)

— iz, _, 1 (O F (1),

P-a.s.

Proof of Prop. 7. — Since the adjoint of D extends the stochastic integral,
cf. [2], [6], we can apply Prop. 2 with U = D. Let us first assume that
f € CH(R,). We have

7O = BB A(B)) = ~Plipra 7 @) = - [~ mo)f (s
Now, from Lemma 2, forn > 2 and 0 < {1 < --- < tp,

ViV Do f(Te) = Vi, - Vi (De, f(Tim1) = Dr, f(Ti)),

hence

R, t) = it tn) = (b, ),
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A CALCULUS ON FOCK SPACE AND ITS PROBABILISTIC INTERPRETATIONS 109

and we can show (8) by induction, for n > 2:

fr,f(tlv 7tn) = fl::ll(tla "',tn—2atn) - fT’f—l(tl, "'7tn—2atn)7

= tm f'(s)(?""zpk_l(s)ds + /too f'(s)an_2pk(s)ds

=— too £(5)0" 1pr(s)ds.

The conclusion is obtained by density of the C} functions in
LA(Ry,pe(t)dt), k > 1.
a
We note the relation

&)

ZaE(A)(0) = (7)) + e ()0, € Ry, f € IRy, pe(t)a).

We now prove that V© + V™ is identified to the operator D under the
Poisson identification of & and L?(B).

LemMMA 3. — On the Poisson space, V© satisfies the relation

(10) V?(FG) = FV?G+ GV?F -V FV,;G, teRy, F,GES.
Note that V© and V™ satisfy the same relation on Wiener space, cf. (2).

Proof. — We need the following multiplication formula for Poisson
multiple stochastic integrals, known as the Kabanov formula:

L(f™)(g) = 41 (f*" 0 g) + n(f, ) Tna (1)

+nL((fg) o 1), f,9 € L*(Ry).

We first show that
Ve (In(£°0(9)) = L(f")VEL(g) + Li(g)VE T (f°)

-V L)V L(f"), t € Ry,
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110 N. PRIVAULT

with f,g € C:(Ry) and (f, f)r2(r,) = 1. We have

L(f°")VE h(g) + L) VE Tn(fom)

= —nli(9)In(f, o 2" 7V) = L(f°" )1 (g},)

= —n(Lo1(fp 0 f7 Vo g) + (n — DIa((fg) o fy 0 f0'72)
+ L((9ff) o 2 D) + (£ ) L2y Tna (£
+(n- 1)(f79)L2(R+)f"—1(f[lt o for=2)y)
= Loqa(gfy 0 £°) = nLa((gf f) o £2 1))
—n(gfy, oy Tn1 (F071)

= —nlop1(fp o 2"V 0 9) = Luwa(gjs 0 ")
—n(n = DL(ff o (fg) o f"~)
—nL((gff) o £"7V) = nL((fg},) 0 £ 1)
+nf(O)g(t) Tn—r (f21)
—n(n - 1)(/, Q)Lz(RJr)fn—l(f[lt o fon %)

= V7 (L1 (£ 0 9) + nn (2D 0 (£9))
+ (£, 9) rar, T (P 70)) + nf (£)g(8)Tna (£ 1)

= V(L) N(9) + Vi Ti(9) Vi L(F°"), f.9 € CH(Ry).

We now make use of (6) to prove the result on S by induction. Assume
that (10) holds for F' = In(f°") and G = Il(g) for some k > 1. Then

VeI (fo ) (g) )
= L1(g) V¥ (In () 11(9)) + L (£ (9)* Vi T (9)
- V; I(g) Vi (h(9)* L (f°™))
= L(g)(h(g)* Vi In (") + L(f")VE (I (9)")
~ Vi (L)) VT L (f°m))
+ L(f*"(9)* Vi Ti(g) — Vi hi(9)(Ta(9)* Vi L(f°")
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A CALCULUS ON FOCK SPACE AND ITS PROBABILISTIC INTERPRETATIONS 111

+ L(f°")V; (T(9)"))
— Vi Lg)Vi Ii(g) Vi L(f°™)
= ()" VEL(F°") + L(f°")VE (I (9)* )
~ Vi (h(g)"*MVr L(fom),
teRy. O

_Prorosition 8. — Under the Poisson probabilistic interpretation of @,
D =Ve+V.

Proof. — From Lemma 3, we know that (V% + V™) is a derivation
operator. Thus it is sufficient to show that (V™ + V°)f(T}) = Df(Ty),
k > 1. We have from Prop. 7

(Vi + VEV(T) = (V7 +97) D — —I (5,
nGN

--Z In 1(fR (1)
Z 1)!I"("lt®fd ;"o gk

= Z mIn(f:fH(',t) - ® I(?(n—l)alf,’f),

neN

where I; : L*(Ry) — L?(Ry) denotes the identity operator. Now from
)

fvl’f+l(t’t1» sy tn) - nﬂ-[t ® Isz)(n_l)alf:zc(tla 7tn)
=ak (V.. Vi, Vi) - Litct,vove,) (b (£
+ (N0 V... Vi)

= ap 1 ()t vevencey — 08 (I BV - Vi) g vy, >t}
=ab(~f)t1 V- Vin), n>l.

Now from Prop. 7, oeﬁ(-—f['t)(tl V... Vt,) is precisely the n-th chaos
term of the expansion of —1jg 1,1 f'(T%), » € N. Hence V™~ + V® = D.
O

BULLETIN DES SCIENCES MATHEMATIQUES



112 N. PRIVAULT

Since both V+ and 8 coincide with the It integral on adapted processes,
it follows from Prop. 8 that V¥ vanishes on adpated processes. By duality
this implies that the adapted projection of V© is zero.

PROPOSITION 9. — On the Poisson space, we have for f € C}(R4):

Be) = ([ LSS e Jes), reRe

Proof. — We have

—exp( [ )k>l(1+f(Tk)>,

hence

Be(s) =—exp( [ s ) S 1oz /(T [ (0 + (T
i>1 kfi

—_:—exp(—/0 f(s)ds)[ 1{f(s)¢_1}£—(}i()—s—)st
x [] a+ f(m))-

k>1

O

As an application of this calculus, we obtain the following absolute
continuity criterion for Poisson stochastic integrals.

ProposrioN 10. — Let f € L*(Ry) such that [;° tf/(t)%dt < oo and

(11) lim pn(t)dt =
Then the law of [~ f(t)d(Nt — t) is absolutely continuous with respect

to the Lebesgue measure.

This condition is satisfied in particular {f' = 0} has finite Lebesgue
measure.
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Proof. — From the proof of Prop. 5, I;(f) € Dom(f)). We have

(DeLi(f <Z Lo, () ' (Ti) > (Z 4T, T (8 Z (T )

i=k+1
2
zzllTk,THl](t)( > f/(Ti)> , te€R4,
k=0 i=k41
hence
IDL(F)E2m, Z ( f’(ﬂ)) .

k=0 i=k+1

If the law of I;(f) were not absolutely continuous, then according to
the criterion of [1], (cf. [7] for its Poisgog space version), there would
exist A € F such that P(A) > 0 and ||DL1(f)||z2(r,) = 0, everywhere
on A. The above calculation implies then that f'(T;) = 0 on A, k¥ > 1.
Hence T,,(A) C {f' = 0}, n > 1, and from (11),

o9}
lim /0 lTn(A)(t)pn(t)dt =0.

n—+o0

This contradicts the fact that

/0°°1Tn( (B)pn(t)dt = P({w € Q : Tu(w) € Tu(A)}) > P(A) > 0,
n>1. 0O
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