
Appears in "Proceedings of the First Symposium on Operating Systems Design and Implementation," Usenix Association, November 1994.

A Caching Model of
Operating System Kernel Functionality

David R. Cheriton and Kenneth J. Duda
Computer Science Department

Stanford University
Stanford, CA 94025

cheriton,kjd @cs.stanford.edu

Abstract

Operating system research has endeavored to develop
micro-kernels that provide modularity, reliability and se-
curity improvements over conventional monolithic kernels.
However, the resulting kernels have been slower, larger
and more error-prone than desired. These efforts have also
failed to provide sufficient application control of resource
management required by sophisticated applications.

This paper describes a caching model of operating sys-
tem functionality as implemented in the Cache Kernel, the
supervisor-mode component of the V++ operating system.
The Cache Kernel caches operating system objects such as
threads and address spaces just as conventional hardware
caches memory data. User-mode application kernels han-
dle the loading and writeback of these objects, implement-
ing application-specific management policies and mecha-
nisms. Experience with implementing the Cache Kernel
and measurements of its performance on a multiprocessor
suggest that the caching model can provide competitive per-
formance with conventional monolithic operating systems,
yet provides application-level control of system resources,
better modularity, better scalability, smaller size and a basis
for fault containment.

1 Introduction

Micro-kernels to date have not provided compelling advan-
tages over the conventional monolithic operating system
kernel for several reasons.

First, micro-kernels are larger than desired because of the
complications of a modern virtual memory system (such
as the copy-on-write facility), the need to support many
different hardware devices, and complex optimizations in
communication facilities, all of which have been handled
inside most micro-kernels. Moreover, performance prob-
lems have tended to force services originally implemented
on top of a micro-kernel back into the kernel, increasing its
size. For example, the Mach inter-machine network server
has been added back into some versions of Mach for this

reason.

Second, micro-kernels do not support domain-specific
resource allocation policies any better than monolithic ker-
nels, an increasingly important issue with sophisticated
applications and application systems. For example, the
standard page-replacement policies of UNIX-like operat-
ing systems perform poorly for applications with random
or sequential access [17]. Placement of conventional oper-
ating system kernel services in a micro-kernel-based server
does not generally give the applications any more con-
trol because the server is a fixed protected system service.
Adding a variety of resource management policies to the
micro-kernel fails to achieve the efficiency that application-
specific knowledge allows and increases the kernel size and
complexity.

Finally, micro-kernels are bloated with exception-
handling mechanisms for the failure and unusual cases that
can arise with the hardware and with other server and ap-
plication modules. For example, the potential page-in ex-
ception conditions with external pagers introduces compli-
cations into Mach.

In this paper, we present an alternative approach to ker-
nel design based on a caching model, as realized in the
V++ Cache Kernel. The V++ Cache Kernel caches the
active objects associated with the basic operating system
facilities, namely the address spaces and threads associated
with virtual memory, scheduling and IPC. In contrast to
conventional micro-kernel design, it does not fully imple-
ment all the functionality associated with address spaces
and threads. Instead, it relies on higher-level application
kernels to provide the management functions required for a
complete implementation, including the loading and write-
back of these objects to and from the Cache Kernel. For
example, on a page fault, the application kernel associated
with the faulting thread loads a new page mapping descrip-
tor into the Cache Kernel as part of a cached address space
object. This new descriptor may cause another page map-
ping descriptor to be written back to another application
kernel to make space for the new descriptor. Because the
application kernel selects the physical page frame to use, it

Cache Kernel

Application 1 Application 2

Application kernel
 (UNIX emulator or
 simulation kernel or
 database kernel or ...)user

mode

supervisor
mode

Figure 1: Overall System Architecture in V++

fully controls physical page selection, the page replacement
policy and paging I/O.

The following sections argue that this caching model
reduces supervisor-level complexity, provides application
control of resource management and provides application
control over exception conditions and recovery, addressing
the problems with micro-kernel designs to date (including
a micro-kernel that we developed previously [4]).

The next section describes the Cache Kernel program-
ming interface, illustrating its use by describing how an
emulator application kernel would use this interface to im-
plement standard UNIX-like services. Section 3 describes
how sophisticated applications can use this interface di-
rectly by executing as part of their own application ker-
nel. Section 3 describes how resources are allocated among
competing applications. Section 4 describes our Cache
Kernel implementation, and Section 5 describes its perfor-
mance, which appears to provide competitive performance
with conventional monolithic kernels. Section 6 describes
previous research we see as relevant to this work. We close
with a summary of the work, our conclusions and some
indication of future directions.

2 The Cache Kernel Interface

In a Cache-Kernel-based system, one or more application
kernels execute in user mode on top of the supervisor-mode
Cache Kernel, as illustrated in Figure 1. Applications ex-
ecute on top of the application kernel, either in separate
address spaces or the same address space as the application
kernel. For example, application 1 and 2 in the figure may
be executing on top of, but in separate address spaces from,
a UNIX kernel emulator.

The Cache Kernel acts as a cache for three types of oper-
ating system objects: address spaces, threads and kernels.
It holds the descriptors for the active subset of these objects,
executing the performance-critical actions on these objects.
The rest of the service functionality typical in a modern
operating system (e.g., virtual memory and scheduling) is
implemented in application kernels. The application ker-

nel also provides backing store for the object state when it
is unloaded from the Cache Kernel, just as data in a con-
ventional cache has a backing memory area. For example,
each application kernel maintains a descriptor for each of
its threads, loads a thread descriptor into the Cache Kernel
to make the thread a candidate for execution, and saves the
updated state of that thread when the thread is written back
to it.

The primary interface to the Cache Kernel consists of
operations to load and unload these objects, signals from the
Cache Kernel to application kernels that a particular object
is missing, and writeback communication to the application
kernel when an object is displaced from the Cache Kernel
by the loading of another object.

Each loaded object is identified by an object identifier,
returned when the object is loaded. This identifier is used
to specify the object when another object is loaded that
depends on it. For example, when a thread is loaded, its
address space is specified by the identifier returned from
the Cache Kernel when the corresponding address space
object was loaded. If this identifier fails to identify a valid
address space, such as can arise if the address space object
is written back concurrently with the thread being loaded,
the thread load operation fails, and the application kernel
retries the thread load after reloading the address space ob-
ject. Application kernels do not use the Cache Kernel object
identifiers except across this interface because a new identi-
fier is assigned each time an object is loaded. For example,
the UNIX emulator provides a “stable” UNIX-like process
identifier that is independent of the Cache Kernel address
space and thread identifiers which may change several times
over the lifetime of the UNIX process.

A small number of objects can also be locked in the Cache
Kernel, protected from writeback. Locked objects are used
to ensure that the application page fault handlers, schedulers
and trap handlers execute and do not themselves incur page
faults.

The following subsections describe this interface in more
detail, illustrating its use by describing how an emulator
application kernel would use this interface to implement
UNIX-like operating system kernel services.

2.1 Address Space Objects

The Cache Kernel caches an address space object for each
active address space. The address space state is stored as a
root object and a collection of per-page virtual-to-physical
memory mappings. The page mappings, one per mapped
page, specify some access flags, a virtual address and the
corresponding physical address.

An address space object is loaded by its application ker-
nel with minimal state (currently, just the lock bit), return-
ing a Cache Kernel identifier for the address space object.
This identifier is used to specify this object for unloads,
references and various query/modify operations. As an il-
lustration of use, the UNIX emulation kernel executes a new

process by loading an address space object into the Cache
Kernel for the new process to run in and a new thread de-
scriptor to execute this program. Its own data structures
for the process record the Cache Kernel identifiers for the
address space and thread objects as well as management in-
formation associated with the process, such as the bindings
of virtual addresses to the program’s code and data, which
are typically contained in a file. The emulator may then
explicitly load some per-page memory mappings for the
new process or simply load them on demand, as described
below.

When a new address space object is loaded, the Cache
Kernel may write back another address space object to make
space available for the new object. Before an address space
object is written back, all the page mappings in the address
space and all the associated threads are written back. For
example, in response to address space writeback, the UNIX
emulator (application kernel) marks the corresponding ad-
dress space object as “unloaded,” indicating that it must be
loaded before the process it contains can be run again.

The page mappings associated with an address space ob-
ject are normally loaded on demand in response to page
faults. When a thread accesses a virtual address for which
no mapping is cached, the Cache Kernel delivers a map-
ping fault to the kernel that owns the address space (and
thread(s) contained therein), following the steps illustrated
in Figure 2. In step 1, the hardware traps to the Cache Ker-

User

Application
Kernel

Cache
Kernel

Page Fault Handler

User-level code that incurs a page fault

Access
Error

Handler

Load Mapping
and Resume

1

2 4

6

5

3

Figure 2: Page Fault Handling

nel access error handler. The handler stores the state of the
faulting thread in its thread descriptor, switches the thread’s
address space to the thread’s application kernel’s address
space, switches the thread’s stack pointer to an exception
stack provided by the application kernel, and switches the
program counter to the address of the application kernel’s

page fault handler, which is specified as an attribute of the
kernel object corresponding to the application kernel. In
step 2, the access error handler causes the thread to start
executing the application-kernel-level page fault handler.
The faulting address and the form of access (read or write)
are communicated as parameters to the page fault handler.
In step 3, the application kernel page fault handler navi-
gates its virtual memory data structures, possibly locating
a free page frame and reading the page from backing store.
It constructs a page mapping descriptor and loads it into
the Cache Kernel in step 4. (Alternatively, it may send a
UNIX-style SEGV signal to the process. In this latter case,
it resumes the thread at the address corresponding to the
user-specified UNIX signal handler.) The loading of a new
page descriptor may cause another page descriptor to be
written back to the associated application kernel in order
to make space for the new descriptor, the same as previ-
ously described for address space descriptors. In step 5,
the faulting thread informs the Cache Kernel that exception
processing is complete. The Cache Kernel then restores the
stack pointer, program counter, and a few other registers,
and resumes the thread in step 6. As an optimization, there
is a special Cache Kernel call that both loads a new map-
ping and returns from the exception handler. To provide
protection, the physical address and the access that the ap-
plication kernel can specify in a new mapping are restricted
by its authorized access to physical memory, as recorded in
its corresponding kernel object loaded in the Cache Kernel.

Other exceptions are forwarded to the application kernel
by the samemecahnism. In particular, exceptions arise from
writing to a read-only page (protection fault), attempting to
execute a privileged-mode instruction (privilege violation),
and accessing a main-memory cache line that is held on a
remote node (consistency fault)1. The application kernel
has complete control of the faulting thread while handling
the fault, just as a conventional operating system would.
This approach allows the application kernel to handle these
exceptions without complicating the Cache Kernel.

A page mapping is written back to the managing appli-
cation kernel in response to an explicit request, such as
when a page frame is reclaimed, as well as in response
to another mapping being loaded. The writeback provides
current state bits associated with the mapping including the
“referenced” and “modified” bits. The application kernel
uses this writeback information to update its records about
the state of this page in the address space. In particular, it
uses the “modified” bit to know whether the page contents
need to be written to backing store before the page frame
is reused. The page faulting and writeback mechanisms
allow the Cache Kernel to cache only the active set of map-
pings, relying on the application kernel to store the other
mappings.

1The consistency fault mechanism is used to implement a consistency
protocol on a cache-line basis for distributed shared memory, providing a
finer-grain consistency unit than pages. A consistency trap also occurs if
a reference is made to a memory module that has failed.

The application kernel can explicitly unload inactive
mappings, reducing the replacement interference on active
mappings. For instance, the UNIX emulator may unload
an address space descriptor (and thus all its page mappings)
when the process is swapped to disk and no longer execut-
ing. In expected use, the Cache Kernel provides enough
address space descriptors so that replacement interference
in the Cache Kernel is primarily on the page mappings, not
address space objects.

Page mappings are identified by address space and vir-
tual address or virtual address range. This identification is
adequate for mappings and avoids the space overhead of the
general object identification scheme, which would require
a separate field per page mapping descriptor. The size of
page mapping descriptor is minimized because space for
these descriptors dominates the space requirements for the
Cache Kernel (see Section 5).

2.2 Interprocess Communication

All interprocess and device communication is provided in
the caching model by implementing it as an extension of
the virtual memory system using memory-based messag-
ing [7]. With memory-based messaging, threads commu-
nicate through the memory system by mapping a shared
region of physical memory into the sender and receiver ad-
dress spaces, as illustrated in Figure 3. The sending thread

Shared
Physical
Segment

Sender Address Space

Message
Region

Receiver Address Space

Message
Region

Receiver Address Space

Message
Region

signal

signal

si
gn

al

Figure 3: Memory-based Messaging

writes a message into this region and then delivers the ad-
dress of the new message to the receiving threads as an
address-valued signal. That is, the virtual address corre-
sponding to the location of the new message is passed to
the receiving threads’ signal function, translated from the
virtual address of the sending thread (using the normal in-
verted page table support). On receiving the address-valued
signal, the receiving thread reads the message at the des-
ignated location in the virtual memory region. While the

thread is running in its signal function, additional signals
are queued within the Cache Kernel.

To support memory-based messaging, the page mappings
described in the previous section are extended to optionally
specify a signal thread and also to specify that the page
is in message mode. An application kernel interested in
receiving signals for a given page specifies a signal thread
in the mapping for the page. The signaling uses the same
mapping data structures as the rest of the virtual memory
system. This extension is simpler than the separate messag-
ing mechanism for interprocess communication that arises
with other micro-kernels. Also, the Cache Kernel is only in-
volved in communication setup. The performance-critical
data transfer aspect of interprocess communication is per-
formed directly through the memory system. Moreover,
with suitable hardware support, there is no software inter-
vention even for signal delivery2. Thus, communication
performance is limited primarily by the raw performance
of the memory system, not the software overhead of copy-
ing, queuing and delivering messages, as arises with other
micro-kernels.

Memory-based messaging is used for accessing devices
controlled by the Cache Kernel. For example, the Ether-
net device in our implementation is provided as memory-
mapped transmission and reception memory regions. The
client thread sends a signal to the Ethernet driver in the
Cache Kernel to transmit a packet with the signal address
indicating the packet buffer to transmit. On reception, a
signal is generated to the receiving thread with the sig-
nal address indicating the buffer holding the new packet.
This thread demultiplexes the data to the appropriate input
stream, similar to conventional network protocol implemen-
tations.

Devices that fit into the memory-based messaging model
directly require minimal driver code complexity of the
Cache Kernel. They also provide the best performance.
For example, our own network interface for a 266 Mb Fiber
Channel interconnect is designed to fit into this memory-
mapped model, and so requires relatively few (276) lines of
code for the Cache Kernel driver. In particular, the driver
only needs to support memory mapping the special device

2The ParaDiGM hardware [7] provides automatic signal-on-write to
memory in message mode, delivering an address-valued signal to each
processor managing a signal thread for the page when a thread writes a
cache line in message mode. It also provides message-oriented consistency
on pages in message mode, allowing a processor (presumably the sender)
to write a cache line without requiring any “ownership” of the line. When
the write completes, the cache controller updates other cached copies of
the line as necessary. This specialized consistency minimizes the cache
consistency overhead for memory used purely for messaging. The design
also calls for hardware delivery of the signal using a per-processor reverse-
TLB that maps physical addresses to the corresponding virtual address
and signal handler function pairs so there is no software intervention on
a reverse-TLB hit. At present, our hardware supports automatic signal
generation but not delivery, so the missing portion is emulated in a tightly
coded part of the Cache Kernel. Conventional hardware requires software
support for generating the signal as well as signal delivery, but this software
is a minor extension of the current Cache Kernel mapping mechanisms.

address space corresponding to the network interface. Data
transfer and signaling is then handled using the general
Cache Kernel memory-based messaging mechanism. The
clock is also designed to fit this memory-based messaging
model. In contrast, the Ethernet device requires a non-trivial
Cache Kernel driver to implement the memory-based mes-
saging interface because the Ethernet chip itself provides a
conventional DMA interface.

An object-oriented RPC facility implemented on top of
the memory-based messaging as a user-space communica-
tion library allows applications and services to use a con-
ventional procedural communication interface to services.
For instance, object writeback from the Cache Kernel to the
owning application kernel uses a writeback channel imple-
mented using this facility. This RPC facility is also used
for high-performance communication between distributed
application kernels, as described in Section 3. Memory-
based messaging supports direct marshaling and demar-
shaling to and from communication channels with minimal
copying and no protection boundary crossing in software.
The implementation in user space allows application ker-
nels control over communication resource management and
exception handling, by, for example, overriding functions
in the communication library.

2.3 Thread Objects

The Cache Kernel caches a collection of thread objects, one
for each application kernel thread that should be considered
for execution. The thread object is loaded with the values
for all the registers and the location of the kernel stack to be
used by this thread if it takes an exception (as described in
Section 2.1). Other process state variables, such as signal
masks and an open file table, are not supported by the Cache
Kernel, and thus are stored only in the application kernel.
As with address space objects, the Cache Kernel returns
an object identifier when the thread is loaded which the
application kernel can use later to unload the thread, to
change its execution priority, or to force the thread to block.
Each thread is associated with an address space which is
specified (and must be already loaded) when loading the
thread.

The Cache Kernel holds the set of active and response-
sensitive threads by mechanisms similar to that used for
page mappings. A thread is normally loaded when it is
created, or unblocked and its priority makes it eligible to
run. It is unloaded when the thread blocks on a long-term
event, reducing the contention for thread descriptors in the
Cache Kernel. For example, in the UNIX emulation kernel,
a thread is unloaded when it begins to sleep with low priority
waiting for user input. It is then reloaded when a “wakeup”
call is issued on this event. (Reloading in response to
user input does not introduce significant delay because the
thread reload time (about 230 s) is short compared to
interactive response times.) A thread whose application
has been swapped out is also unloaded until its application

is reloaded into memory. In this swapped state, it consumes
no Cache Kernel descriptors, in contrast to the memory-
resident process descriptor records used by the conventional
UNIX kernel. A thread being debugged is also unloaded
when it hits a breakpoint. Its state can then be examined
and reloaded on user request.

A thread that blocks waiting on a memory-based mes-
saging signal can be unloaded by its application kernel
after it adds mappings that redirect the signal to one of
the application kernel’s internal (real-time) threads. The
application-kernel thread then reloads the thread when it
receives a redirected signal for this unloaded thread. This
technique provides on-demand loading of threads similar to
the on-demand loading of page mappings that occurs with
page faults. A thread can also remain loaded in the Cache
Kernel when it suspends itself by waiting on a signal so it
is resumed more quickly when the signal arrives. An ap-
plication kernel can handle threads waiting on short-term
events in this way. It can also lock a small number of
real-time threads in the Cache Kernel to ensure they are not
written back. Retaining a “working set” of loaded threads
allows rapid context switching without application kernel
intervention.

Using this caching model for threads, an application ker-
nel can implement a wide range of scheduling algorithms,
including traditional UNIX-style scheduling. Basically, the
application kernel loads a thread to schedule it, unloads
a thread to deschedule it, and relies on the Cache Ker-
nel’s fixed priority scheduling to designate preference for
scheduling among the loaded threads. For example the
UNIX emulator per-processor scheduling thread wakes up
on each rescheduling interval, adjusts the priorities of other
threads to enforce its policies, and goes back to sleep. A
special Cache Kernel call is provided as an optimization,
allowing the scheduling thread to modify the priority of a
loaded thread (rather than first unloading the thread, mod-
ifying its priority and then reloading it.) The scheduling
thread is assured of running because it is loaded at high-
priority and locked in the Cache Kernel. Real-time schedul-
ing is provided by running the processes at high priority,
possibly adjusting the priority over time to meet deadlines.
Co-scheduling of large parallel applications can be sup-
ported by assigning a thread per processor and raising all
the threads to the appropriate priority at the same time, pos-
sibly across multiple Cache Kernel instances, using inter-
application-kernel communication.

A thread executing in a separate address space from its
application kernel makes “system calls” to its kernel using
the standard processor trap instruction. When a thread is-
sues a trap instruction, the processor traps to the Cache Ker-
nel, which then forwards the thread to start executing a trap
handler in its application kernel using the same approach
as described for page fault handling. This trap forwarding
uses similar techniques to those described for UNIX binary
emulation [8, 19, 1]. A trap executed by a thread execut-

ing in its application kernel (address space) is handled as
a Cache Kernel call. An application that is linked directly
in the same address space with its application kernel calls
its application kernel as a library using normal procedure
calls, and invokes the Cache Kernel directly using trap in-
structions.

The trap, page-fault and exception forwarding mecha-
nisms provide “vertical” communication between the ap-
plications and their application kernels, and between the
application kernels and the Cache Kernel. That is, “ver-
tical” refers to communication between different levels of
protection in the same process or thread, namely supervisor
mode, kernel mode and conventional user mode. “Hor-
izontal” communication refers to communication between
processes, such as between application kernels and commu-
nication with other services and devices. It uses memory-
based messaging, as described in the previous subsection.

2.4 Kernel Objects

The Cache Kernel caches a collection of kernel objects,
one for each active application kernel. A kernel object
designates the application kernel address space, the trap and
exception handlers for the kernel and the resources that the
kernel has been allocated, including the physical pages the
kernel can map, the percentage of each processor the kernel
is allowed to use, and the number of locked objects of each
type the kernel can load. The address spaces and threads
loaded by an application kernel are owned and managed by
that application kernel.

For example, the UNIX emulator is represented by a ker-
nel object in the Cache Kernel. Each new address space and
thread loaded into the Cache Kernel by the UNIX emulator
is designated as owned and managed by the UNIX emulator.
Consequently, all traps and exceptions by threads execut-
ing in address spaces created by the UNIX emulator are
forwarded to the UNIX emulator for handling, as described
earlier.

A kernel object is loaded into the Cache Kernel when
a new application kernel is executed. Kernel objects are
loaded by, and written back to, the first application kernel,
which is normally the system resource manager described
in Section 3. This first kernel is created, loaded and locked
on boot. As with all Cache Kernel objects, loading a new
kernel object can cause the writeback of another kernel
object if there are no free kernel object descriptors in the
Cache Kernel. Unloading a kernel object is an expensive
operation because it requires unloading the associated ad-
dress spaces, threads, and memory mappings. The Cache
Kernel provides a special set of operations for modifying
the resource attributes of a kernel object, as an optimization
over unloading a kernel object, modifying the kernel object
attributes and reloading it. Currently, there are only three
such specialized operations. The use of these operations is
discussed further in Section 3.

Writeback of kernel objects is expected to be, and needs
to be, infrequent. It is provided because it is simple to do
in the Cache Kernel framework, ensures that the system re-
source manager need runs out of kernel descriptors, such as
for large swapped jobs with their own kernels, and provides
a uniform model for handling Cache Kernel objects.

This description covers the key aspects of the Cache Ker-
nel interface. Other conventional operating system services
are provided at the application kernel level, as illustrated by
the UNIX emulator.

A key benefit of the Cache Kernel is that it allows execu-
tion of multiple application kernels simultaneously,both op-
erating system emulators as well as application-specialized
kernels, as described in the next section. In this mode, it
supports system-wide resource management between these
separate kernels, as covered in Section 3.

3 Other Application Kernels

A variety of application kernels can be run (simultane-
ously) on the Cache Kernel. For example, a large-scale
parallel scientific simulation can run directly on top of the
Cache Kernel to allow application-specific management of
physical memory [16] (to avoid random page faults), direct
access to the memory-based messaging, and application-
specific processor scheduling to match program parallelism
to the number of available processors. For example, we
have experimented with a hypersonic wind tunnel sim-
ulator, MP3D [6], implemented using the particle-in-cell
technique. This program can use hundreds of megabytes
of memory, parallel processing and significant communi-
cation bandwidth to move particles when executed across
multiple nodes and can significantly benefit from careful
management of its own resources. For example, it can
identify the portion of its data set to page out to provide
room for data it is about to process. Similarly, a database
server can be implemented directly on top of the Cache
Kernel to allow careful management of physical memory
for caching, optimizing page replacement to minimize the
query processing costs. Finally, a real-time embedded sys-
tem can be realized as an application kernel, controlling the
locking of threads, address spaces and mappings into the
Cache Kernel, and managing resources to meet response
requirements.

An application kernel is any program that is written to
interface directly to the Cache Kernel, handling its own
memory management, processing management and com-
munication. That is, it must implement the basic system
object types and handle loading these objects into, and pro-
cessing writeback from, the Cache Kernel. Moreover, to be
efficient, it must be able to specialize the handling of these
resources to the application requirements and behavior.

A C++ class library has been developed for each of the
resources, namely memory management, processing and
communication. These libraries allow applications to start

with a common base of functionality and then specialize,
rather than provide all the required mechanism by itself.
Application kernels can override general-purpose resource
management routines in these libraries with more efficient
application-specific ones. They can also override exception
handling routines to provide application-specific recovery
mechanisms.

The memory management library provides the abstrac-
tion of physical segments mapped into virtual memory re-
gions, managed by a segment manager that assigns virtual
addresses to physical memory, handling the loading of map-
ping descriptors on page faults. It bears some similarity to
the library described by Anderson et al. [13]. The pro-
cessing library is basically a thread library that schedules
threads by loading them into the Cache Kernel rather than
by using its own dispatcher and run queue. A communica-
tion library supports channels and channel management on
top of the memory-based messaging, and interfaces to the
stub routines of the object-oriented RPC facility mentioned
earlier.

At the time of writing, we have implemented a simple
subset of MP3D and a basic communication server using
these libraries. In each of these cases, the application exe-
cutes directly in the application kernel address space. We
also have an initial design of a UNIX emulator, in which
applications run in a separate address space from the ap-
plication kernel for protection. We are also working to
integrate a discrete-event simulation library we developed
previously with these computational framework libraries.
This simulation library provides temporal synchronization,
virtual space decomposition of processing, load balancing
and cache-architecture-sensitive memory management.

By allowing application control of resource management
and exception handling, the Cache Kernel provides the
basis for a highly scalable general-purpose parallel com-
puter architecture that we have been developing in the
ParaDiGM [5] project. The ParaDiGM architecture is il-
lustrated in Figure 4. Each multiprocessor module (MPM)
is a self-contained unit with a small number of processors,
second-level cache and high-speed network interfaces, ex-
ecuting its own copy of the Cache Kernel out of its PROM
and local memory. The high-speed network interfaces con-
nect each MPM to other similarly configured processing
nodes as well as to shared file servers. A shared bus con-
nects the MPM to others in the same chassis and to memory
modules.

The separate Cache Kernel per MPM limits the degree
of parallelism that the Cache Kernel needs to support to the
number of processors on one MPM, reducing contention for
locks and eliminating the need for complex locking strate-
gies. The MPM also provides a natural unit for resource
management, further simplifying the Cache Kernel. Fi-
nally, the separate Cache Kernel per MPM provides a basis
for fault-containment. A Cache Kernel error only disables
its MPM and an MPM hardware failure only halts the local

MPM

Memory

MPM MPM MPM

Memory Memory

Multiprocessor Module (MPM)

Net

CPU CPU CPU CPU

L2 Cache

PROM LRAM

Figure 4: ParaDiGM Architecture

Cache Kernel instance and applications running on top of
it, not the entire system. That is, a failure in one MPM does
not need to impact other kernels. Explicit coordination be-
tween kernels, as required for distributed shared memory
implementation, is provided by higher-level software.

The software architecture built on the ParaDiGM hard-
ware architecture is illustrated in Figure 5. A sophisticated
application can be distributed and replicated across sev-
eral nodes, as suggested by the database query in the figure.
The application can be programmed to recover from failures
by restarting computations from a failed node on different
nodes or on the original node after it recovers. One of our
current challenges is extending the application kernel re-
source management class libraries to provide a framework
for exception handling and recovery, facilitating the devel-
opment of applications that achieve fault-tolerance on the
basis provided by the Cache Kernel.

A variety of applications, server kernels and operating
system emulators can be executing simultaneously on the
same hardware as suggested in Figure 5. A special appli-
cation kernel called the system resource manager (SRM),
replicated one per Cache Kernel/MPM, manages the re-
source sharing between other application kernels so that
they can share the same hardware simultaneously without
unreasonable interference. For example, it prevents a rogue
application kernel running a large simulation from disrupt-
ing the execution of a UNIX emulator providing timesharing
services running on the same ParaDiGM configuration.

The SRM is instantiated when the Cache Kernel boots,

Cache Kernel Cache Kernel Cache Kernel

MPM MPM MPM

SysR
esM

an

SysR
esM

an

A
pp A

SysR
esM

an

Unix Unix
AK
B

App
B

large parallel
query

Data
base

Data
base

App A
Unix

SysResMan

Database

App B
AK B

Specialized application (scientific simulation)
Operating system emulator kernel

System resource manager

Database server kernel

Specialized application B (user process)
Kernel for specialized application B

make

csh

Figure 5: Software Architecture

with its kernel descriptor specifying full permissions on all
physical resources. It acts as the owning kernel for the other
application kernel address spaces and threads as well as the
application kernel objects themselves, handling writeback
for these objects. The SRM initiates the execution of a new
application kernel by creating a new kernel object, address
space, and thread, granting an initial resource allocation,
bringing the application’s text and data into the address
space, and loading these objects into the Cache Kernel.
Later, it may swap the application kernel out, unloading its
objects and saving its state on disk.

The SRM allocates processing capacity, memory pages
and network capacity to application kernels. Resources are
allocated in large units that the application kernel can then
suballocate internally. Memory allocations are for periods
of time from multiple seconds to minutes, chosen to amor-
tize the cost of loading and unloading the memory from
disk. Similarly, percentages of processors and percentages
of network capacity are allocated over these extended peri-
ods of time rather than for individual time slices.

The SRM communicates with other instances of itself on
other MPMs using the RPC facility, coordinating to pro-
vide distributed scheduling using techniques developed for
distributed operating systems. In this sense, the SRM cor-
responds to the “first team” in V [4]. The SRM is replicated
on each MPM for failure autonomy between MPMs, to
simplify the SRM management, and to limit the degree of
parallelism, as was discussed with other application kernels
above. Our overall design calls for protection maps in the
memory modules, so an MPM failure cannot corrupt mem-
ory beyond that managed by the SRM/Cache Kernel/MPM
unit that failed. Application kernels that run across sev-
eral MPMs can be programmed to recover from individual

MPM failures, as mentioned earlier.
In contrast to the general-purpose computing configura-

tions supported by the SRM, a single-application configu-
ration, such as real-time embedded control, can use a single
application kernel executed as the first kernel. This appli-
cation kernel, with the authorization to control resources of
the first kernel, then has full control over system resources.

4 Internal Design Issues

The Cache Kernel has been implemented in C++ and is
running on our multiprocessor ParaDiGM hardware. This
hardware prototype uses an MPM with four Motorola 68040
processors running at 25Mhz, two megabytes of local mem-
ory and 512 kilobytes of PROM. The Cache Kernel manages
four to eight megabytes of high-speed software-controlled
second-level cache per MPM that is shared by all four pro-
cessors, connecting to third-level memory and other MPMs
using VMEbus. Each MPM also has two 266 Mb fiber
optic channel connections, providing high-speed commu-
nication to other MPMs not on the same VMEbus. Al-
though this hardware is not the highest performance at this
time, it does provide interesting architectural support for our
operating system research, including hardware support for
memory-based messaging, hierarchical software-controlled
caching, local memory and PROM per MPM, direct con-
nection of high-speed networking to the second-level cache
through the memory-based messaging facility, and cache-
based locking support.

The Cache Kernel code is burned into PROM on each
MPM together with a conventional PROM monitor and
network boot program. It executes in supervisor mode with
all its data structures in the local RAM of the MPM. The
memory mapping is set to protect the Cache Kernel against
corruption from application programs.

This section describes three key design issues that we
encountered in its implementation, namely efficient map-
ping support, the object cache replacement mechanism and
resource allocation control.

4.1 Mapping Data Structures

The Cache Kernel must efficiently support a large number
of memory mappings to allow application kernels to map
large amounts of memory with minimal overhead. The
mapping needs to be space-efficient because they are stored
in memory local to each instance of the Cache Kernel. The
mappings must also support specification of a signal process
and copy-on-write, although these occur with only a small
percentage of the mappings. To meet these requirements,
the information from a page mapping is stored acrossseveral
data structures when it is loaded into the Cache Kernel.

The virtual-to-physical mapping is stored in convention-
ally structured page tables, one set per address space and
logically part of the address space object. The mapping’s

flags, such as the writable and cachable bits, are also stored
in the page table entry. The current implementation uses
Motorola 68040 page tables as dictated by the hardware.
However, this data structure could be adapted for use with
a processor that requires software handling of virtual-to-
physical translation, such as the MIPS requires on a TLB
miss.

The physical-to-virtual mapping is stored in a physical
memory map, using 16-byte descriptors per page, specify-
ing the physical address, the virtual address, the address
space and a hash link pointer. The physical memory map is
used to delete all mappings associated with a given physical
page as part of page reclamation as well as to determine all
the virtual addresses mapping to a given physical page as
part of signal delivery. The specifications of signal thread
and source page for a copy-on-write for a page, if present,
are also stored as similar descriptors in this data structure.
This data structure is viewed as recording dependencies be-
tween objects, the physical-to-virtual dependency being a
special but dominant case. That is, the descriptor is viewed
as specifying a key, the dependent object and the context,
corresponding to the physical address, virtual address and
address space in the case of the physical-to-virtual depen-
dency. A signal thread is recorded as a dependency record
with the address of the physical-to-virtual mapping as the
key, a pointer to the signal thread as the dependent, and
a special signal context value as the context. Locating the
threads to which a signal on a given physical page should be
delivered requires looking up the physical-to-virtual depen-
dency records for the page, and then looking up the signal
dependency records for each of these records. A similar
approach is used to record copy-on-write mappings.

This approach to storing page mapping information min-
imizes the space overhead because the common case re-
quires 16 bytes per page plus a small overhead for the page
tables. However, it does impose some performance penalty
on signal delivery, given the two lookups required in this
approach.

To provide efficient signal delivery in the common case,
a per-processor reverse-TLB is provided that maps physical
addresses to the corresponding virtual address and signal
handler function pairs. When the Cache Kernel receives
a signal on a given physical address, each processor that
receives the signal checks whether the physical address “re-
verse translates” according to this reverse TLB. If so, the
signal is delivered immediately to the active thread. Other-
wise, it uses the two-stage lookup described above. Thus,
signal delivery to the active thread is fast and the overhead
of signal delivery to the non-active thread is more, but is
dominated by the rescheduling time to activate the thread
(if it is now the highest priority). The reverse-TLB is cur-
rently implemented in software in the Cache Kernel but is
feasible to implement in hardware with a modest extension
to the processor, allowing dispatch of signal-handling to the
active thread with no software intervention.

As mentioned earlier, the ParaDiGM hardware provides
a number of extensions that the Cache Kernel takes ad-
vantage of for performance. However, the Cache Kernel
is designed to be portable across conventional hardware.
These extensions are relatively easy to omit or provide in
software and have relatively little impact on performance,
especially with uniprocessor configurations.

4.2 Object Replacement

The Cache Kernel requires a more complex replacement
mechanism than a conventional data cache because the ob-
jects it caches have relationships among themselves, be-
tween themselves and the hardware, and internally to each
object. For example, when an address space is replaced in
the Cache Kernel and written back to its application ker-
nel, all of its associated threads must also be unloaded and
written back. (The alternative of allowing a loaded thread
to refer to a missing address space was considered but was
rejected as being too complicated, error-prone, and inef-
ficient.) The relationships between objects and the hard-
ware must also be managed carefully. For example, when
unloading an address space, the mappings associated with
that address space must be removed from the hardware TLB
and/or page tables. Similarly, before writing back an exe-
cuting thread, the processor must first save the thread con-
text and context-switch to a different thread. Objects also
have a more complex structure than the typical fixed-size
cache line. For example, an address space is represented
as a variable number of page table descriptors linked into
a tree, providing efficient virtual-to-physical address map-
ping. Thus, loading and unloading these objects requires
several actions and careful synchronization to ensure that
the object is loaded and unloaded atomically with respect
to other modules in the Cache Kernel and the application
kernels.

Figure 6 shows the dependencies between Cache Kernel
objects. The arrows in the figure indicate a reference, and
therefore a caching dependency, from the object at the tail
of the arrow to the object at the head. For example, a
signal mapping in the physical memory map references a
thread which references an address space which references
its owning kernel object. Thus, the signal mapping must be
unloaded when the thread, the address space or the kernel
is unloaded.

When an object is unloaded, either in response to an
explicit application kernel request or as required to free a
descriptor in the Cache Kernel to handle a new load request,
the object first unloads the objects that directly depend on it.
These objects first unload the objects that depend on them,
and so on. Locked dependent objects are unloaded the same
as unlocked objects. Locking only prevents an object from
being unloaded by the object reclamation mechanism when
the object and the objects on which it depends are locked.
For example, a locked mapping can be reclaimed unless its

Kernel
Descriptor

inverse address mapping

signal
mapping

Thread Cache

Thread
Descriptor

Thread
Descriptor

Thread
Descriptor

Address
Space

Descriptor

Address Space Cache

Address
Space

Descriptor

Address
Space

Descriptor

Kernel Cache

Kernel
Descriptor

Kernel
Descriptor

Physical Memory Map

Figure 6: Cached Data Structures

address space, its kernel object and its signal thread (if any)
are locked.

The Cache Kernel data structures use non-blocking syn-
chronization techniques so that potentially long unload op-
erations are performed without disabling interrupts or in-
curring long lock hold times. The version support that is
used with the non-blocking synchronization also allows a
processor to determine whether a data structure has been
modified, perhaps by a unload, concurrently with its execu-
tion of a Cache Kernel operation. If it has been modified,
the processor retries the operation. For example, a proces-
sor loading a new entry into the signal reverse TLB from the
physical memory map can check that the version of the map
has not changed before adding the entry, and can relookup
the mapping if it has.

Memory-based messaging complicates the object re-
placement mechanism with the need for multi-mapping
consistency. Multi-mapping consistency ensures that the
sender’s mapping for a message page is written back if any
of the receivers’ mappings are written back. This consis-
tency avoids the situation of the sender signaling on the
address and the receivers not being notified because their
mappings are not loaded in the Cache Kernel. To enforce
multi-mapping consistency, the Cache Kernel flushes all
writable mappings associated with a physical page frame
when it flushes any signal mapping for the page. Each ap-
plication kernel is expected to load all the mappings for a
message page when it loads any of the mappings. Thus, if
the mappings are not loaded when the sender writes a mes-

sage, it generates a mapping trap, causing all the mappings
to be loaded. When communication is between threads
on separate Cache Kernel instances, the application ker-
nels must coordinate to ensure multi-mapping consistency.
Locking of active mappings in the Cache Kernel can be used
in this case as part of this coordination. As an alternative to
unloading all the mappings, an application kernel can redi-
rect signals to another thread as described in Section 2.2.

4.3 Resource Allocation

The Cache Kernel provides resource allocation enforce-
ment mechanisms to allow mutually distrustful application
kernels to execute using shared resources without undue
interference.

An application kernel’s access to memory is recorded
as read and write permission on page groups of physical
memory. A page group is a set of contiguous physical
pages starting on a boundary that is aligned modulo the
number of pages in the group (currently 128 4k pages).
The page group as a large unit of allocation minimizes the
space required in the Cache Kernel to record access rights to
memory and minimizes overhead allocating memory to ap-
plication kernels. Using two bits per page group to indicate
access, a two-kilobyte memory access array in each kernel
object records access to the current four-gigabyte physical
address space. Each time a page mapping is loaded into
the Cache Kernel, it checks that the access for the specified
physical page is consistent with the memory access array
associated with the loading kernel. Typically, each kernel
has read and write access on a page group or else no access
(meaning the memory is allocated to another application
kernel). However, we are exploring the use of page groups
that are shared between application kernels for communica-
tion and shared data, where one or more of the application
kernels may only have read access to the memory. As de-
scribed in Section 3, only the SRM can change the memory
access array for a kernel.

The kernel object also specifies the processor allocation
that the kernel’s threads should receive in terms of a percent-
age for each processor’s time and the maximum priority it
can specify for its threads, i.e., its quota. The Cache Kernel
monitors the consumption of processor time by each thread
and adds that to the total consumed by its kernel for that
processor, charging a premium for higher priority execution
and a discounted charge for lower priority execution. Over
time, it calculates the percentage of each processor that the
kernel is consuming. If a kernel exceeds its allocation for a
given processor, the threads on that processor are reduced
to a low priority so that they only run when the processor
is otherwise idle. The graduated charging rate provides
an incentive to run threads at lower priority. For example,
the UNIX emulator degrades the priority of compute-bound
programs to low priority to reduce the effect on its quota
when running what are effectively batch, not interactive,
programs.

The specification of a maximum priority for the kernel’s
threads allows the SRM to prevent an application kernel
from interfering with real-time threads in another appli-
cation kernel. For example, a compute-bound application
kernel that is executing well under its quota might oth-
erwise use the highest priorities to accelerate its comple-
tion time, catastrophically delaying real-time threads. The
Cache Kernel also implements time-sliced scheduling of
threads at each priority level, so that a real-time thread
cannot excessively interfere with a real-time thread from
another application executing at the same priority. That is,
a thread at a given priority should run after all higher prior-
ity threads have blocked (or been unloaded), and after each
thread of the same priority ahead of this thread in the queue
has received one time slice. This scheme is relatively sim-
ple to implement and appears sufficient to allow real-time
processing to co-exist with batch application kernels.

I/O capacity is another resource for which controlled
sharing between application kernels is required. To date,
we have only considered this issue for our high-speed net-
work facility. These interfaces provide packet transmission
and reception counts which can be used to calculate network
transfer rates. The channel manager for this networking fa-
cility in the SRM calculates these I/O rates, and temporarily
disconnects application kernels that exceed their quota, ex-
ploiting the connection-oriented nature of this networking
facility. There is currently no I/O usage control in the Cache
Kernel itself.

There is no accounting and charging for cache misses or
memory-based message signaling even though these events
make significant use of shared hardware resources. For ex-
ample, a large number of cachemisses can significantly load
the memory system and the interconnecting bus, degrading
the performance of other programs. It may be feasible to
add counters to the second-level cache to recognize and
charge for this overhead. The premium charged for high
priority execution of threads is intended in part to cover the
costs of increased context switching expected at high prior-
ity. However, to date we have not addressed this problem
further.

We have also not implemented quotas on the number of
Cache Kernel objects that an application kernel may have
loaded at a given time, although there are limits on the num-
ber of locked objects. Application kernels simply contend
for cached entries, just like independent programs running
on a shared physically mapped memory cache. Further ex-
perience is required to see if quotas on cache objects are
necessary.

5 Evaluation

The Cache Kernel is evaluated from three major stand-
points: code size, caching performance, and micro-
benchmarks of trapping, signaling and page fault handling.
The code size measurements indicate the reduction in size

is a benefit of the caching approach while the other mea-
surements indicate that the caching model has not detracted
from performance over a conventional kernel structure.

5.1 Code Size

The Cache Kernel represents a significant reduction in size
and complexity over previous kernels. For example, the
virtual memory code in the Cache Kernel is a little un-
der 1,500 lines of C++ code, whereas the V kernel virtual
memory support for the same hardware is 13,087 lines of
C/C++. The virtual memory system for Ultrix 4.1 for MIPS
is 23,400 lines, for SunOS 4.1.2 for Sparc is 14,400 lines,
and for Mach for MIPS is a little over 20,000 lines. In
total, the Cache Kernel consists of 14,958 lines of C++
code, of which roughly 6000 lines (40 percent) is PROM
monitor, remote debugging and booting support (includ-
ing implementations of UDP, IP, ARP, RARP, and TFTP.)
The second-level cache manager software requires a fur-
ther 1262 lines of code, which would be eliminated if the
second-level cache management was implemented entirely
in hardware, as is the more conventional approach.

The Cache Kernel has a binary code and data size of 139
kilobytes allowing it to fit easily into the PROM. We expect
the size of the Cache Kernel to grow somewhat as we extend
and refine its functionality, but do not see it moving beyond
150 kilobytes.

Based on these measurements and our experience writ-
ing and debugging the code, we conclude that the caching
model, the minimal object approach, and memory-based
messaging significantly reduce the size and complexity of
kernel code over conventional approaches, including our
previous micro-kernel work.

5.2 Caching Performance

The Cache Kernel as a cache of descriptors can be expected
to perform well with programs that are reasonably struc-
tured, and is not the key performance problem for those
that are not, as argued below. First, as shown in Table 1,
the size of the descriptors is relatively small, allowing the
Cache Kernel to hold enough descriptors to avoid thrash-
ing under reasonable application demands. For instance,

Object Size (bytes) Cache Size
Kernel 2160 16
AddrSpace 60 64
Thread 532 256
MemMapEntry 16 65536

Table 1: Cache Kernel Object Sizes(bytes)

our prototype configuration provides 256 thread descrip-
tors for a space cost in local RAM of about 128 kilobytes.
(The number designates the maximum number of thread
descriptors that can be loaded in the Cache Kernel at one

time.) A system that is actively switching among more than
256 threads is incurring a context switching overhead that
would dominate the cost of loading and unloading thread
descriptors from the Cache Kernel. With this number of
thread descriptors, 64 address space descriptors and 16 ker-
nel descriptors, these descriptors constitute about 10 per-
cent of the 2 megabytes of local memory on our hardware
prototype MPM.

Approximately 50 percent of the local RAM is used to
store the MemMapEntry descriptors listed last in Table 1,
providing roughly 65,000 descriptors. Assuming on aver-
age at least four cache lines (less than four percent) of each
page mapped by these descriptors is accessed, then this
number of mapping descriptors covers that accommodated
in our 8-megabyte second-level cache3 . Consequently, soft-
ware that actively accesses more pages than there are map-
ping descriptors will thrash the second-level data cache as
well as the Cache Kernel memory mappings. Moreover, a
program that has poorer page locality than we have hypothe-
sized (i.e., less than four percent usage of pages) also suffers
a significant performance penalty from TLB miss behavior
on most architectures [3]. For example, we measured up to
a 25 percent degradation in performance in the MP3D pro-
gram mentioned above from processors accessing particles
scattered across too many pages. The solution with MP3D
was to enforce page locality as well as cache line locality
by copying particles in some cases as they moved between
processors during the computation. In general, reasonable
page locality is necessary for performance, and programs
with reasonable page locality execute with minimal replace-
ment interference on page mappings in the Cache Kernel.
With programs whose lack of locality leads to extra paging
to disk or over the network, the Cache Kernel overhead for
loading and unloading mappings is dominated by the page
I/O overhead.

The mapping descriptors represent as little as 0.4 percent
overhead on the space that they map, so the actual space
overhead is acceptable, even considering some duplication
of this information at the application kernel level.

The mapping descriptors typically require two to four
times the space of the page table descriptors, which are
also part of the space overhead. The top-level 512-byte
page tables consume a small amount of space because their
number is exactly equal to the number of address space de-
scriptors. Assuming reasonable page clustering, the space
for the 512-byte second-level tables is also small, bringing
the space required for first- and second-level tables to about
5K per address space. Finally, the 256-byte third-level page
tables map 64 pages each, i.e., there is one third-level page
table for up to 64 16-byte mapping descriptors. Assum-
ing the table is at least half-full, at least two times as much
space is used for mapping descriptors as for third-level page
tables.

3Our hardware has 32-byte cache line size, 8 megabytes of cache, and
a page size of 4k (128 lines).

The execution time costs of Cache Kernel object loading
and unloading operations are shown in Table 2 for each
type of object, with and without writeback occurring. The

Object load load unload
Types No writeback Writeback

Mappings 45 145 160
(optimized) 67 167

Threads 113 489 206
AddrSpaces 101 229 152
Kernel 244 291 80

Table 2: Basic Operations — Elapsed Time in Microsec-
onds

optimized mapping load operation combines loading a new
mapping with restarting the faulting thread. This operation
is an important optimization for page fault handling.

Cache Kernel loading and writeback overhead can be ex-
pected to be minimal in typical system operation. Loading
page mappings is expected to be the most common oper-
ation, occurring as new page mappings are loaded, and it
is also the least expensive. The time to load a mapping
could be increased somewhat by the cost of reclamation if
reclamation ended up scanning a large range of locked map-
pings, but the large number of mapping descriptors makes
this situation unlikely. The thread loading and unloading
corresponds more or less to blocking on long-term events
and so occurs infrequently. The loading and unloading of
address spaces and kernels typically corresponds to loading
and unloading these entities to disk or over the network.
Thus, their respective costs are not significant compared to
the times associated with these disk/network operations. In
the worst case, a kernel descriptor needs to be reclaimed,
causing writeback of all the address spaces, threads and
mappings associated with the kernel. While this operation
can take several milliseconds, it is performed with inter-
rupts enabled and very infrequently. Of course, with a
real-time configuration in which objects are locked in the
Cache Kernel, the overhead would be essentially zero.

5.3 Trap, Communication and Page Fault
Times

The performance of applications using the Cache Kernel is
most dependent on the trap handling, signal delivery and
page fault handling times.

The cost of a simple trap from a UNIX program to
its emulator is 37 microseconds, effectively the cost of a
getpid operation. This time is 12 microseconds longer
than the same operation performed in Mach 2.5 running on
a NextStation with a comparable speed processor. For most
system calls, the extra trap overhead is insignificant com-
pared to the system call processing time, and that processing
time is largely independent of the Cache Kernel.

The time to deliver a signal from one thread to another
running on a separate processor is 71 microseconds, com-
posed of 44 microseconds for signal delivery and 27 mi-
croseconds for the return from signal handler. These mea-
surements are in agreement with (in fact slightly better than)
those reported for a similar implementation of memory-
based messaging [7]. Because the communication schemes
are identical at the higher levels, and no Cache Kernel in-
volvement occurs on data transfer, the communication using
the Cache Kernel is as efficient as the communication in the
V implementation of memory-based messaging.

The basic cost of page fault handling is 99 microsec-
onds, which includes 32 microseconds for transfer to the
application kernel and 67 microseconds for the optimized
mapping load operation. This cost is comparable to the
page fault cost of Ultrix and other conventional systems
and also comparable to the cost of the comparable opera-
tion for external page cache management in the V kernel
as described by Harty and Cheriton [16]. A page fault that
entails page zeroing, page copying or page read from back-
ing store incurs costs that make the Cache Kernel overhead
insignificant. Extrapolating from the application-level per-
formance measured by Harty and Cheriton [16] indicates
that performance of applications on the Cache Kernel will
be comparable to that of conventional operating systems on
the same hardware.

6 Related Work

The Cache Kernel builds on the experience and insight
gained in the previous work on micro-kernels, such as V [4]
and Mach [21]. As demonstrated in Mach, a dominant
contributor to the complexity of these kernels is the virtual
memory mechanisms for recording shared mappings, such
as shadow object chains. With the Cache Kernel, this com-
plexity has been moved outside of the kernel, cleanly par-
titioned from the performance-critical mapping supported
by the Cache Kernel.

The Cache Kernel interface and facilities for virtual mem-
ory support bear some similarity to Mach’s “Pmap” inter-
face [11, 15]. However, the Cache Kernel includes addi-
tional support for deferred copy as well as page group pro-
tection, which was not needed in Mach because the Pmap
interface was only an internal interface. The Pmap interface
also does not consider multi-mapping consistency support,
as required for memory-based messaging. In contrast to
the caching of operating system objects in the Cache Ker-
nel, which writes back the objects to untrusted application
kernels, KeyKOS [10] writes back objects to protected disk
pages. That is, it is only caching the objects in the sense of
paging those data structures.

A redesign of Multics [20] proposed the idea of virtual
processes that were loaded and saved from a fixed number of
“real processes,” similar to the thread caching mechanism in
the Cache Kernel, but this proposal was never implemented.

Finally, the Cache Kernel exploits memory-based mes-
saging [7] and application-controlled physical memory [16]
to minimize mechanism while providing performance and
control to sophisticated applications that wish to provide
their own operating system kernel. It also builds on expe-
rience in implementing binary UNIX emulation [8, 19]. In
contrast to Chorus [14], which loads operating system em-
ulator modules directly into the kernel, the Cache Kernel
executes its emulators in a separate address space and in
non-privileged mode. The lock-free implementation uses
similar techniques to that used by Massalin and Pu [18].
These advances together with the caching approach reduce
the complexity of the Cache Kernel such that it can be in-
tegrated with the PROM for further stability and reliability.
They also provide application performance that is compet-
itive with conventional monolithic operating systems.

In contrast to the highly optimized, same-CPU and cross-
address space IPC in L3 [12] and KeyKOS [10], the Cache
Kernel supports inter-CPU peer-to-peer “horizontal” com-
munication through memory-based messaging. The Cache
Kernel trap forwarding facility most closely resembles the
sort of same-CPUIPC found in L3, providing efficient trans-
fer of control in the special case of an application commu-
nicating with its kernel.

A different approach to application-specific customiza-
tion is being explored by the SPIN micro-kernel effort [2].
In SPIN, untrusted users write kernel extensions in a
pointer-safe language. The extensions are compiled by
a trusted compiler and dynamically loaded into the micro-
kernel, where they are activated by system events (such
as context switch or page fault). They interact with the
micro-kernel through protected interfaces but without pay-
ing the system call cost. Thus, SPIN allows user modifi-
cations to the kernel whereas the Cache Kernel does not.
However, with SPIN, the integrity of the micro-kernel is
highly dependent on the adequacy of the compiler check-
ing. Customizability is also limited by the set of events one
can hook into, and by the expressiveness of the protected
interface. Moreover, these user customizations appear to
require a complex framework in the micro-kernel, includ-
ing a supervisor-level garbage collector to reclaim memory
allocations made by these extensions and mechanisms to
limit resource consumption by these extensions. In con-
trast, the Cache Kernel is protected from user programming
by hardware, does not significantly depend on extended lan-
guages and trusted compilers, and implements a relatively
simple resource management model, given the simple set
of objects it provides. Moreover, the mechanisms in the
user class libraries, such as the virtual memory support, are
more readily user customizable using the C++ inheritance
mechanism.

Like the Cache Kernel, the Aegis exokernel [9] enables
application-specific customization through a micro-kernel
implementing a minimal machine-dependent interface to
the underlying hardware. Like SPIN, Aegis allows un-

trusted users to extend the supervisor-level portion of the
operating system using a variety of techniques to achieve
saftey, including code examination, sandboxing, and the
use of type-safe languages. Most hardware-level traps are
reflected to application-specific trap handlers. For exam-
ple, an application can install its own TLB miss handler
that navigates application-specific page tables. This ap-
proach depends on the benefits of application-specific page
table structures justifying the cost of ensuring safety in the
performance-critical TLB miss handler, and other similar
examples.

In overall comparison to these last two competing ap-
proaches, the Cache Kernel places a hard protection bound-
ary at a lower level than conventional micro-kernels and
exports more control for user customizability while SPIN
and Aegis allow controlled entry of supposedly “safe” user
software through the protection boundary. We conjecture
that a hard protection boundary is required for reliable sys-
tems (compilers have enough trouble just generating correct
code, never mind checking it for safety), and that the control
exported by the caching model is adequate to implement the
required application mechanisms. However, further expe-
rience is required with all these approaches.

7 Concluding Remarks

The caching model of operating system kernel function-
ality has produced a small, fast micro-kernel, namely the
V++ Cache Kernel, providing system performance that ap-
pears competitive with monolithic kernels and well-suited
for building robust scalable parallel systems.

As realized in the V++ Cache Kernel, the caching model
offers three key benefits. First, the low-level caching in-
terface provides application control of hardware resource
management. An application kernel can load and unload
objects to implement any desired resource management pol-
icy, only relying on the Cache Kernel to handle the loaded
active objects (over short time intervals) according to this
policy.

Second, the low-level Cache Kernel interface and its
forwarding of exceptions to the application kernel allows
application-specific exception handling and recovery. The
caching approach also means that an application never en-
counters the “hard” error of the kernel running out of thread
or address space descriptors as can occur with conventional
systems like UNIX. The Cache Kernel always allows more
objects to be loaded, writing back other objects to make
space if necessary.

Finally, the caching model has led to a fundamental re-
duction in the complexity of supervisor mode software com-
pared to prior micro-kernel work, measured by both lines
of code and binary code size. The plethora of query and
modify operations of conventional operating systems are
absent from the Cache Kernel. Instead, the application
kernel unloads the appropriate object, examines its state,

and, if a modify operation, loads a modified version of that
state back into the Cache Kernel. With experience, we are
adding a small number of special query and modify oper-
ations as optimizations of this basic mechanism, such as
a kernel call to modify the page groups associated with a
kernel. However, these few optimizations do not signifi-
cantly increase the size or complexity of the Cache Kernel.
The use of memory-based messaging further simplifies the
Cache Kernel and minimizes data copying and traps across
the kernel protection boundary. We have taken advantage
of this smaller size and stable functionality by incorporating
the Cache Kernel into the PROM monitor code.

The Cache Kernel’s small size allows it to be used eco-
nomically in embedded real-time systems as well as to be
replicated on each node of a large-scale parallel architec-
ture for fault containment. Exploiting the Cache Kernel
facilities, sophisticated application kernels can support effi-
cient, robust parallel computation, real-time processing and
database management systems while sharing all or part of
a multiprocessor with other application kernels.

We are currently developing application kernels and op-
erating system emulators that exploit the Cache Kernel ca-
pabilities. In particular, we are developing a simulation
kernel (running on the Cache Kernel) that supports appli-
cations such as the MP3D wind tunnel simulation [6]. The
operating systems emulators, such as one for UNIX, allow
simple applications to share the samehardwareconcurrently
with these sophisticated applications. We are also explor-
ing the use of the Cache Kernel and modular application
kernels for fault-tolerant scalable parallel and distributed
computing, as described in Section 3.

Looking ahead, hardware manufacturers might reason-
ably provide a Cache-Kernel-like PROM monitor for their
future hardware. This approach would allow a wide range
of applications and operating systems to use the hardware
without introducing as many dependencies on low-level
hardware characteristics. The result would be better porta-
bility as well as greater freedom for the hardware manufac-
turers to revise their implementation of the Cache Kernel
abstraction. In fact, it would allow independently developed
operating systems to execute concurrently on the same hard-
ware, a situation similar to that provided by the virtual ma-
chine operating system efforts of the 1960’s and 70’s. How-
ever, the Cache Kernel “virtual machine” supports scalable
high-performance parallel distributed systems, not just the
conventional single processor, single-node configurations
of yore.

8 Acknowledgements

This work was sponsored in part by ARPA under US Army
contract DABT63-91-K-0001. Equipment and funding by
IBM for the ParaDiGM hardware is also gratefully acknowl-
edged. This paper has benefited considerably from the com-
ments of the reviewers, our “shepherds” Brian Bershad and

Willy Zwaenepoel, and various colleagues, including Mary
Baker, Fusun Ertemalp, Hugh Holbrook, Michael Green-
wald, Tim Mann and Ross Finlayson.

References

[1] B.N. Bershad, T.E. Anderson, E.D. Lazowska, and
H.M. Levy. Lightweight remote procedure call.
ACM Transactions on Computer Systems, 8(1):37–55,
February 1990.

[2] B.N. Bershad, C. Chambers, S. Eggers, C. Maeda,
D. McNamee, P. Pardyak, S. Savage, and E. Gün Sirer.
Spin — an extensible microkernel for application-
specific operating system services. University of
Washington Computer Science and Engineering Tech-
nical Report 94-03-03, February 1994.

[3] J.B. Chen, A. Borg, and N.P. Jouppi. A simulation-
based study of TLB performance. In Proc. 19th
Annual Intl. Symposium on Computer Architecture,
pages 114–123. ACM SIGARCH, IEEE Computer
Society, May 1992.

[4] D.R. Cheriton. The V distributed system. Comm.
ACM, 31(3):314–333, March 1988.

[5] D.R. Cheriton, H. Goosen, and P. Boyle. ParaDiGM:
A highly scalable shared-memory multi-computer ar-
chitecture. IEEE Computer, 24(2), February 1991.

[6] D.R. Cheriton, H. Goosen, and P. Machanick. Restruc-
turing a parallel simulation to improve shared mem-
ory multiprocessor cache behavior: A first experience.
In Shared Memory Multiprocessor Symposium, pages
23–31. ACM, April 1991.

[7] D.R. Cheriton and R. Kutter. Optimizing memory-
based messaging for scalable shared memory multi-
processor architectures. Stanford Computer Science
Technical Report CS-93-123, December 1993.

[8] D.R. Cheriton, G.R. Whitehead, and E.W. Sznyter.
Binary emulation of UNIX using the V kernel. In
USENIX Summer Conference. USENIX, June 1990.

[9] D.R. Engler, M.F. Kaashoek, and J.W. O’Toole Jr. The
operating system kernel as a secure programmable
machine. Proceedings of the ACM European SIGOPS
Workshop, September 1994.

[10] A.C. Bomberger et al. The KeyKOS nanokernel ar-
chitecture. In Proceedings of the USENIX Work-
shop on Micro-kernels and Other Kernel Architec-
tures. USENIX, April 1992.

[11] D. Black et al. Translation lookaside consistency:
A software approach. In Proc. 17th Int. Symp. on
Computer Architecture, pages 113–122, April 1989.

[12] J. Liedtke et al. Two years of experience with a micro-
kernel based os. Operating Systems Review, 25(2):57–
62, 1991.

[13] K. Anderson et al. Tools for the development of
application-specific virtual memory management. In
OOPSLA, 1993.

[14] M. Rozier et al. Overview of the CHORUS distributed
operating system. In Proceedings of the USENIX
Workshop on Micro-kernels and Other Kernel Archi-
tectures. USENIX, April 1992.

[15] R. Rashid et al. Machine-independent virtual memory
managementfor paged unitprocessor and multiproces-
sor architectures. IEEE Trans Comput., 37(8):896–
908, August 1988.

[16] K. Harty and D.R. Cheriton. Application-controlled
physical memory using external page cache manage-
ment. In ASPLOS, pages 187–197. ACM, October
1992.

[17] J. Kearns and S. DeFazio. Diversity in database refer-
ence behavior. Performance Evaluation Review, 1989.

[18] H. Massalin and C. Pu. A lock-free multiprocessor OS
kernel. Technical Report CUCS-005-91, Computer
Science Department, Columbia University, October
1991.

[19] R. Rashid and D. Goluv. UNIX as an application
process. In USENIX Summer Conference. Usenix,
June 1990.

[20] M. Schroeder, D. Clark, and J. Saltzer. The MUL-
TICS kernel design project. In Proceedings of the 6th
Symposium on Operating Systems Principles, pages
43–56. ACM, November 1977.

[21] M. Young et al. The duality of memory and com-
munication in the implementation of a multiprocessor
operating system. In 11th Symp. on Operating Systems
Principles. ACM, November 1987.

