AVNET

Reach Further™

95 Boards pyNO
@ python

UltraSCALE+

Intro to FPGAS

Field Programmable Gate Array (FPGA), under the hood:

Interconnection

Logic Block Resources
1/0 Cell
I/0O Cells
connect
directly to
the FPGA
hdbhdbhdhd chin's
FarTrar"n ohysical
The innards shown L J L J L J L J pins

here are a
simplification of
what is inside the
actual part

AVNET

I nterconnection

What's inside?
LUTs, Clocks, PLLs, Transceivers, Multiplexers, Logic
Functions, Interconnects, Arithmetic operators and Memorles all |
GF(2) =

wr
HE1 0L, DATA) IAI MMMMM

uuuuu

48-Bit Accumulator/Logic Unit

\\\\\

N .
o N
SEL E[1:0], DATA E [3:0] (EI6:1]) ¢ i
nput (Al 1] Famux 25x18
. (EMUX) _ 321 MUX b —| Muttiplier
am ©) Output Pr&aadev
b S - — 551 EQER)_Rogstoros
e (%) i Output [S
T To === - Pattern Detector
(Optonal S ,,

H - Hundreds of thousands of these programmable Iogic block widgets!
%j ﬁ They can be interconnected to create logic that can accomplish
ey der] just about anything. A major part of the device
programming involves place and route (the tools do this for you) which

is how all the interconnects are setup to put it all together.

Note: logic in ZU3EG is not exactly as shown above but is similar

AVNET

Ultra96’s Xilinx ZU3EG PL Internal Attributes:

System Logic Cells

‘ CLB Flip-Flops
'CLB LUTS

' Distributed RAM (Mb)
. Block RAM Blocks
' Block RAM (Mb)

. UltraRAM Blocks
"UltraRAM (Mb)

‘ DSP Slices

' CcMTs

"Max. HP 1/0(1)
'Max. HD 1/0(2)

System Monitor

103,320
94,464
47,232
1.2
150
5.3
0
0
240

156
96

154,350
141,120
70,560
1.8
216
7.6
0
0
360

156
96

I\

\VNET

FPGA Innards:

Raw chip die:

(not actual ZU3EG)

Compiler (synthesis)
place and route output:

i~

\VNET

What can FPGAs (PL)
do for me?

The number ONE of many reasons to use FPGA:

o

/

SPEED

AVNET

. For many solutions the PL will be orders of magnitude faster
. Precise timing capabilities (picoseconds jitter accuracy) for control of hardware

. Determinism of algorithmic execution (no cache, preemption, task switching, threads
or interrupts if you design it that way)

. You can do things beyond what the PS can do with Python, even design your own

CPU/GPU! See Xilinx’s MicroBlaze™ for PYNQ:

. The art of designing hardware with software can be rewarding and enjoyable!

AVNET

https://pynq.readthedocs.io/en/v2.0/pynq_libraries/pynq_microblaze_subsystem.html

Crytography:

Reprogrammability allows for in the field upgrades of hardware AES, Blowfish,
Twofish, RSA,
Build your own CPU or GPU: Triple DES
Cellular 4/5G MicroBlaze™, RISC, Custom
Prototyping for ASICs loT: read multiple sensors simultaneously
Digital Motor Control: o _
Servo, Stepper, PWM, PDM Scientific Computing

Cryptocurrencies:

Parallel Processing BitCoin. Etherum

Kalman Filtering

Signal Processing: ‘ , Direct control of other hardware
FIR, IR, OFDM, FFT, Forward Error Correction
Correlators, CORDIC, Systems: : u Machi L .

S : acnine Learnin
Interp, Decimation, NCO, 1,5, | DPC, POLAR, Viterbi, ~ OpenCV J
Mixers, Polyphase BCH. RS

Filtering, Wavelets Can be faster than GPUs for some things

Re-routing hardware signals on fixed PCB for flexibility =~ Bridge between CPUs or CPUs and other hardware

AVNET

Use case - Machine Learning computer vision on Ultra96:

= FINN Binary Neural Network (BNN) Demo on Ultra96
= http://www.wiki.xilinx.com/Zyng+UltraScale %o EF %BC%8B+MPSoC+Accelerate
d+Image+Classification+viat+Binary+Neural+Network+TechTip

®, ¥ —— NVNET

Realtime Metrics 1
- .

Tiles per Second
incl. DMA: 13391.7 BNN only: 14577.5

Full 1080p Images per Second in HW: 66.3
Full 1080p Images per Second in *SW: .01

Tiles per second in Software
217

Images per second in Hardware
End of al
66.2954 50 Km/h 89%| | overtal ki

Acceleration factor (HW/SW))
6171.28 Bicycles crossing ahead 5% :‘(‘)‘;’f’""‘“""""‘kmg 319%| | Bicyeles crossing ahead 9% |

SEn T HW Acceleration Factor: *6171

1% End 80 Km/h 2% 60 Km/h 8% ||

Il speed and [
ing restrictions 079 | |70 Yo/ o7y

1% Uneven road 2% Road narrows (right) %

* The SW used for benchmark was running on the Ultra96 ARM
Cortex™ A53 cores with same OS as the HW tests @ ~1.3GHz. Other
platforms that have somewhat faster ARM cores could do a little better
with just SW. Other platforms with their own hardware accelerators

will also run faster than pure SW.
IAVNET

http://www.wiki.xilinx.com/Zynq+UltraScale%EF%BC%8B+MPSoC+Accelerated+Image+Classification+via+Binary+Neural+Network+TechTip
http://www.wiki.xilinx.com/Zynq+UltraScale%EF%BC%8B+MPSoC+Accelerated+Image+Classification+via+Binary+Neural+Network+TechTip

Use case - Matrix Multiply Algorithm Acceleration

« 32x32 Matrix Multiply of floats
+ Algorithm developed in C :
« Then accelerated in programmable logic

* Python can make calls into the C code for this

Processor-onl | Accelerated Acceleration H
y Cycles Cycles

1578615 65725

Daniel Rozwood -- Ulfra96 SDSoC Platform for v2018.2

AVNET

http://ultra96.org/sites/default/files/design/SDSoC_Platform_v2018p2_1.zip

Programmable Logic Acceleration vs. CPU/GPU

Domain / Topic Title / Author / DOI Improvement | Improvement
vs CPU+GPU | vs CPU-OnIy

Digital Signal Processing A Performance and Energy Comparison of FPGAs, GPUs, 1 1x

Sliding Windows and Multicores for Sliding Window Applications, Fowers,
http://dx.doi.org/10.1145/2145694.2145704

Graph Processing GraphGen for CoORAM: Graph Computation on FPGAs, 10.3x 14.5x

Tree-reweighted Message Weisz, http://dx.doi.ora/10.1109/FCCM.2014.15 - '

Passing (TRW-S)

Monte Carlo Simulation A Comparison of CPUs, GPUs, FPGAs, and Massively 3X 30X

Random Number Generation Parallel Processor Arrays for Random Number Generation,
Thomas, http://dx.doi.org/10.1145/1508128.1508139

Machine Vision CPU, GPU and FPGA Implementations of MALD: Ceramic 14X 35X

Moving Average with Local Tile Surface Defects Detection Algorithm, Hocenski,

Difference (MALD) http://dx.doi.org/10.7305/automatika.2014.01.317

Bioinformatics Hardware Accelerated Novel Optical De Novo Assembly for 8 5X 1 1 9X

De Novo Genome Assembly Large-Scale Genomes, Kastner, ’)
http://dx.doi.org/10.1109/FPL.2014.6927499

Atmospheric Modelling Accelerating Solvers for Global Atmospheric Equations 4x 100X

Solvers for Global Atmospheric through Mixed-Precision Data Flow Engine, Gan,
Equations http://dx.doi.org/10.1109/FPL.2013.6645508

http://dx.doi.org/10.1145/2145694.2145704
http://dx.doi.org/10.1109/FCCM.2014.15
http://dx.doi.org/10.1145/1508128.1508139
http://dx.doi.org/10.7305/automatika.2014.01.317
http://dx.doi.org/10.1109/FPL.2014.6927499
http://dx.doi.org/10.1109/FPL.2013.6645508

Ultra96 tools intro

Vivado HLx IDE for Ultra96 PL:

o Fow Toos Widow Hop
HLx Editions

= Vivado is the main Xilinx tool that converts RTL source e
code files into FPGA hardware

= |tis a GUI project manager

= Performs hardware verification and debugging

= Tallies and manages the internal FPGA resources
= Allows for schematic block based hardware design
= Exports and imports to many other Xilinx tools

L

= Performs power consumption analysis for the ZYNQ MPSoC
= Generates the bitstream/overlay files used for programming the PL
= Accepts C/C++ and converts it into hardware: High Level Synthesis (HLS)

\VNET

I~

Vivado HLx IDE for Ultra96 PL:
VIVADO!

HLx Editions

1 vase =)

ois Window Hop O

VIVADO! TS

Hardware
describing

FPGA bitstream

(like a binary)

source code

AVNET

Vivado HLS for PL design:

=HLS allows one to create hardware with C/C++ but...
=It does not handle moving the data between the PS and PL for you, this may be

what you want anyways especially if you are using a stand-alone FPGA or PYNQ
moves the data for you, it depends

es
enc

| Csimuson || Coynthesis |

- == |
A0’

3y — 3
e Vivado HLS P

m “EED SR e
=

RTL Simulation Packaged IP

vvvvvvvvvvvv

AVNET

SDSoC for Ultra96 PS and PL:

= SDSoC is a separate GUI from
Vivado

= Coverts your C/C++
into a hybrid system using both
the PS and PL

= |t moves the data between the
two for you and creates PL!

SDSoC”™

Environment

= Embedded C/C++ application
development experience

= System-level profiling
= Full system optimizing compiler
= Platform developers system architects

= Offers rapid system-level performance
estimations

bitstream +

.exe, .so

C/C++ Development \

y

System-level Profiling

v

Specify C/C++ Functions

for Acceleration |||

v

Full System
Optimizing Compiler

\VNET

I~

XSDK tool for Ultra96 PS:

= XSDKis an eclipse based front end for software development on the PS

© C/Ce + - 0700w platformps7 i< - X SOK [ESEr===)
Fle ESt Source Refactor Nevigate Search Rum Project JimuTooks Window Help |
rMe - B W'U""'@' vvoqu ~ [} aﬂ 7; ‘_',v v v L. - [C/Ces
1 H jibosbrbeti, “ 0@ oemamt [l stemmss |3 pi2_ntc = 00)(85 Otine 11 ® Make Taget 0
i, i | ; :
» XSDK can edit compile and debug C/C ‘ LI I
+ + + B tet et U pilen
4 i Inchedes swdtch (opcode) { © ool ph ikt dues -
3 7 s case OPCODE_EXIT ® pil_clock it duta |
@ Oebug finksh = PST_INIT_SUXCESS; O pil.ddr ok dots |
a@we Mesiks ® sl _mioint dite
4 hefloword.c ® pil_perpheraks_ind_dats
N platform_configh case OPCODE_CLEAR: ® pil_conigiunsigned long")
@ platormc oddr wigned long") args(0); o pima)
= XSDK can also program ZYNQ parts oo
) bcriptid
4 [test_circut bisp case 0008 WRITE:
i 859 Documentation na;l mElnMd long*) args[0);
bgeroptions val = args(1];
*addr = val;
i MokeSlde break;
o
’v!}

v 5
*addr « (val & wask) | (“adde & ~mask);
break;

Case OPCODE_PASCPOLL:
addr » (umsigned long®) args(0);

— wask = args[i];
while (1("addr & mask));
o break;
defaults
Finish « PS7_INIT_CORRUPT;
break;

.
retun finish;
)
int
Ps7_tnit()
16 (ps7_conf1g (p57_wlo_init data) == -1) return -1;

if (ps7_config (ps7_pll_init_data) ;
Af (057 confie (057 clock init data) == -1) return -1:

- {[i82 Proviems 23 Tasks) B Console) 1 Propertes| 49 Tesminal -
|1 e 0 warings, 0 et

— || Descrigton - Reouce Path toaton Type

|+ © Eronq rem)

& ZCT02 tw_platfoemVpa_in.c

AVNET

PetaLinux

20

aarch64 Linux Kernel

Embedded Linux with Xilinx enhancements made to run on the ZU3EG
Simple and time saving Xilinx ‘petalinux-" cmds to drive Yocto

Yocto based configuration and development tools

Multiple choices for root FS, including ram based, PetalLinux, Debian and Ubuntu
Integrates with PL hardware designs

Package and Deploy

|]

Export Hardware m
/

Vivado A N

. XILINX.

Debug / Profile L
ZYNQ

Integrate Customizations

AVNET

Not that long ago hardware designers had fewer choices for PL programming
languages, one of which was VHDL.

Designers involved with ASIC design often use a language called Verilog, FPGAs can
also be programmed using it.

These languages work very well and are still supported. They are elegant and very
powerful but less people are familiar with them compared to Python or C/C++.

Xilinx reached out to the software community and created tools to allow them to design
hardware using C/C++: SDSoC and HLS.

There is also a 3" party project that allows hardware design using Python itself. See

Xilinx also allows hardware design using drag and drop blocks, this is referred to as IP
Integrator.

AVNET

http://www.myhdl.org/

Write your code to define the hardware using your preferred method

Use the FPGA compiler (HLS, SDSoC, VHDL, Verilog, GUI Block Design) running on a
PC to map your design for you into the internal logic blocks and interconnects.

The final output from the FPGA compiler will be a file that contains the information to
configure the device. This is called a bitstream file in the PYNQ context it will be called
an overlay.

The bitstream file will need to be transferred from the PC to an external CPU or ZYNQ
device and then to the PL portion of the device using a precise protocol. Xilinx details
this protocol and provides tools to configure the ZYNQ devices. This is called
configuring the FPGA and is analogous to a software OS loading and running an .exe.

AVNET

Python and FPGAs

Traditional context for full Python systems:

Your Python Source Python libraries

iPython/cmd-
line/Anaconda/ldle/Jupyter

Python engine Libraries from other
languages

OS (PetaLinux, Windows,

OSX, Linux etc.)

Software

CPU + Memory + I/O + Storage =
Hardware Computer (PC, Server or Embedded)

AVNET

In the beginning (and still an option - 2 separate devices):

PS - CPU

(x86, ARM, MIPs,
68000, PIC, Data Bus

PowerPC, AVR)

/ / But Plam FPG.AS Each CPU can \
If | want to use the PL don’t come with . .
s require a different
on the data | have to much of any built-in
bus, yes but the
get my data from the data bus, you must FPGA is
hCEUItg |’f(ws a f const;uct);ﬁur own programmable. This

prysical data bus o rom the is a lot of work each

some type. programmable :
K _ / \ hardware! / K time. /
PS = Processing System INVNET

Python data to bits and back again:

Python running on
Y PS - CpUg < Data Bus > PL - FPGA

Python handles data representing FF(?AStlgrehat adtl'bitsht')u:] TOt E;S good
information great but not as good at bits! at directly handling high leve
Information!

~

Various Python to C conversion techniques exist: CFFl,
c-types, Cython, spam etc. Use your favorite.

From C/C++ you can then easily do bits and talk to hardware
like the FPGA

- J

AVNET

Ultra96 PS + PL all in one ZYNQ device:

Processing System

Application Processing Unit

High-Speed
Connectivity

l DisplayPort v1.2a
l USB 3.0
I SATA 3.1
Timers,
WDT, Resets, l PCle®1.0/2.0
Clocking & Debug l-_PS-T]

System
Functions

ARME | NEON™ l

Cortex™-AS3 ‘ Floatiné Point Unit i

KB | 32B || Memory || Embedded |

DDR4/3/3L,
LPDDR4/3
| 3064 bit w/ ECC

Multichannel DMA

I-Cache DO-Cache | Management Trace A
Macrocel {1}

wilParity wECC Unit 256KB OCM

with ECC |\

General Connectivity

: and | GigE
Vector Floating | USB 2.0

ARM ‘ Point Unit | Config AES -
Cortex™ RS | emon Precon Management Decryption, =

Unit - Authentication, UART
128K8 “ 32KB I-Cache || 32KE D-Cache Secure Boot | SPI

TCM WECC WIECC WIECC ‘
1 Meegemel I Voltage/Temp Quad SPI NOR
l Functional Monitor NAND
Safety TrustZone AT

Programmable Logic

System Monitor

General-Purpose /0] High-Speed Connectivity ﬂ

High-Performance HP /O ‘ GTH
PCle Gen4

Storage & Signal Processing r
Block RAM

UltraRAM
DSP High-Density HD /O

Enter Ultra96’s ZU3EG
ZYNQ UltraScale+ MPSoC

The bus between the CPU and
FPGA are in the same chip and
Xilinx has designed the data
bus between them for you.

PS = Processing System
PL = Programmable Logic
(FPGA)

\VNET

I~

Python on Ultra96 PetaLinux Platform:

Your Python Source Python libraries

iPython/cmd- line/Jupyter

Python engine Libraries built with other
languages

= Layer modified to

OS (PetalLinux)
. support PL

modified to support PL

CPU + Memory + I/O + Storage = Programmable Logic (PL) (Depending upon approach)
Computer (PC, Server or Embedded) | FPGA

AVNET

PYNQ

*What is PYNQ?
An open source software framework designed to make Ultra96 more Python
friendly and easier for Python to interact with the PL on embedded system
platforms. It is comprised of: L N
PetaLinux (aarch64 kernel) PYN Q
Ubuntu Bionic root file-system
Full Python (as opposed to Micro Python)
Jupyter Notebooks
Python libraries for using the Xilinx PS and PL

*Why would | want to use it?

Has the ability to make some of your slow Python programs run FAST, really really
FAST and allows Python to control hardware that other platforms could only dream
about. |t can also dramatically reduce design time and effort! AVNET

Provides a Python “pynq” library with the
following helper functionality: -
* HW Interrupts PYN Q .,
« Manipulate hardware pins "
» Map physical memory into Python for PL/PS xfer
* Overlay — program the FPGA bitstream from Python
* Read various PS and PL attributes
« Utilize DMA to move data between PL and PS
* Primitives to help accelerate parts of numpy
* pynq.lib contains objects to manipulate some
of the board’s external hardware and operate
custom MicroBlaze™ CPUs in the PL.

Read all about it:

31

pyng.interrupt Module
pyng.gpio Module
pynq.lib Package
pyng.mmio Module
pyng.overlay Module
pyng.ps Module
pyng.pl Module
pynqg.xlnk Module

AVNET

https://pynq.readthedocs.io/en/v2.2.1/pynq_package.html

Python on the Ultra96 PYNQ Platform:

Your Python Source Python libraries PY N Q‘

iPython/cmd- line/Jupyter

Python engine Libraries built with other
languages

OS (PetaLinux)
= Layer modified for you
. = You still need to modify

CPU + Memory + I/O + Storage =

Computer (PC, Server or Embedded) Your PL Stuff

AVNET

Great place to start: www.pyng.io/community.html
Tutorials and other resources

Tutorial: HLS filter Video: Custom HLS Video: Accelerate FIR Video: Add existing IP
example adder IP software function to a PYNQ overlay

\/IVAQ'O'

How to Use a HLS Core in PYNQ

Vésizome! This sutorial wil walk you through The =t

LEDs blink when
boot sequence
comnliate

-

a : 3 M & =8

Video: Control custom
IP using GPIO

Great place to start: www.pyng.io/community.html
Community Projects

A selection of projects from the PYNQ community is shown below. Note that some examples are built on different

versions of the PYNQ image.

spoonNN

ETH Zurich

FPGA-based neural network
inference project

e 2

o
® e
@

\o

ee e

Video processing
KU Leuven

Hardware accelerated
videoprocessing

iSmart DNN
FPGA-based neural network
inference for DAC 2018 contest

ZipML-PYNQ
ETH Zurich

Hardware accelerated
compression

E' Zip

S0 rogee with fismting-prine dus
PRt

TGIIF

1st place in the DAC 2018 design
contest for neural network object
detection

PYNQ bot
IT Tallaght
Control of robotic car from PYNQ

cv2PYNQ

FAU

Accelerated OpenCV image
filtering library.

SWHENING to CVRPYNTE
Sobel SxT SO

PYNQ LED cube

Fudan University, Xilinx China
Controlling an LED cube from
PYNQ

AVNET

When will Xilinx PYNQ™ be available for Ultra96?

PYNQ™

«PYNQ for Ultra96 is coming soon, expected 1% week of Oct. 2018!!!

http://www.pyng.io & https://qithub.com/XilinxPYNQ
http://zedboard.org/product/ultra96

Ultra96 PYNQ platform will be hosted on Avnet’s github:
http://github.com/Avnet

Z Jupyter A Linux @ python

95 Boards

Partner

AVNET

http://www.pynq.io/
https://github.com/Xilinx/PYNQ
http://zedboard.org/product/ultra96
http://github.com/Avnet

Summary of Accelerating Python development workflow:

l_ .
| 1) Determine what functionality you want to accelerate in the PL | + | =Can be tied
) in to PYNQ
supported data
2a) Devel rt the selected MOVErs
a) Develop or port the selecte -
algorithm with VHDL, Verilog, 2b)a[|)eo"riet'r‘]’rf1 o gogtr‘g‘f:'”g _ PYNQ
MyHDL for the PL 9 can coexist
or still help

3c) Use SDSoC to move the
data between PS and PL for
you and also create the PL

hardware]

3a) Create your own system to 3b) Use HLS to create the PL
move data between PS and
hardware

PL
.

v *

43) Iuset PYN? Pythcc)int 4b) Choose your own method
modules o exchange data to interface Python to the PL
with the PL

Acquire your own Ultra96 board for $249:
http://zedboard.org/product/ultra96 <«

Includes:

* Ultra96 development board

» 16 GB pre-loaded MicroSD card + adapter
* Voucher for SDSoC license from Xilinx

* Quick-start instruction card

Does not include (but necessary):
» External 12V 2A 96boards adapter

Optional Accessories:
» Seed Studios Grove Starter Kit for 96boards

» Other compatible accessories
‘\ JTAG to USB adapter board 95 Boards

AVNET

37

THANK YOU for attending!

Much gratitude to my friend Aron Khan who weathered v1.0 of my presentation and
offered very useful advice to improve it

A special salute to all the folks in the trenches who carry the PYNQ flag, especially:

Dr. Yun “Rock” Qu PhD, Dr. Graham Schelle PhD, Cathal McCabe, Peter Ogden, Anurag Dubey

And thank you to the following people who also helped provide for the opportunity to
share this with you:

Avnet: Kevin Keryk, Bryan Fletcher

AVNET

Get more help on PYNQ™ and Python for Ultra96:

PYNQ Workshop: hitps://github.com/Xilinx/PYNQ_\Workshop

See other’s examples (Ultra96 examples will be added soon):
http://www.pyng.io/community

See Avnet’s Ultra96 tutorials (more on the way):
http://zedboard.org/support/design/24166/156

Join Xilinx’s Developer Zone to access free tools:
https://www.xilinx.com/products/design-tools/software-zone.html

AVNET

https://github.com/Xilinx/PYNQ_Workshop
http://www.pynq.io/community
http://zedboard.org/support/design/24166/156
https://www.xilinx.com/products/design-tools/software-zone.html

