
A Call to Action: Accelerating Python
with FPGAs

Intro to FPGAs

Field Programmable Gate Array (FPGA), under the hood:

I/O Cells
connect
directly to
the FPGA
chip’s
physical
pinsThe innards shown

here are a
simplification of
what is inside the
actual part

What’s inside?

Note: logic in ZU3EG is not exactly as shown above but is similar

Hundreds of thousands of these programmable logic block widgets!
They can be interconnected to create logic that can accomplish
just about anything. A major part of the device
programming involves place and route (the tools do this for you) which
is how all the interconnects are setup to put it all together.

 LUTs, Clocks, PLLs, Transceivers, Multiplexers, Logic
Functions, Interconnects, Arithmetic operators and Memories, all
GF(2)

Ultra96’s Xilinx ZU3EG PL Internal Attributes:

FPGA Innards:
Raw chip die:
(not actual ZU3EG)

Compiler (synthesis)
place and route output:

What can FPGAs (PL)
do for me?

The number ONE of many reasons to use FPGA:

Reasons to use an FPGA for your Python:

1. For many solutions the PL will be orders of magnitude faster

2. Precise timing capabilities (picoseconds jitter accuracy) for control of hardware

3. Determinism of algorithmic execution (no cache, preemption, task switching, threads
or interrupts if you design it that way)

4. You can do things beyond what the PS can do with Python, even design your own
CPU/GPU! See Xilinx’s MicroBlaze™ for PYNQ:
https://pynq.readthedocs.io/en/v2.0/pynq_libraries/pynq_microblaze_subsystem.html

5. The art of designing hardware with software can be rewarding and enjoyable!

https://pynq.readthedocs.io/en/v2.0/pynq_libraries/pynq_microblaze_subsystem.html

Other areas where FPGAs excel:
Crytography:
AES, Blowfish,
Twofish, RSA,
Triple DES

Signal Processing:
FIR, IIR, OFDM, FFT,
Correlators, CORDIC,
Interp, Decimation, NCO,
Mixers, Polyphase
Filtering, Wavelets

Cryptocurrencies:
BitCoin, Etherum

Digital Motor Control:
Servo, Stepper, PWM, PDM

 Build your own CPU or GPU:
MicroBlaze™, RISC, Custom

Kalman Filtering

Prototyping for ASICs

Forward Error Correction
Systems:
Turbo, LDPC, POLAR, Viterbi,
BCH, RS

Direct control of other hardware

Scientific Computing

Parallel Processing

Reprogrammability allows for in the field upgrades of hardware

Re-routing hardware signals on fixed PCB for flexibility Bridge between CPUs or CPUs and other hardware

Machine Learning

IoT: read multiple sensors simultaneously

Can be faster than GPUs for some things

Cellular 4/5G

Use case - Machine Learning computer vision on Ultra96:
▪ FINN Binary Neural Network (BNN) Demo on Ultra96
▪ http://www.wiki.xilinx.com/Zynq+UltraScale%EF%BC%8B+MPSoC+Accelerate

d+Image+Classification+via+Binary+Neural+Network+TechTip

Full 1080p Images per Second in HW: 66.3
Full 1080p Images per Second in *SW: .01

HW Acceleration Factor: *6171

* The SW used for benchmark was running on the Ultra96 ARM
Cortex™ A53 cores with same OS as the HW tests @ ~1.3GHz. Other
platforms that have somewhat faster ARM cores could do a little better
with just SW. Other platforms with their own hardware accelerators
will also run faster than pure SW.

http://www.wiki.xilinx.com/Zynq+UltraScale%EF%BC%8B+MPSoC+Accelerated+Image+Classification+via+Binary+Neural+Network+TechTip
http://www.wiki.xilinx.com/Zynq+UltraScale%EF%BC%8B+MPSoC+Accelerated+Image+Classification+via+Binary+Neural+Network+TechTip

Use case - Matrix Multiply Algorithm Acceleration
• 32x32 Matrix Multiply of floats
• Algorithm developed in C
• Then accelerated in programmable logic
• Python can make calls into the C code for this

Daniel Rozwood -- Ultra96 SDSoC Platform for v2018.2

Processor-onl
y Cycles

Accelerated
Cycles

Acceleration

1578615 65725 24x

http://ultra96.org/sites/default/files/design/SDSoC_Platform_v2018p2_1.zip

Programmable Logic Acceleration vs. CPU/GPU
Domain / Topic Title / Author / DOI Improvement

vs CPU+GPU
Improvement
vs CPU-Only

Digital Signal Processing
Sliding Windows

A Performance and Energy Comparison of FPGAs, GPUs,
and Multicores for Sliding Window Applications, Fowers,
http://dx.doi.org/10.1145/2145694.2145704

11x 57x

Graph Processing
Tree-reweighted Message
Passing (TRW-S)

GraphGen for CoRAM: Graph Computation on FPGAs,
Weisz, http://dx.doi.org/10.1109/FCCM.2014.15 10.3x 14.5x

Monte Carlo Simulation
Random Number Generation

A Comparison of CPUs, GPUs, FPGAs, and Massively
Parallel Processor Arrays for Random Number Generation,
Thomas, http://dx.doi.org/10.1145/1508128.1508139

3x 30x

Machine Vision
Moving Average with Local
Difference (MALD)

CPU, GPU and FPGA Implementations of MALD: Ceramic
Tile Surface Defects Detection Algorithm, Hocenski,
http://dx.doi.org/10.7305/automatika.2014.01.317

14x 35x

Bioinformatics
De Novo Genome Assembly

Hardware Accelerated Novel Optical De Novo Assembly for
Large-Scale Genomes, Kastner,
http://dx.doi.org/10.1109/FPL.2014.6927499

8.5x 11.9x

Atmospheric Modelling
Solvers for Global Atmospheric
Equations

Accelerating Solvers for Global Atmospheric Equations
through Mixed-Precision Data Flow Engine, Gan,
http://dx.doi.org/10.1109/FPL.2013.6645508

4x 100X

http://dx.doi.org/10.1145/2145694.2145704
http://dx.doi.org/10.1109/FCCM.2014.15
http://dx.doi.org/10.1145/1508128.1508139
http://dx.doi.org/10.7305/automatika.2014.01.317
http://dx.doi.org/10.1109/FPL.2014.6927499
http://dx.doi.org/10.1109/FPL.2013.6645508

Ultra96 tools intro

▪ Vivado is the main Xilinx tool that converts RTL source
code files into FPGA hardware
▪ It is a GUI project manager
▪ Performs hardware verification and debugging
▪ Tallies and manages the internal FPGA resources
▪ Allows for schematic block based hardware design
▪ Exports and imports to many other Xilinx tools
▪ Performs power consumption analysis for the ZYNQ MPSoC
▪ Generates the bitstream/overlay files used for programming the PL
▪ Accepts C/C++ and converts it into hardware: High Level Synthesis (HLS)

Vivado HLx IDE for Ultra96 PL:

Vivado HLx IDE for Ultra96 PL:

Hardware
describing

source code

FPGA bitstream
(like a binary)

Vivado HLS for PL design:
▪HLS allows one to create hardware with C/C++ but…
▪It does not handle moving the data between the PS and PL for you, this may be
what you want anyways especially if you are using a stand-alone FPGA or PYNQ
moves the data for you, it depends

 C/C++ bitstream

SDSoC for Ultra96 PS and PL:
▪ SDSoC is a separate GUI from
Vivado

▪ Coverts your C/C++
into a hybrid system using both
the PS and PL

▪ It moves the data between the
two for you and creates PL!

 C/C++ bitstream +
.exe, .so

XSDK tool for Ultra96 PS:
▪ XSDK is an eclipse based front end for software development on the PS

▪ XSDK can edit compile and debug C/C++

▪ XSDK can also program ZYNQ parts

 C/C++ .exe, .so

PetaLinux for Ultra96
▪ aarch64 Linux Kernel
▪ Embedded Linux with Xilinx enhancements made to run on the ZU3EG
▪ Simple and time saving Xilinx ‘petalinux-’ cmds to drive Yocto
▪ Yocto based configuration and development tools
▪ Multiple choices for root FS, including ram based, PetaLinux, Debian and Ubuntu
▪ Integrates with PL hardware designs

20

Vivado

FPGA Hardware Design Languages (HDL):
▪ Not that long ago hardware designers had fewer choices for PL programming

languages, one of which was VHDL.
▪ Designers involved with ASIC design often use a language called Verilog, FPGAs can

also be programmed using it.
▪ These languages work very well and are still supported. They are elegant and very

powerful but less people are familiar with them compared to Python or C/C++.
▪ Xilinx reached out to the software community and created tools to allow them to design

hardware using C/C++: SDSoC and HLS.
▪ There is also a 3rd party project that allows hardware design using Python itself. See

http://www.myhdl.org
▪ Xilinx also allows hardware design using drag and drop blocks, this is referred to as IP

Integrator.

http://www.myhdl.org/

Configuring the FPGA (NOT designing the HW):
1. Write your code to define the hardware using your preferred method
2. Use the FPGA compiler (HLS, SDSoC, VHDL, Verilog, GUI Block Design) running on a

PC to map your design for you into the internal logic blocks and interconnects.
3. The final output from the FPGA compiler will be a file that contains the information to

configure the device. This is called a bitstream file in the PYNQ context it will be called
an overlay.

4. The bitstream file will need to be transferred from the PC to an external CPU or ZYNQ
device and then to the PL portion of the device using a precise protocol. Xilinx details
this protocol and provides tools to configure the ZYNQ devices. This is called
configuring the FPGA and is analogous to a software OS loading and running an .exe.

Python and FPGAs

Traditional context for full Python systems:

OS (PetaLinux, Windows,
OSX, Linux etc.)

Python engine

iPython/cmd-
line/Anaconda/Idle/Jupyter

Your Python Source

HAL

CPU + Memory + I/O + Storage =
Computer (PC, Server or Embedded)

Python libraries

Libraries from other
languages

Hardware

Software

In the beginning (and still an option - 2 separate devices):

PS - CPU
(x86, ARM, MIPs,

68000, PIC,
PowerPC, AVR)

PL - FPGA

Each CPU can
require a different
bus, yes but the

FPGA is
programmable. This
is a lot of work each

time.

If I want to use the PL
on the data I have to
get my data from the

CPU to it via a
physical data bus of

some type.

But plain FPGAs
don’t come with

much of any built-in
data bus, you must
construct your own

from the
programmable

hardware!

Data Bus

PS = Processing System

Python data to bits and back again:

Python handles data representing
information great but not as good at bits!

Python running on
PS - CPU PL - FPGA

FPGAs great at bits but not as good
at directly handling high level
Information!

Various Python to C conversion techniques exist: CFFI,
c-types, Cython, spam etc. Use your favorite.

From C/C++ you can then easily do bits and talk to hardware
like the FPGA

Data Bus

Ultra96 PS + PL all in one ZYNQ device:

PS = Processing System
PL = Programmable Logic
 (FPGA)

Enter Ultra96’s ZU3EG
ZYNQ UltraScale+ MPSoC

The bus between the CPU and
FPGA are in the same chip and
Xilinx has designed the data
bus between them for you.

Python on Ultra96 PetaLinux Platform:

OS (PetaLinux)

Python engine

iPython/cmd- line/Jupyter

Your Python Source

HAL

CPU + Memory + I/O + Storage =
Computer (PC, Server or Embedded)

Python libraries

Libraries built with other
languages

Programmable Logic (PL)
/ FPGA

= Layer modified to
 support PL
= Layer may have to be
modified to support PL
(Depending upon approach)

PYNQ

An easier path - Xilinx PYNQ™ for Ultra96:
▪What is PYNQ?
An open source software framework designed to make Ultra96 more Python
friendly and easier for Python to interact with the PL on embedded system
platforms. It is comprised of:

▪ PetaLinux (aarch64 kernel)
▪ Ubuntu Bionic root file-system
▪ Full Python (as opposed to Micro Python)
▪ Jupyter Notebooks
▪ Python libraries for using the Xilinx PS and PL

▪Why would I want to use it?
Has the ability to make some of your slow Python programs run FAST, really really
FAST and allows Python to control hardware that other platforms could only dream
about. It can also dramatically reduce design time and effort!

What PYNQ does for you:
Provides a Python “pynq” library with the
 following helper functionality:
• HW Interrupts
• Manipulate hardware pins
• Map physical memory into Python for PL/PS xfer
• Overlay – program the FPGA bitstream from Python
• Read various PS and PL attributes
• Utilize DMA to move data between PL and PS
• Primitives to help accelerate parts of numpy
• pynq.lib contains objects to manipulate some

of the board’s external hardware and operate
custom MicroBlaze™ CPUs in the PL.

Read all about it:
https://pynq.readthedocs.io/en/v2.2.1/pynq_package.html

31

https://pynq.readthedocs.io/en/v2.2.1/pynq_package.html

Python on the Ultra96 PYNQ Platform:

OS (PetaLinux)

Python engine

iPython/cmd- line/Jupyter

Your Python Source

HAL

CPU + Memory + I/O + Storage =
Computer (PC, Server or Embedded)

Python libraries

Libraries built with other
languages

= Layer modified for you

Your PL Stuff

= You still need to modify

Great place to start: www.pynq.io/community.html

33

Great place to start: www.pynq.io/community.html

When will Xilinx PYNQ™ be available for Ultra96?

▪PYNQ for Ultra96 is coming soon, expected 1st week of Oct. 2018!!!

http://www.pynq.io & https://github.com/Xilinx/PYNQ
http://zedboard.org/product/ultra96

Ultra96 PYNQ platform will be hosted on Avnet’s github:
http://github.com/Avnet

http://www.pynq.io/
https://github.com/Xilinx/PYNQ
http://zedboard.org/product/ultra96
http://github.com/Avnet

Summary of Accelerating Python development workflow:

2a) Develop or port the selected
algorithm with VHDL, Verilog,

MyHDL for the PL

1) Determine what functionality you want to accelerate in the PL

2b) Develop or port existing
algorithm in C or C++

3a) Create your own system to
move data between PS and

PL

3c) Use SDSoC to move the
data between PS and PL for
you and also create the PL

hardware

3b) Use HLS to create the PL
hardware

4b) Choose your own method
to interface Python to the PL

4a) Use PYNQ Python
modules to exchange data

with the PL

+

+

= PYNQ
 can coexist
or still help

+ = Can be tied
in to PYNQ
supported data
movers

Acquire your own Ultra96 board for $249:

37

http://zedboard.org/product/ultra96
Includes:
• Ultra96 development board
• 16 GB pre-loaded MicroSD card + adapter
• Voucher for SDSoC license from Xilinx
• Quick-start instruction card

Does not include (but necessary):
• External 12V 2A 96boards adapter

Optional Accessories:
• Seed Studios Grove Starter Kit for 96boards
• Other compatible accessories
• JTAG to USB adapter board

Acknowledgements:
THANK YOU for attending!

Much gratitude to my friend Aron Khan who weathered v1.0 of my presentation and
offered very useful advice to improve it

A special salute to all the folks in the trenches who carry the PYNQ flag, especially:

Dr. Yun “Rock” Qu PhD, Dr. Graham Schelle PhD, Cathal McCabe, Peter Ogden, Anurag Dubey

And thank you to the following people who also helped provide for the opportunity to
share this with you:

Avnet: Kevin Keryk, Bryan Fletcher

Get more help on PYNQ™ and Python for Ultra96:
PYNQ Workshop: https://github.com/Xilinx/PYNQ_Workshop

See other’s examples (Ultra96 examples will be added soon):
http://www.pynq.io/community

See Avnet’s Ultra96 tutorials (more on the way):
http://zedboard.org/support/design/24166/156

Join Xilinx’s Developer Zone to access free tools:
https://www.xilinx.com/products/design-tools/software-zone.html

https://github.com/Xilinx/PYNQ_Workshop
http://www.pynq.io/community
http://zedboard.org/support/design/24166/156
https://www.xilinx.com/products/design-tools/software-zone.html

