

A Case Study of Using an Object-Relational Paradigm in
Building a Web Database Application

J. Wenny Rahayu 1 David Taniar 2 Lee Nung Kion 3 Eric Pardede 1

1 Department of Computer Science and Computer Engineering
La Trobe University

Bundoora, Victoria 3083, Australia
Email: wenny@cs. l at r obe. edu. au

E. Par dede@l at r obe. edu. au

2 School of Business Systems
Monash University

PO Box 63B, Clayton, Victoria 3800, Australia
Email: Davi d. Tani ar @i nf ot ech. monash. edu. au

3 Faculty of Cognitive Science and Human Development
University Malaysia Sarawak

Address
Email: l nk i on@pl . j ar i ng. my

Abstract
In this paper, we would like to share our experiences in building a web database
application using an object-relational paradigm. The system we built is basically an
online system for casual tutors to claim their work for payment. At the design stage, we
use an object-oriented design. Since the database backend is a relational database
management system (i.e. Oracle), which also supports some object-oriented features, we
need to apply a transformation methodology to map our object-oriented design into
relational tables incorporating some object features in Oracle. Once the necessary object
types and tables have been created, at the programming stage we use a PHP scripting
language accessing the Oracle database where the data is stored.

Keywords
Object-Oriented Design, Object-Relational Databases, Web Databases, and Online

Database Application.

ISCA20032

1 Introduction
In this section we provide the related work and the motivation of using object-relational paradigm
for web database application.

1.1 Related Work
Online database application is gaining popularity among not only IT community but also general
community because of a wide availability of Internet access. In web database applications, the
database is accessed through the web [14]. Generally the database is stored in a Relational
Database Management System (RDBMS) and web access is provided by a scripting language
(e.g. Php) connected through an appropriate middleware [5, 15].

Like any other database applications (web and non-web), database design is an important
initial step. After this conceptual design, implementation can then be carried out. The emergence
of the Object-oriented (OO) methodology has shown its capabilities in modelling the real world
better than the earlier relational methodology [7]. The Entity Relationship (ER) modeling [2]
technique is the most widely use technique in the industries for conceptual web database design.
But, it has several deficiencies, firstly it unable to capture the data modeler intents, especially for
large complex applications. Secondly, it lacks of expressive power that represents the real world
entities and finally, the transformation into relational (normalization) database takes many steps
and results in many redundant small tables. The un-normalization step is necessary to avoid
redundancy and create more effective relations. There are many extensions to the ER model [1],
but so far none of them is widely accepted in the industries.

The OO modeling technique has becomes a very promising alternative to the ER modeling
technique. With the introduction of Unified Modeling Language (UML) standard many web
database has been developed using this OO model. The object oriented database management
system (OODBMS) was introduced to directly encapsulate the OO model in the conceptual
design step. Unfortunately, the OODBMS implementations are still lacking performance as
compared to RDB in many aspects [4].

The shortcomings in relational modelling such as ER modelling and object-oriented
modelling have given us motivation to use the object-relational modelling that will combine the
good features of each previous data modelling.

1.2 Object-Relational Modeling
A more promising approach is to extend the matured features of RDB to support object features
such as abstract data type and objects in Object Relational Database Management System
(ORDBMS). Vendors such as Oracle, Informix, and Microsoft SQL server have extended their
RDBMS to support objects features [3]. The RDBMS is still the most famous web database
implementation platform due to few reasons, firstly, the relational database is supported by most
vendors, secondly, it can be easily obtained in the market, event the free version such as MySql,
lastly, most web programming language support relational database access and the resulting web
database can be easily ported to other programming language. The ORDBMS is predicted to
gains more popularity in the near future as more complex web database requirements and more
vendors are directing this way.

In this case study we adopt an object-oriented design to design the database. The system we
built is an online claim system used by casual tutors to claim their work for payment.

As a database backend, we choose Oracle DBMS. Since version 8, Oracle has provided some
object functionalities, such as objects, ref types, collection types, nested objects, etc. However,
Oracle is not by any means an Object-Oriented Database Management System (OODBMS).

ISCA20033

Oracle is an RDBMS with some object features. This new era of DBMS is often known as
“Object-Relational DBMS” [13]. Consequently, database design using an object-oriented
modelling needs to be transformed into object-relational database schema for implementation
[12].

In this paper we focus on our experience in designing a web database application using an
object-oriented design and mapping it to an object-relational database. We will also show how the
implementation looks like on the web.

The rest of this paper is organized as follows. Section 2 describes the tutor claim system,
including the design using an object-oriented modelling. Section 3 explains an object-relational
transformation whereby the object design in Section 2 is mapped to object-relational database
schemas for implementation. Section 4 presents an implementation overview of the system.
Section 5 discusses problems and limitations of object-relational features. Finally, Section 6 gives
the conclusions and explains future extension.

2 A Tutor Claim System: The Case Study
In this section, we briefly describe the tutor claim system, and the design aspect of the system,
using use case and object-oriented modelling.

2.1 Descriptions
The tutor claim system is an online system whereby casual tutors can claim their work for
payment. This payment claim is done fortnightly as the payment in the Australian University
system is carried out every fortnight. Casual tutors are teaching assistant that we hire for each
subject in each semester. All of them are students, mostly postgraduate students. These tutors are
hired by the department to assist the lecturers in delivering the subject. This assistance is
normally in a form of tutorial and lab support, consultation, and marking (exam and assignments).

Prior to the online system, tutors have to lodge a claim form every fortnight to be approved
by the associated lecturer in order to be processed in the financial system. With this online
system, payment claim can be done through the web. Database maintenance is done by the
general office personnel (administrator) who maintains tutor details, subject details, semester,
budget, etc. Each lecturer normally has a certain budget, which can be used to hire casual tutors
for the semester. Each lecturer still needs to approve/reject claims made by their tutors. Once a
claim is approved, the budget is appropriately reduced, so that the lecturer knows how much
budget he/she still has.

2.2 Use Case
In this system, three actors are identified. They are: Staff is person(s) who is handling
administrative function in, Supervisor is a person who has authority to appoint a tutor/tutor to
assist him/her in a subject he/she teaches in current semester and allocates the budget for the
tutor/s. It is also known as lecture. Tutor is a supervisor’s assistant. Fig. 1 shows the Use Case
diagram.

The Use Case diagram shown in Fig. 1 also shows seven use case scenarios: from manage
tutor to manage budget, and view report and claim processing. Each of these scenarios is
associated with an actor. It also requires certain pre and post conditions, and performs certain
tasks. Fig. 2 gives a table explaining these elements for each use case scenario.

ISCA20034

Manage Budget View Report

Supervisor

Tutor 1

Claim Processing

Manage Subject

Manage Semester

Manage Offered Subjects

Staff

Manage Tutor

Figure 1. Tutor Claim System Use Case Diagram

Use Case Task Actor Preconditions Postconditions Basic Course
Manage
Semester

Staff None Semester data is
created / updated /
deleted

Add / delete / edit
semesters

Manage
Subject

Staff None Subject is created /
updated / deleted

Add / delete /edit
subjects

Manage
Offered Subject

Staff Semester, Subject and
Lecturer are already
created

Offered subjects for
current semester is
created / updated /
deleted

Add / delete / edit
offered subjects

Manage Tutor Staff The system assumes a
tutor is requested by a
supervisor by submitting
Budget form or by other
means manually

Tutor is created /
updated / deleted

Add / delete / edit
tutors

Manage Budget Staff Supervisor submits a
Budget Form. Offered
Subject and Tutor are
already created.

Budget is created /
updated / deleted

Add / delete / edit
budgets

View Report Staff None Report is generated None
Claim
Processing

Tutor,
Supervisor,
Staff

Budget is already
created

Claim is processed Submit / approve
/ verify / pay
claims

Figure 2. Use Case Scenarios

ISCA20035

2.3 Object-Oriented Design
Fig. 3 shows an object-oriented diagram of the online tutor claim system. It consists of 12 classes.
Class Users forms an inheritance hierarchy with classes Tutor, OfficeStaff, and Supervisor as its
subclasses. Also notice that the inheritance is a partition inheritance, meaning that the instances
of class Users must be one and only one of its subclasses [8].

In the diagram, there are two aggregation (whole-part) hierarchies. One aggregation is where
class Claims consists of class ClaimLines, and the other aggregation is where class Budget
consists of class ActivityType.

The association relationships are either uni-directional or bi-directional associations. Uni-
directional associations are denoted by the directed arrows, whereas bi-directional associations do
not use arrows. Either of them, the cardinality for each association can be 1-to-1 or 1-to-many.
For example, a uni-directional 1-to-1 is between class OfferedSubject and Class SemesterInfo,
and a bi-directional 1-to-many is between class Tutor and class Budget.

3 Object-Relational Transformation
As object-relational approach is developed using object-oriented model, before we discuss the
transformation we need to know the aspect of object-oriented conceptual model (OOCM) that can
be transformed. OOCM encapsulates the structural/static as well as behavioral/dynamic aspects of
objects.

The static aspect involves the creation of the objects and classes that also includes decisions
regarding their attributes. In addition, static aspect in OOCM also concerns on the relationship
between objects, i.e. association, inheritance, and aggregation. Each of these relationships is
associated with a set of constraints. The dynamic aspect of the OOCM involves the creation of
the routines. Routines are specified as operations or methods, which are defined in the class that
describe the object. The specified routines are the only operations that can be carried out on the
attributes in the object.

In this paper, we only deal with the first aspect, which is the static aspect. Thus, there is a
room for future research on dealing with the dynamic aspect transformation of object-relational
approach for web database application.

For static aspect, we deal with different kind of relationships. There are three class
relationships as noted in Fig. 3; they are associations, inheritance, and aggregation. In the
following sections we provide mapping of each of these relationships. In the mapping process, the
object diagram in Fig. 3 will be transformed into tables to be directly implemented into Oracle
DBMS. The object-relational transformation rules that we use here are adopted from our previous
work. Readers interested in object-relational transformation methodology can consult our existing
papers [6, 7, 8, 9, 10, 11, 12]. In the following sections we summarize the results of the
transformation process.

3.1 Mapping Associations
In this section, we describe transformation of 1-to-1, 1-to-many, and many-to-many association
relationships.

ISCA20036

Users
StaffID
Name
Email
UserID
UserPassword
Status
Date Created
Department

Start time and
end time is in 24
hours format.

Office staff

Activity type
activityId
description
weekly_hours

Partition inheritance

Claims
DateSubmit
Status
StatusDescription
ClaimID
Location
School

JobClassification
ClassificationCode
Description
HourlyRate

Tutor
CommencementDate
HighestQuali fication
Tel_no
ApprovedDate

0..*

1

0..*

1

make

Supervisor
RoomsNo

Subjects
SubjectCode
SubjectName

Semester Info
Semester Number
Semester start date
Semester end date
Semester year
SemesterID

Budget
BudgetRefID
NoOfWeek
Status
EffectiveDate
ReserveBudget
Balance

1..*

1

1..*

1

allocate

1..*

1

1..*

1

has

Offered Subject

1..*

1..*

+taught by
1..*

+taught
1..*

1..*

1

1..*

1

supervised

1

1

1

1
refers to

1

1

1

1 refers to1

1..*

1

1..*

budget for

ClaimLines
Tutoringdate
StartT ime
EndTime
ClaimLineNo
hours
claimamount

1..*1 1..*1

contains

refer to

1

1

1

1

for subject

Figure 3. Object-Oriented Diagram

ISCA20037

3.1.1 Transformation of 1-to-1 Association

There are a few 1-to-1 association relationships in the object diagram as shown previously in Fig.
3. To describe 1-to-1 association transformation, we use the association between OfferedSubject
and Semester. The first step is to create an object type. This object type then becomes a table with
additional information such as the primary key of the table. For example:

CREATE OR REPLACE TYPE Semest er _t yp AS OBJECT (
 Semest er I D NUMBER,
 Semest er NUMBER(1) ,
 Semest er _year NUMBER(5) ,
 Semest er _st ar t _dat e DATE,
 Semest er _end_dat e DATE,
 Cur r ent _sem CHAR(1)) ;

CREATE TABLE Semest er _t ab OF Semest er _t yp
 (PRIMARY KEY Semest er I D) ;

For the OfferedSubject class, we also need to create an object type. The OfferedSubject class
needs to refer to the Semester table to know exactly which semester number and semester year a
subject is offered. To do so, we create a reference from OfferedSubject class to Semester class.
As OfferedSubject is also associated with Subjects, a proper reference is also linked with
Subjects. In the OfferedSubject table, we need to use a SCOPE FOR clause to identify the domain
scope of the references identified in the object type.

CREATE OR REPLACE TYPE Avai l abl e_sub_t yp AS OBJECT (
 subj ect _code_r ef REF Subj ect s_t yp,
 semest er _r ef REF Semest er _t yp) ;

CREATE TABLE Of f er ed_Subj ect OF Avai l abl e_sub_t yp(
 SCOPE FOR (subj ect _code_r ef) IS Subj ect s,
 SCOPE FOR (semest er _r ef) IS Semest er _t ab) ;

3.1.2 Transformation of 1-to-many Association

We use the association between Tutor and Budget to illustrate 1-to-many association
transformation. In this case, one tutor may have many budgets, each budget object will
corresponds to a subject it tutoring on. To transform this association, one REF type attribute is
added to the Budget class. This attribute will reference to the ROW object table of Tutor type.
The primary key for Tutor table will be the UserID.

CREATE OR REPLACE TYPE Tut or _t yp AS OBJECT (
 Tel _no VARCHAR2(10) ,
 Hi ghest Qual i f i cat i on VARCHAR2(50) ,
 Appr ovedDat e DATE) ;

CREATE TABLE Tut or OF Tut or _t yp;

CREATE OR REPLACE TYPE Budget _t yp AS OBJECT(
 Budget I D NUMBER,
 Budget Ref VARCHAR2(15) ,
 Ef f ect i veDat e DATE,
 Reser veBudget FLOAT,
 Bal ance FLOAT,
 St at us NUMBER(1) ,

ISCA20038

 NoOf Week NUMBER,
 Commencement Dat e DATE,
 Subj ect _code REF avai l abl e_sub_t yp,
 Budget f or REF Tut or _t yp) ;

CREATE TABLE Budget OF Budget _t yp(
 PRIMARY KEY (Budget I D) ,
 SCOPE FOR (Budgetfor) IS Tutor)) ;

3.1.3 Transformation of many-to-many Association

The only many-to-many association in the object diagram in Fig. 3 is between OfferedSubject
and Tutor. One subject could have one or more tutor, and one tutor may be assigned tutoring for
more than one subject. For this mapping, we create a new table call Taught_by to associate these
two classes.

CREATE TABLE Taught _by (
 t ut or _r ef REF Tut or _t yp SCOPE IS Tut or ,
 subj ect _r ef REF Avai l abl e_Sub_t yp SCOPE IS Of f er ed_Subj ect) ;

3.2 Mapping Inheritance
The inheritance hierarchy in object diagram shown in Fig. 3 has class Users as a superclass and
Supervisor, OfficeStaff, and Tutor as subclasses. A user can only be a Tutor, Supervisor or
OfficeStaff and it must belong to one of these three types of user. To map this relationship, we
create three base tables for Tutor, Supervisor, OfficeStaff and User. The Tutor, Supervisor, and
OfficeStaff class will be related to its superclass class using UserID as foreign key. The User
class will contain user_type attribute to keep track which type of user it belongs to. Beside that
user_type attribute is also constraint to valid user type and not NULL conditions. The following is
object types and tables for the superclass (Users) and one of its subclasses only (e.g. Supervisor).

CREATE OR REPLACE TYPE User s_t yp AS OBJECT (
 Fi r st Name VARCHAR2(50) ,
 Last Name VARCHAR2(50) ,
 Emai l VARCHAR2(80) ,
 User I D VARCHAR2(15) ,
 User Passwor d VARCHAR2(20) ,
 St at us NUMBER(1) ,
 Dat ecr eat e DATE,
 Depar t ment VARCHAR(50) ,
 User _Type VARCHAR2(15)) ;

CREATE TABLE User s OF User s_t yp (
 PRIMARY KEY UserID,
 NOT NULL User _Type,
 CHECK (User _Type IN (' t ut or ' , ' super vi sor ' , ' of f i cest af f '))) ;

CREATE OR REPLACE TYPE Super vi sor _t yp AS OBJECT (
 User I D VARCHAR2(15) ,
 RoomsNo VARCHAR2(10)) ;

CREATE TABLE Super vi sor OF Super vi sor _t yp
 (PRIMARY KEY (UserID) ,
 FOREIGN KEY (UserID) REFERENCES User s(User I D)

ISCA20039

 ON DELETE CASCADE) ;

3.3 Mapping Aggregation
In the aggregation, we use the aggregation between Claims and ClaimLines as an example. This
relationship is created by using a nested table. The choice for nested table is because we must be
able to retrieve all ClaimLine by only retrieving Claims object. Furthermore, this show more rigid
relationship between ClaimLine is part of a Claim. We must not be allowed to manipulate
ClaimLine alone in the application without retrieve through Claims class to where it belongs.

CREATE OR REPLACE TYPE Cl ai mLi nes_t yp AS OBJECT (
 Tut or i ngDat e DATE,
 Cl ai mLi neNo NUMBER,
 St ar t Ti me DATE,
 EndTi me DATE,
 hour s NUMBER(2, 1) ,
 c l ai m_amount NUMBER (5, 3) ,
 j obcl ass_r ef REF JobCl assi f i cat i on_t yp,
 Locat i on Var char 2(20)) ;

CREATE OR REPLACE TYPE Cl ai mLi nes_t ab AS TABLE OF Cl ai mLi nes_t yp;

CREATE OR REPLACE TYPE Cl ai ms_t yp AS OBJECT (
 Cl ai mI D NUMBER,
 Pl ace_by REF Tut or _t yp,
 Dat eSubmi t DATE,
 Dat eAppr ove DATE,
 St at us NUMBER,
 Subj ect Code REF Avai l abl e_sub_t yp,
 has_cl ai ml i ne Cl ai mLi nes_t ab) ;

CREATE TABLE Cl ai ms OF Cl ai ms_t yp(
 PRIMARY KEY (Cl ai mI D) ,
 SCOPE FOR (pl ace_by) IS Tut or)
 NESTED TABLE has_cl ai ml i ne STORE AS Cl ai ml i ne_St or e_t ab;

3.4 Mapping Multiple Inheritance
To be more complete, we describe how to performance multi inheritance using object relational
transformation method.

Fig. 4 shows the multiple inheritance relationship with four object classes, Customer,
Commercial, Academic and Private Institution. The object class Customer is a super-class of the
Commercial and the Academic class. The Private Institution class inherit from both Academic
and Commercial classes.

ISCA200310

CUSTOMER

Name
Address

COMMERCIAL

ACN

ACADEMIC

Department

PRIVATE
INSTITUTION

SponsorBoard

union

Figure 4. Multiple Inheritance

A union inheritance declares that the union of a group of subclasses constitutes the entire
membership of the super-class. In the example above, a customer is either a commercial customer
or an academic customer. On the other hand, a customer can also be both commercial and
academic. To transform the multiple relationship above, we must first transform the union
inheritance relationship. Three relational tables are created, that is the Customer table, the
Commercial table and the Academic table. Below shows the SQL statements to create these
tables.

CREATE TABLE CUSTOMER (

I D CHAR(10) not nul l ,
Name CHAR(30) not nul l ,
Addr ess CHAR(30) , Pr i mar y key(I D)) ;

CREATE TABLE COMMERCIAL (

I D CHAR(10) not nul l ,
ACN CHAR(10) ,
Pr i mar y key (I D) ,
For ei gn key (I D) r ef er ence CUSTOMER
On del et e cascade
On updat e r est r i ct) ;

CREATE TABLE ACADEMIC (

I D CHAR(10) not nul l ,
Depar t ment char (30) ,
Pr i mar y key (I D) ,
For ei gn key (I D) r ef er ence CUSTOMER
On del et e cascade
On updat e r est r i ct) ;

The subclasses Academic and Commercial inherits it superclass Customer through the
foreign key reference (i.e. ID). In the second stage we needs to transform the multiple inheritance
relationship for Private Institution object. A new table PrivateEducationInstitution is created to
represents this relationship.

ISCA200311

CREATE TABLE PRIVATEEDUCATIONINSTITUTION(
I D CHAR(10) not nul l ,
Sponsor Boar d char (30) ,
Pr i mar y key (I D) ,
For ei gn key (I D) r ef er ence CUSTOMER
On del et e cascade
On updat e r est r i ct) ;

As noted from the query above, the PrivateEducationInstitution table is related to its two
super-classes through the indirect reference of ID in the Customer object. This ID is tightly
related the inheritance relationship between private institution object to the Academic object and
the Commercial object.

4 Implementation
The tutor claims system was implemented using PHP and Oracle Extended Object Relational
features. The implementation combines both server-side scripting and database stored procedure
to manipulate the data. For simple query, we use (e.g. insert/update/delete operation that involve
one table) PHP script with OCI. However, some process needs to update more than one table. In
this case, we create the stored procedure and execute it from PHP page. Handling this operation
in a stored procedure makes us easier to maintain referential integrity between tables.

The system can be partition into three parts: (i) Tutor access, (ii) Office staff access, and (iii)
Supervisor access. Below shows a use case of each of these three key person roles in our system.

4.1 PHP Scripts Implementation
PHP (Hypertext Preprocessor) (http://www.php.net) is an emerging language server-side and
client side script to create web application. In our implementation, we use PHP version 4 server
side embedded HTML scripting language to access the Oracle database. The PHP codes are
embedded in HTML file through the open tag “<?” and the close tag “?>”. The Apache 1.3 is use
for the web pages web server, which supports the PHP scripting language by installing the proper
dynamic link libraries. The Oracle database is accessed through the Oracle Call Interface (OCI)
libraries, which provided along with the Oracle clients software package. Through this interface,
the PHP is able to access stored procedure, tables and objects in the Oracle database.
Furthermore, we can include SQL statements in web pages inside. These features allow dynamic
access and update on the web database. Compared to other scripting languages such as JSP and
ASP, PHP language is very similar to C or C++ language and provides many attractive
programming language construct which is easy to learn and implements.

To access the Oracle web database, the PHP code must create a database handle. The
database handle consists of a few individual oracle structures. These include firstly the server-
handle, which holds the connection to the oracle-server, secondly, the session handle which
carries the authenticated user/password and lastly service-context. Creating handle is the most
expensive operation and care must be taken to determine the proper settings. The code to
establish a database handle is as below.

<?
 $handl e=OCI Logon (" user name" , " passwor d" , " ser ver name") ;
 i f ($handl e == f al se) {
 echo OCI Er r or ($connect i on) ;
 di e() ;
 }
?>

ISCA200312

In the codes above, the OCILogon() function is called with three parameters, the username,

the password and the Oracle server name to create a database handle. A persistent handle can also
be created using OCIPLogon() function with the same set of parameters. The handle will be used
as a parameter to execute the SQL statement or calling Oracle stored procedure. An example of
executing a SQL statement using PHP script using the created database handle is as below.

 <?
. . .
$SQLst mt =" Sel ect c. cl assi f i cat i onCode, c. Descr i pt i on f r om
JobCl assi f i cat i on_t ab c or der by c. cl assi f i cat i oncode" ;
$pst mt = OCI Par se($handl e, $SQLst mt) ;
OCI Execut e($pst mt) ;
. . .
?>

The SQL statement (SQLstmt) is parsed by the Oracle syntax parser and returns a parsed
SQL statement (pst mt). This parsed statement can be execute using OCIExecute() function.
By using the PHP scripting language in our implementation, a rich and dynamic web page that
access to the tutor claims web database can be achieved.

4.1 Tutor Access
When a tutor login in to the system, the main screen shown in Fig. 5 will be displayed. This
screen shows all claims that has made by the tutor. The claim item is divided into two sections,
the approved claims and submitted claims. The approved claims sections shows all claims that
has been approved, verified and paid, whereas the other sections shows claims that awaiting
approval and rejected claims.

Figure 5. Tutor Claim Main Screen

To create a new claim, click on the [New Claim] button. The new claim screen will show as
in Fig. 6. The claim subject is centred. That means each claim is for one subject only and submits
to only one supervisor to approve it. The steps for adding a new claim line are as follows:
• To make a new claim line, fill in the complete data including, time of tutoring, location of

tutoring, start time, end time of that tutoring, tutoring hours, and select Classification Code.
• After fill in the complete data, click [Add] to add the current claim line.

ISCA200313

• To delete a claim line, check the check box on the left of that claim lines and click [Delete].
You can check more than one claim line to delete.

• To add another claim line, go to step 1 above.
After adding in all the claim lines, click [Submit] button to submit the claim. A confirmation

screen will appear. Click [Ok] to go back to main screen.

Figure 6. Added New Claim Line

4.2 General Office Staff Access
The navigation bar provides an easy navigation between different functionality for a staff. There
are two categories of main task can be performed by a staff. They are the Tasks and Reports
category. Each of the tasks and reports is explained in the following subsections.

4.2.1 Tutor

General office staffs manage the tutor data. They can check for the detail of the existing tutors or
create new tutors. When click on the Tutor link on the navigator bar, a list of available tutors is
listed. Fig. 7 below shows the tutor list. To check the detail of the tutor, the user need to click the
user name, it will link to the selected Tutor detail page.

Figure 7. Available Tutor List

ISCA200314

4.2.2 Subject

From the Subjects link on the navigation bar, a list of available subjects for the department will
appear. This doesn’ t means the subject is offered for that current semester. The user needs to
explicitly choose from these subjects to add in to the offered subject list. Fig. 8 below shows the
subject list.

Figure 8. Department Subject List

4.2.3 Semester

The semester link on the navigation bar allows users to add a new semester (period) into the
semester list. This information is very important to ensure correct operations of the whole claims
system. The semester period is use for many data integrity checking such as valid claims data,
checking for submitted, approved, verified, rejected claims and also for the available budget for
that semester. There is only one semester can be make current (active) in the system. The active
semester is the semester/period valid for current claims operation. Fig. 9 shows a list of added
semester. The “Semester list” lists the Semester ID, start date, end date and the status of the
semester. The status column shows the active or not active status of a semester.

Figure 9. Semester List

4.2.4 Available Subjects

The available subject navigation bar allows users to maintain subject offered for the current
semester. The added available subjects will always refer to the current semester activated in the
step above. Care must be taken to ensure the current semester is correct before adding any new
offered subjects. Fig. 10 shows the offered subject list.

ISCA200315

Figure 10. Subjects offered for the current semester

4.2.5 Budget

The Budget functionality allows staff to maintain budget for tutors. Note that, the budget is only
valid for the current (active) semester. Before a tutor can be allocated a budget, the status must be
activated first. Also the staff must ensure each activated tutor is assigned at least one budget. No
more than one same subject should be assigned to a tutor. A list of budget for the current semester
is listed in Fig. 11. Each budget has a reference no (e.g. document reference number) for
identification.

Figure 11. Budget List

To add a new budget to a tutor, click on the [Add Budget] button in Fig. 11. A budget form
will show as in Fig. 12. Fill in the Budget reference no (ref), the commencement date, the
allocated budget, select tutor for this budget, select a subject and number of weeks for this
budget. This screen also allows staff to add activities such as in the budget request form.

ISCA200316

Figure 12. New Budget Form

4.2.6 Claim

The claim navigation link allows a staff to view approved, submitted, rejected and paid claims.
The only authorities of a staff for claims are to verify and pay claim. When a claim has been
approved by a supervisor, the claims should be verified by the staff and then after the tutor
collects the payment, the staff should update the status to Paid/Claimed. Fig. 13 shows a claim
detail of a particular tutor.

Figure 13. Claim Details

4.2.7 Reports

There are three reports a staff can view/print. The three reports are (i) Tutor Claim Report, (ii)
Balance Report, and (iii) Claim By Subject Report. Fig. 14 shows an example of Tutor Balance
Report.

ISCA200317

Figure 14. Tutor Balance Report

4.3 Lecturer/Supervisor Access
The lecturer is authorized to approve or reject a claim made by a tutor that taught a subject under
his/her authority. The lecturer can also view the approved, rejected and submitted claims. A list of
submitted claims is shown in Fig. 15.

Figure 15. Approve/Reject Claim

5 Evaluation
In this section we describe an evaluation of object-relational features, and problems of object-
relational paradigm in current ORDBMS.

ISCA200318

5.1 Evaluation of Object-Relational Features
The online claim system uses Oracle Extended Object Relational (EOR) features to implement
the online claim system. The EOR allow more direct mapping between the modeling and the
implementation. Some of the Object Oriented features like inheritance are not directly supported
by version of this Oracle. The ability to create custom data type make it easy for us to write stored
procedures that directly used that type to define a data type. In RDBMS implementation, we need
to define the data type explicitly to use in a stored procedure.

We found out that to make changes to the EOR transformation is much easier than in E-R.
For example, we decided to changes the primary key of Tutor class from staffID to UserID (we
already discard staffID field), in this case we don’ t need to change the association relationship
between Budget class, Claims class and Taught_by table that reference to Tutor class. This is a
result from the usage of ref data type with allow reference to object row id instead of UserID
primary key. But in E-R transformation, we needs to change these three tables Foreign key field
to reference to this new field.

In performing query through embedded SQL in PHP or through stored procedure, we found
out the query is simpler and easier to modify. For example to query join the Claims class Offered
Subject class, we only need to retrieve through path expression without a need to perform an
explicit join. Below shows an example:

Sel ect c. subj ect code. subj ect _r ef . subj ect name
Fr om cl ai ms c;

But, if we only want to retrieve subjectcode from Claims class, using E-R is easier to retrieve
and more understandable. The reference value stored in subjectcode reference field in claims
class is not human readable, and difficult to debug whether the value stored is correct or valid.
The reference value is stored as 16 bytes row object id.

The evaluation of the method used can be summarised in points below:
• Correctness. EOR encourages a strict and controlled way of dealing with errors. Since the

system is decomposed into objects, and the interaction of these objects is organized in an
orderly fashion, the trace-back mechanism of the errors is not hard to do.

• Completeness. EOR supports all the necessary aspects for web application database. Some of
the examples are the ability to support dynamically changes of database schema,
authorization, and other aspects that are not available if we are using OO web application, but
still have the ability to express different kind of relationship of OO concept [4]

• Efficiency. EOR allows more direct mapping between the modelling and the implementation.
Besides, to make changes to the EOR transformation is much easier than in an entity-
relationship (ER) for example, because the usage of REF instead of traditional keys. In
accordance to efficiency, by using object references, the database will give faster response to
online users.

• Scalability. EOR has the ability to easily adapt to growing utilization requirements without
the need for a major system redesign and implementation. As it still retains the Relational
Database feature, this scheme unlike in pure OO Database allows users to tune system
performance by providing a large number of parameters that can be set by administrator
easily. The parameters might include the number of memory buffers, etc. [4].

5.2 Problems of Object-Relational Features
Oracle EOR has few limitations that we face in our implementations. We highlight it below.

ISCA200319

5.2.1 Dangling Value

If the object to which a REF pointed to have deleted, the REF is left dangling (pointing to a
nonexistent object). Oracle provides IS-DANGLING predicate to check whether a REF is
dangling. In our implementation, this will result in difficulty to update rows that has references by
other object. For example, the tutor has submitted a claim for a subject. If a staff accidentally
deleted that subject from the offered subject table, and later realized that it is needed and add the
same subject to this table, the subject REF by claims class will become dangling because the REF
value points to the old row. This won’ t happen in RDBMS implementation because the key that
referenced by Claims table record stills the same (if the Claims table doesn’ t put ON DELETE
CASCADE constraint, or else that Claims record will be deleted). To solve this problem, there
are three ways,
i. Explicitly check for dangling value in Claims table and set the ref value to NULL or delete

that record.
ii. Secondly, doesn’ t allow deletion of an OfferedSubject rows if it is referenced by other

Object.
iii. Using REFERENCES keyword to imposed referential integrity. That is to create a referential

(like Relational implementation) from subjectcode attribute in Claims to OfferedSubject
using Subjectcode REFERENCE OfferedSubject.
The three solutions above are two restricted and not practical. Firstly the solution is visible if

we can recreate the link (and we have history of that link). The second solution is too inflexible,
but in our opinion is the most useful method to impose integrity constraint. The third solution will
violate OO concept, which doesn’ t allow using traditional ER referencing. It also creates a
redundant SCOPE BY constraint.

5.2.2 Does not allow NULL value in nested table column

There are problems with this constraint, considering claim line that is a nested table for claim. If
we provide a feature for a tutor to be able to store the claim line without submitting it first, then
this constraint will restrict this implementation, because we must ensure all data must be
completed before inserting claim line into a claim. What if the tutor forgot the exact hours of
tutoring and left that field blank for future modification. The hour NULL value is not allowed in
this case. The solution is to use any dummy value to replace the actual value in order to store the
claim line into the nested table.

5.2.3 Type Dependency Problem

This is the most problematic problem we face in our development. We can’ t modify or alter an
object that has other object dependent on it (although this problem also found in RDBMS
implementation, it is not a trivial problem). If we force it to be altered, the dependant object will
become invalid. It is good if that an object can be altered and Oracle is able to recreate the
dependency again. In an object-oriented implementation, this is really problematic restriction
because there are many dependencies in stored procedure, type or object table. It is also a good
idea if oracle is able automatically drops the object dependency if we alter one object.

To solve this problem, we create a set of drop script to drop the whole database schemas and
recreate again. The drop sequence must be correct, drop object that other object doesn’ t
dependant on it. Then we must alter the table in SQL script files and recreate all the schemas
again. This suggests that if Oracle could generate this type of dependency analysis and create a
script for recreate and drop the whole schemas.

ISCA200320

6 Conclusions and Future Extension
In this paper, we have described our experience in using an object-relational paradigm in the
implementation of an online tutor claim system. The object-relational paradigm that we adopt
consists of an object-oriented design and object-relational transformation. We have also evaluated
this object-relational paradigm by discussing some problems in the current object features
supported by an ORDBMS.

Future extension for this application is divided into two categories: functional and database.
In the functional extension, we would like to enhance the system by providing more functions,
such as providing a function to add staff/lecturer accounts to the system. Another possible
functional extension is to have a direct submission to the finance department for payment. At the
moment, the request for budget still needs to be done manually by the lecturer before the office
staff can key in tutor information and assign a subject to a tutor. Security is another issue, as
HTTP is a very weak protocol for data transmission.

From the database viewpoint, we would like to add more data integrity checking in the
database server level. Complete integrity checks on the data should be perform before user
submitting new data to store in the database. Our system put minimal effort on this and most of
the integrity is performs at client side only. There is a few integrity checking that is important to
implement. Firstly, the submission of tutor claims information, secondly the subject, semester and
budget information. These data is crucial to ensure correct operating of the system.

References
[1] R.M. Blaha, W.J. Premerlani, and J.E. Rumbaugh., “Relational Database Design Using an Object-

Oriented Methodology” , Communications of the ACM, vol 31, no 4, 1988
[2] P.P. Chen., “The entity-relationship model: Toward a unified view of data” . ACM TODS I, 1 (Mar.

1976).
[3] R.S. Devarakonda, “Object-Relational Database Systems – The Road Ahead”, ACM Crossroads

Student Magazine, http://www.acm.org/crossroads/xrds7-3/ordbms.html, May 2001.
[4] W. Kim, “Modern Database Systems” , Addison-Wesley Publishing Company, 1995
[5] W. McCarty, PHP4: A Beginner's Guide, ISBN: 0-07-213371-6, McGraw-Hill/Osborne, 2001.
[6] J.W. Rahayu,, E. Chang, T.S. Dillon, and D. Taniar, "Relational Database Implementation of

Generic Methods in an Inheritance Hierarchy", International Journal of Computers and Their
Applications, 2002 (in press).

[7] J.W. Rahayu,, E. Chang, T.S. Dillon, and D. Taniar, "Performance Evaluation of the Object-
Relational Transformation Methodology", Data and Knowledge Engineering Journal, 2001 (in
press).

[8] J.W. Rahayu,, E. Chang, T.S. Dillon, and D. Taniar, "A Methodology for Transforming
Inheritance Relationships in an Object-Oriented Conceptual Model to Relational Tables",
Information and Software Technology Journal, vol 42, no 8, pp. 571-592, 2000.

[9] J.W. Rahayu,, E. Chang, and T.S. Dillon, "Composite Indices as a Mechanism for Transforming
Multi-Level Composite Objects into Relational Databases", The OBJECT Journal (Best of
OOIS'98), Volume 5, No 1, Hermes Science Publications, 1999.

[10] J.W. Rahayu,, E. Chang, and T.S. Dillon, "Implementation of Object-Oriented Association
Relationships in Relational Databases" Proceedings of the International Database Engineering
and Application Symposium, UK, IEEE Computer Society Press, 1998.

[11] J.W. Rahayu,, E. Chang, and T.S. Dillon, "A Methodology for the design of Relational Databases
from Object-oriented Conceptual Models incorporating Collection Types", Proceedings of the 18th
International Conference on Technology of Object-oriented Languages and Systems, Prentice-
Hall, Melbourne, 1995.

[12] J.W. Rahayu and E. Chang, "A Methodology for Transforming an Object-oriented Data Model to
a Relational Database", Proceedings of the 12th International Conference on Technology of
Object-oriented Languages and Systems, Prentice-Hall, Melbourne, 1993.

ISCA200321

[13] M. Stonebraker and D. Moore, Object-Relational DBMSs The Next Great Wave, Morgan
Kaufmann Publisher, 1996.

[14] D. Taniar and J.W. Rahayu (eds.), Web-Powered Databases, Idea Group Publishing, 2003.
[15] S. Vesterli and B. Brown, Oracle Web Applications 101, ISBN 0-07-213221-3, McGraw-

Hill/Osborne, 2001.

Authors Biography
Johanna Wenny Rahayu: received a PhD in Computer Science from La
Trobe University, Australia, in 2000. Her thesis, supervised by Professors
Elizabeth Chang and Tharam Dillon, was in the area of Object-Relational
Database Design and Transformation Methodology. This thesis has been
awarded the 2001 Computer Science Association Australia Best PhD Thesis
Award. Dr Rahayu is currently a Senior Lecturer at La Trobe University. She
has published two books and numerous research articles.

David Taniar received his PhD in Computer Science from Victoria
University, Australia, in 1997 under the supervision of Professor Clement
Leung. He is currently a Senior Lecturer at the School of Business Systems,
Monash University, Australia. His research interests are in the areas of
Design and Optimization of Databases, Data Warehousing, and Data Mining.
He has published four computing books, and numerous research articles. He
is also a Fellow of the Royal Society of Arts, Manufactures and Commerce.

Lee Nung Kion has just completed his Masters studies at La Trobe
University, Australia in 2002. Currently he is a tutor at University Malaysia
Sarawak. His research interests are in Neural Network Data Mining,
Bioinformatics and Parallel Data Mining.

Eric Pardede has just received his Master of Information Technology at La
Trobe University, Australia in 2002. At the same university he is now doing
his PhD in Computer Science with research topic in Object-Relational
Database Design, Transformation, Validation, and Optimization.

