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ABSTRACT
Graphical password systems based on the recognition of photographs
are candidates to alleviate current over-reliance on alphanumeric
passwords and PINs. However, despite being based on a simple
concept – and user evaluations consistently reporting impressive
memory retention – only one commercial example exists and over-
all take-up is low. Barriers to uptake include a perceived vulner-
ability to observation attacks; issues regarding deployability; and
the impact of innocuous design decisions on security not being for-
malized. Our contribution is to dissect each of these issues in the
context of mobile devices – a particularly suitable application do-
main due to their increasing significance, and high potential to at-
tract unauthorized access. This produces: 1) A novel yet simple
solution to the intersection attack that permits greater variability in
login challenges; 2) Detailed analysis of the shoulder surfing threat
that considers both simulated and human testing; 3) A first look at
image processing techniques to contribute towards automated pho-
tograph filtering. We operationalize our observations and gather
data in a field context where decentralized mechanisms of vary-
ing entropy were installed on the personal devices of participants.
Across two working weeks success rates collected from users of a
high entropy version were similar to those of a low entropy ver-
sion at 77%, and login durations decreased significantly across the
study.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Access Con-
trols, Authentication; K.6.5 [Management of Computing and In-
formation Systems]: Security and Protection—Authentication

General Terms
Human Factors,Security
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1. INTRODUCTION
User authentication on mobile devices is an area of increasing

significance as their technical specifications improve, with modern
devices being comparable to PCs of the recent past. This along with
the emergence of fast 3G data connections and wireless connectiv-
ity has contributed to devices becoming as important in everyday
life as personal computers, in terms of the services they provide and
the data they store. Consequently mobile devices are now used for
security sensitive tasks such as authenticating to on-line services,
authorizing commercial transactions, [3, 18] and accessing corpo-
rate e-mail.

In these cases where the authenticity of users is of high impor-
tance the device itself should implement an authentication mecha-
nism to defend against opportunistic access by attackers to data and
services. Official UK Home Office statistics report that 700,000
devices were stolen throughout the UK in 2001 with unofficial es-
timates as high as 1.3million [16]. Moreover, statistics from 2005
report that 69% of mobile device thefts occurred when the device
was left unattended [14]. In the face of such figures, users attribut-
ing privacy solely to their assumed physical possession of the de-
vice are taking a risk; as the possessor of an unprotected device as-
sumes the full capabilities offered by the on-board credentials. This
access can even occur with the consent of the user, as it is common
for users to briefly share mobile devices – particularly with friends
and family – for making or receiving calls [20].

Figure 1: Typical login procedure for recognition-based sys-
tems, the user would see each grid of images in turn, and must
identify any personal password images that appear. Images
highlighted represent example selections.

Currently mobile devices support a binary security model where
the user is either legitimate or not. PINs are the de facto authen-
tication mechanism used in this model due to their ease of imple-
mentation, cost and accessibility to multiple platforms. However
it is very common for users to forget a sequence of numbers, even
when used frequently [29]. One survey [6] reports that only one-
third of mobile device users actually enforce PIN protection, 30%
find PINs to be inconvenient, but 85% are in favour of more device



security.
Graphical Passwords on Mobile Devices?: One option to re-
inforce device security is user authentication based on graphical
passwords [33]. These are knowledge-based authentication mech-
anisms conceptually underpinned by dual-coding theory that pos-
tulates that both visual and verbal information are processed dif-
ferently in the brain and both are complimentary to the encoding
of an object in memory. Shepard [31] shows that test subjects were
97% accurate in identifying previously seen images when presented
with 68 pairs, and making a binary response. The goal is to de-
sign knowledge-based authentication systems around this effect to
help users reliably retain random authentication secrets of higher
entropy than is possible with PINs or alphanumeric passwords. Ar-
guably the most intuitive genre is based on recognition. In a typical
login protocol the user is challenged to recognize pre-assigned key
images among decoy images. Fig. 1 illustrates an example chal-
lenge.

Variations of this approach have been proposed many times in
previous research [8] [26] [34] [17], however despite being built on
an intuitive concept – and their usability being highlighted in each
user study – only one commercial example exists [25], and other
developments are non-existent. We believe this lack of usage can
be attributed to perceived shortcomings in security and deployabil-
ity. Security concerns include a perceived vulnerability to shoul-
der surfing, where an attacker uses simple observation techniques
to learn authentication credentials and later use them in a replay
attack; and intersection attack where the frequency of images ap-
pearing at login can be used to determine their importance.

A more pragmatic limitation exists in terms of deployability. For
example, to bootstrap systems with images; administrators must
source images to use and filter them to reduce the potential for lo-
gins comprising confusing visual searches that cause false-negative
login results. Many previous works place this problem out of scope.

Recognition-based systems have the potential to form deploy-
able, decentralized, solutions of varying entropy on mobile devices
for a number of reasons: 1) They require only simple interaction
that is suited to T9 keypads or touchscreens; 2) Device screen res-
olutions are improving quickly (Nokia N900 has a 800x480 dis-
play); 3) The perceived vulnerability to observation is intuitively
offset by small screen sizes; 4) Devices are often camera-enabled
which means many users already have photographs on devices that
can be used for initialization.
Contributions: Motivated by the above, our contribution is to in-
vestigate pending pertinent aspects of security, deployability and
usability:

• Shoulder Surfing Analysis We analyze the key image port-
folio [1] concept proposed to complicate observation attacks,
and secure its inherent vulnerability to intersection attack.
We also quantify the benefit of this approach by developing a
computer simulation of an attack assuming short term mem-
ory and camera attacks are the adversary. We also carry out
a user study to explore how real users compare.

• Novel solution to intersection attack A widely-accepted so-
lution to an intersection attack is to keep each login challenge
the same. We present a new simple method that combines the
key image portfolio with a decoy image portfolio that innately
permits greater visual variation in login challenges.

• Decentralized infrastructure using only personal images
Users have increased memorability for personal images [36],
and assuming the presence of these on the device of the user
(or on other importable mediums), these can be used to ini-

tialize systems and is immune to image source-based attacks
such as social engineering [26].

• Automated image filtering techniques In the case where
users initialize a system using their own images, there must
exist an initial, automated phase of filtering to remove those
that could contribute to false-negative login results. We make
a first exploration of image processing techniques to auto-
matically filter visually similar and unmemorable photographs.

Based on our observations we gather field data from two exem-
plar systems of varying entropy. We discovered that average suc-
cessful login durations recorded from both systems significantly
decreased after one week of usage, and overall success rates were
similar across both systems at 77%, although in one week of re-
duced usage, users of a low entropy system were significantly more
successful than those using a high entropy version.

The rest of the paper is organized as follows: Section 2 reviews
related work, Section 3 considers the various traditional threats as-
sociated with systems of this genre and our own analysis and solu-
tions. Section 4 considers how manipulations of the images them-
selves can have both security and usability implications. This leads
us to introduce two implementations in Section 5 and their evalua-
tion in user studies from Section 6. Finally we discuss our findings
from Section 8 and conclude in Section 10.

2. RELATED WORK
There are typically three genres of graphical password system:

recall based, cued-recall based and recognition-based. Draw a Se-
cret (DAS) [19] is the most prominent recall based system and in-
volves creating a freehand drawing and remembering its composi-
tion aided by a drawing grid. This can achieve significantly higher
levels of entropy than recognition and cued-recall based systems
with a comparable cognitive load. Passpoints [40] is the main ex-
emplar of the cued-recall genre where the user must remember a
sequence of clicks positions in an image. Image processing tech-
niques [9] and less sophisticated attacks [35] have been applied to
render this system effectively broken.

Table 1 collates recognition-based systems featuring in previ-
ous research and highlights key characteristics. Passfaces [25] is
the main exemplar and has the only commercial presence. In field
studies this has been shown to exhibit increased login success rates
over alphanumeric passwords [2]. Also, one study explored how
the stimuli of faces might affect the ubiquitous practices of writing
down and sharing passwords [11]. Dhamija and Perrig [8] evalu-
ated a system based on recognition of fractals and first considered
the intersection attack. De Angeli et al. [1] evaluated different
forms of a system called VIP, and reported that static positioning
of images between login challenges aided memorability. They also
report that while there does exist a picture superiority effect that
can be exploited in authentication, the benefit of this can be lost
if a scheme is not designed to harness this effect. In general, this
genre is suitable to achieving entropy comparable to a randomly
generated 4-digit PIN (13 bits) due to its inherent poor scalability.
Entropy is increased by requiring users to remember more key im-
ages, and be challenged with more decoy images, which can make
the visual search tiresome.

In order to reduce the threat of shoulder surfing more compli-
cated entry is often required. Weinshall [39] presents a method
where users do not explicitly select key images, but use them to
algorithmically obtain a result that if observed is not useful in a re-
play attack. However using knowledge of the algorithm used for
entry, Golle and Wagner [15] were able to derive key images using
a SAT solver.



Table 1: A comparison of prominent recognition-based
schemes by various key features. "‘User picks"’ refers to users
choosing key images

System Key Decoy User Filter- Entropy
src. src. Picks ing (bits)

VIP3 [1] stock stock no manual 12
Awase [34] user stock yes none 13
UYI [17] user stock yes none 11
Pering et al. [26] user peers yes manual 20
Déjà vu [8] fractals fractals yes manual 16
Passfaces [25] stock stock no manual 13

Awase [34] and Use your Illusion (UYI) [17] are both designed
for mobile devices. In Awase users upload personal images to a
server to comprise key images, while decoys are drawn from the
images of other participating users, a configuration shared with Per-
ing et al. [26]. User recall was 100% over as long as 16 weeks
however their measures to protect against intersection attack are
unclear. UYI considered the difficulty of displaying images for
authentication on low resolution devices by blurring images in a
controlled way. They reported 100% recall over 4 weeks, except
in the condition where users were assigned key images when this
reduced to 89%.

Pering et al. [26] evaluated a novel system for public terminals,
where users would recognize a sequence of one-time images from
their personal collection. They also explored vulnerability to social
engineering attacks where attackers were given a subset of a user
images and asked to use the information gained (e.g. recurrence
of individuals or themes) to guess the key images. In the worst
case attackers were 50% successful. Dynahand [27] is a system
where users are asked to recognize their own handwriting. This
work also considered the problem that some people have similar
handwriting and considered automated methods of filtering using
statistical moments and vector quantisation.

These schemes can be further organised between two categories,
one-key-per-screen [25, 26] and multiple selection [17, 1, 34, 8].
In the first instance key images are evenly distributed across login
screens so that on each screen displayed to the user, one key image
exists amongst decoys. In the latter, zero, one, or more than one
key image can appear per screen; this is desirable as entropy can be
adjusted without increasing the number of grids presented. Another
approach altogether is to use image passwords as a memory aid for
recall of PINs as seen with FacePIN [12]. This requires no changes
to infrastructure and in a small study showed promise.

3. TRADITIONAL THREATS & COUNTER-
MEASURES

3.1 Mobile Authentication Threat Model
On mobile devices there are typically two types of PIN code that

can be enabled: a Subscriber Identity Module (SIM) code that is
managed by the Network Provider, and a device code that is man-
aged by the user. The SIM code aims to prevent unauthorized ac-
cess to services on the SIM, and if entered incorrectly x times will
prevent any access to the device until a personal unlock code (PUK)
is obtained from the Network Provider. If the PUK code is entered
incorrectly y times the SIM is blocked forever. Repeated incorrect
entry of the device code does not usually block the device perma-
nently, however access can usually be restored at the expense of the
stored data by a reformat. It is at this level the implementation of a

custom authentication mechanism is most feasible causing the least
impact to existing infrastructure.

The worst case scenario is of theft, as an attacker has unrestricted
physical access to the device. Mobile devices are most commonly
stolen for the resale value of the handset rather than targeted access
to data. In fact 25% of stolen devices reappear on different net-
works (an underestimate due to tampering possibilities), however
despite this it is still common for thieves to explore the data and
services on the device before resale [16]. Theft means a brute force
attack is feasible since repeated incorrect attempts on device-level
authentication does not normally render the device permanently
locked. Although in practice this is not a desirable option as the
attack must be performed online, and methods to frustrate this exist
such as the device locking for a time period. A lunchtime attack
is where an attacker tries to compromise the device protection over
time, through physical access while the legitimate user is absent.
Each time the attacker has the intention not to leave a trace to en-
sure that future attempts will not be hindered, by for example never
triggering PIN lockout. There are two classes of lunchtime attacker,
firstly a naive attacker who can only make random guesses, and sec-
ondly a knowledgeable attacker who by means of shoulder surfing,
or another eavesdropping technique, has gained some knowledge
that will assist in the login procedure.

We propose that knowledgeable attackers are most likely to be
individuals known to the user, particularly due to the social pres-
sures that can prevent users from practicing security conscious be-
havior in the presence of colleagues or friends. This could be re-
ferred to as a friend attack. Insecure behavior has been noted in
previous work as a response to such social pressures [29]. There-
fore in an image-based authentication context it should be assumed
that users will voluntarily permit attackers to view logins, and so
systems should be designed to at least overwhelm short term mem-
ory (attackers resorting to using a video camera to record login at-
tempts would arouse suspicion).

3.2 Intersection Attack
An intersection attack is possible when the frequency of an im-

age appearing at login can be used to determine its role as either a
key or a decoy. Perhaps the only practical method proposed in pre-
vious research to complicate the shoulder surfing threat is innately
vulnerable to this attack [1]. In the VIP system the user is assigned
a key image portfolio, of which a random subset is exposed at each
login. The effect of this is that observing key images at one login
might not be useful when logging in at the next. In the described
setup each decoy image is certain to appear at login, but due to the
variation afforded by the key image portfolio each key image has
a 50% chance. In this scenario an attacker can derive the key im-
ages without an attack that involves manipulation or observation of
the legitimate user. Current wisdom to protect against this attack is
not to implement a key image portfolio at all, to ensure every login
challenge is the same [17] [8] [25]. One side-effect of this solution
is that the login trial is intuitively more vulnerable to observation,
as everything the attacker learns is useful in an immediate replay
attack.

We propose a simple new approach that preserves the shoulder
surfing resistance of the VIP method, and removes its vulnerability
to intersection attack. In addition to a key image portfolio we intro-
duce a decoy image portfolio. If there will be variation in the key
images presented across login challenges, there should be exactly
the same variation in the decoy images so that patterns in frequency
do not emerge. To achieve this keys and decoys should both be ran-
domly selected from larger, fixed portfolios where the same ratio
exists between images selected for login and the size of the port-



folio. In other words, if kl and dl refer to the number of keys and
decoys (respectively) displayed at any given login challenge, and k
and d refer to the total number of key and decoy images (respec-
tively) being assigned to a user, then

kl
k

=
dl
d

To use this formula in practice a system administrator would
choose values for k, kl, dl, then calculate d = dl

k
kl

. Calculation
of the minimum number of images required to bootstrap a system
for the given parameters is given by d+ k.

3.3 Shoulder Surfing Analysis
Shoulder surfing is an attack where login credentials are ob-

served at the point of login, and reused in a later replay attack. It
is extremely difficult to quantify the extent of the shoulder surf-
ing threat. Statistics are scarce as instances of shoulder surfing
are likely to be supporting techniques to fraud, a crime particularly
under-reported to Police. Despite this, there is much anecdotal ev-
idence that suggests this is a problem and is a attack the average
user can readily perceive and carry out.

The mobile device context does force a common sense rethink
of the threat posed by an impersonal shoulder surfer due to the
size of the devices and their portability. However it must still be
assumed that each login will be observed, particularly by friends
and colleagues, with whom users might neglect to shield their input
due to the connotations of mistrust.

Clearly the shoulder surfing resistance offered by the image port-
folios does not render systems immune to shoulder surfing, how-
ever the goal is to increase the number of observations required for
an attacker to learn enough key images to guarantee the success
of a future replay attack. Since this appears to be the only practi-
cal defense proposed to date, we attempted to quantify the benefit.
We created a model of an attack that incorporated the behavior of
the key and decoy image portfolios described previously, where
k1 = 4, dl = 32. The value of k was a variable and d adjusted
accordingly to preserve the correct ratios. The intention was to ex-
plore the capabilities of an attacker of differing memory accuracies,
against increasing key and decoy portfolios, where the attacker is
attempting to identify key images. The model encompassed the
following behavior:

1. A login challenge occurs, the attacker observes legitimate
user entry of each key image and given a probability p re-
members it.

2. The attacker then has one attempt to authenticate and is pre-
sented a new challenge, if the attacker can identify 4 images
that he has previously observed being selected, the attack is
successful, otherwise unsuccessful.

3. The cycle repeats, with the knowledge of the attacker in-
creasing each time until an attack is successful.

Fig. 2 reports the mean number of observations required for an
attacker to learn: 1) Enough key images to login once 2) All key im-
ages. Intuitively the number of required observed logins increases
with the size of the key image portfolio, and the decreasing accu-
racy of observer memory. Considering the most likely case where
the goal of the attacker is to achieve one login, a camera equipped
attacker on average requires less than five observations, and needs
more than 10 only when the size of the key portfolio is increased to
14. In practice, increasing the size of the key portfolio to this level
is likely to be detrimental to usability. Even when the attacker has

only a 50% chance to remember observed images the key portfolio
would need to be of size 10 to force more than five observations.
Another case may arise where an attacker would like to obtain the
entire key image portfolio. The effect of inaccurate memory has a
greater impact in this scenario, particularly for the larger key image
portfolios. This is intuitive as if an attacker misses one image, the
random nature of login challenges means that the missing image
may not reappear for some time.

Figure 2: Top: Number of observations required by an attacker
to learn enough key images for one successful login. Bottom:
Number of observations required by an attacker to learn the
entire key portfolio, useful for unrestricted future access. Both
the result of 10,000 simulated logins.

The previous model assumes that an attacker is only observing
the key images. However it is clear that in viewing a successful
login, an attacker with the means for perfect recall (e.g. camera-
equipped) can also learn from the images the user does not select.
In this new scenario, the functionality of the previous model is pre-
served but the attacker records all images and selections (where
kl = 4, k = 6, d = 48, dl = 32). The goal of the attacker is
to obtain enough knowledge to perform a successful login, there
are three desirable login scenarios for the attacker: 1) the attacker
can identify all key images in the challenge set; 2) the attacker can
identify all decoys in the challenge set; 3) The attacker knows the
key/decoy role of every image. Fig.3 illustrates the outcomes of
10,000 simulated attacks and the likelihood of each result. On av-
erage 84% of attacks are successful due to the attacker concentrat-
ing purely on key images presented in the challenge set. In 12%
of cases the attacker knows the role of all images in the challenge
set, and in only 4% of cases the attacker can identify all decoys in
the challenge set (and so derive the keys). It is interesting to note
that scenario three is more likely that scenario two. Since the likeli-



hood of scenario three is intertwined with the likelihood of scenario
one (which is high), scenario two is least likely since this involves
knowing the decoys and not the keys.

Figure 3: Pareto chart illustrating the likelihood of three desir-
able login scenarios for an attacker who has carried out shoul-
der surfing attacks over time. In this model an attacker has
perfect retention and observes all images in a challenge set and
selections. Based on simulations of 10,000 logins.

4. THE IMPORTANCE OF IMAGES

4.1 Image Source Impacts Security
Recognition-based mechanisms require a collection of images

with which to construct login challenges. Images tend to be drawn
from one of three sources: stock images are drawn from public
repositories and tend to be of high technical quality, images of peers
can be used in centralized systems where other participating users
consent to their images being used to comprise authentication chal-
lenges of other users [26] [34]. User images are drawn from the
personal collection of the user and are thought to be the most mem-
orable candidates to comprise key images [36]. The threat arises
when systems allocate roles to images based on the location they
were sourced, typically key images and decoy images are either
drawn from distinct sources or identical sources.

A high level attack called a source intersection attack is pos-
sible where key images and decoys are each drawn from distinct
sources. For example key images are user images whereas decoys
are stock images. To illustrate Let D be all images from the image
database known by the attacker to be the source of decoys, and C
be images presented in a login challenge, and k the key images.
Performing D ∩ C reveals C − k decoys with the remainder cer-
tain to be key images. Automatic techniques exist to facilitate this
attack; PerceptualDiff [32] can determine whether two images are
perceptually similar. Parameters of this program can be altered to
only permit very strict matches.

Online attacks where an attacker can make better than random
guesses involves an image quality attack; where the attacker as-
sumes stock images (decoy images) are of higher photographic
quality than user images and uses this to make guesses. Where the
photographic quality is similar, a vulnerability to social engineer-
ing remains where an attacker can use knowledge of the user e.g.
holidays, family members, hobbies etc. to prioritize guesses. While
these opportunities exist, the overwhelming advantage of this con-
figuration is that the memory task for the user is the easiest, as no
spontaneous memory association must be formed with the key im-
ages as they must simply identify which images are presented from

a personal collection, and as such is similar to the task of automatic
detection [30] in visual search.

The most desirable configuration from a security perspective is
unfortunately less desirable from a usability perspective where key
images and decoys are drawn from the identical sources e.g. keys
and decoys are both stock images or both user images. This is
because users must create a spontaneous memory association to re-
member key images and must search images in a controlled search
[30] fashion. In this case the attacker has no means of making a
better than random guess without shoulder surfing. Passfaces [25],
VIP [1] and Déjà vu [8] are implemented in this manner according
to their respective publications.

4.2 Image Filtering & Usability
Considering our ideal decentralized infrastructure for a recognition-

based system, one key operational limitation is that clearly – given
the diversity in content and quality of user photograph collections
– images must be filtered in an automated fashion for every user of
the system. All photograph-based systems of this type in previous
research place image filtering out of scope, yet to create a system of
this type applicable beyond the lab; automated methods of filtering
are needed.

There are a number of problematic characteristics that should
be highlighted yet we concentrate our first efforts on unmemorable
and visually similar images. In practice users could be asked to
perform the filtering, however over increasingly large sets the vi-
sual search becomes tiresome, and the user cannot be relied upon
to do this with great accuracy. There are difficulties in develop-
ing an automated approach, firstly judgments over which images
should be filtered can be subjective, which increases the difficulty
in developing a single solution. Also when executing image pro-
cessing algorithms over a large album there exists a trade-off be-
tween the quality of the result and the time taken to execute, which
is a concern as filtering must occur in real-time. For this reason it
is likely that filtering cannot occur locally on the device due to cur-
rent processor speed limitations. The following presents a first look
at problem cases and considers some automated image processing
techniques for their detection:

4.2.1 "‘Unmemorable"’ images
We define unmemorable images as those that contain few in-

stances of visual content for the user to remember. Examples in-
clude photographs taken in low light, or where the image contains
excessive movement. The negative impact of these images would
be that if assigned to the user they would be difficult to memorize.

Figure 4: One image before and after canny edge detection.
The original (left) is one we class unmemorable and the result
after edge detection is that less than 10% of the image contains
edges.

Canny edge detection [4] is one method that could be used to
detect such images. Edge detection is a fundamental image pro-
cessing technique that extracts areas in an image where brightness



Figure 5: Filtering efficacy using PerceptualDiff at differing
thresholds. For threshold calculation we gathered a set consist-
ing of 101 photographs, of which 52 (26 pairs) were deliberately
selected as perceptually similar, 49 were random. The goal is
to maximize the filtering of the perceptually similar images (at
least one per pair), whilst minimizing loss from the overall set.
In the best case only 25% of the overall set would be removed
(marked on the graph) for 100% of the similar set.

changes sharply. The result of executing this algorithm is a binary
image of black and white pixels where white indicates the presence
of an edge (fig. 4). By calculating the pixelswhite

pixels
we gain knowl-

edge of the percentage of the image taken up with edges. If this is
below a certain threshold we can say there is insufficient entropy
in the image to be considered further. In our informal testing 10%
was found to be an acceptable threshold. This algorithm takes≈ 90
seconds on an Intel Core 2 Duo running at 2.2GHz to process 50
images of resolution 2848x2136.

4.2.2 Visually Similar Images
The most difficult problem is detecting images that are visually

similar. In the worst case key images may appear indistinguishable
from one or more decoy images. Wang et al. [38] summarize the
various ways humans can assign semantic meaning to images:

1. Semantic types (e.g. landscape photograph, clip art).

2. Object composition (e.g. a bike and a car parked on a beach,
a sunset scene).

3. Abstract semantics (e.g. people fighting, happy person, ob-
jectionable photograph).

4. Detailed semantics (e.g. a detailed description of a given
picture).

It is most likely that users will focus memory strategies on tech-
niques 1,2,3 that all involve remembering verbal generalizations of
the image content, rather than detailed descriptions. This means
that any images that share a theme, or contain the same people are
likely to cause confusion as the user is likely to focus their memory
strategy on this generalization that is likely to conflict with other
images.

Fig. 6 displays examples of such images. VIP [1] considered
one early solution involving manual textual tagging of images; no
images with the same tag e.g. flower, could appear in the same
login challenge. Disadvantages of this include the requirement of a
human in the loop and reliance on the quality of the tags. Renaud

and Olsen [27] explored computer vision techniques to eliminate
decoys similar to key images in hand-drawn scribbles.

Figure 6: Two photographs taken moments apart that would
be too perceptually similar for users to distinguish.

Methods to try and determine computationally if two images are
similar are being explored in the field of content-based image re-
trieval. PerceptualDiff [32] is open source software that uses a
computational model of the human visual system to determine if
two images are perceptually similar. The algorithm used is in-
tended to support a more economical execution of the task of global
illumination in graphics rendering. This was a solution we chose
to explore further, as one particularly damaging case is that of fig.
6 where two photographs have roughly the same content yet might
be taken from a different angle. We chose to explore this further
and modified the code of PerceptualDiff to iterate an entire direc-
tory. The procedure was for each image I in the user collection,
I ∈ {i1, i2...in}, the image is compared to every other excluding
itself, if there is a match, I is removed from the set, and the next
image in the set is assigned to I . The time taken to process 50 im-
ages resized to 80x78 on an Intel Core 2 Duo running at 2.2GHz
was ≈ 120 seconds. Fig. 5 illustrates the efficacy of the filtering at
different thresholds.

5. IMPLEMENTATION
We developed two implementations to operationalize our obser-

vations and analysis, one of high entropy and one of low entropy.
This was to reflect the fact that recognition-based mechanisms –
within certain bounds of complexity – are flexible as to the entropy
they can usably provide. Both embody the interventions discussed
previously, and have the capability to be bootstrapped using im-
ages taken directly using the camera functionality of device. A
high level overview of the user experience is as follows: firstly the
user provides images to a client application that resizes the images
and initiates the image filtering process. The resulting set of im-
ages is then transferred to the device, from which subsets are then
randomly selected to populate the key image portfolio and the de-
coy image portfolio. For the two implementations, we decided to
ask the user to identify 4 random key images from the key portfolio
of 6, amongst a random subset of decoys from the decoy portfolio.
This number was informed by intuitive usability concerns raised by
asking the user to retain more than this number. The selected im-
ages from each portfolio were then shuffled together to comprise
the login challenge.

5.1 High Entropy Authentication
The high entropy system is the most resistant recognition-based

mechanism to brute force attack we have seen on mobile devices;
and provides six-times more entropy than a randomly generated
PIN

(
36
4

)
. The user interface is visually similar to those seen in

previous research [17] [34], where images are presented in a 3x3
grid. Previous research favors this design due to an intuitive keypad
mapping available between the on-screen images and the numeric



Figure 7: Screenshots of the High Entropy and Low Entropy
versions of the software. In the high entropy images were in a
3x3 grid, and in the low entropy version appeared in a 2x2 grid.

keys on a device keypad. The disadvantage of this configuration is
that images are displayed small in size which can cause problems
for users with less than perfect vision. In this system 36 images are
displayed across 4 screens in the 3x3 grid. The required number of
images to populate each image portfolio with respect to the desired
ratios are kl : k = 6 : 4 and dl : d = 48 : 32 indicating in total a
user must provide at least 54 images after filtering.

5.2 Low Entropy Authentication
The low entropy implementation adopts a new user interface

convention for this genre of system on mobile devices. Images
appear in a higher quality form, and 24 appear across 6 screens
in a 2x2 grid, designed to offer entropy comparable to a randomly
generated PIN

(
24
4

)
. It could be argued that low screen resolutions

seen in many current devices is a transient problem, however de-
signs to accommodate this scenario in the immediate term have im-
plications for usability and accessibility as users are better able to
identify images on-screen. In this configuration the chosen image
portfolio ratios are kl : k = 6 : 4 and dl : d = 30 : 20 indicating
in total a user requires 36 images after filtering to begin using the
mechanism.

6. DATA COLLECTION IN THE WILD
Previous work published in the usable security community has

suggested laboratory studies can offer misleading results of pass-
word recall when compared to field studies [5]. In the years pre-
ceding this work in the wider HCI literature, arguments over the
validity of results obtained in these two configurations have long
existed. This debate is particularly strong in the field of Mobile
HCI due to the recognition that mobile devices are typically used
in more dynamic contexts than desktop computers, and so should
not be evaluated in the same environment. Nielsen et al. [24] ar-
gues that field studies are most effective in uncovering issues of
cognitive load and interaction style. Rogers et al. [28] comment
that field studies are good at demonstrating how people appropriate
technologies in their intended setting, but are expensive and dif-
ficult to conduct. Of course there are arguments that dispute this
added value, Kjeldskov et al. [22] comment that field studies are
not worth the added value and a good lab study uncovers just as
many usability issues.

To date, controlled laboratory studies have yielded high success
rates in all instances for recognition-based systems. Due to only
subtle design differences with these systems, we had no reason to

believe our mechanisms would perform differently in such a con-
text. This motivated us to shift our attention away from a controlled
lab study, to a more pressing issue of how the high entropy and low
entropy systems might perform in everyday use on the personal de-
vice of each participant. Our goals were to explore:

• What is the typical usage time of these systems?

• What level of user accuracy can be expected?

• How would users appropriate the mechanisms into daily life?

6.1 Method
We recruited 17 participants within the organization through the

use of internal mailing lists, with the incentive of free cinema tick-
ets. Although this was reduced to 16 in the early phases of the
study as the device of one participant failed and participation could
not continue. We chose a between-subjects design and split par-
ticipants randomly between the two systems, this meant 8 using
the low entropy system and 8 using the high entropy version. All
participants were smartphone users for regularly accessing work
email and other web-based services, which we believe placed them
within a key target group given our perceptions of who might need
enhanced user authentication.

To initiate the experiment, participants visited the research lab
with a portfolio of approximately 80 images either already on their
personal device or on removable storage. We chose to ask for 80, as
in our informal tests the filtering software removed approximately
20-30 images from a typical collection. This filtering took the form
of the execution of software involving a combination of our slightly
modified PerceptualDiff 1, canny edge detection, and manual inter-
vention as a last resort (in depth analysis of our filtering mech-
anisms is ongoing work, fig.5 shows its efficacy). The assigned
mechanism was installed on the personal device of each partici-
pant, and the resized, filtered images imported automatically. For
the enrollment period participants were automatically assigned key
images and asked to achieve 3 consecutive correct logins in the
presence of the moderator. The mechanism was not actively secur-
ing the device, but was an application that allowed the user to test
retention of key images throughout the study. Performance data
such as success/failure of the login, time/date of the login and login
duration were logged automatically, and upon entry of a secret key
combination could be output to a file.

Our study design was similar to that of Everitt et al. [13] where
participants were sent emails when it was desired they should per-
form a login. For our purposes, this configuration had the potential
to be more effective since all participants read emails on their de-
vice, the same location on which the mechanism would be installed.
This gave us the opportunity to control the frequency of logins to
the system. For the first week participants would be asked to lo-
gin twice per working day, for the second week participants were
asked to login twice per day, every two days. We hoped to gauge
the effect of reduced usage on success rates after an intensive first
week of usage. On days where a login was required, we sent par-
ticipants an email at 10am and 3pm to request that they perform a
login. Upon receiving the email the participant would be required
to open the application and attempt to login. Upon success, the pro-
gram disappeared into the background, but if a participant could not
login after three attempts they would be locked out, and offered a
logged reminder so they could continue with the study. At the end
of the study, the participants visited the lab so that the log file of
performance data could be extracted. An example entry from an
extracted log file (with added formatting) is the following:
1Available at http://homepages.cs.ncl.ac.uk/p.m.dunphy/downloads



*******************Login************************

Tue Sep 01 10:42:40 GMT+01:00 2009 Success:false
6.322seconds Keys: 8528634 5027079 7641793 8493317
Decoys: 5328514 836515 2090387 2921383 4222148
288468 7874519 6318636 2298412 4005625 7220047
7546626 9930905 6975851 5766799 3251317 7881604
52555 2854716 8836977

******************End Login********************

From these entries we were able to analyse statistics of user per-
formance. The sequence of numbers refers uniquely to each image
used in the system.

6.2 Results

6.2.1 Participation
Of the 16 participants, 10 were male and six female, 12 in the

range 18-28 and four in the 29-39 range. Education levels were
high with six to BSc level, nine to MSc and one to PhD level. The
mobile devices owned by participants were all Symbian S60 de-
vices, with 11 owning the Nokia N95, others included the Nokia
E61 and E65. Screen resolutions of devices were 320x240 (E61)
and 240x320 (N95 and E65).

6.2.2 Success Rates
We define the success rate as successful_logins

number_of_logins
and calculated

this across all logins. We collected 319 logins across two working
weeks: 178 from users of the low entropy system and 141 from
users of the high entropy version. Of the 319 logins, 30 occurred
at the weekend outside of the requested time period, however we
included these in our analysis and added data to week one. As the
number of logins was not strictly controlled by the mechanism, on
average participants in the high entropy group logged in 17.6 times
(σ = 7.9), compared to 22.3 (σ = 5.9) in the low entropy group.

Participants were accurate in authentication trials, as only two
lockouts were experienced, both from the high entropy group – both
from the same person – in the week of reduced usage. Tables 2 and
3 break down the performance into each week of the study, and fig.
8 illustrates the spread of success rates across the study.

Table 2: Success Rates and attempts recorded for each mech-
anism during week one where participants were requested to
login twice per working day.

Attempts Success Rate Lockouts

High Entropy 85 84% 0
Low Entropy 123 70% 0

Table 3: Success Rates and attempts recorded for each mech-
anism during week two, where participants were requested to
login twice, every two days.

Attempts Success Rate Lockouts

High Entropy 56 67% 2
Low Entropy 55 89% 0

Across both systems, performance remained stable between week
one and week two, with 77% in week 1 and 78% in week two. An-
alyzing success rates per system, this was 77% for both systems.
From week one to week two the success rate of low entropy users

increased from 70% to 89% and was statistically significant (Mann-
Whitney U = 3, p < 0.05) however the decreased performance in
the high entropy system, from 84% to 67%, was not significant.
The performance difference between the two systems in week two
was significant (Mann-Whitney U = 3, p < 0.05). To under-
stand the success rates in more detail we classified logins using a
convention similar to that used by Renaud and Olsen [27] (high
entropy-low entropy):

• A single successful attempt not preceded by an erroneous
attempt (90-107).

• 1-2 failed attempts followed by a successful attempt (18-29).

• A failed attempt not followed by a new attempt within 30
mins (6-3).

We were also able to consider how success might be affected
by the time of day participants carried out the login. Across both
systems, 145 logins were recorded in the morning (AM), and 174
in the afternoon (PM). This analysis contained no significant dif-
ferences, nevertheless considering AM logins the success rate was
78%, and for PM logins this was 76%. Users of the high entropy
system experienced degradation in performance from AM to PM.
In the mornings the success rate was 83% and in the afternoons this
fell to 69%. Users of the low entropy had a more consistent perfor-
mance with an average AM success rate of 73%, and this increased
to 75% for PM.

Figure 8: Success rates per day per system. Participants were
reminded to use the system less frequently during the second
week and this affected success rates in the high entropy group.

6.2.3 Login Durations
As well as the accuracy of the recall, login durations were recorded.

Login durations were recorded from the user first seeing the login
screen until the final key press. The following discussion refers to
successful login durations. The mean login duration across both
groups was 19.8 seconds (σ = 3.8). Considering the high entropy
group alone this was 19 seconds (σ = 4.7) compared to a mean of
21 seconds (σ = 4.9) using low entropy. In a two-sample t-test this
difference was not significant (p = 0.366).

Considering the change in login duration for each week of the
study however was most interesting. In the case of both systems,
login durations became faster. In the first week the average high
entropy login lasted 22 seconds (σ = 4.9), in the second week



this fell to 15 seconds (σ = 3.6). This was significant in a two-
Sample t-test (t = 4.09 p < 0.01). A similar effect was noted
for users of the low entropy system, in the first week the average
login was 23 seconds (σ = 4.7) and in the second week this fell to
17 seconds (σ = 2.7). Again this was significant in a two-sample
t-test (t = 2.84 p < 0.05). While in the second week there was
less data, both changes were significant.

Users of both systems experienced a similar level of improve-
ment in terms of login durations. However comparing systems on a
week by week basis did not produce significant results. The fastest
instance of a correct login was 9 seconds, with the slowest being
76 seconds. It is likely that the user generating the latter was multi-
tasking at the same time as performing the login.

7. REPLAY ATTACK STUDY
This study was designed to supplement the earlier analysis on

shoulder surfing to explore the number of observations required
for a human attacker to compromise each implementation in the
context of the friend attack described previously. This phase took
place one week into the field study, across two sessions where par-
ticipants attended with others using the same system. A key benefit
of doing this was that participants had already gained one week of
experience with their assigned system and so its functionality had
become habitual, this equipped participants sufficiently to launch
their own observation attacks. Participants were paired and ran-
domly assigned roles as either an attacker or a victim as seen in
other similar studies [21]. The scenario offered to participants was
the following:

You and your new partner are friends; the victim has
just called over the attacker over to show a new appli-
cation on their device. However while both of you are
looking at the screen, the device asks the victim to lo-
gin to continue. The victim does not know their friend
is untrustworthy, and is actively trying to learn their
key images. So the victim continues to login...

The victim was asked to login to their device, holding it in a way
that was not sharing the screen with the attacker unrealistically. Af-
ter viewing a login the attacker had a decision to make:

1. The attacker has learned enough information to attempt to
login, and was given a maximum of 3 attempts to reflect a
"three strikes and you’re out" policy.

2. The attacker asks the victim to perform another login. This
occurred a maximum of 10 times.

After this phase the participants switched roles and repeated the
procedure.

7.1 Results
The average number of observations required for imposters to

login was 7.5 (σ = 1.8) against the high entropy system compared
to 4.5 (σ = 0.6) against the low entropy version. A Mann-Whitney
test shows this to be a significant difference (U = 0, p < 0.05).
Referring back to the simulations presented in fig. 2, high entropy
participants performed as well as attackers with 30% memory ac-
curacy (not detailed on the graph), whilst low entropy participants
were 50% accurate. This difference is reasonable since the shoul-
der surfing task for high entropy participants was more difficult,
more images were displayed and of a lower quality. There were 4
instances where participants were unable to login as an imposter, 3
using high entropy and 1 using low entropy. The mean login dura-
tions of legitimate users was 16 seconds (σ = 9) and 23 seconds

Figure 9: The context of the replay attack study, participants
could sit or stand. This would give an impression of how human
memory compared to our shoulder surfing simulations.

(σ = 24) for an imposter (U = 469, p < 0.01). We calculated this
using knowledge of the time and date of this study in the system
log. Fig. 10 illustrates the difference in the distribution of perfor-
mance between legitimate users and imposters.

Figure 10: Histograms of the login durations collected from
legitimate users and those posing as imposters. There is a clear
difference between the login durations of legitimate users and
imposter users. This could be used to inform design of a login
timeout.

During the study we did observe that the key image portfolio
did provide some temporary resistance to an impostor login. In the
context of a lunchtime attack this temporary delay could resist at-
tack for a significant period of time depending on the access gained
to the device by an attacker.

8. QUALITATIVE EVALUATION
After the study we distributed questionnaires and had informal

discussions with all participants to elicit opinions of the mecha-
nisms and some security practices in general. We hoped that af-
ter using the mechanisms on their own devices intensively for two
weeks they would have stronger and more interesting comments
than if we had performed a short lab study. A selection of ques-
tions and comments are displayed below:

Do you use PINs on your device?
57% responded yes and 43% no. Interestingly, when asking those
that responded negatively if there were items on their device they
would consider to be private, everybody responded that there were
a number of things. This suggests that those users attribute security
of their device to their assumed possession.



How do you rate the time required to login?
This is an important question as the most crucial driver to user ac-
ceptance is often the convenience of use. A disadvantage of graphi-
cal password schemes more generally is that it typically takes much
longer to authenticate than PIN, due to the visual search required.
64% of users said the time required to login was acceptable, while
the remaining 36% thought the time cost was unacceptable.

Did using the mechanism feel secure?
Providing the users with a feeling of security is something that the
mechanisms both lacked. 79% of Participants indicated they felt
more secure using PINs but could not come up with concrete rea-
sons why. This is possibly because of the transparency of the mech-
anisms and their game-like nature.

Some interesting and recurring comments received were the fol-
lowing:

"‘I would prefer to choose my own images"’

"‘When I was walking around I had to concentrate
much more than when using a normal PIN, for that
I don’t need to see the keypad"’

"‘During one login a particularly funny image appeared
so I showed it to my colleague"’

"‘It’s much harder to crack numbers than images isn’t
it?"’

The majority of users expressed a desire to choose their key im-
ages. It is common knowledge that users are likely to choose al-
phanumeric passwords and PINs in predictable ways [23]. This
trend has been noted in graphical password studies too [7] [9] [35].
By distribution of password selection being anything but uniform,
an attacker can prioritize a guessing attack by any perceived biases.
One feasible concession to this rule could be the system choosing
a random subset of images – slightly larger than the number of re-
quired key images – and allow user selection from within this set.

The next two comments are unlikely to have been made in the
context of a lab study. A number of users lamented the fact that the
mechanisms demanded their visual attention for use. With PINs
they made it clear they were able to input digits without viewing
the screen (due to the tactile nature of the keypad) and multi-task
more effectively. Next a number of users commented how they
treated the logins as an enjoyable means to view the images on
their device; one in particular commented how they would show
particularly amusing images that appeared to work colleagues. This
hints that our hypothesis of a friend attack is potentially realistic.

The final comment could provide an insight into why many users
felt the mechanisms were less secure than PIN. This user has an in-
correct mental map of what makes an authentication secret crack-
able and perceives the game-like nature of the mechanism to be a
reflection of its seriousness regarding security. In addition, all their
previous experience with mobile device authentication had been
with PINs, which is likely also greatly informs their preference. A
similar effect was noted in a user evaluation of device pairing meth-
ods [37] where users associate more difficult with more secure.

9. DISCUSSION

9.1 Study Limitations
The two week duration of the study was relatively short, how-

ever this was chosen as we hoped it would be sufficient to provide a
glimpse of how users would appropriate the systems into their daily
routines, and enable us to provoke some strong opinions. As a re-
sult, the success rates reported here are likely to be under-estimates,

as user performance was not given a long time to stabilize. Any lon-
gitudinal study should make observations of user behavior in a real
usage context; in our setup the mechanism was not actively secur-
ing the device or anything else of value. As has been commented
on in previous security user studies, this can impact the motivation
of participants to perform the required tasks.

The replay attack study attempted to recreate a shoulder surf-
ing scenario, and we must consider the ecological validity of this
method. Shoulder surfing is a difficult phenomenon to recreate in
an artificial setting, as typically a victim is unaware of an attack
taking place. However, our setup potentially fits well to our friend
attack threat model as the victim would know they were under ob-
servation. An alternative approach to recreating such a scenario
could involve observers viewing a video, but this could be sub-
jected to the same arguments of ecological validity.

We hope to use the hindsight gained by this field study to inform
design of future field evaluations in this area. In designing the ex-
periment, we were confronted with a number of design issues that
are relevant to others considering similar studies. Firstly partici-
pants expressed apprehension towards full deployment on personal
devices. Our participants were active smartphone users and busy
members of the organization, and due to the increasing importance
of mobile devices they were concerned that unexpected software
problems could block them from working. Secondly recruitment is
based on specific criteria, participants should own devices on the
targetted platform (or devices should be provided). This can reduce
the size of the participant pool considerably. Using multi-platform
programming languages such as Java can help, although ability to
make low-level system calls is reduced. Finally, the devices on a
particular platform can be diverse; one platform can contain differ-
ent devices that can provide different user experiences e.g. screen
resolutions and keypads.

9.2 Study Reflections
Overall we collected more attempts than we requested, but this

was inevitable given the novelty of the mechanisms and the fact
the number of logins was not limited. The maximum number of
logins recorded from a particular person, on a particular day was
six. Accuracy was similar across both mechanisms, in addition to
the success rates, 60% of logins from the low entropy group could
be categorized as correct first time compared to 63% of high en-
tropy logins. All the accuracy data indicates that one intuitive hy-
pothesis that participants of the high entropy system would have a
reduced performance over those performing the low entropy task
does not appear to be valid. After considering that this could be an
anomaly attributed to the amount of data collected, another possi-
bility is that in a visual search task, practice can decrease capacity
demands [10]. So one explanation could be that once participants
have gained enough practice with the mechanisms, performance is
not linked to the entropy of the mechanism and is similar within
certain bounds. This is partially supported by the fact that success-
ful login durations were faster between week one and two.

The results of the replay attack study show both mechanisms to
be vulnerable to shoulder surfing to some extent. Impostors ob-
served on average 7.5 logins using the high entropy version before
being able to login, whereas using the low entropy version this was
an average of 4.5 logins. While the scenario did not take into ac-
count the likely time gap between a lunchtime attacker observing
a challenge and having the opportunity to login, the results at least
suggest a lower bound to attackers purely using human memory to
record images. Our computer models describing a shoulder surf-
ing attack illustrate the extremes of the shoulder surfing effect and
could be used to inform design of a password expiry mechanism



as values presented suggest the best-case observation scenarios to
compromise one login, and an entire key image portfolio.

Desirable additional functionality for systems of this genre is to
reason about whether a login is not being performed by the legiti-
mate user. This is because unlike alphanumeric passwords, simply
viewing the images presented in a login challenge may still convey
information to an attacker. One means to achieve this is through
analysis of the login durations, as an impostor should take more
time to complete a login than legitimate users. This possibility was
supported in our replay attack study, where imposter login dura-
tions were significantly longer than those of legitimate users. This
could indicate that a time-out on logins is reasonable where the sys-
tem believes the current login to be taking longer than usual.

Considering observations on both systems, the image portfolio
concept explored is not a scalable method. Increasing the size of
the key image portfolio does increase difficulty for the attacker, but
perhaps most damagingly for the user. This effect is intuitively
more prominent with larger sizes of the key portfolio, and is not
a feasible solution unless a method giving users a secure reminder
can be developed. Also in systems where key images and decoy im-
ages are drawn from the same source, it is critical that an effective
enrollment process be designed, such as that seen in the Passfaces
[25] online system to provide a more longitudinal encoding.

Finally, multi-password interference is a concern in this context
despite the lack of attention we have given to the problem. Everitt
et al. [13] demonstrate the degradation in user performance when
managing more than one visual password sequence. Our intuition
is that recognition-based systems can provide better resistance to
interference over pure recall-based methods, as the login challenge
innately constrains user actions. However in the context of the ar-
chitecture presented in this paper, it is likely that completely dif-
ferent sets of images must be used for each different system. This
means that any further development has to consider that users may
upload similar images to different systems. A deeper consideration
of this problem is future work.

10. CONCLUSION
We have gathered results that give a first suggestion of real-

world performance levels to be expected from two recognition-
based graphical password systems (of varying entropy) on mobile
devices. Users were assigned key images and despite having rel-
atively little training, performance was good irrespective of the
mechanism as success rates were 77% for each system. Users of
the high entropy version experienced two lockouts, where access
was "‘blocked"’ after 3 incorrect attempts. Of course, in a study
context outside of the lab this could be attributed to any number of
reasons. The success rates reported are similar to those reported in a
field study of Passpoints [5] where success rates ranged from 78%
- 83%. Other field studies that provide means of comparison in-
clude Passfaces (95%) [2] and Dynahand (97.4%) [27]. While this
may seem like a large difference, the low entropy system exhibited
higher entropy than each of the aforementioned systems (excluding
Passpoints), and it is likely that a longer study would have allowed
any performance extremes to stabilize.

In a test that explored the shoulder surfing capabilities of user
study participants we intuitively discovered that users of the high
entropy system – where images were smaller and of reduced quality
– needed on average 7.5 observations to obtain a successful login
compared to 4.5 logins where participants attacked the low entropy
system – where images were displayed larger and in higher quality.
An attack on a PIN is likely to only need 1-2 observations, mean-
ing visual authentication solutions using photographs are likely to
provide more resistance in practice to shoulder surfing. One con-

tributing reason is that all users of PINs are familiar with the alpha-
bet from which PINs are drawn, which is not the case where login
challenges are constructed with the personal images of the user.

Despite the increasing presence of biometrics for user authen-
tication on consumer electronics e.g. laptops, knowledge-based
authentication systems are likely to remain attractive due to be-
ing purely software-based solutions. Graphical password systems
based on recognition potentially have a role to play in this area,
due to accurate user performance in previous studies, including this
one. One key limitation however, is that login durations recorded
for our systems – and others – are still too long. User acceptance is
often driven by convenience and login durations of approximately
20 seconds are unattractive to many users.

In this work we have concentrated particularly on mobile de-
vices, however deployment of recognition-based mechanisms on
the Internet presents different challenges [27]. Another goal of
these systems should be to contribute to the alleviation of the pass-
word management problem currently experienced on the Internet.
In order to make this a feasible goal, we feel image processing has
an important role to play to improve the scalability of these sys-
tems. The image filtering mechanisms deployed in this work were
not sufficient to entirely solve the filtering problem, particularly in
determining image similarity due to its subjective nature. Future
contributions will be the further exploration of image analysis to
provide automated and intelligent selection of images for particu-
lar graphical password systems.
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