

A Cloud-Native

Journey for

Telecommunications
How to reap the promised benefits of cost savings, rapid deployment

and customer empowerment

ORACLE COMMUNICATIONS WHITE PAPER / FEBRUARY 22, 2019

2 ORACLE COMMUNICATIONS WHITE PAPER / A Cloud-Native Journey for Telecommunications

DISCLAIMER

This document is for informational purposes only and is intended solely to assist you in planning for

the implementation and upgrade of the product features described. It is not a commitment to deliver

any material, code, or functionality, and should not be relied upon in making purchasing decisions.

The development, release, and timing of any features or functionality described in this document

remains at the sole discretion of Oracle.

3 ORACLE COMMUNICATIONS WHITE PAPER / A Cloud-Native Journey for Telecommunications

AGILITY THROUGH CLOUD

Agility describes the ability to move at speed and change direction, all while maintaining balance and

control. Without agility, a business faces disruption, or even worse, commoditization. Although telecom

is not an industry known for its agility, and is often thought of as the opposite, it — like many industries

— has been transforming through adopting more agile approaches in business strategy, striving to

maximize resources and reduce inefficiencies while at the same time sparking innovation. Nothing has

been more of a stimulus for agility than the cloud, especially for the webscale companies whose services

pose the greatest threat to the telco industry.

Per the National Institute of Standards and Technologies, cloud computing is defined as “…a model for

enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing

resources (e.g., networks, servers, storage, applications and services) that can be rapidly provisioned

and released with minimal management effort or service provider interaction."1 However, the definition

falls short in revealing why cloud is critical to achieving true agility.

Cloud is significant in that it gives businesses the ability to rapidly develop, test and launch software

applications that drive business growth at a rate and scale not seen before — and all while eliminating

the need to buy and maintain equipment. Virtualization enables the abstraction of the IT stack so that

one physical resource is used logically like many, creating more flexibility and scalability, and opening

the door to new service models. The addition of automation further allows the focus on other issues such

as core business logic, security, and analysis, as opposed to just provisioning and maintaining the

resources. Finally, when the new service models are coupled with the cloud’s transparency of resource

utilization, new business models start to emerge. The “anything-as-a-service” paradigm of cloud drives

a mostly static and transactional world into a more dynamic and subscription-based economy.

Cloud was a major modernization undertaking for the IT industry, sending it on a journey that is still

unfolding today. Meanwhile, the telecommunications industry was undergoing its own modernization

effort, shifting to all-IP networks and connecting data centers filled with commercial

off-the-shelf servers that run open source operating systems. Nevertheless, the thinking became that

there was a need to adopt a more “authentic cloud” where the industry was more likely to reap the

promised benefits of cost savings, rapid deployment and customer empowerment.

‘CLOUDIFICATION ’ WITH NFV

Network Function Virtualization (NFV) soon became the predominant way the telecommunications

industry sought to leverage cloud. The NFV goal is to offer Software-as-a-Service (SaaS), but the

building blocks are Network Functions (NF), something not traditionally thought of as software in the

same sense as enterprise applications in a SaaS context. Network equipment vendors seek to “cloudify”

their products by porting the underlying software from dedicated bare metal into virtual machines (VM),

allowing these Virtual Network Functions (VNFs) to take advantage of the basic cloud tenants.

1 NIST SP 800-145

Figure 1: the modernization of infrastructure is continuous in nature.

https://csrc.nist.gov/publications/detail/sp/800-145/final

4 ORACLE COMMUNICATIONS WHITE PAPER / A Cloud-Native Journey for Telecommunications

Most of the resulting VNFs still have dependencies between the lifecycle of the service and the

underlying software’s lifecycle. Some even have dependencies on underlying infrastructure resources.

The core architecture for NFV has to incorporate multiple layers of hierarchical control through

orchestration to manage the extensive and intertwined dependencies. Instead of dynamic elasticity,

orchestrators manipulate fixed-size templates to manage capacity. The use of 1+1 redundancy schemes

between VMs to ensure high availability sometimes makes the resource consumption worse off than the

dedicated appliances they are moving away from. Configuration becomes so complex that the

orchestration engines have to be augmented with custom VNF Managers from the vendors, further

complicating interoperability. NFV is not achieving the promised benefits; rather, it adds extra layers of

complexity.

THE PEOPLE AND PROCESS STORY

Technology, or how it is realized in the case of NFV, is not the only factor in achieving cloud agility.

Before cloud there had been a widely held notion that development of software is a different activity than

its operation. As organizations sought to become more agile with the development of software for cloud,

the resistance to change in favor of stability from operations became more apparent. The relationship

where the development team “throws code over the wall” to operations led to the classic battle of: “it’s

not my machines, it’s your code,” vs “It’s not my code, it’s your machines.” Coined by a presentation at

O’Reilly Velocity 20092, this resulted in the need for a new process approach for cloud – DevOps. It

became evident that the relationship between development and operations needed to improve as both

are indispensable for a successful cloud. There was now an apparent need to have more operational

awareness in development while having a more developer mentality in operations. This was to be

achieved by having software developers support what they built while having operation engineers

introduce software engineering practices into the platform — to better understand and adopt the notion

that everything, including process, is code.

An agile business must embrace change, as that is fundamental in bringing new services to market.

Both the software developer who adds new features and the operations engineer who keeps the services

stable are essential to enabling this business objective. However, the notion of “change”—often

embraced by development but shunned by operations—can be associated with the root cause of most

outages. The business must make a choice. The first option is to discourage change in the interest of

stability. The second option is to change as often as needed by mitigating the risk of change through

tools and culture. Needless to say, the latter has been the DevOps path to a successful cloud business.

Automation is one of the most effective tools for agility. To do automation successfully though, it needs

to incorporate both development and operations. Build and deploy should be a one-step process, based

on a shared, version-controlled repository so that everyone knows where to look. Likewise, shared

metrics and data flows enable everyone to be talking about the same thing and oriented to the same

goal. Finally, both should share the same communication channels to establish a platform for more

automated closed loop processes and ensure there is no misunderstanding.

If there is only one cultural change an organization makes, it needs to be instilling respect between

development and operations. Fundamental to gaining respect is a having trust in the job each team

does, that the job is done with the best intent for the business and with full transparency. Once there is

trust and the organization is aligned to the same goals, it can create the environment where harder

issues such as failure can be addressed. Often organizations develop an unhealthy focus on preventing

failure, sometimes at the cost of not being able to respond effectively when it does happen, which then

can lead to appointing blame and eroding the hard earned organizational trust.

2 “10+ Deploys per Day: Dev and Ops cooperation at Flickr” link to: video, slides

Time for DevOps 2.0

DevOps 1.0 has been mostly

centered on harmonizing the

interplay of development and

operations with the goal of

institutionalizing continuous

delivery. In DevOps 2.0 we see

the emergence of adaptive

feature delivery and the

broadening of scope to non-

technical teams.

Business adopts cross-functional

methods to ensure that software

is iterated on a continuous

cadence complementary to

marketing and sales campaigns.

Decoupling feature rollout from

code deployment with feature

flags gives marketing, design,

and business teams control of

targeted visibility and testing

without consuming engineering

resources or compromising the

application’s integrity.

Last but not least, DevOps 2.0

elevates security as a

fundamental element from

beginning to end with the mindset

everyone is responsible for

security. This is sometimes

referred to as DevSecOps. By

thinking of security as code,

security specialist are given the

tools to contribute value with less

friction.

https://youtu.be/LdOe18KhtT4
https://www.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-flickr

5 ORACLE COMMUNICATIONS WHITE PAPER / A Cloud-Native Journey for Telecommunications

One way to deal with failure is to minimize its impact through smaller iterations, which typically bring

about a decreased Mean Time to Resolution (MTTR). By shipping the main trunk with feature flags3

instead of branching the code, several failure testing and containment techniques are enabled, such as

dark launches and canary testing. These techniques release a change to only a subset of the customers

to benchmark a code change from either a performance or customer perception perspective. The flags

also allow for the administration of private betas and in dire circumstances can be used as circuit

breakers.

Finally, DevOps should be treated like a journey — one that can always be improved. Learning from

lean manufacturing, an organization should be continuously evaluating how to further automate and

simplify its processes. The most attention should be given to things which are queued, usually because

they are awaiting human interactions. Reviews, approvals, and testing, for example, are often the larger

bottlenecks requiring both tooling and cultural changes to effectively improve.

BETTER SOFTWARE FOR A BETTER CLOUD

Taking NFV as an example, having an underlying cloud technology like virtualization did not mean that

software was able to be developed to maximize its capabilities. Even with the drastic improvement

DevOps made for deployments, the way software was developed still prevented reaching agility at scale

in the cloud. In order to better understand the next shift in cloud, it is necessary to reflect back on Service

Oriented Architecture (SOA), which also came into prominence around the same time cloud made its

first appearance in the IT industry.

At its core, SOA is a paradigm for organizing and utilizing distributed capabilities that may be under the

control of different ownership domains. In SOA, services are the mechanism by which needs and

capabilities are brought together through interactions between logical representations of a repeatable

business activities with specified outcomes.

The SOA philosophy has had a profound impact on how present-day developers approach the concept

of as-a-service. Its architecture introduced many benefits, including:

– loose coupling of components with relationships that minimize dependencies

– abstraction whereby services hide their logic, encapsulated within their implementations

– discoverability using metadata through which services can be effectively discovered

– implementing sophisticated and complex operations using composability of services as building blocks

Typically SOA manifested itself as multiple business services running in Application Servers, connected

through an enterprise bus enabling some level of heterogeneous interoperability. It was an architecture

that fit the waterfall development of the time. The philosophy was right, but the methodology did not

quite fit into the agile paradigm of cloud. Through adjustments from the community a manifesto

appeared, serving as the foundation for a microservices architecture, known as the Twelve-Factor App4.

3 Feature Flags or Feature Toggles have multiple categories and are catalogued extensively by Martin Fowler and Pete Hodgson.

You can read how Oracle Integration Cloud uses Feature Flags in this blog post

4 https://12factor.net/

RESTful State

The rise of RESTful interfaces in

telecommunications with their

statelessness has caused a bit of

consternation; therefore, it helps

to understand what this really

means. Looking back at Roy

Fielding’s thesis5 on the topic, he

cites three important properties

that are induced by

statelessness:

 Visibility – every request to a

service contains all context

necessary to understand it.

Thus looking at a single request

is sufficient to visualize the

interaction with the service.

 Reliability – failure of one

request does not influence

others because the request

stands on its own.

 Scalability – the server does

not have to remember the

application state, which is the

state from the perspective of the

consumer in the interaction,

enabling it to serve more

requests and to have multiple

instances of the server handling

those requests.

These are all very desirable

properties and fundamental to the

success of web-scale services.

This does not mean that the

service cannot be acting on a

stateful resource, which is

persisted data within the services.

Only that the interaction itself is

not aware of stateful concepts like

“next”, but rather must contain a

representation of the resource

with controls that would lead the

server to a “next” action.

https://martinfowler.com/articles/feature-toggles.html
https://blogs.oracle.com/integration/enabling-the-future-today-feature-flags-in-oracle-integration-cloud
https://12factor.net/

6 ORACLE COMMUNICATIONS WHITE PAPER / A Cloud-Native Journey for Telecommunications

TWELVE-FACTOR APPLICATION

1.Codebase one codebase tracked in revision control; many deploys

2.Dependencies explicitly declare and isolate dependencies

3.Configuration which varies between deployments should be stored in the environment

4.Backing services all treated as attached resources, attached and detached by the execution

environment

5.Build, Release, Run delivery pipeline should strictly consist of build, release, run

6.Processes applications deployed as stateless processes with persisted data stored

on a backing service

7.Port binding self-contained services should make themselves available to other

services by specified ports

8.Concurrency is advocated by scaling individual processes

9.Disposability fast startup and shutdown are advocated for a more robust and resilient

system

10.Dev/Prod parity all environments should be as similar as possible

11.Logs applications should produce logs as event streams and leave the

execution environment to aggregate

12.Admin Processes should be kept in source control and packaged with the application

Table 1: the Twelve-Factor Application

As opposed to SOA, applications built with this methodology follow the “single responsibility pattern,”

having a more granular and small nature to their service components, thus leading the term

microservices to be used for the architecture. Microservices expose their capabilities via an API layer

as opposed to relying on heavy middleware like SOA. This allows for a minimal coordination between

development teams of service components and minimizes the impact of changes to the codebase. Most

importantly, twelve-factor apps take into account these characteristics and are able to scale up without

significant changes to tooling, architecture, or development process, hence truly delivering the full

promise of cloud.

5 Architectural Styles and the Design of Network-based Software Architectures

https://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

7 ORACLE COMMUNICATIONS WHITE PAPER / A Cloud-Native Journey for Telecommunications

CLOUD NATIVE WITH ORACLE COMMUNICATIONS

The microservice architecture and concept of a twelve-factor application gives developers a pattern to

create software that is considered truly native to the cloud, while DevOps becomes paramount for

managing the agile cloud within which they would run. Nevertheless, technology continues to progress.

This is best illustrated by the move from hypervisor-based virtual machines to container virtualization

directly in the operating system, which is lighter weight and better for microservices. However, questions

like how to orchestrate large quantities of containers and how to manage containers on multiple clouds

exacerbates the need for the industry to chart a path through the landscape of ever increasing

technologies to help developers make sense of it all. This is where the Cloud Native Computing

Foundation (CNCF) comes into play, serving as an open source software foundation dedicated to

making cloud native computing universal and sustainable. Oracle is a platinum member of the CNCF in

the realization that its vision of an open, cloud

native and standards approach is well

aligned.

With a rich heritage in telecommunications,

Oracle Communications has always had a

deep understanding of service reliability.

Developing applications in this space has

placed an emphasis on creating foundational

platform services whereby applications could

be built consistently to these expectations.

There has also been a keen awareness of the

operational aspect of these applications. This

has become even more pressing as the

applications move to SaaS-based cloud

delivery. It is this space, where Oracle’s

leadership with cloud technologies like those

of the CNCF, which has given Oracle

Communications new perspectives on what

core principles are really necessary:

System Immutability: Everything, software and configuration, is code. All changes are made through

CI/CD where they are deployed as immutable artifacts. No manual configurations or customizations are

allowed. This makes it easier to implement the principle of least privilege as there is no need to run

scripts in the production environment. Also, any changes not coming though the delivery pipeline can

be considered malicious.

Automate Everything: All aspects of build, test, verification, and deployment are automated. This

includes activities such as backup, recovery, password/key rotation, etc. Fully automating the DevOps

pipeline (including verification and testing) removes much of the potential for human error, allows

changes to be applied to the environment with confidence, and provides for rapid repair.

Disposability: All services are transient and treated as short lived. Instead of focusing on never failing,

services are designed to go up and down quickly without service interruption. Regular repaving (re-

deployment) of the environment ensures failed or failing services are removed and new ones deployed.

Externalized Configuration: Configuration (including passwords, credentials, location of backing

stores, etc.) is decoupled from the software image, and like software, can be treated as a build artifact

in a controlled and versioned manner. Versioned configuration enables development and production

parity as an artifact, and can eliminate costly operational errors.

Figure 2: eight principles for successful cloud native operations

8 ORACLE COMMUNICATIONS WHITE PAPER / A Cloud-Native Journey for Telecommunications

Logs as Event Streams and Constant Telemetry: Everything needed to debug or diagnose any

functional, operational, or security issue must be in logs, traces, or metrics data. These are treated as a

stream of time-ordered events and stored in a centralized collector outside the system where better

threat monitoring, forensics, and diagnostics can occur through event correlation or analyzing the

aggregated and holistic view.

Delegated Governance: Some shared aspects of the environment are centrally managed like

networking, identity management, or infrastructure, but in a true DevOps fashion, teams delivering a

service are responsible for operating the service. This is allowed only with strict governance, enforced

through checks in the Continuous Delivery pipelines, giving greater control over rate of change. Business

agility is improved as applications have better visibility into the operations of their service with tighter

feedback loops that ultimately improves quality.

Independent Lifecycle: Independently upgrading, scaling and deploying each Microservice is

paramount for supporting other cloud native principles as well as minimizing the amount of change in

the system at a given time. Furthermore, such decoupling makes other principles such as repaving

easier as well as promoting easier isolation of issues

Oracle Communications has realized that only with an operational framework that embraces these eight

principles can it achieve an agile cloud with an environment enabling its developers to innovate true

cloud native solutions. Furthermore, Oracle Communications has found that this also provides the ideal

context in which to implement a broader view of the CNCF landscape, giving developers a robust

Platform-as-a-Service of backing services beyond just containers.

5G EMBRACES CLOUD

The idea that an application can be built from a collection of loosely coupled components acting as

producers and consumers to each other, like in SOA, has been one of the most prevalent paradigms

found in application development. Recently, practitioners have these components interact through what

is known as RESTful interactions, which are self-contained messages sent with a stateless protocol

using a uniform interface. This predominately hails from the “web services” world and has been a

significant portion of recent SaaS growth.

As a mental model, this paradigm can be challenging for network-oriented telecommunication

applications. Historically, network applications have been defined using tightly coupled components

which interacted through long-lived, stateful protocols. However, with 5G, 3GPP has now embraced the

patterns found with REST through defining its next generation core with a Service Based Architecture

(SBA). In this architecture, control plane capabilities are exposed as discoverable services with RESTful

APIs. This will enable a much faster pace of innovation as new capabilities can be introduced and

existing ones can be easily consumed in new ways without the need for defining new point-to-point

interfaces or making difficult changes to existing protocols stacks and state-machines.

Figure 3 CNCF Service (left) versus SBA Services (right)

Service Mesh

There would be little value to a

producer if a consumer was not

able to reliably utilize its services.

In a Cloud Native Environment,

that ability to have reliable

communications between

services is where the Service

Mesh comes into play. It is

typically implemented as an array

of lightweight network proxies

deployed alongside application

code, without the application

needing to be aware. A service

mesh can perform the following

tasks:

 Service discovery: What are

all of the upstream/backend

service instances that are

available?

 Health checking: Are the

upstream service instances

returned by service discovery

healthy and ready to accept

network traffic?

 Routing: Given a REST

request from the local service

instance, to which service

cluster should the request be

sent?

 Load balancing: To which

upstream service instance

should the request be sent?

With what timeout? With what

circuit breaking settings?

Should it be retried?

 Authentication and

authorization: For incoming

requests, can the caller be

cryptographically attested and is

the caller allowed to invoke the

requested endpoint?

 Observability: For each

request, detailed statistics,

logging, and distributed tracing

data should be generated.

9 ORACLE COMMUNICATIONS WHITE PAPER / A Cloud-Native Journey for Telecommunications

Intuitively, each component in this paradigm can be a seen as a microservice running in a container, but

there are a lot of other moving parts behind the scenes that makes this come together. In the twelve-

factor application, these are known as backing services and they make up a majority of the CNCF’s

landscape. A few notable ones include:

Key Value Store: A centralized service for maintaining information, naming of the information and

providing distributed synchronization of the information. Often used for configuration and state.

Service Registry: Service discovery uses a registry to keep a list of services, their location, and their

health. Services query the registry to discover the location of services so they then can connect

directly.

Service Mesh/Proxies: A secure and reliable network between every microservice, which provides

policy driven management of the traffic with full visibility.

API Gateway: Safely expose services to the outside via secure programming interfaces that can be

managed and monitored.

Monitoring/Logging/Tracing: These are tools that collect data and events, correlate them, analyze

them, search them, and otherwise manipulate them so that a business can have better operational

awareness.

There is enormous benefit to having these readily available as services which application developers

can utilize. Otherwise, each time they implement one of these there is effort to build and debug. Because

these are not the core business of the application and can be difficult to implement, quality is often

lacking, making the solution fragile and difficult to manage. Because of this value, it should be of no

surprise that many of the services defined in the 5G SBA have an uncanny similarity to CNCF backing

services (see figure 3), thus bringing SBA into the realm of agile cloud. Realizing this, Oracle

Communications contributed to 3GPP the addition of service mesh and proxy concepts as an

enhancement to SBA, becoming the basis of the Service Communications Proxy function6.

FUTURE OF CLOUD FOR TELECOM

The mass media hype around Cloud Native has clearly captured the attention of the telecommunications

industry, but does the industry really understand what it means? A pedantic view of the phrase leads to

meaning nothing more than building something that is fit for the cloud. But which cloud? We have seen

the cloud evolve from a definition of five basic characteristics to something that is now an entire

landscape of technology with an accompanying operational philosophy. To pin that down today it would

have to at least have the following as illustrated:

6 Original contribution S2-187627 to specification 23.742 - Study on Enhancements to the Service-Based Architecture. This has now

progressed to normative Change Request 706 to specification 23.501 - System architecture for the 5G System for Release 16

Figure 4: modern cloud native characteristics

https://portal.3gpp.org/ngppapp/CreateTDoc.aspx?mode=view&contributionUid=S2-187627
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3457
https://portal.3gpp.org/ChangeRequests.aspx?q=1&specnumber=23.501
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3144

10 ORACLE COMMUNICATIONS WHITE PAPER / A Cloud-Native Journey for Telecommunications

None of these can really stand on their own, nor are any of these trivial in their own right. Containers is

more than virtualization. It implies the rich ecosystem of services to orchestrate, schedule, network,

deploy, and maintain the containers. Microservices are more than smallish applications. They require a

different way of thinking about the service, how resources are used, how state is persisted and working

in a distributed environment. DevOps is a cultural shift of unprecedented magnitude and not a token

gesture between two organizations. Finally, Continuous Integration and Continuous Delivery are more

than having some cookbook and collection of scripts. They are a pipeline that spans all aspects of

creating and running a service, embracing automation at every step, and strict governance – literally

turning the business into code. Most importantly, CI/CD is a singular codebase, always deploying main

trunk, so there are not multiple versions of the cloud.

FINAL THOUGHTS ON DELIVERING SAAS AS CLOUD NATIVE

Bringing this all together is not trivial. It literally takes a platform in of itself to enable the delivery of SaaS

as cloud native on an agile cloud. Oracle Communications has devised a Cloud Native Environment

Platform-as-a-Service (PaaS) to capture all four of these aspects and more. On top of a robust bare-

metal-as-a-service infrastructure there is a Kubernetes container management environment.

Additionally there are key backing services so developers can concentrate on business logic instead of

the tedium of logging or persistence framework. There is also a pipeline that facilitates developers

designing, testing and building code all the way through to delivery, on a continuous basis. Furthermore,

each of these are literally services in their own right, with their capabilities adhering to all of the principles

discussed so far. In other words, the configuration for the pipeline is itself versioned code. The backing

services are containerized microservices deployed using the same pipeline. In fact, over the span of a

typical month, it is not uncommon for there to be several hundred changes propagated through this

system across all of the layers from OS to platform to application, into a global cloud without service

interruption. Finally, it is worth mentioning that there is an inherent difference in the philosophy in which

some of the SaaS software of today is designed than that of traditional telecommunications NFs of the

recent past. Some of the difficulty inherently comes from functional architecture of many network

domains. Examples of such issues include:

– complex dependencies between configurations for multiple functions, which then have

dependencies on component lifecycles

– application endpoints which cannot be decoupled from underlying resource lifecycles

– interfaces that don’t lend themselves to service discovery, load balancing or otherwise enable the

elimination of configuration dependencies

The root of these issues lies in the fundamental view that a service is something created by the

configuration of distinct functions. A NF does not exhibit a service but rather tends to convey some set

of capabilities. With some non-trivial amount of forethought, they can be configured and assembled to

create services. In contrast, web services typically start from the service definition itself. This does not

mean that the service cannot be decomposed into an architecture of constituent parts; rather, it means

it does not start with parts that may not have been designed with a full understanding of the services in

which they are to serve. The telecommunications industry now finds itself grappling with this very issue

of a service-first mentality and that will drive the future of what agile cloud for telecommunications looks

like.

Having a service-first view does not necessarily mean having solutions that are not interoperable. Having

a well-defined API, not unlike what SBA has done, is a fundamental step towards this. Oracle

Communications has approached its SaaS based services with this new way of thinking, designing

around what it means to have a slice-as-a-service, built entirely from microservices that make sense to

support the service while still maintaining the external interfaces per 3GPP standards. Most importantly,

Oracle has learned from this that pursuit of an agile cloud, especially in this context, is an always

evolving, continuous journey.

Delivery vs Deployment

While continuous deployment

may not be right for every

company, continuous delivery is

an absolute requirement of

DevOps. What really then

differentiates the two?

Fundamentally, delivery is having

the pipeline contain all the

mechanisms and practices to

ensure the software is fit for

production by placing every

change into a production-like

environment with rigorous

automated testing. This gives the

business the confidence that

based on its criteria every change

could then be “push-button”

deployed to the production

environment. If regulatory and

business conditions allow, the

goal of the business should be to

have continuous delivery into

production for every change.

ORACLE CORPORATION

Worldwide Headquarters

500 Oracle Parkway, Redwood Shores, CA 94065 USA

Worldwide Inquiries

TELE + 1.650.506.7000 + 1.800.ORACLE1

FAX + 1.650.506.7200

oracle.com

CONNECT WITH US

Call +1.800.ORACLE1 or visit oracle.com. Outside North America, find your local office at oracle.com/contact.

 blogs.oracle.com/oracle-communications/

https://www.linkedin.com/showcase/oracle-comms/

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the contents hereof are

subject to change without notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed

orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any

liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document. This document may not be

reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or

registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks

of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0219

White Paper A Cloud-Native Journey for TelecommunicationsCloud NativeA Cloud Native Journey for TelecommunicationsA Cloud Native Journey

For Telecommunications

February 2019

Author: Todd Spraggins

Contributing Authors: Shirin Esfandiari

https://www.oracle.com/
http://www.oracle.com/contact
file:///C:/Users/tspraggi/AppData/Local/Temp/Temp3_SS-White-Paper.zip/SS-White-Paper/blogs.oracle.com/oracle-communications/
https://www.linkedin.com/showcase/oracle-comms/

