Enigma

Stem Sentences

Number, addition and subtraction

- Composition of quantities and measures
- Wholes and parts
- Composition of numbers including place value
- Additive structures: aggregation and partitioning
- Additive structures: augmentation and reduction
- Odd and even
- Rounding
- Negative numbers
- Addition and subtraction strategies
- Written algorithms for addition and subtraction
- Decimals

Comparison of quantities and measures		
The \qquad is heavier than the \qquad The \qquad is lighter than the \qquad .	Language	The elephant is heavier than the mouse. The mouse is lighter than the elephant.
The \qquad is the same length as the \qquad The \qquad is the same length as the \qquad	Language	The pen is the same length as the pencil. The pencil is the same length as the pen.
There are more \qquad than \qquad There are fewer \qquad than \qquad .	Language	There are more people than hats. There are fewer hats than people.
Wholes and parts		
This is a whole \qquad because I have all of it.	Language/ Structure	This is a whole apple because I have all of it.
This is not a whole \qquad because I don't have all of it.	Language/ Structure	
This is not a whole \qquad because I only have part of it.	Language/ Structure	This is not a whole carrot because I don't have all of it. This is not a whole carrot because I only have part of it.
A whole can be split into two parts in lots of different ways.	Generalisation	

Enigma

A whole is always bigger than a part of the whole.	Generalisation	
A part is always smaller than its whole.	Generalisation	
A whole can be split into more than two parts in lots of different ways.	Generalisation	
This is a whole group of \qquad because none are missing; I have all of them.	Structure	This is a whole group of cakes because none are missing; I have all of them.
This is not a whole group of \qquad because we don't have all of them; some of them are missing. This is not a whole group of \qquad because only part of the \qquad has \qquad in.	Structure Structure	This is not a whole group of cakes because we don't have all of them; some of them are missing. This is not a whole group of cakes because only part of the tray has cakes in.
This is the whole group of \qquad . I have all of them.	Language/ Structure	Charlotte's group of six cars: This is the whole group of Charlotte's cars. I have all of them. There are four pencils in the whole group. There are three pencils in this part of the group
There are \qquad in the whole group. There are \qquad in this part of the group.	Structure	
\qquad is the whole; \qquad is a part and \qquad is a part.	Structure	3 is the whole; 2 1 is a part and 2 is a part.
A whole split into equal parts can be seen as both an additive and a multiplicative structure. A whole split into unequal parts can be seen as an additive structure.	Generalisation	4 4 43 4 5
The whole minus the known part(s) is equal to the missing part. The sum of the known part(s) plus the missing part is equal to the whole	Generalisation	360 g $?$ 125 g 55 g
Composition of numbers inc. place value		
The \qquad represents all the counters. The \qquad represents the \qquad counters.	Structure	

Enigma

There are \qquad tens which is \qquad and \qquad ones which is \qquad . This makes \qquad altogether. The \qquad represents \qquad tens. It has a value of \qquad The \qquad represents \qquad ones. It has a value of \qquad	Structure	There are two tens which is twenty and three ones which is three. This makes twenty-three altogether: 23. The ' 2 ' represents two tens. It has a value of twenty. The ' 3 ' represents three ones. It has a value of three.
All multiples of ten end with a zero.	Generalisation	Digits What it means 10 1 ten 20 2 tens 30 3 tens 40 4 tens 50 5 tens
We have ___ tens. We call this __.	Language/ structure	
This is the number \qquad . We write the \qquad then the \qquad .	Structure	This is the number forty-two. We write the four then the two.
This is \qquad . Ten more than \qquad is \qquad \qquad is ten more than \qquad This is \qquad . Ten less than \qquad is \qquad \qquad is ten less than \qquad -	Structure	
I know that \qquad plus \qquad is equal to \qquad So, \qquad tens plus \qquad tens is equal to \qquad tens.	Structure	I know that 2 plus 5 is equal to 7 . So, 2 tens plus 5 tens is equal to 7 tens.

Enigma

I know that \qquad minus \qquad is equal to \qquad . So, \qquad tens minus \qquad tens is equal to \qquad tens.	Structure	
		I know that 5 minus 2 is equal to 3 . So, 5 tens minus 2 tens is equal to 3 tens.
I know that \qquad plus \qquad is equal to ten so \qquad plus \qquad is equal to \qquad .	Structure	I know that 6 plus 4 is equal to 10 so 16 plus 4 is equal to 20.
I know that \qquad minus \qquad is equal to ten so \qquad minus \qquad is equal to \qquad	Structure	I know that 10 minus 3 is equal to 7 so 20 minus 3 is equal to 17.
To compare two digit numbers, we need to compare the tens digits; if the tens digits are the same, we need to compare the ones digits.	Generalisation structure	
To compare three digit numbers, we need to compare the hundreds digit; if the hundreds digits are the same, we need to compare the tens digits; if the	Generalisation structure	

tens digits are the same, we need to compare the ones digits.		
To compare two numbers, we compare digits with the same place value, starting with the largest place value digit.	Generalisation	
When we find ten more, the tens digit changes and the ones digit stays the same. When we find ten less, the tens digit changes and the ones digit stays the same.	Generalisation	
We had \qquad tens and \qquad ones. Ten more gives us \qquad tens and \qquad ones.	Structure	
We had \qquad tens and \qquad ones. Ten less gives us \qquad tens and \qquad ones.	Structure	
One part is ten, the other part is \qquad and the whole is \qquad .	Structure	One part is ten, the other part is 36 and the whole is 46.
There are one hundred ones in one hundred.	Structure	
There are ten tens in one hundred.	Structure	
One hundred is divided into \qquad equal parts so each part/ division has a value of \qquad _.	Structure	100 $?$ $?$ $?$ $?$ One hundred is divided into four equal parts so each part has a value of 25 .
\qquad plus \qquad is equal to \qquad so \qquad tens plus \qquad tens is equal to \qquad tens. \qquad plus \qquad is equal to 100 .	Structure	10 7 310 tens 7 tens 3 tens 7 plus 3 is equal to 10 so 7 tens plus 3 tens is equal to 10 tens. 70 plus 30 is equal to 100 .
Ten minus \qquad is equal to \qquad So ten tens minus \qquad tens is equal to \qquad tens. 100 minus \qquad is equal to \qquad	Structure	10 7 310 tens 7 tens 3 tens 10 minus 3 is equal to 7 . So 10 tens minus 3 tens is equal to 7 tens. 100 minus 30 is 70 .
There are \qquad groups of ten. There is \qquad group of 100 and \qquad more tens. There are \qquad altogether.	Structure	There are 14 groups of ten. There is one group of 100 and 4 more tens. There are 140 altogether.
I know that \qquad plus \qquad is equal to \qquad . (single digit addends)	Structure	I know that seven plus five is equal to twelve. So seven tens plus five tens is equal to twelve tens. 70 plus 50 is equal to 120 .

So \qquad tens plus \qquad tens is equal to \qquad tens. (multiple-of-ten addends) \qquad plus \qquad is equal to one hundred and \qquad . (number names)		
I know that \qquad minus \qquad is equal to \qquad . (bridging ten) So \qquad tens minus \qquad tens is equal to \qquad tens. (bridging ten tens) ten One hundred and \qquad minus \qquad is equal to \qquad . (number names)	Structure	I know that twelve minus five is equal to seven. So twelve tens minus five tens is equal to seven tens. 120 minus 50 is equal to 70 .
There is \qquad group of 100 and \qquad more. There are \qquad	Structure	There is 1 group of 100 and 24 more. There are one hundred and twenty-four.
\qquad is \qquad ones. \qquad \qquad hundreds and \qquad ones. \qquad \qquad tens and \qquad ones. \qquad \qquad hundreds, \qquad tens and \qquad ones.	Structure	243 is 243 ones. 243 is 2 hundreds and 43 ones. 243 is 24 tens and 3 ones. 243 is 2 hundreds, 4 tens and 3 ones.
There are ten hundreds in one thousand. There are one hundred tens in one thousand. There are one thousand ones in one thousand.	Structure	
hundred plus \qquad hundred is equal to \qquad hundred. We know there are ten hundreds in one thousand, so \qquad hundred plus \qquad hundred is equal to \qquad thousand \qquad hundred.	Structure	Six hundred plus five hundred is equal to eleven hundred. We know there are ten hundreds in one thousand, so six hundred plus five hundred is equal to one thousand one hundred.
We know there are ten hundreds in one thousand, so \qquad thousand \qquad hundred is equal to \qquad hundred. \qquad hundred minus \qquad hundred is equal to \qquad hundred.		We know there are ten hundreds in one thousand, so one thousand one hundred is equal to eleven hundred. eleven hundred minus six hundred is equal to five hundred.
There are ten one thousands in tenthousand. There are one hundred one hundreds in ten-thousand. There are one thousand tens in tenthousand. There are ten thousand ones in tenthousand.		

Enigma

There are \qquad and \qquad . We can write this as \qquad plus \qquad The \qquad represents the \qquad The \qquad represents the \qquad .	Structure	There are four open umbrellas and five closed umbrellas. We can write this as four plus five. The four represents the four open umbrellas. The five represents the five closed umbrellas.
\qquad is equal to \qquad plus \qquad \qquad plus \qquad is equal to \qquad \qquad and \qquad are the addends. \qquad is the sum.	Structure	Five is equal to four plus one. Four plus one is equal to five. Four and one are the addends. Five is the sum.
Addend plus addend equals sum. Sum equals addend plus addend.	Language	
Additive structures: augmentation and reduction		
First... then... now... See: ncetm_mm_sp1_y1_se06_teach.pdf for lots more examples of how to use 'first... then... now' in the context of augmentation and reduction.	Language	First, four children were sitting on the bus. Then three more children got on the bus. Now seven children are sitting on the bus. First, there were four children in the car. Then one child got out. Now there are three children in the car.
Odd and even numbers		
\qquad is made of pairs; it is an even number. \qquad is not made of pairs; it is an odd number.	Structure/ Language	6 is made of pairs; it is an even number. 7 is not made of pairs; it is an odd number.
Numbers that can be made out of groups of two are even numbers. Numbers that cannot be made out of groups of two are odd numbers.	Generalisa	

Enigma

| Even numbers can be partitioned into
 two odd parts or two even parts. | Generalisation |
| :--- | :--- | :--- | :--- |

' a ' is between \qquad and \qquad . The previous multiple of one ten/ hundred/ thousand is \qquad . The next multiple of one ten/ hundred/ thousand is \qquad . ' a ' is nearest to \qquad ten/ hundred/ thousand. ' a ' is \qquad when rounded to the nearest ten/ hundred/ thousand.	Structure	previous mutulio ef 1,000 next mutitio of 1,000 $1,000<1,321<2,000$ 1321 is between 1000 and 2000. The previous multiple of one thousand is 1000 . The next multiple of one thousand is 2000. 1321 is nearest to 1000 . 1321 is 1000 when rounded to the nearest thousand.
\qquad is between \qquad and \qquad . \qquad is the previous whole number. \qquad is the next whole number. \qquad is nearest to \qquad \qquad rounded to the nearest whole number is \qquad	Structure	3.4 is between 3 and 4. 3 is the previous whole number. 4 is the next whole number. 3.4 is nearest to 3 . 3.4 rounded to the nearest whole number is 3 .
When rounding to the nearest \qquad , if the \qquad digit is 4 or less we round down. If the \qquad digit is 5 or more, we round up.	Generalisation	When rounding to the nearest thousand, if the hundreds digit is 4 or less we round down. If the hundreds digit is 5 or more, we round up.
The midpoint between/ of \qquad and \qquad is \qquad , so the midpoint between/ of \qquad thousand and \qquad thousand is \qquad .	Structure	The midpoint between ten and twenty is fifteen, so the midpoint between ten-thousand and twenty-thousand is fifteen thousand.
\qquad is greater/ less than \qquad so \qquad thousand is greater/ less than \qquad thousand.	Structure	$\begin{aligned} & 54<58 \\ & 54000<58000 \end{aligned}$ 58 is greater than 54 , so 58 thousand is greater than 54 thousand.
Negative numbers		
Negative numbers are below/ less than zero. Positive numbers are above/ greater than zero.	Generalisation	
Negative numbers are to the left of zero. Positive numbers are to the right of zero.	Generalisation	
Zero is neither negative nor positive	Generalisation	
For both positive and negative numbers, the larger the value of the number, the further away it is from zero.	Generalisation	
For negative temperatures, the further away from zero it is, the colder the temperature. For positive temperatures, the further away from zero it is, the warmer the temperature. (Can be adapted to other contexts)	Generalisation	

Enigma

The difference between two numbers is always a positive number, regardless of whether the numbers are negative or positive.	Generalisation	
If we add a positive number, the number gets higher/ greater. If we subtract a positive number, the number gets lower/ smaller. If we add a negative number, the number gets smaller/ lower. If we subtract a negative number, the number gets higher/ greater.	Generalisation	The Happiometer! Add something positive (like chocolate!) Mood goes UP! Take away something positive (like a break time) Mood goes down. Add something negative (like a telling off) Mood goes down Take away something negative (like the rain going away) Mood goes UP!
Addition and subtraction strategies		
If we change the order of the addends, the sum remains the same. We can change the order of the addends and the sum remains the same.	Structure	
Adding one gives one more.	Generalisation	
Subtracting one gives one less.	Generalisation	
Consecutive numbers have a difference of one.	Generalisation	
When zero is added to a number, the number remains unchanged.	Generalisation	
When zero is subtracted from a number, the number remains unchanged.	Generalisation	
Subtracting a number from itself gives a difference of zero.	Generalisation	
There are \qquad and \qquad Altogether there are . \qquad	Language	There are two red marbles, three blue marbles and five yellow marbles. Altogether, there are ten marbles.
When we add three numbers, the total will be the same whichever pair we add first.	Generalisation	

Enigma

We can look for pairs of addends which sum to ten.	Generalisation	
\qquad plus \qquad is equal to ten, then ten plus \qquad is equal to \qquad .	Structure	$7+3+4$ Seven plus three is equal to ten, then ten plus four is equal to fourteen.
First I partition the \qquad : \qquad plus \qquad is equal to \qquad Then \qquad plus \qquad is equal to ten... ...and ten plus \qquad is equal to \qquad .	Structure	First I partition the five: three plus 2 is equal to five. Then seven plus three is equal to ten... ...and ten plus two is equal to twelve.
There are \qquad more \qquad than \qquad There are \qquad fewer \qquad than \qquad .	Structure	There are two more red cars than blue cars. There are two fewer blue cars than red cars.
The difference between the number of \qquad and the number of \qquad is \qquad -.	Structure	The difference between the number of blue cars and the number of red cars is two.
The more we subtract, the less we are left with. The less we subtract, the more we are left with.	Generalisation	
The \qquad represents the number of \qquad The \qquad represents the number of \qquad The \qquad represents the difference between the number of \qquad and the number of \qquad ,	Structure	\square The 8 represents the number of children. The 3 represents the number of pencils. The 5 represents the difference between the number of children and the number of pencils.
Subtraction is not commutative	Generalisation	6-3 is not equal to 3-6.
To subtract \qquad , we can subtract the \qquad then subtract the \qquad .	Structure	 To subtract 23 . We can subtract the 20 then subtract the 3.
For a subtraction calculation where both numbers have the same ones	Generalisation	

digit, the difference is a multiple of ten.		
First we add: \qquad plus \qquad is equal to ... then we adjust: \qquad minus \qquad is equal to \qquad		First we add: 52 plus 30 is equal to 82 ... then we adjust: 82 minus 1 is 81 .
For calculations that involve both additions and subtraction steps, we can add then subtract, or subtract then add; the final answer is the same.	Generalisation	
The value of the expressions on each side of the equals sign must be equal.	Generalisation	
If one addend is increased by an amount and the other addend is decreased by the same amount, the sum remains the same.	Generalisation	$\begin{aligned} & \mathbf{5 2 0}+\mathbf{2 9 0}=810 \\ & 10 \mid \downarrow+10 \\ & \downarrow+\quad+300=810 \\ & 510+ \end{aligned}$
(connected with above) I have added \qquad to this addend so I must subtract \qquad from the other addend to keep the sum the same.	Structure	I have added ten to 520 so I must subtract ten from 290 to keep the sum the same.
If one addend is increased/ decreased by an amount and the other addend remains unchanged, the sum is also increased/ decreased by the same amount.	Generalisation	
(connected with above) I've added/ subtracted \qquad to/ from this addend and kept the other addend the same so I must add/ subtract \qquad to/ from the sum.	Structure	I have added ten to 4 and kept the other addend the same so I must add ten to 7 also.
If the sum increases/ decreases by an amount and one addend has stayed the same, the other addend must increase/ decrease by the same amount.	Generalisation	$\begin{array}{r} 36+47=83 \\ +2 \\ 36+49=85 \end{array}$
(connected with above) The sum has increased/ decreased by \qquad ; one addend has stayed the same, so the other addend must increase/ decrease by \qquad .	Structure	The sum has increased by 2; one addend has stayed the same, so the other addend must also increase by 2.

Enigma

If the minuend and the subtrahend are changed by the same amount, the difference remains the same.	Generalisation	
I've added/ subtracted \qquad to/ from the minuend and the subtrahend so the difference remains the same.	Structure	I've subtracted 1 from the minuend and the subtrahend so the difference remains the same.
In a balanced equation, If I add an amount to the minuend or subtrahend, I need to add the same amount to the subtrahend or minuend to keep the difference the same. In a balanced equation, if I subtract an amount from the minuend or subtrahend, I need to subtract the same amount from the subtrahend or minuend to keep the difference the same.	Generalisation	
I've added \qquad to the minuend/ subtrahend, so I need to add \qquad to the subtrahend/ minuend to keep the difference the same. I've subtracted \qquad from the minuend/ subtrahend so I need to subtract \qquad from the subtrahend/ minuend to keep the difference the same.	Structure	I've added 35 to the minuend so I need to add 35 to the subtrahend to keep the difference the same.
If a certain amount is added to the minuend and the subtrahend is kept the same, the difference must be increased by the same amount.	Generalisation	
I've added \qquad to the minuend and kept the subtrahend the same, so I have to add \qquad to the difference.	Structure	I've added ten to the minuend and kept the subtrahend the same, so I have to add ten to the difference.
If the minuend is changed by an amount and the subtrahend is kept the same, the difference changes by the same amount.	Generalisation	
I've subtracted \qquad from the minuend and kept the subtrahend the same, so I must subtract \qquad from the difference.	Structure	I've subtracted ten from the minuend and kept the subtrahend the same, so I must subtract ten from the difference.
If the minuend is kept the same and the subtrahend is increased/ decreased by an amount, the difference must decrease/ increase by the same amount.	Generalisation	
I've kept the minuend the same and added/subtracted \qquad to/ from the	Structure	I've kept the minuend the same and added ten to the subtrahend so I must subtract ten from the difference.

Enigma

Enigma

