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Abstract—This paper proposes a compact and lightweight sys-
tem for 3D vision based autonomous navigation. Our navigation
system consists of two main components: a stereo vision camera
with FPGA processing developed by our research group and
an embedded quad core ARM board. These two components
allow us to implement a robust obstacle detection algorithm
that enables control of a moving vehicle in an unknown (in-
door or outdoor) environment. Compared to other vision based
navigation system aimed at dealing with this task, our proposal
is very compact, lightweight and, thank to the reduced energy
requirements, suited for battery powered vehicles. The 3D sensing
capabilities provided by the embedded stereo camera deployed
make the system very robust. We extensively tested our proposed
architecture and navigation system using a small and battery
powered rover in very challenging environments. In this paper we
provide experimental results concerned with the vision module
on sequences acquired in real indoor and outdoor application
scenarios. The proposed system is an ideal platform for future
developments aimed at 3D registration, visual odometry and
object categorization/recognition.

I. INTRODUCTION

Systems for autonomous navigation aim to guide vehicles
without human intervention by sensing the environment with
appropriate devices. This research field is very challenging and
in recent years we have witnessed several progress in this
area, in particular concerning driver-less cars. In this paper
we propose a compact and lightweight computing architecture
that enables robust 3D vision based obstacle detection even on
small and battery powered autonomous vehicles. The proposed
system is based on two main components: a stereo vision [1]
camera with FPGA onboard processing [2], [3] and an embed-
ded ARM computing architecture. The power consumption of
the whole system (3D camera plus embedded ARM board)
is below 10 W and it weights about 130 g (with lenses).
The stereo camera provides dense depth maps in real-time
according to state of the art stereo vision algorithms mapped
on a compact (the processing unit is about 9 x 4.3 cm) and
lightweight (less than 100 g) FPGA board. The quad core
ARM embedded board, relies on the depth data provided by
the stereo camera to perform robust obstacle detection in the
area perceived by the 3D vision sensor. The robust obstacle
detection approach proposed relies on two modules working
in the disparity domain: a roll detection algorithm, aimed at
inferring the horizontal tilt angle of the camera with respect
to the ground plane, and a plane segmentation algorithm,
aimed at detecting points belonging to the ground plane. This

strategy allows us to control an autonomous vehicle that, for
our experimental results, consists in a small battery powered
rover with four independent wheels and an Arduino board for
motor control connected (via UART) to the ARM board. The
overall autonomous navigation system proposed in this paper
has been successfully tested on challenging indoor and outdoor
environments and provides an excellent platform for further
developments in this area.

II. RELATED WORK

Different approaches have been proposed in literature for
autonomous navigation and they can be divided into two
main broad classes; map based, using a map of the explored
environment (already known or built on line) and map-less,
also referred to as reactive systems, which do not need any pre-
knowledge of the explored environment. Both approaches rely
on information provided by devices that sense the exploration
area and, for vision based approaches, information comes from
image analysis algorithms (e.g. optical flow, segmentation, etc)
or depth maps. Our proposal falls in the map-less class and
uses as sensing device the dense disparity field provided by a
stereo camera in real-time.

An early solution to the obstacle detection problem was
proposed by Thorpe et al [4] using monocular vision to follow
the road and 3D vision to avoid obstacles. A mixed 2D and
3D approach was described in [5]; in this case the system
relies on single camera and a laser range scanner to sense the
environment. In [6] is reported a 2D system aimed at detecting
obstacles (vehicles) according to specific patterns found in the
images and a simple stereo algorithm for validation. Lorigo et
al [7] proposed a 2D low resolution vision system to avoid
obstacles making assumptions on the sensed environment.
Object detection relies on brightness gradients, RGB color
and HSV (hue, saturation, value) information. A technique that
uses 3D data was described in [8]; it is based on the calculation
of an instantaneous obstacle map which consists of a local
occupancy grid that discriminates the presence of obstacles
in the sensed area. Kormann et al [9] proposed a method
based on assumptions derived from 3D information; they used
as input the disparity map and modeled vehicles as cuboids.
Labayrade [10] proposed a robust system for floor detection
based on an histogram approach (referred to as U-V-disparity)
based on 3D data. A similar approach is reported in [11].
The roll detection problem, addressed in this paper by means
of a disparity based approach, was previosly tackled [12]



using monocular images and histogram of oriented gradients.
Concerning algorithms for robust regression, required by U-V-
histogram based approaches for plane segmentation, RANSAC
[13] and Hough transform (e.g., in [10]) play a major role in
this area. In [14] an approach aimed at improving effectiveness
of the cost function used in the original RANSAC approach
was proposed. Finally, [15] described a verification test for
the RANSAC framework aimed to speed-up convergence.
A performance evaluation of different RANSAC approaches
applied to planar homography estimation can be found in [16].

III. PROPOSED COMPUTING ARCHITECTURE

Our vision based autonomous navigation system is mainly
aimed to application scenarios characterized by constrained
energy requirements. In particular, we aim to address the
requirements of small battery powered vehicles. Therefore,
major constraints in our work are power consumption, weight
and size. Our system basically consists of two devices: a
compact stereo camera with FPGA onboard processing and
a quad core ARM embedded system.

Fig. 1. The quad core ARM embedded system Odroid U3 [17] used in our
navigation system to process, at about 20 fps, the 3D data provided by the
stereo camera.

A. Embedded 3D camera

The stereo camera, developed by our research group [2],
[3] , processes a synchronized video stream acquired by
two global shutter wide VGA (i.e. 752 x 480 resolution)
imaging sensors at more than 30 fps. This device allows us
to obtain dense depth map according to state of the art stereo
vision algorithms. The overall stereo vision pipeline (including
rectification, stereo matching, subpixel disparity estimation and
filtering) is mapped into a low cost Xilinx Spartan 6 FPGA.
For our experiments, we configured the stereo camera with
a baseline (distance between the two optical sensors) of 6
cm, monochrome sensors, 320 x 240 image resolution and
mapped into the FPGA our custom implementation of the SGM
algorithm [18]. The disparity maps provided by the stereo
camera are aligned to the rectified reference frames. The stereo
camera is connected to the host computer (i.e. the ARM board
in our setup) by means of a standard USB 2.0 interface. The
camera requires about 2 W, and for this reason it is self-
powered through the same USB data cable. The processing
module containing the FPGA has an area smaller than a credit
card and the weight of the whole stereo camera, including
imaging sensors and lenses, is less than 90 g making this
device well suited to embedded applications.

B. Embedded processing

The other essential device in our vision system module
is an embedded board (specifically, for our experiments, the

3D camera
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Odroid U3

Fig. 2. Overall system used for experimental results. The FPGA-based stereo
camera is located at the top of the small battery powered rover.

ODROID-U3 [17] shown in Figure 1); this device contains an
ARM SoC, model Exynos 4412, Cortex-A9 architecture with
four physical cores at 1.7 GHz, 1 MB level 2 cache, 2GB of
LP-DDR2 880 MHz RAM, a USB controller and an Ethernet
controller. The embedded platform shown in Figure 1) has a
size of 83 x 48 mm and weights less than 50 g including the
heat sink. The operating system installed is Linux Xubuntu
13.10. The energy requirement of this platform is below 10 W
(typically about 5W), making this device an ideal candidate
for a navigation system.

Although not an essential part of the navigation system
proposed, the vehicle used for the experimental validation is
based on a simple rover with four independent wheels and
motors, an Arduino board that controls the motors according to
commands sent via an UART interface by the vision controller
(i.e. the stereo camera plus the ARM embedded board) and
batteries. The overall system used for our experimental results
is shown in Figure 2. At the top of the figure we can notice
the 3D camera and, at the bottom, the large battery used for
preliminary experiments. The Odroid, not visible in Figure 2
is placed behind the battery.

IV. ROBUST OBSTACLE DETECTION

For our obstacle detection strategy, is fundamental the
identification of the ground plane in the area sensed by the 3D
camera. This task is often referred to as plane segmentation,
although ground plane detection consists in a specific case of
the more general plane segmentation problem. Once completed
this task, the autonomous vehicle can easily identify approach-
ing obstacles as those points not belonging to the ground plane.
Of course, robust obstacle detection methodologies capable to



RANDOMLY DRAW A MINIMUM
SAMPLE

DEGENERACY CHECK
MODEL PARAMETERS
ESTIMATION
PRE-EVALUATE MODEL
(R-RANSAC TEST)

COMPUTE DISTANCE FROM THE
MODEL (FOR EACH DATUM)
|

HYPOTHESIS
~  GENERATION
(random sample)

EVALUATION
MINIMIZE A ROBUST (consensus)
COST FUNCTION

(MSAC)

L
ADAPTATIVE
TERMINATION

Fig. 3.  Main modules of our RANSAC framework. In green the standard
modules of the RANSAC technique and in blue the additional modules
included in our framework.

deal with potentially noisy data are mandatory in this case.
For this purpose, our approach relies on the disparity maps
provided by the stereo camera and appropriately processed
by means of a robust plane detection algorithm. It is worth
observing that, in the depicted application scenario, in most
cases the vehicle will move on a flat ground plane and hence
the ground plane could be detected only once at startup.
However, in a more generic scenario and especially in outdoor
environments, the navigable area on which the vehicle moves is
often characterized by slightly slanted surfaces. Therefore, our
control unit detects within the sensed area the points belonging
to the ground plane in each frame acquired by the 3D vision
Sensor.

Another problem arises when the horizontal axis of the
3D sensor is not aligned with the ground plane. This problem
might occur due to an inaccurate initial setup of the 3D
sensor with respect to the ground plane. Other reasons for this
misalignment might occur in presence of small obstacle/hole
under the wheels of the vehicle or when the 3D sensor changes
its original position (pan/tilt/rotation) by means of appropriate
motor units. Regardless to the reasons of this potential mis-
alignment, we aim to solve this problem by means of a vision
based roll detection algorithm, using the information provided
by the 3D vision sensor.

A. Ground plane detection

Among the many strategies proposed in literature to ro-
bustly solve the plane segmentation task, we use an efficient
and robust method that processes disparity information in a
sub-dimensional space. Specifically, we adopt an histogram
based approach that processes in real-time the dense disparity
maps provided by the 3D camera. This method, originally pro-
posed in [10] and referred to as V-disparity, is quite common
for obstacle detection in automotive applications. A viable
alternative to this approach would consist in a robust fitting

of 3D points obtained by mapping the disparity information
into a point cloud according to the calibration parameters of
the stereo camera. Working in the point cloud domain would
certainly be effective; nontheless, compared to our histogram
based approach, more demanding in terms of computational
requirements and memory footprint.

Given a 3D sensor with its horizontal axis aligned or almost
aligned with the ground plane, the v-disparity approach relies
on the following observation: in the disparity map, points
belonging to the ground plane are projected into a set that can
be modeled by a line segment in the histogram domain. Figure
4 shows, on the left, the rectified reference image of a scene
containing some objects laying on an almost uniform ground
plane and, in the middle, the corresponding disparity map
provided by the stereo camera. In the right portion of the figure
we can see the resulting V-disparity histogram; we can easily
observe that the highlighted line corresponds to the ground
plane in the disparity map. In the upper area of the V-disparity
histogram we can also notice the line corresponding to the
ground plane being perturbed by other objects in the scene
such as the shopping bag, the trash-can and the furnitures in
the background. Furthermore, since disparity maps provided by
a 3D sensor are generally noisy, a robust regression technique
for ground detection able to deal with all these problems
is essential. This task can be accomplished by means of
different robust regression techniques; however, considering
the embedded application scenario outlined, RANSAC [13]
based approaches appear optimal candidates.

For the reasons outlined so far, we implemented a custom
RANSAC framework made up of different pluggable modules
in order to assess the effectiveness of recent improvements
proposed in this field. Figure 3 shows the main modules of
our regression framework, displaying in blue the add-ons with
respect to the original RANSAC algorithm (in green). Our
framework, compared to the original RANSAC approach, can
handle a larger amount of outliers. In particular, it contains the
following additional features:

e A degeneracy check loop inside sampling phase, to
avoid degenerate model hypothesis, like collinear ver-
tical points in case of a straight line

e  An R-Ransac [15] Td,d test switch that can be option-
ally triggered in the sampling stage, enabling a pre-
verification stage for fast rejection of bad hypotheses

e A more effective cost function for the RANSAC
minimization problem as proposed in [14]

e  An optional adaptive termination criteria that enables
to determine the maximum number of iterations on
every cycle [16]

Each additional feature available in our RANSAC frame-
work can be enabled/disabled in order to assess its effective-
ness.

B. Roll detection

The roll detection algorithm aims at inferring the rotation
angle between the horizontal axis of the 3D camera and the
ground plane. Although the cost of MEMS (Micro Electro-
Mechanical Systems) based devices, such as accelerometers



Fig. 4.
highlighted the line corresponding to ground points

and gyroscopes, has dropped in recent years, some authors
(e.g. [12]) pointed out that an Inertial Measurement Unit (IMU)
might be in some circumstances unreasonably expensive. For
this reason, although our stereo camera could be equipped
with an IMU using an expansion module, for our preliminary
experimental results we preferred a vision based roll-detection
algorithm. Eventually, this strategy would be feasible for data
fusion by integrating an IMU.

Our vision based roll detection algorithm works in the
disparity space and, similarly to the V-disparity histogram
approach [10], assumes that the sensed disparity map contains
a sufficiently extended portion of the ground plane. Moreover,
and similarly to the plane segmentation algorithm, our roll
detection approach relies on the same robust RANSAC frame-
work described in the previous section. In the first step we
select a region of interest (ROI), where we expect that ground
points are more likely to be, and determine the most frequent
disparity value (i.e. the mode) within this area. Then, we select
within the ROI a subset of disparity values close (according
to a defined threshold) to the mode and robustly determine
by means of our RANSAC framework applied to these points,
potentially contaminated by gross errors (i.e. outliers, points
not belonging to the road surface), the line that best fits with
the filtered measurements. Finally, from the slope of the fitted
line we can then easily retrieve the roll-correction angle and
thus perform a rotation of the original disparity image.

As ROI we selected for our experiments an area centered
in the middle of the disparity image, assuming that in this
region we are more likely to find a sufficiently extended area
belonging to the ground plane. Clearly, setting as ROI an area
very close to robot (and thus, not containing objects thank
to the obstacle navigation system) would probably avoid at
all objects within the selected ROI. Despite this fact, the
proposed approach could be further improved by selecting
multiples ROIs and/or by using a voting scheme. In order to
further improve the effectiveness of the roll detection algorithm
described so far, a framework based on Kalman filter could be
used to reduce the effect of sporadic failures. Moreover, the
same Kalman framework could be eventually used to integrate
the information provided by the vision based roll-detection
algorithm and the IMU.

The roll detection algorithm described can produce sub-

Left, rectified reference image - Center, disparity map (warmer colors correspond to points closer to the stereo camera) - Right, V-disparity with

stantial benefit to the overall obstacle detection approach
in the presence of a non-negligible rotation of the camera
with respect to the ground plane. Compared to monocular
approaches, such as those using gradient orientation histograms
[12], roll detection based on disparity values is less prone to
artifacts that can arise in the 2D image domain and hence
potentially more robust.

V. OBSTACLE DETECTION AND CONTROL

In order to enable a vehicle to move autonomously in an
unknown environment is mandatory to detect obstacles and
provide appropriate commands as fast as possible to the motor
unit. In our current control strategy, starting from the robust
plane segmentation approach described in the previous section,
we identify obstacles as cluster of objects not belonging to
the ground plane. If the detected obstacles fall into a specific
sensed area of the scene corresponding to the lateral extent of
the rover, the vision based control unit sends to the vehicle
(via an UART interface) a command to the motors (managed,
in our current rover, by a compact Arduino micro controller)
in order to avoid the detected obstacles. Thank to the onboard
FPGA processing, the embedded system (the Odroid U3 in our
experiments) acquires and processes disparity maps at about
20 fps with a minimal overhead including image visualization.
This allows the ARM embedded system, without deep code
optimizations, to detect obstacles as well as to handle motor
control (through the Arduino module) at a similar frame rate.
The overall computation can be carried out by using just a
fraction of the computational resources available in the quad
core embedded processor.

VI. EXPERIMENTAL RESULTS

In this section we report experimental results aimed at
assessing the performance of the vision module proposed. To
this aim we focus our attention on the robust obstacle and roll
detection methodology outlined in the previous sections. The
overall system, made of the vision based module (3D camera
plus ARM embedded system) and the battery powered vehicle
described in the previous sections, was extensively tested on
the field, including a successful two days demonstration in an
indoor environment with many people moving in the same area



Fig. 5. Plane segmentation obtained processing the pointcloud corresponding
to the frame of the dataset DS1 shown in Figure 4. The ground plane is
highlighted in green.

of the vehicle!

A. Plane segmentation: disparity histogram vs pointcloud

In this experiment we compare, on a dataset, referred to
as DS1 (one frame is shown in Figure 4) and made of several
frames acquired in an indoor scenario with our 3D camera, the
disparity histogram approach proposed in this paper with the
PCL [19] robust regression module based on point cloud data.

For this latter approach we extracted the point cloud using
the calibration parameters of the stereo camera and on this data
structure applied the optimized plane segmentation function
provided by PCL. The outcome of the PCL approach, for one
frame of dataset DS1 (the same frame depicted in Figure 4), is
shown in Figure 5 with the detected ground plane highlighted
in green). For both approaches we set the maximum number
of iterations k for the RANSAC algorithm to 100 and for each
frame of the dataset we averaged the execution time for 1000
iterations. The testing machine was a Linux platform and for
our histogram based approach we didn’t apply any specific
code optimizations (e.g. SIMD instructions or multi core
processing capabilities available in our quad core processing
platform). Compared to the disparity histogram algorithm,
the point cloud approach does not require a roll detection
algorithm being able, by robustly fitting by means of RANSAC
based approaches the raw 3D data (i.e. the point cloud),
to detect slanted planes without any problem. Regardless of
this problem, handled in our current approach by means of
a specific roll-detection algorithm, our solution, being three
times faster, clearly outperforms the PCL counterpart in terms
of execution time. The memory footprint required to store
the pointcloud is also significantly higher compared to our
histogram based approach. Concerning the effectiveness, both
approaches always correctly find the ground planes in the con-
sidered dataset. However, since computational requirements
represent a major issue for embedded platforms, the histogram

'A video concerned with this evaluation is available at this link: https:
/Iwww.youtube.com/watch?v=7rieq3wfGDo

based approach outlined in this paper clearly represents the
optimal solution.

B. Comparison of robust regression methods

In this section we compare the robust regression approach
described in this paper with other approaches, within the
same histogram based methodology for plane segmentation, on
two different datasets: DS1, the same indoor dataset used for
previous experimental results (one frame is shown in Figure
4), and dataset DS2 [20], available on line [21], concerned
with an outdoor environment.

More explicitly, we experimentally tested on the two
datasets different improvements to the basic RANSAC ap-
proach [13] according to the framework depicted in Figure 3.
Our evaluation included the R-RANSAC approach [15] deter-
mining, however, that the M-SAC approach proposed by Torr
and Zisserman [14] grants the trade-off between robustness
(it enables to correctly determine the ground plane on each
frame) and computational requirements (resulting the faster
method on the chosen testing platform, for both datasets). With
the M-SAC approach, the adoption of an adaptive termination
criteria [16] maintains the same effectiveness but leads to a
variable execution time. For this reason we preferred a solution
based on a maximum (k=100 in our experiments) number of
iterations that has a fixed upper bound on the execution time.
We also compared the outlined RANSAC regression approach
based on the M-SAC variant for plane segmentation with
the cvFitLine function available in the OpenCV library. This
function relies on the Iteratively Re-weighted Least Square
(IRLS) approach with an M-estimator as cost function and
has a fixed number of maximum iterations. For our approach
we set again a number of iterations k=100 and measured
the execution time, averaged on 500 iterations on the two
datasets DS1 and DS2. In both datasets our approach correctly
enables to determine the ground plane on each frame. On
the other hand, the M-estimator approach adopted by the
cvFitLine function, on dataset DS2, containing a huge presence
of outliers, is unable to determine the ground plane almost
on each frame of the sequence. Differently, on dataset DS1
the cvFitLine function correctly determines in each frame the
ground plane. Examining the execution times, our proposal
is on average 30% slower than the cvFitLine function, being
however much more reliable considering both datasets. We
tested our RANSAC based approach for regression with a
method based on the Hough transform determining that, al-
though both methods have the same effectiveness, the latter
method is more computationally demanding. Finally, on our
target platform and processing disparity maps provided by the
3D camera configured at 320 x 240 resolution, the overall
execution time, using only one CPU core, is 13.4 ms enabling
real-time obstacle detection on the Odroid U3.

C. Roll detection

Finally, we report experimental results regarding the pro-
posed roll detection algorithm, showing here the output for
one frame of the DS1 dataset. In this case, the disparity map
is encoded in greyscale; brighter color correspond to points
closer to the 3D sensor. Figure 6 shows a synthetically rotated
disparity map and the output of the roll-detection algorithm
followed by the plane segmentation approach. Observing the



Fig. 6. Top, synthetically rotated disparity map - Bottom, outcome of roll
detection algorithm and plane segmentation (highlighted in green).

figure we can notice that the roll-detection algorithm can
effectively handle a quite large rotation of the horizontal axis
of the 3D camera with respect to the ground plane.

The roll detection approach was successfully tested also
on DS2 with similar synthetic rotation imposed to the input
disparity. Nevertheless, as previously pointed out, adding a
Kalman filtering stage would further increase the reliability
of the roll detection algorithm. On the Odroid platform the
roll detection algorithm takes 6.7 ms.

VII. CONCLUSION

In this paper we have described a compact and lightweight
vision system for autonomous vehicle, suited for embedded
robotic applications, based on a stereo camera with onboard
FPGA processing. Our current vision system tackles the prob-
lem of robust obstacle detection for real-time autonomous
navigation. The overall vision system weights less than 130
g and, compared to similar systems based on more standard
computing architectures, has a reduced power consumption
(i.e. less than 10 W considering the quad core embedded ARM
platform and the stereo camera). This enables its deployment in

applications characterized by constrained power requirements
such as those involving battery powered small robots or drones.
Future work is aimed at adding to the vision system proposed
SLAM (Simultaneous Localization and Mapping) capabilities
in order to perform visual odometry as well as 3D reconstruc-
tion of the scene sensed by the 3D camera. Finally, we also
aim at adding semantic perception capabilities to the vision
system. In particular we are currently interested in enabling
object categorization in order to recognize specific class of
objects while the vehicle is moving in unknown environments.
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