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Abstract

Selective laser melting (SLM) enables the utilization of complicated lattice structures
in metallic components. To exploit this capability, it is important to understand the struc-
tural properties of these lattices. Topological variations in lattices are diverse, however,
only a few are suitable for SLM since some lattices require supports during manufacture
while others self-support. Difficulties associated with the removal of these supports and
their detrimental effects on surface finish makes the latter group better suited for SLM.
In this work, we investigate the structural properties of some self-supporting unit cells
via a finite element study and show that the performance of a lattice structure is largely
dependent on the topology of the unit cell. Variants of the gyroid and face centred cubic
unit cells performed better than body centred cubic cells. This was also observed when
lattices, made of repeating unit cells were compared.

1 Introduction

Additive manufacturing (AM) techniques for metals could improve the mechanical
performance of components, since they are less reliant on constraints imposed by tradi-
tional techniques. However, ideas are needed to overcome barriers encountered with AM
for metals. The need for supports during manufacture is a prevalent issue as this has a
detrimental effect on the surface finish [1]; and in some cases, where the topology of the
component is highly complex, such supports are difficult to remove. Support structures
are used to preserve the structural integrity of a component experiencing thermal stresses
during manufacture [2]. By suitably orientating the component, the problem can be mit-
igated, yet supports are required to separate the component from the build platform.
Restricting supports to accessible regions of a component’s domain is beneficial. This
is particularly useful when selective laser melting (SLM) is used to produce components
embedded with lattice structures, removing supports from lattices is impractical.

There is a growing interest in understanding the structural properties of lattices pro-
duced with SLM. The build chamber, laser settings and morphology of the powder could
affect the quality of the lattices, however, it is the choice of material, topology and relative
density of the lattice that greatly influence structural properties [3]. Materials develop-
ment for SLM is an active area of research with stainless steel, titanium and nickel alloys
being used for lattices as seen in [4, 5, 6, 7]. Hasan et al. [6] observed that heat treating a
body centered cubic (BCC) lattice composed of a titanium alloy improved it microstruc-
tural properties while dispersing contaminates. Gumrik and Mines [7] studied the BCC

1238

dlb7274
Typewritten Text
REVIEWED



lattice and proposed a theoretical model for the compressive behaviour of the lattice with
stainless steel as the base material. Stainless steel was also employed by Yan and Hao [8]
to understand the dependence of the structural properties of gyroid lattices on the cell
size. The effective yield strength and modulus of the gyroid were observed to decrease
as the cell size increased. Smith and Guan [9] studied the BCC lattice and its variant,
the BCCz, and observed that the stiffness and yield strength of the lattices significantly
improved when the aspect ratio of the unit cell was reduced.

Gyroid and BCC lattices and some of their variants require no supports and have
therefore been studied extensively. However, there is a broader class of self-supporting
lattices with potentially better structural properties. Also, Thomas [2] outlined design
rules to achieve self-supporting designs. This creates an opportunity to develop lattices
for SLM, yet it is important to understand the structural benefits of existing lattices. In
this paper, the stiffness of the BCC, face centered cubic (FCC) and gyroid lattices are
compared via finite element analysis.

2 Self-supporting Unit cells

Triangilar facets were generated to define the topology of seven self-supporting cubic
unit cells. The length, width and height of cell was set to 10 mm. Facets were subse-
quently written into STL files with relative density, 0.23, to ensure a fair comparison can
be made across the cells. The relative density is the ratio of the density of the cell to that
of a solid cube with same dimensions. The structural stiffness of seven self-supporting
unit cells was then determined and compared. Cells include variants of BCC, FCC and
gyroid lattices as seen in Fig. 1. The BCC cell is composed of eight cylindrical struts
which connect the center of a cube to its corners and trimmed to fit the cube (Fig. 1a).
Constituent members of the cell are inclined to the x-y plane at 45◦ which is the minimum
angle for self supporting members as observed by Thomas [2]. The structural stiffness of
the BCC cell along the z axis improves by adding four vertical struts to the cell. The
struts connect upper corners of the cell to the lower and transforms the topology into
a BCCz cell as seen in (Fig. 1b). The BCCz cell is self-supporting only if the angle
between the build platform and all constitutent members is greater than 45◦. The gy-
roid cell shown in Fig. 1c represents a minimal surface proposed by Schoen [10]. For a
three dimensional Cartesian coordinate space x, y, z, the gyroid surface conforms to the
equation:
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where L is the size of the cube and t is a constant parameter. t assumes a value between
0 and 1.413. A variant of the gyroid, shown in Fig. 1d is the matrix form of the double
gyroid (D-gyroid) [11]. The equation for this cell is derived from Eqn. 1 by squaring it’s
three terms. Eqn. 1 becomes:
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FCC includes members that connect the corners of the cube to the center of faces perpen-
dicular to the x-y plane. PFCC is a variant of FCC with four vertical struts to improve
stiffness along the z axis. F2BCC is a boolean combination of BCC and F2BCC.
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Figure 1: Seven self-supporting unit cells: (a) BCC (b) BCCz (c) Gyroid (d) matrix
phase of D-gyroid (e) FCC (f) PFCC (g) F2BCC.

3 Finite Element Convergence Study

Preliminary studies were performed to determine cellular parameters require to set
the relative density of STL files at 0.23. The relative densities of BCC, BCCz, FCC,
PFCC and F2BCC were controlled by the radius, R, of the cylindrical members. Mem-
bers within a cell were constrained to share the same R which was then varied iteratively
until the target density was achieved. The resultant values for R are shown in Table 1.
R is clearly dependent on the number of members, M , and the length of these members.
For the gyroid lattices, t was varied in Eqn 1 and 2 until the relative density constraint
was achieved. A lower value of t was determined for D-gyroid than that for the gyroid
as shown in Table 1. For the first set of FEA simulations, STL models of the unit cells
were voxelized and converted to hexahedral meshes. Voxelization is the conversion of a
model represented by surfaces or patches into a bitwise three dimensional array. The
array contains the value one in regions enclosed by the STL and zero in unoccupied re-
gions. Methods for voxelizing STL models and other triangular facets can be found in
[12, 13, 14]. Each voxel enclosed an integral portion of the cells domain with a shape
that largely resembles that of a hexahedral element. Therefore, regions of the voxel array
holding a value of one were mapped directly into an hexahedral mesh as illustrated in
Fig. 2 for the D-gyroid cell. The resolution of the voxels was used to control the mesh
size during convergence studies. By increasing the resolution of voxels, more hexahedral
elements are introduced in the mesh until convergence was reached. Convergence was
achieved once the change in maximum displacement along the loading axis was less than
1% for 100% increase in the number of elements. The meshing strategy preserved the
quality of elements and avoided numerical errors associated with distorted elements.
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Table 1: Parametric values R and t for the unit cells used to set relative density to 0.23.

Unit Cell BCC BCCz Gyroid D-gyroid FCC PFCC F2BCC

R (mm) 1.15 1.08 - - 1.29 1.20 0.86
t - - 0.91 0.36 - - -
M 8 12 - - 16 20 24

 

STL Voxel  Array 

A voxel subsequently converted to a hexahedral element 

Figure 2: Conversion of D-gyroid STL to voxel array.
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Figure 3: Pressure loading on a D-gyroid cell.
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A set of hexahedral elements constituting a 1 mm thick plate was placed on the cells along
the z-axis, on Plane xyz=10. The plate experienced a tensile pressure of 10 N/mm2 on it
upper face as illustrated in Fig. 3. Nodes on Plane xyz=0 were fixed for both translational
and rotational degrees of freedom. The Young’s modulus of elements associated to the
unit cell was set to 100 GPa and Poission ratio was 0.342 which typical for SLM compatible
metals. Plate elements assumed material properties that was many times stiffer than
the cell elements. A static linear structural analysis was performed and the mesh was
progressively refined until convergence was achieved. The plate was later rotated so that
the pressure on it’s face aligned with the x-axis. Nodes on the Plane yzx=0 were fixed for
all degrees of freedom and the lower face of the plate was located at Plane yzx=10 which
is the farthest face of the cell along the x-axis. The convergence simulations was then
repeated for this boundary condition.

A second set of simulations was performed to investigate if observed differences across
the cells translates to their lattices. Lattice structures were generated for the cells by
tessellating their voxel arrays as proposed in [15]. The length, width and height of each
lattice was set to 40 mm while the unit cell size remained at 10 mm resulting in a 4 by
4 by 4 lattice. This is illustrated for the D-gyroid in Fig. 4. To improve computational
efficiency, a quarter of the lattice was modelled and symmetrical constraints were imposed
along the planes of symmetry. This is an established way of reducing large FEA model
which gives the same results as the full model.
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Figure 4: Constructing reduced FEA models for the D-gyroid lattice.
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This was achieved by diving the full model along centric Plane yzx=20 and xzy=20 and
elements in one of the four quadrants were retained. Nodes residing on yzx=20 were fixed
along x-axis while those on the xzy=20 were fixed along the y axis. Nodes on xyz=0 were
fixed for all degrees of freedom and the upper face of the plate experienced a pressure of
10 N/mm2. Simulations were repeated for pressure loads along the x-axis with sectional
Plane xyz=20 and xzy=20 used to reduce the FEA model.

4 Results

Displacement along z and x axes due to pressure loads are plotted against the number
of elements in Fig. 5. Fig. 5a shows results for z-axis while those for x-axis are shown in
Fig 5b.
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Figure 5: Finite element convergence plot for the unit cells (a) z-displacements (b) x-
displacements.
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The following is deduced from the scattered plots:

• The gyroid cell reached the greatest displacement for both the z and x axes sug-
gesting it the weakest of the cells,

• BCC has the second largest displacement along the z-axes but lower than three
other cells along the x-axis,

• The D-gyroid cell achieved the lowest displacement along the x and competively
lower displacement along the z-axis

• Displacement for FCC and PFCC cells along both axis are lower than most of the
other cells,

Convergence plot for the Lattices are shown in Fig. 6.
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Figure 6: Finite element convergence plot for the lattices (a) z-displacements (b) x-
dizplacements.
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Displacement for the lattices are generally higher than those for the cells which is conse-
quence of a greater force on the lattices. Comparing the scattered plots for the lattices
with those for the cells, it is observed that:

• D-gyroid lattice achieved the lowest displacement in the x-axis,

• Displacement for FCC and PFCC cells along both axis are lower than most of the
other cells,

• The D-gyroid lattice has similar stiffness to that of BCCz in the z-axis but ap-
proximately two times stiffer than BCCz in the x-axis,

• The gyroid lattice is better than the BCC lattice in x and z axes,

The first three observation are consistent with those of the cells, however, the fourth
contradicts deduction from the comparision of the BCC and gyroid cells. This suggests
that the properties from both cells is insufficient to determine the performance of the
BCC and gyroid lattices. Also, the presence of the vertical members in the BCCz only
improves the stiffness of the lattice along the z and has no effect in the x since BCCz is
weaker than BCC along the x-axis.

5 Discussion

The stiffness, K of the unit cells and lattices was determined as the ratio of total force
on the plate to the maximum displacement along an axis. Mathematically,

K =
PA

d
(3)

where P is the pressure on the plate and assumes a value of 10 N/mm2 and A is the
surface area of the plate. d is the converged maximum displacement along either of the
two axis. For the cells, A is 100 mm2 while for the lattice it is estimated to be 1600 mm2.
K along z and x axes for cells and lattices are plotted as bar charts and shown in Fig. 7.
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Figure 7: Maximum stiffness for the cells (a) Lattice (b).
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BCC, D-gyroid and gyroid cells and lattices have approximately similar K along both z
and x axes. This could be attributed to their cubic symmetric properties. The F2BCC
lattice also show similar behaviour in both z and x axes (Fig. 7b), this is not evident
for the F2BCC cell (Fig. 7a). Also, BCCz, FCC, and PFCC showed contrasting
stiffness in the axes. Observed peak stiffness for the lattices is exhibited by PFCC along
the z−axis which is a consequence of the minimal displacement in this axis. However,
PFCC stiffness along the x-axis is approximately 30% lower than that for D-gyroid. The
maximum von Mises stresses for cells and lattices are shown in Fig. 8.
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Figure 8: Maximum stresses for cells (a) lattices (b).

The D-gyroid lattice and cell exhibit the lowest stress in both axes. It’s variant, the
gyroid, performs the worst achieving stresses many times greater than that of the D-
gyroid. Again, both D-gyroid and BCC show similar stress levels in both axes, however,
maximum stresses in the D-gyroid are a fraction of those in BCC. Stress levels in PFCC
and FCC along the z-axis is better that in the x-axis. PFCC and FCC was seen to
have greater stiffness along the z-axis than those of D-gyroid, however, stresses in their
cell and lattice are much larger as seen Fig. 8a and 8b.

For structural applications involving pressure loads along a single axis, FCC or
PFCC, is better than the other five types. It is common for components to experience
multiple pressure loads in different orthogonal axes, it is therefore preferrable to utilize
a lattice that shows superior performance in more than one axis. For this instance, the
D-gyroid lattice is better than the other lattices since it acheived competitive stiffness
in both z and x axes with lower stresses. The behaviour of the cells and lattices have
not been determine for pressure loads along the y-axis since this can be deduced from
observations in z and x axes. BCC, BCCz, FCC, PFCC and F2BCC are symmetrical
about centric zy planes, implying that their behaviour along the y-axis is largely similar
to those in the x-axis if the similar pressure loads were applied in both axes. Both gyroid
and D-gyroid are not symmetric about the centric zy planes, however, they do exhibit
cubic symmetric properties as described by Scherer [11]. It was seen that their stiffness
is largely similar in both z and x axes. Therefore, properties of both lattices along y-axis
would be similar to those observed in z or x. Superior qualities of the D-gyroid lattice
automatically translates to the y-axis.
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Thermostructural applications of lattices are common. These have not been consid-
ered in this work, however, the relative thermal dissipative and insulative properties of
the cells is in principle deducible from their total surface areas. The surface areas of the
cells are plotted in Fig. 9.
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Figure 9: A comparison of surface area of the unit cells with similar density.

It can be seen that the D-gyroid lattice has the greatest surface area, suggesting it has
the greatest capacity to dissipate heat when a cooling agent is flushed across it’s surface.
F2BCC also show some capacity to dissipate heat in since it has a greater surface area
than either BCC, BBCz, FCC, PFCC and gyroid; therefore, there is greater interaction
between the agent and F2BCC surfaces. For applications where thermal insulation is
paramount, the BCC and the gyroid lattice are better since they have the least capacity
to transport heat owing to their relative low surface areas. However, surface defects
would propagate faster on D-gyroid and F2BCC since they include thinner members in
a broader space.

6 Summary and Conclusions

The capabilities of SLM is evident for metallic components since a wider range of topolo-
gies can be realized as opposed to traditional techniques. However, most would require
support structures to prevent warping and curling of the part during the build, while
other would self-support. Difficulties associated with removing these supports makes
self-supporting solutions more suited for SLM. Supports are particularly difficult to re-
move from lattices, therefore it is preferrable to design latticed components that reduce
the need for supports. Interestingly, a number these lattices exist, some of which have pre-
viously been characterized with SLM. In this work, the structural stiffness and stresses
in BCC, BCCz, FCC, PFCC, D-gyroid, F2BCC and gyroid cell and lattices were
compared. To ensure a fair comparison is made across the lattices and cells, the relative
density for cells was fixed at 0.23. The FCC, PFCC and D-gyroid lattices were found
to exhibit superior perfomance to those of the other lattices. Also, the D-gyroid cell
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has the greatest surface area implying that it has a better potential to dissipate heat
if it’s interact with a cooling agent. BCC and gyroid lattice are poorest at dissipating
heat owing to their relatively low surface area and can potentially be used as a thermal
insulator. The choice of lattice is largely dependent its application.
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