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Abstract: A comparative study of Numerical Solutions of One Dimensional heat and advection-diffusion equation is obtained by
collocation method. Equations are solved numerically by using Orthogonal collocation on finite elements. Numerical values
obtained are in good agreement with exact ones. It can be seen that the method of orthogonal collocation on finite elements
give better results. Collocation points are taken to be the roots of shifted Legendre polynomial. Lagrange basis are used to
describe the equation. The results are verified for three test problems. The system of differential algebraic solutions is obtained
and is solved using MATLAB odel5s. The results are examined in terms of absolute error.
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Introduction:

Partial differential equations are used for modeling of
various diverse physical applications and problems such as
heat flow, sound waves propagation, ball vibration, ink
diffusion in water, electro-magnetic fields, hydrogen atom’s
guantum behavior. Therefore, various applications of Partial
differential equations in the field of applied mathematics
play very important role and lead to solution of real life
problems. Most applications of partial differential equations
in science and engineering require numerical solutions,
since the equations are typically too complicated, both in
number and form, to admit analytical solutions.

In engineering, physical and earth sciences, substance
transportation is known as advection. For example,
advection is the downstream transport of pollutants or silt in
a river by bulk flow of water. When molecules moves
randomly then matter is also transported from one part of a
system to another, this process of transportation is
diffusion. The advection-diffusion equation is a combination
of the diffusion and advection equation and describes the
phenomenon where particles, energy or other physical
guantities are transferred inside a physical system due to
two processes diffusion and advection. Environmental
pollution problems can always be reduced through
numerical  solution  of  advection-diffusion  based
mathematical model.

In case of water pollution, the degradation of hydro-
environment is due to the deposition of immiscible solute
and heavy metals in water bodies through advection and
diffusion processes. Due to industrialization and increase in
population, the pollution is increased very much in recent
few decades which draw the attention of scientists of
various fields. Therefore Advection-diffusion equation is
used by environmentalists, engineers, hydrologists and
mathematical modellers to describe the pollutant
concentration with respect to time and position. The
numerical and analytical solution of such partial differential
equations are useful to check the level of pollutants which
starts affecting the habitat health. Therefore, these
solutions help in maintaining the environment and timely
action against the pollution.

It has been used to describe atmospheric pollution, solute
contamination in the liquid flowing through tubes [1],
dispersion in porous media [2], in various ranges of
engineering, having various applications in industry [3], in
water transfer in soil [4], in dispersion of dissolved salts
underground water [5]. During recent years, considerable
efforts have been made for the numerical and analytic
solutions of different kinds of advection — diffusion
equations by the different methods.

Sun and Zhang (2003), proposed a class of new finite
difference schemes, compact boundary value method
(CBVM) to solve the one dimensional heat equation with
high-order accuracy and stability [6]. Chen et. al. (2003)
discussed the transportation of solute in a radially
convergent flow field with scale dependent dispersion
through a novel mathematical model [7]. Meerschaert and
Tadjeran (2004) developed the mathematical model for the
transport of passive tracers carried by fluid flow in a porous
medium in groundwater hydrology using the one
dimensional fractional advection-dispersion equations with
variable coefficients on a finite domain [8].

Allhumaizi (2006) developed and applied the moving
collocation method to simulate the dynamics of a short time
convection-diffusion-reaction model [9]. The solutions of the
one and two dimensional, steady state and time dependent
advection-diffusion equation through ADMM (Advection
Diffusion Multilayer Model) Model has been reported by
Moreira et. al. (2006) [10]. La Rocca and Power (2008)
proposed the double boundary collocation approach based
on the meshless radial basis function Hermitian method and
compared with the conventional single collocation [11]. A
high order method for solving the one dimensional heat and
advection equation has been proposed by Mohebbi &
Dhghan(2010)[12].

Jaiswal and Kumar (2011), used one dimensional
advection-dispersion equation with variable coefficients to
obtain analytical solutions in two cases, first one the solute
dispersion is time dependent and second is dispersion and
the velocity both have spatially dependent expressions [13].
Ahmed (2012) solved the advection-diffusion equation with
constant and variable coefficients using a new finite
difference equation as well as a numerical scheme [14].
Goh et. al. (2012) solved the one-dimensional heat and
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advection-diffusion equations with accuracy and stability
using the numerical method based on the cubic B-spline
collocation [15].

Gurarslan et al. (2013) numerically solve the one-
dimensional advection-diffusion equation using a sixth order
compact difference scheme and fourth order Runge-Kutta
scheme in space and time respectively [16]. Arora and Kaur
(2015), proposed the orthogonal collocation technique on
finite elements to numerically solve the heat conduction
problems [17].

Mathematical formulation:

One dimensional linear advection-diffusion equation in
physics has been modeled mathematically and can be
written as:

ZZ = [D(x t)— —u(x, t)c] (@))

where c is solute concentration, x is space variable,t is time,
D(x,t) is solute diffusion and is known as diffusion
co efficient , if it is uniform and steady and u(x,t) is velocity
of the medium.

If the medium is porous then it is derived from the principle
of conservation of mass and Fick’s law of diffusion and also
velocity of flow satisfies the Darcy’s law.

Therefore consider,
D(x,t)=Do g1(x,t) and u(x,t)= uo gz(X,t)
By (1) we have:

dc 0

_ D ( t)@c
ot ox| 095y

Uy g2 (x, t)c

Next consider a new independent variable, X. Thus for X
we have

6X_ -1 _ J‘ dx
ox  gi1(xt) g1(x,t)

6c_D ac[a t]+ t62c 0 ne
ot - 0 Ix axgl(x' ) gl(x' )axz anng(x' )

ox -1
Ox _gl(x,t)

6c_6c6X_6c[ -1

dx  0Xodx odxlg,(xt)
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d*c 0 ac] 6[ -1 dc
oxz _ oxloxl ~ ox 9. (x,t) 0X

-1 [Jo%
~g.(x,t) [0x2 ox

| X
gi(x,t) 0X
’c | -1 0%*c N 1 Jc
ax2 |g2(x,t) 0X2  |g3(x,t) 0X

oc _ [zgitnt) oc  giGot) (0% o
0X?

ot °| gi(x,t) oX gf(x t) X
— Uy OX [gz(x t)c] 7.5, 0)
( t)ac_D 62c+6c c+6[ 0]
916 8) 5= Do |57+ 5% ~ax| F ax L2 D¢

a 92 a
gl(x't)a_i: Do#"'uoa [g.(x, t)c] 2

Next consider a time dependent diffusion along a uniform
flowi.e

Let 91(x,8) = g(¢)
and g.(x,t) =1

where g(t) is chosen such that g(t)=1 for t=0. This g(t) is in
non-dimensional form of variable t.

Thus X=-{ implies X = —

91( ) g()

Therefore by (2) we have;

ac d%c ac
g(t)azDoaxz‘Fuoa ()
. aT dc _ dc 9T _ 1 dc
By using P T) this gives % T ot 9@ o

Thus by (3) we have

6
o DO e =+ uo ox , which is a advection —diffusion

equation with constant coefficient.
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NUMERICAL TECHNIQUE:

Weighted residual method is one of the numerical
techniques which is widely used to find an approximate
solution of the boundary value problems. In this method, an
approximate solution is substituted into the differential
equation to form the residual and then residual is set
orthogonal to the weight function of the approximating
polynomial. Galerkin method, Moment method, Ritz
method, Least Square method, Collocation methods etc. all
are types of weighted residual method.

In case of stiff boundary value problems orthogonal
collocation method does not give appropriate results for
large values of different parameters. Paterson and
Cresswell improve the method of orthogonal collocation by
implement in it the properties of method of finite elements,
which then known as method of orthogonal collocation on
finite elements. This numerical technique was further

Boundery Element boundaries i Boundary
condition slope condition ¢ ’ h k condition
< v \
|
| o ol Pl P Lo . | & a-ls
! T T T T T
i=1 2 3‘& ‘,'678 910
\ [
=0 Xy ‘l [ X X Xy Xy X
Residual
collocation
(a)
NCOL- interior collocation points per element
| |
[ = b |
=1 2 3 4 5=NP=NCOL +2
u=0 0.1132.... 0.5 0.78868.... 1.0
(b)

Figure: Collocation points on finite elements,
lagrangian cubic polynomials. (a) Global numbering
system i. (b) local numbering system.
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extended by Carey and Finlayson specifically to solve the
problems deals with large Thiele modulus. In OCFE the
space domain is divided into sub —domains called finite
elements and then method of orthogonal collocation is
applied within each sub-domain fulfilling the essential
condition of continuity of function and its derivative of first
order at the boundaries of the elements. In order to apply
collocation within each element, a new variable u is

introduced in each element [x,,x,, ] in such a way that

as x varies from X,to X v varies from 0 to 1, i.e,

/417
X=X, : .

V=———_ By applying the orthogonal collocation

X =X,

directly on v within each element, one gets the collocation

equations in terms of the solutions at the collocation points.

The representation of location of collocation points for

OCFE is as under

INTERPOLATION POLYNOMIAL

The polynomial interpolation means to construct such a
polynomial that interpolates the given n+ldata points.
There are several techniques to construct interpolating
polynomials. One of the major technique is Lagranges
interpolation. Lagrangian interpolating polynomials is given

by L(x) — n g(xi)l(x)

i=0 (x—x)11(xp)
where I(x) = (x — xo)(x — x1) ... (x — x;,)

In orthogonal collocation method the trial function is
approximated in terms of Lagrangian interpolation
polynomial, where xi's are the zeros of the orthogonal
polynomial Pn(x), x1=0 and xn1=1. The discretization
matrices for first and second order derivative of
approximating function at j" collocation point are obtained
by differentiating the interpolating polynomial at j"
collocation point.

COLLOCATION POINT

The convergence of any numerical technique is highly
dependent on the selection of collocation points. In this
study the roots of Legendre Polynomial are taken as
collocation points, which is a special case of Jacobi
polynomial . In case of Legendre polynomial, O and 1 are
taken to be the boundary points. The legendre polynomials
are the solution of legendre equation.

A recurrence relation giving Legendre polynomial is given
by:

1 — cos?6 d(P,(cosB))

P,.1(cos8) = cos@ P,(cos0) —

(n +1)d(cos6)
Taking t=cosf we get:
1—t?Pi(t)
Ppyi(8) =t Po(6) — i D

Consider P, (t) =1 as a starting condition, then applying
above repeatedly we get:
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Pt)=1t
3tz -1

P,(t) =

(0 = =
5¢3 — 3t

P (t) = ———

4(0) =

35t* —30t2+ 3

P(t) = 8

Which are collectively represented graphically as follows:

| } } } } }
g ' "Ry +
)](v(.,l
P(t) . ;
05+ P;;(f: e f

._1’.'11-

-05 + faaat —

K L | |
-1 -0.5 0

t

The xj's are transformed onto the interval [0,1] using the
formula given by,

Upigoj = 2+ =
n+3—j 2 2

where ujis the local variable and x;is the global variable.
ERROR ANALYSIS

Let g(x) is any (n+1) times continuously differentiable
function then for a <x,<x; <x, <--<x,<b , and for
any kind of (n+1) knots L(x) be the nth order Lagrange
polynomial which are choosen such as g(x;) =
L(x;),i=0,1,2,...,n then following results holds.

LEMMA 1: Let g and L are choosen such as they satisfies
all their respective properties described above then for all
integersi, 0 < i < n,the following result holds

S a g™l
”gl - LL” < ”lL” (‘I’l + 1)|

Where 1(x) = (x — xo)(x — x;)...(x — x,;) and where ||.||
denotes the supremum norm on [a,b].

LEMMA 2: If lemma 1 is true then it is always true for the
case of repeated roots.

Lemma 3: |g(x) — L(x)| < I(x) la™]

(n+1)!
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Lemma 4: For L(x) = L[g,x], lagrange interpolation
polynomial of degree n satisfies g(x;) = L(x;),
i=012,..n then

[l (50~ L)

n! llg+D]|

g € CtD[01]
where K(x,t) = (x — t)% — L[(x —t)%,x]
and

n_ (x=0t)7 forx—t=0
(x_t)+_{0 forx—t<0

Some ldentities which are used by Curry and Schoenberg:

1K(xt) _  I(x)
1) fo nl | (nt1)!

2) M(t, %o, X1, Xn) = Lizo
3) M(t)>0,if0<t<1
4) M) =0ift<0ort=1
5) J, M(t)dt =1

n(x—n)i~"

1(x;)

Theorem: For g(x) € C™V[a,b] and a<x,<
X <x, < <x,<b

and g(x;) = L(x;),i=0,1,2,...,n, then

. a g™l
”gL I LL” < ”lL” (n + 1)|

Also this gives best possible result when g(x is substituted
by 1(x)

Proof: From identities 2 and 3 if a<b, then we have

b
O<f M(t,xg, X1, ..., %) dt
a

_ (x; — b)} (x; — a)}

. + .
I'(x;) o U(x)

i=0

1\
Thus consider V(t)=Z?=o(f§(xt_))+ is a monotonic decreasing
i

function and is strictly decreasing for O<t<1. Now since by
lemma 5, we have

lg™ (x) — L"[g, x]l

[ emon- 5

=0

* llg™ (@)l

<fe-0% -

—
1o S e+ llgm @)
12
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=[x = 6)% = v(O)lde « g™ ©)
Define

Co(x) = [Jl(x =)} — v()lde

o _ fx=10t)° forx—t=0
(x_t)+_{0 forx—t<0

Implies

1 forO<t<x
- 0 frd
(=1 {O forx<t<l1

Colx) = f e = 6)% — V(O)ldt

L= volde + [[v(e)]dt
Gives

CL(x) = V(0) + V(1) — 2V (x)
Since,V(0) =V(1) =1

Implies
Clx)=2-2V(x) = 2(1-V(x))

and therefore Cl(x) = —2V!(x) >0 and V(x) is
decreasing function in O<t<1.

1€ Il = max{C,,(0), C,, (1)}

(n,0)
1|Kn—|(x't)|dt foro<x<1

=max [,

Since by identity (1)

flK(nvo)(x, t)  I"(x)

n! T (n+1)!

n! 0 n!

”Cn” — |”ax{_ f K( ' )(01 t) K(Tl,o)(: ,t)

Since  K®™9(0,t) <0and K™9(1,t) >0

") "1
IC,ll = max{——C 20}

(n+1)! (n+1)!

and from identity (5)

1 0 (ri-t)}
l9"() = g, xl < [ |Ge— )% - B
g™ ()

= [ |KO (x,0)|de |

g™r(e)
n!

dt *
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=Ncalllgell

Thus,

lg"(x) = L*[g, x]l = NC, Il = lg™* @)l

IO N LICOR N
smax{ (n+1)!’(n+1)!}”g Ol

ln

< ||| g1

(n+1)!
and for g(x) =I(x) it gives best possible bound.

Problem1: Consider one dimensional heat advection
equation
ac _ 9%C
ot o9x2

for 0<x<1,t>0

with initial condition

C(x,0) = sin(mx)
and boundary conditions

C (0t =C(L=0.

The exact solution of above equation is given byC(x,t) =
exp(—m?t)sin(mx).The above problem is solved by using
method of orthogonal collocation on finite elements using
lagranges basis and compared for different values of h
which are shown in tablel. The collocation points are taken
as roots of Legendre Polynomial described as above. The
error analysis in terms of absolute error for above problem
for different h is given in table 2.
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Tablel: Comparison of numerical values for different values of h for problem1
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h=1/12 h=1/20 h=1/40 h=1/80 h=1/40
(7 int points)
1.3396e-01 2.4108e-01 | 3.7686e-02 | 3.9226e-02 | 1.9028e-01
4.9938e-02 8.9860e-02 | 1.4030e-02 | 1.2922e-01 | 7.0917e-02
1.8631e-02 3.3492e-02 | 5.2314e-03 | 4.8161e-02 | 2.6432e-02
6.9523e-03 1.2476e-02 | 1.9471e-03 | 1.7950e-02 | 9.8532e-03
2.5903e-03 | 4.6488e-03 | 7.2475e-04 | 6.6902e-03 | 3.6727e-03
9.6468e-04 1.7330e-03 | 2.6967e-04 | 2.4935e-03 | 1.3687e-03
3.5927e-04 | 6.4616e-04 | 1.0037e-04 | 9.2934e-04 | 5.1007e-04
1.3360e-04 | 2.4097e-04 | 3.7331e-05 | 3.4637e-04 | 1.9006e-04
4.9657e-05 8.9975e-05 | 1.3805e-05 | 1.2910e-04 | 7.0798e-05
1.8227e-05 3.3624e-05 | 5.1068e-06 | 4.8115e-05 | 2.6360e-05
6.6992e-06 1.2681e-05 | 1.8358e-06 | 1.7933e-05 | 9.7862e-06
2.4036e-06 | 4.7673e-06 | 6.5468e-07 | 6.6837e-06 | 3.6369e-06
7.7443e-07 1.7751e-06 | 2.3056e-07 | 2.4911e-06 | 1.3588e-06
2.5198e-07 5.9936e-07 | 1.1673e-07 | 9.2844e-07 | 5.2429e-07
7.5646e-08 2.0581e-07 | 6.3816e-08 | 3.4604e-07 | 1.9753e-07
4.1827e-08 8.0190e-08 | 2.2280e-08 | 1.2897e-07 | 7.3387e-08
6.9681e-08 5.5539e-08 | 9.6713e-09 | 4.8068e-08 | 5.5355e-08
6.3687e-08 1.2540e-07 | 7.5104e-08 | 1.7915e-08 | 5.4059e-08
2.3885e-08 2.2173e-07 | 9.0196e-08 | 6.6772e-09 | 5.3789e-08
2.4894e-09 1.5009e-07 | 1.4775e-07 | 2.4887e-09 | 3.5939e-08
2.2837e-09 5.9066e-08 | 9.7093e-08 | 9.2754e-10 | 8.0696e-09
5.0996e-09 2.0171e-08 | 6.3450e-08 | 3.4570e-10 | 7.2787e-09
7.0039e-09 | 4.2589e-08 | 4.8376e-09 | 1.2885e-10 | 1.0558e-08
1.5587e-09 3.0422e-08 | 2.8951e-08 | 4.8023e-11 | 3.4881e-09
9.6295e-10 2.2610e-09 | 3.0929e-08 | 1.7899%e-11 | 2.5487e-09
2.5992e-09 3.4114e-08 | 2.0777e-08 | 6.6713e-12 | 1.9801e-08
3.6880e-09 1.0349e-07 | 8.9622e-11 | 2.4864e-12 | 3.2994e-08
4.1638e-09 1.3115e-07 | 1.1391e-08 | 9.2658e-13 | 2.4020e-08
3.5192e-09 8.8256e-08 | 4.5525e-08 | 3.4524e-13 | 2.3300e-08
1.9765e-09 8.5174e-08 | 8.4066e-08 | 1.2857e-13 | 1.8418e-08
1.0076e-09 6.0521e-08 | 9.8457e-08 | 4.7856e-14 | 5.9504e-09
Table 2: Comparison of absolute error for different values of h for problem1
h=1/12 h=1/20 h=1/40 h=1/80 | h=1/40
(7 int
points)
0.5193 0.2411 0.0377 0.1903 | 0.0392
0.1935 0.0899 0.0140 0.0709 | 0.1292
0.0721 0.0335 0.0052 0.0264 | 0.0482
0.0269 0.0125 0.0019 0.0099 | 0.0180
0.0100 0.0046 0.0007 0.0037 | 0.0067
0.0037 0.0017 0.0003 0.0014 | 0.0025
0.0014 0.0006 0.0001 0.0005 | 0.0009
0.0005 0.0002 0.0000 0.0002 | 0.0003
0.0002 0.0001 0.0000 0.0001 | 0.0001
0.0001 0.0000 0.0000 0.0000 | 0.0000
0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000 0.0000 0.0000 0.0000 | 0.0000
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Problem?2: Consider one dimensional heat advection equation of the form
ac 1 0%C
ot m2?0x?

for 0<x<1,t>0

with initial condition

C(x,0) = sin(mx)
and boundary conditions

C (Ot =C(t=0.

The exact solution of above equation is given by C(x,t) = sin(mx).The above problem is solved and compared for different
values of h which are shown in table 3. The error analysis in terms of absolute error for above problem for different h is given in

table 4.

Table 3: Comparison of numerical values for different values of h for problem 2

h=1/12 h=1/20 h=1/40 h=1/80 h=1/40
(7 int points)
8.6604e-01 5.8779e-01 3.0902e-01 1.5643e-01 3.0748e-01
7.8361e-01 5.3199e-01 2.7969e-01 1.4159%e-01 9.5230e-05
7.0902e-01 4.8136e-01 2.5306e-01 1.2810e-01 7.0877e-09
6.4154e-01 4.3550e-01 2.2896e-01 1.1590e-01 -7.3630e-10
5.8049e-01 3.9401e-01 2.0717e-01 1.0486e-01 3.8474e-10
5.2526e-01 3.5648e-01 1.8746e-01 9.4874e-02 2.2891e-09
4.7528e-01 3.2255e-01 1.6962e-01 8.5844e-02 1.4376e-09
4.3006e-01 2.9186e-01 1.5348e-01 7.7675e-02 2.5032e-10
3.8913e-01 2.6410e-01 1.3888e-01 7.0285e-02 9.7379%e-11
3.5210e-01 2.3898e-01 1.2566e-01 6.3598e-02 -1.1101e-10
3.1859e-01 2.1624e-01 1.1370e-01 5.7548e-02 -1.2688e-10
2.8827e-01 1.9567e-01 1.0288e-01 5.2073e-02 -6.2996e-11
2.6083e-01 1.7705e-01 9.3087e-02 4.7117e-02 -1.1656e-11
2.3601e-01 1.6020e-01 8.4229e-02 4.2634e-02 5.0399e-13
2.1355e-01 1.4496e-01 7.6213e-02 3.8576e-02 6.4312e-12
1.9323e-01 1.3116e-01 6.8960e-02 3.4905e-02 1.3944e-11
1.7484e-01 1.1868e-01 6.2397e-02 3.1583e-02 1.6908e-11
1.5820e-01 1.0738e-01 5.6459e-02 2.8577e-02 1.5322e-11
1.4314e-01 9.7165e-02 5.1086e-02 2.5857e-02 9.1878e-12
1.2952e-01 8.7918e-02 4.6224e-02 2.3397e-02 1.0095e-12
1.1719e-01 7.9551e-02 4.1825e-02 2.1170e-02 5.8025e-13
1.0603e-01 7.1980e-02 3.7845e-02 1.9155e-02 2.1572e-13
9.5938e-02 6.5129e-02 3.4244e-02 1.7332e-02 -8.4090e-14
8.6807e-02 5.8930e-02 3.0986e-02 1.5682e-02 -3.1919e-13
7.8544e-02 5.3321e-02 2.8038e-02 1.4189e-02 -4.8151e-13
7.1069e-02 4.8245e-02 2.5370e-02 1.2839%e-02 -5.3952e-13
6.4304e-02 4.3653e-02 2.2956e-02 1.1617e-02 -5.1795e-13
5.8184e-02 3.9497e-02 2.0772e-02 1.0511e-02 -4.1681e-13
5.2646e-02 3.5738e-02 1.8796e-02 9.5104e-03 -2.3610e-13
4.7635e-02 3.2336e-02 1.7007e-02 8.6053e-03 -2.7125e-14
4.3101e-02 2.9259e-02 1.5389e-02 7.7862e-03 9.5643e-15
Table 4: Comparison of absolute error for different values of h for problem 2
h=1/12 h=1/20 h=1/40 h=1/80 h=1/40
(7 int points)
0.05193 0.02411 0.00377 0.01903 0.03921
0.00239 0.01276 0.02315 0.02884 0.03467
0.02264 0.02651 0.03038 0.03250 0.03467
0.03019 0.03163 0.03307 0.03386 0.03467
[JSER© 2017
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0.03300 0.03354 0.03407 0.03437 0.03467
0.03405 0.03425 0.03445 0.03456 0.03467
0.03444 0.03451 0.03459 0.03463 0.03467
0.03458 0.03461 0.03464 0.03466 0.03467
0.03464 0.03465 0.03466 0.03466 0.03467
0.03466 0.03466 0.03467 0.03467 0.03467
0.03467 0.03467 0.03467 0.03467 0.03467
0.03467 0.03467 0.03467 0.03467 0.03467
0.03467 0.03467 0.03467 0.03467 0.03467
0.03467 0.03467 0.03467 0.03467 0.03467
0.03467 0.03467 0.03467 0.03467 0.03467
0.03467 0.03467 0.03467 0.03467 0.03467
0.03467 0.03467 0.03467 0.03467 0.03467
0.03467 0.03467 0.03467 0.03467 0.03467
0.03467 0.03467 0.03467 0.03467 0.03467
0.03467 0.03467 0.03467 0.03467 0.03467
0.03467 0.03467 0.03467 0.03467 0.03467
0.03467 0.03467 0.03467 0.03467 0.03467
0.03467 0.03467 0.03467 0.03467 0.03467
0.03467 0.03467 0.03467 0.03467 0.03467
0.03467 0.03467 0.03467 0.03467 0.03467
0.03467 0.03467 0.03467 0.03467 0.03467
0.03467 0.03467 0.03467 0.03467 0.03467
0.03467 0.03467 0.03467 0.03467 0.03467
0.03467 0.03467 0.03467 0.03467 0.03467
0.03467 0.03467 0.03467 0.03467 0.03467
0.03467 0.03467 0.03467 0.03467 0.03467

Problem 3: Consider one dimensional heat advection equation with diffusion term

9 _ oy 2°C_2C
at T ox?  ox

for 0<x<1,t>0
with initial condition
C(x,0) = exp(5x) [cos (gx) +0.25sin (gx)]
and boundary conditions C(0,t) = exp(5(— %))exp(—gt)
t w2 . (m
and C(1,t) = exp(5(L — 5))exp(— =1)[0.25sin ()]
The exact solution of above equation is given by C(x,t) = exp(5(x — %))exp(—gt)[cos (gx) +0.25sin (g x)]. The

above problem is solved by using method of orthogonal collocation on finite elements and compared at different grid points
which are shown in table 5. The collocation points are taken as roots of Legendre Polynomial described as above.
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Time(t) Grid Points (h=0.08)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0 1.0452E-01 2.0794E-01 3.0906E-01 9.9452E-01 1.0000E+00 9.9452E-01  3.0906E-01 2.0794E-01 1.0452E-01
0.1 9.4611E-02 1.8819E-01 2.7969E-01 8.9989E-01 9.0484E-01 8.9989E-01 2.7969E-01 1.8819E-01 9.4611E-02
0.2 8.5605E-02 1.7028E-01 2.5307E-01 8.1423E-01 8.1871E-01 8.1423E-01 2.5307E-01 1.7028E-01 8.5605E-02
0.3 7.7458E-02 1.5407E-01 2.2898E-01 7.3674E-01 7.4080E-01 7.3674E-01  2.2898E-01 1.5407E-01 7.7458E-02
0.4 7.0088E-02 1.3941E-01 2.0719E-01 6.6664E-01 6.7031E-01 6.6664E-01 2.0719E-01 1.3941E-01 7.0088E-02
0.5 6.3419E-02 1.2615E-01 1.8748E-01 6.0321E-01 6.0653E-01 6.0321E-01 1.8748E-01 1.2615E-01 6.3419E-02
0.6 5.7385E-02 1.1415E-01 1.6964E-01 5.4581E-01 5.4882E-01 5.4581E-01 1.6964E-01 1.1415E-01 5.7385E-02
0.7 5.1924E-02 1.0329E-01 1.5350E-01 4.9388E-01 4.9660E-01 4.9388E-01 1.5350E-01 1.0329E-01 5.1924E-02
0.8 4.6983E-02 9.3456E-02 1.3889E-01 4.4688E-01 4.4934E-01 4.4688E-01 1.3889E-01 9.3456E-02 4.6983E-02
0.9 4.2512E-02 8.4562E-02 1.2567E-01 4.0435E-01 4.0658E-01 4.0435E-01 1.2567E-01 8.4562E-02 4.2512E-02
1.0 3.8466E-02 7.6514E-02 1.1371E-01 3.6587E-01 3.6788E-01 3.6587E-01 1.1371E-01 7.6514E-02 3.8466E-02
11 3.4805E-02 6.9232E-02 1.0289E-01 3.3105E-01 3.3287E-01 3.3105E-01 1.0289E-01 6.9232E-02 3.4805E-02
1.2 3.1493E-02 6.2643E-02  9.3098E-02 2.9954E-01 3.0119E-01 2.9954E-01 9.3098E-02 6.2643E-02 3.1493E-02
1.3 2.8495E-02 5.6681E-02 8.4238E-02 2.7103E-01 2.7252E-01 2.7103E-01  8.4238E-02 5.6681E-02 2.8495E-02
14 2.5784E-02 5.1287E-02  7.6221E-02 2.4524E-01 2.4659E-01 2.4524E-01 7.6221E-02 5.1287E-02 2.5784E-02
15 2.3330E-02 4.6406E-02 6.8967E-02 2.2190E-01 2.2312E-01 2.2190E-01 6.8967E-02 4.6406E-02 2.3330E-02
1.6 2.1109E-02 4.1990E-02  6.2404E-02 2.0078E-01 2.0189E-01 2.0078E-01  6.2404E-02 4.1990E-02 2.1109E-02
1.7 1.9100E-02 3.7994E-02 5.6465E-02 1.8167E-01 1.8267E-01 1.8167E-01 5.6465E-02 3.7994E-02 1.9100E-02
1.8 1.7282E-02 3.4377E-02 5.1090E-02 1.6438E-01 1.6529E-01 1.6438E-01 5.1090E-02 3.4377E-02 1.7282E-02
1.9 1.5637E-02 3.1105E-02 4.6227E-02 1.4873E-01 1.4955E-01 1.4873E-01 4.6227E-02 3.1105E-02 1.5637E-02
2.0 1.4149E-02 2.8144E-02 4.1826E-02 1.3458E-01 1.3532E-01 1.3458E-01 4.1826E-02 2.8144E-02 1.4149E-02
21 1.2802E-02 2.5465E-02 3.7845E-02 1.2177E-01 1.2244E-01 1.2177E-01 3.7845E-02 2.5465E-02 1.2802E-02
2.2 1.1583E-02 2.3041E-02  3.4243E-02 1.1017E-01 1.1078E-01 1.1017E-01  3.4243E-02 2.3041E-02 1.1583E-02
2.3 1.0481E-02 2.0848E-02 3.0984E-02 9.9689E-02 1.0024E-01 9.9689E-02  3.0984E-02 2.0848E-02 1.0481E-02
24 9.4833E-03 1.8864E-02 2.8034E-02 9.0199E-02 9.0696E-02 9.0199E-02 2.8034E-02 1.8864E-02 9.4833E-03
25 8.5807E-03 1.7068E-02 2.5366E-02 8.1615E-02 8.2065E-02 8.1615E-02 2.5366E-02 1.7068E-02 8.5807E-03
2.6 7.7640E-03 1.5444E-02 2.2952E-02 7.3846E-02 7.4253E-02 7.3846E-02  2.2952E-02 1.5444E-02 7.7640E-03
2.7 7.0250E-03 1.3974E-02 2.0767E-02 6.6818E-02 6.7186E-02 6.6818E-02 2.0767E-02 1.3974E-02 7.0250E-03
2.8 6.3563E-03 1.2644E-02 1.8791E-02 6.0458E-02 6.0791E-02 6.0458E-02 1.8791E-02 1.2644E-02 6.3563E-03
2.9 5.7514E-03 1.1440E-02 1.7002E-02 5.4704E-02 5.5005E-02 5.4704E-02  1.7002E-02 1.1440E-02 5.7514E-03
3.0 5.2039E-03 1.0351E-02 1.5384E-02  4.9496E-02 | kR &ER702 4.9496E-02  1.5384E-02 1.0351E-02 5.2039E-03
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Fig.(1). OCFE solution for h=1/12 Fig.(2). OCFE solution for h=1/20
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Fig.(3). OCFE solution for h=1/40 Fig.(4). OCFE solution for h=1/80
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Fig.(5). OCFE solution for h=1/40(7 int points)

PROBLEM 2:
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Fig.(6). OCFE solution for h=1/12 Fig.(7). OCFE solution for h=1/20
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Fig.(8). OCFE solution for h=1/40 Fig.(9). OCFE solution for h=1/80
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Conclusion:

Heat and advection-diffusion equations are solved
numerically by using Orthogonal collocation on finite
elements. Numerical values obtained are in good
agreement with exact ones. It can be seen that the method
of orthogonal collocation on finite elements gives results in
less computational time with good efficiency. The results
are verified for three test problems. Thus the numerical
technique of orthogonal collocation on finite elements is
simple and efficient for the solution of heat and advection
equations.
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