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+e logistic regression (LR) model for assessing differential item functioning (DIF) is highly dependent on the asymptotic
sampling distributions. However, for rare events data, the maximum likelihood estimation method may be biased and the
asymptotic distributions may not be reliable. In this study, the performance of the regular maximum likelihood (ML) estimation is
compared with two bias correction methods including weighted logistic regression (WLR) and Firth’s penalized maximum
likelihood (PML) to assess DIF for imbalanced or rare events data. +e power and type I error rate of the LR model for detecting
DIF were investigated under different combinations of sample size, moderate and severe magnitudes of uniform DIF (DIF� 0.4
and 0.8), sample size ratio, number of items, and the imbalanced degree (τ). Indeed, as compared with WLR and for severe
imbalanced degree (τ � 0.069), there were reductions of approximately 30% and 24% under DIF� 0.4 and 27% and 23% under
DIF� 0.8 in the power of the PML and ML, respectively. +e present study revealed that the WLR outperforms both the ML and
PML estimation methods when logistic regression is used to evaluate DIF for imbalanced or rare events data.

1. Introduction

In psychological and educational tests, measurement in-
variance is a crucial assumption for comparison of mean
scores across people from different cultural, racial, or
demographic backgrounds. Assessing this statistical
property at the item level, also known as differential item
functioning (DIF), is an important part of the process of
validating tests. In general, DIF analysis is used to dis-
tinguish whether the probability of responding to a specific
item on a multi-item scale differs between two groups after
controlling for the overall ability that is being measured by
the a questionnaire [1]. Nowadays, different statistical
methods including the logistic regression (LR) model,
multiple group confirmatory factor analysis (MGCFA),
and item response theory (IRT) model are available to
assess the presence of DIF among subgroups of people

[2, 3]. +e LR is a model-based approach first introduced
by Swaminathan and Rogers to assess DIF for both di-
chotomous and polytomous item scored [4, 5]. +e LR
model is able to control additional continuous and cate-
gorical confounders which may affect the results of DIF
analysis. Furthermore, the LR model provides a number of
effect size measures to quantify the magnitude of uniform
and nonuniform DIF which may not be practically or
clinically important [6–8]. Uniform DIF occurs when the
difference in item response probabilities is constant across
the scale. Nonuniform DIF is evident when the direction of
DIF differs in different parts of the construct scale [9, 10].
Previous simulation studies have shown that identification
of DIF through the LR model may be affected by various
factors such as sample size, sample size ratio, magnitude of
DIF, scale length (the number of items), and the number of
groups [11–14].
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However, it should be noted that statistical inference based
on the logistic regression model is highly dependent on the
asymptotic properties of the maximum likelihood estimator
[9]. Under the large sample situations, the sampling distri-
bution of the maximum likelihood (ML) estimators for the
logistic regression coefficients is asymptotically unbiased and
normal. However, in small samples, it is well known that the
ML estimations may be biased and the asymptotic properties
may not hold [9, 15]. Accordingly, a number of penalization
techniques such as Firth’s method have been introduced to
correct or reduce the small sample bias of theML estimators of
the LR model [15, 16]. A new simulation study has recently
compared the performance of the LR model based on max-
imum likelihood (ML) and Firth’s penalized maximum
likelihood (PML) estimation methods in terms of empirical
power and type I error rate to detect uniform and nonuniform
DIF [9]. +e results showed that, as compared with PML, the
LR model based on asymptotic ML worked slightly better in
terms of statistical power although the difference in perfor-
mance was not practically important [9].

In addition to the small sample, rare events data is
another factor that can substantially influence the as-
ymptotic properties of the ML estimators in the LR model
[15, 17]. +e bias of prediction, as well as bias in re-
gression coefficients, is a potential problem that may arise
from the use of standard logistic regression in the
presence of rare events data. Rare events data refer to
occurrences that take place much less frequently than
more common events [18, 19]. According to King and
Zeng, ordinary logistic regression can sharply underes-
timate the probability of rare events [20]. Hence, they
proposed weighted logistic regression (WLR) to correct
bias terms in regression coefficients and predicted
probability by applying a weighted likelihood function to
estimate parameters under pure case-control sampling
[20]. Moreover, a wide variety of penalization methods
have been suggested to resolve the problem of rare events
data in the LR model [15–17].

Although the effect of bias correction methods on the
performance of the LR model for detecting DIF has been
evaluated by Lee in a small sample [9], such an explanation
has never been provided for rare events data. To fill this gap,
in the present simulation study, the three inferential
methods including WLR, PML, and ML are compared to
discover what the best correction method is to achieve the
adequate power and type I error rate for detecting DIF
when the response variable in the LR model is imbalanced
or rare. Hence, in a comprehensive simulation study, we
investigate whether the statistical properties of the LR
model for detecting DIF, with and without applying bias
correction methods, can be influenced by the degree of
rareness or imbalance data, magnitude of DIF, sample size,
sample size ratio, and the length of the scale across ref-
erence and focal groups. In addition to simulation, we have
also used real data to validate and compare the effectiveness
of the proposed methods for detecting DIF in practice.

2. Methods

2.1. LogisticRegressionModel forDetectingDIF. +epresence
of uniform and nonuniform DIF can be tested by comparing
three different logistic regression (LR) models as follows:

Model 1: log it πi( 􏼁 � ln
p yi � 1( 􏼁

p yi � 0( 􏼁
􏼠 􏼡 � β1 + β2θ,

Model 2: log it πi( 􏼁 � ln
p yi � 1( 􏼁

p yi � 0( 􏼁
􏼠 􏼡 � β1 + β2θ + β3G,

Model 3: log it πi( 􏼁 � ln
p yi � 1( 􏼁

p yi � 0( 􏼁
􏼠 􏼡 � β1 + β2θ + β3G + β4θG.

(1)

In these models, the term θ is the observed ability of each
respondent usually defined as total test score, and G is an
indicator variable representing group membership (refer-
ence and focal groups, for example, male and female in
gender variable). According to the abovementioned models,
the presence of uniform and nonuniform DIF could be
determined by comparing models 1 and 2 as well as models 2
and 3, respectively. In both cases, the difference between − 2
log likelihoods of the models is compared to a χ2 distribution
with one degree of freedom.

For nonuniform DIF items, the direction of DIF differs
across latent constructs, and the effect of DIF is naturally
cancelled out at the level of latent constructs [21] which is the
major reason for focusing on uniform DIF in this study.

2.2. Maximum Likelihood. Consider the logistic regression
model

P yi � 1
􏼌􏼌􏼌􏼌 xir, B􏼐 􏼑 � πi �

eXiβ

1 + eXiβ
�

1
1 + e− Xiβ

�
1

1 + exp − 􏽐
k
r�1 βrxir􏼐 􏼑

,

so, ln
πi

1 − πi

􏼠 􏼡 � Xiβ,

(2)

where (yi, xir), xir (i� 1, . . ., n; r� 2, . . ., k) and yi ∈ {0, 1},
denotes a sample of n observations of binary outcome
variable y and the vector of independent covariates with 1 ×

k dimensions Xi � (1, xi2, . . . , xik), where xi1 � 1 is the
constant and β � (β1, . . . , βk)′. +en, ML estimates 􏽢βr of
regression parameters, and βr are obtained by solving the
following score equations:

z ln L

zβr

≡ U βr( 􏼁 � 􏽘
n

i�1
yi − πi( 􏼁xir � 0, (3)

where

2 BioMed Research International



L(β) � 􏽙
n

i�1
πi( 􏼁

yi 1 − πi( 􏼁
1− yi � 􏽙

n

i�1

eXiβ

1 + eXiβ
􏼠 􏼡

yi 1
1 + eXiβ

􏼒 􏼓
1− yi

,

ln L(β) � 􏽘
n

i�1
yi ln πi + 1 − yi( 􏼁ln 1 − πi( 􏼁( 􏼁 � 􏽘

n

i�1
yi ln

eXiβ

1 + eXiβ
􏼠 􏼡 + 1 − yi( 􏼁ln

1
1 + eXiβ

􏼒 􏼓􏼠 􏼡.

(4)

Unfortunately, there is no closed-form expression for
maximizing the log likelihood of β. +e ML estimations can,
therefore, be obtained using numerical optimization methods,
which start with a guess point and repeat to improve. +e
Newton–Raphson method is one of the most commonly used
numerical methods, which needs theHessianmatrix as follows:

z2 ln L

zβr
2 � 􏽘

n

i�1

− x2
ire

Xiβ

1 + eXiβ( 􏼁
2

⎛⎝ ⎞⎠ � 􏽘
n

i�1
− xir

2 πi 1 − πi( 􏼁( 􏼁􏼐 􏼑. (5)

If vi is defined as πi(1 − πi) and V � diag(v1, . . . , vn),
then the Hessian matrix can be written as

H(β) � − X′VX. (6)

+e information matrix is given by I(β) � − (z2 ln
L/zβ2) � X′VX, and the variance of β is then V(β) �

I(β)− 1 � (X′VX)− 1.

2.3. Penalized Maximum Likelihood. +e penalized maxi-
mum likelihood estimation method (PML) was originally
developed by David Firth [16] in order to reduce the small
sample bias of maximum likelihood estimates. For expo-
nential family models, this method corresponds to penali-
zation of the likelihood by Jeffreys’ invariant prior [22].
+us, the penalized log likelihood for logistic regression
takes the following form:

ln L(β)
∗

� ln L(β) + .5 ln|I(β)|, (7)

where |I(β)| denotes the determinant of the Fisher infor-
mation matrix evaluated at β. Penalized maximum likeli-
hood estimates for βr (r� 1, . . ., k) are involved in calculating

z ln L(β)∗

zβr

� U βr( 􏼁
∗

� 􏽘
n

i�1
yi − πi + hi 0.5 − πi( 􏼁( 􏼁xir � 0,

r � 1, . . . , k,

(8)

where the hi’s represent the diagonal elements of the pe-
nalized likelihood version of the standard “hat” matrix:

H � V
1/2

X X′VX( 􏼁
− 1

X′V1/2
. (9)

By this method, the first-order term is removed from the
Taylor series expansion of the bias of the ML estimator,
which has negligible impacts in large samples but can be
severe in small samples or rare events.

Now, Firth-type estimation, 􏽢β, can be produced itera-
tively by Newton–Raphson algorithmwith a starting value of
􏽢β

(0)
� 0 until convergence is obtained.

􏽢β
(s+1)

� 􏽢β
s

+ I
− 1 􏽢β

s
􏼐 􏼑U 􏽢β

s
􏼐 􏼑
∗
, (10)

where the superscript s is the sth iteration. If the penalized
log likelihood assessed at 􏽢β(s+1) is less than that assessed at 􏽢β

s
,

then 􏽢β(s+1) is recalculated by step-halving. +e PML esti-
mations can also be created by carrying out theMLEmethod
and splitting each main observation i into two new obser-
vations having outcomes, 1 − yi and yi, with weights hi/2
and 1 + (hi/2), respectively. +e new observations change
the score function for the ML method to (yi − πi)(1+􏼈

(hi/2)) + (1 − yi − πi)hi/2}xir � yi − πi + hi(0.5 − πi)􏼈 􏼉xir.
+erefore, the breaking of each observation into a nonre-
sponse and a response ensures that the finite PML estimates
always exist [23, 24].

+e standard error estimation is based on the root of the
inverse diagonal elements of the Fisher information matrix,
which is approximated by − (z2 ln L∗/zβ2)􏽮 􏽯

− 1
[16].

2.4. Weighted Logistic Regression. +e weighted logistic re-
gression (WLR) introduced by King and Zeng [20, 25] is one
of the bias correction methods which considers two cor-
rection steps. +e first correction concerns the weights, to
make up for the differences in the proportion of events in the
sample and population. So, the following weighted log-
likelihood should be maximized:

ln Lw(β | y,X) � 􏽘
n

i�1
wi ln

eyiXiβ

1 + eXiβ
􏼠 􏼡, (11)

where wi � w1yi + w0(1 − yi), w0 � 1 − τ/1 − y, w1 � τ/y,
with y and τ that are the fraction of 1s in the sample and
population, respectively, in which the above weighted log-
likelihood is obtained under pure case-control sampling as
follows:

Suppose that the joint distribution of y and X in the
sample is

fs(y,X | β) � Ps(X | y, β)Ps(y). (12)

Yet, since X is a matrix of exploratory variables, then
Ps(X | y, β) � P(X | y, β). In the other words, the condi-
tional probabilities of X in the sample and population are
equal. However, the conditional probability of the pop-
ulation is

P(X | y, β) �
f(y,X | β)

P(y)
. (13)

But,

f(y,X | β) � P(y |X, β)P(X). (14)
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Also, by replacing and rearranging,

fs(y,X | β) � Ps(X | y, β)Ps(y) � P(X | y, β)Ps(y) �
f(y,X | β)

P(y)
Ps(y) �

Ps(y)

P(y)
P(y |X, β)P(X) �

H
Q

P(y |X, β)P(X), (15)

where H and Q represent the proportions in the sample and
population, respectively. +e likelihood is then

L(β) � 􏽙
n

i�1

Hi

Qi

P yi

􏼌􏼌􏼌􏼌 xi, β􏼐 􏼑P xi( 􏼁. (16)

+e log-likelihood for WLR can then be rewritten as

ln Lw(β | y,X) � 􏽘
n

i�1

Qi

Hi

lnP yi

􏼌􏼌􏼌􏼌 xi, β􏼐 􏼑 � 􏽘
n

i�1

Qi

Hi

ln
eyiXiβ

1 + eXiβ
􏼠 􏼡 � 􏽘

n

i�1
wi ln

eyiXiβ

1 + eXiβ
􏼠 􏼡, (17)

where wi � Qi/Hi. +us, the likelihood function must be
multiplied by the inverse of the fractions in order to obtain a
consistent estimator. If the proportion of events in the
population is more than that in the sample, then wi is more
than one, and so the nonevent are given less weight, and vice
versa [26, 27]. +e weighting method has two serious
problems that limit its application: first, the calculation of
the standard errors through the information matrix is se-
verely biased. +is problem will be solved by using White’s
heteroscedasticity-consistent variance matrix [20].

Second, slope coefficient is biased in rare events data. For
solving the second problem, the bias in 􏽢β can be estimated by
the following weighted least-squares expression:

bias(􏽢β) � X′VX( 􏼁
− 1

X′Vξ. (18)

If bias (􏽢β) is the bias component and 􏽢β is the uncorrected
coefficient, then the corrected coefficients 􏽥β is 􏽥β � 􏽢β−

bias(􏽢β), where

ξi � 0.5Qii 1 + w1( 􏼁􏽢πi − w1􏼂 􏼃. (19)

Also, Qii are the diagonal elements of Q � X(X′VX)− 1

X′, and V � diag 􏽢πi(1 − 􏽢πi)wi􏼈 􏼉.
+e variance matrix of 􏽥β is

V(􏽥β) �
n

n + k
􏼒 􏼓

2
V(􏽢β). (20)

Since (n/(n + k))2 < 1, thenV(􏽥β)<V(􏽢β), and so both the
variance and the bias are now diminished.

+e second correction step is to adjust the underesti-
mation of the probabilities when using the bias-corrected
coefficients in the logistic model. By subtracting a correction
factor Ci to the biased value of probability 􏽥πi,

πi � 􏽥πi − Ci, Ci � 0.5 − 􏽥πi( 􏼁􏽥πi 1 − 􏽥πi( 􏼁X0V(􏽥β)X0′ , (21)

where V(􏽥β) is the variance-covariance matrix, X0 is a vector
of exploratory variables, and πi is the approximate unbiased
estimator by means of a known τ. When τ is unknown or
partially known, King and Zeng introduced πi � 􏽥πi + Ci as
the approximate Bayesian estimator. In this case, the

researcher may specify an upper and lower bound for the
possible range of τ.

Maximum Likelihood (ML), Penalized Maximum
Likelihood (PML), and rare event logistic regression were
implemented using the “glm” function and the “logistf” R
package, as well as the “relogit” function in the R package
Zelig, respectively [28, 29].

2.5. Data Generation. In this study, an item response theory
model for binary data was used to produce response data.
+e mathematical form of the IRT model is

pij Y �1 | θi( 􏼁 �
eaj θi − bj( 􏼁

1 + eaj θi − bj( 􏼁
, (22)

where pij(θ) is the probability of correct response for in-
dividual i of item j, aj denotes the item discrimination
parameter, bj is the item difficulty parameter, and θi rep-
resents the ability level for the ith individual. In this study, bj

(j� 2, 3, . . ., J) and θ parameters were simulated from the
standard normal distribution, and aj (j� 2, 3, . . ., J) pa-
rameters were random samples of a uniform distribution
within the interval (1, 2) [1].

In this simulation study, five factors were varied: sample
size, magnitude of uniform DIF, sample size ratio, number
of items, and the degree of rareness or imbalance. +ree
sample sizes (N� 200, 600, 1000) and three levels of sample
size ratio (R� 1, 2, 3) were investigated.+e sample size ratio
between the focal and reference groups was set to 1 :1 for the
equal sample size conditions and 2 :1 and 3 :1 for the un-
equal sample size conditions. More specifically, we created
conditions with nR/nF � 100/100, 67/133, and 50/150 for the
small sample size (N� 200) and nR/nF � 300/300, 200/400,
and 150/450 for the medium sample size (N� 600) and nR/
nF � 500/500, 333/667, and 250/750 for the large sample size
(N� 1000). Furthermore, the two measures with 5 and 15
items were simulated (I� 5, 15).

To generate rare events data, we followed similar sce-
narios and notations used by King and Zeng. In order to
generate imbalanced or rare events data, we applied the logit
model: log it(πi) � β0 + β1xi, πi � p(Yi � 1), by holding β1
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constant (β1 � 1) while varying β0. In this case, the values of
β0 � − 3 and β0 � − 2 generate outcomes with the percentages
of ones which are equal to 6.9% and 15.6%, respectively. It
should be noted that we generate the simulated data based
on the IRTmodel, not the logistic regression. Hence, we need
to show that the parameters of the logistic regression and the
IRT model with binary responses are one-to-one corre-
spondent. In order to denote that both models have similar
mathematical expressions, equation (22) can be rearranged
as log it(πi) � − ajbj + ajθi. By comparing this equation with
the logit function log it(πi) � β0 + β1xi, coefficients β0 and
β1 and the variable xi in the logistic regression model are
found to be, respectively, correspondent to parameters − ajbj,
aj and θi in the IRTmodel (i.e. β0 � –ajbj, β1 � aj and xi � θi).
With the assumption of aj � β1 � 1, the constant parameter
(β0) in the logistic regression is equivalent to the minus value
of the difficulty parameter (− bj) in the IRT model. Ac-
cordingly, in the IRT framework and when aj � 1, with the
values of bj � 3 and 2, we can generate responses with 6.9%
and 15.6% imbalanced degree, respectively.

Statistical power is defined by the proportion of times
that DIF is correctly identified by the logistic method across
replications, and the type I error rate, also referred to the
false positive rate, represents the proportion of non-DIF
items incorrectly flagged as having DIF in 1000 replications.
+e type I error rates are averaged over all without DIF items
[30].

3. Results

Table 1 presents the statistical power of the LR model based
on three different inferential methods (ML, PML, andWLR)
and under various combinations of τ, R, N, DIF, and scale
length. +e major finding was that the power of the ML and
PML was more affected by imbalanced degree (τ) than by
WLR estimation method. Specifically, for the moderate
magnitude of DIF (DIF� 0.4), regardless of the sample size
and number of items, increasing imbalanced or rareness
degree, τ, from 0.156 to 0.069 resulted in a reduction by
approximately 38%, 37%, and 30% in the power of PML,ML,
and WLR, respectively. Furthermore, for the severe mag-
nitude of DIF (DIF� 0.8), a similar finding was observed,
i.e., the power of the PML, ML, and WLR was reduced
approximately by 37%, 35%, and 26%, respectively. In
general, our findings indicated that the power of the three
estimationmethods for detecting DIF could be ordered from
highest to lowest as follows: WLR≥ML≥ PML. Indeed, for
the moderate values of DIF (DIF� 0.4), compared with
WLR, there were reductions of approximately 30% and 24%
under τ � 0.069 and 22% and 16% under τ � 0.156 in the
power for the PML andML, respectively. On the other hand,
when the magnitude of DIF was severe (DIF� 0.8), com-
pared with WLR, there were reductions of approximately
27% and 23% under τ � 0.069 and 14% and 12% under
τ � 0.156 in the power for the PML and ML, respectively.

When the magnitude of DIF was moderate (DIF� 0.4),
N� 1000, R� 1 and I� 15, the maximum power of the PML,
ML, andWLRwas 46%, 48%, and 53% for τ � 0.156 and 25%,
28%, and 32% for τ � 0.069, respectively. Hence, to achieve

the adequate power (0.8) for detecting moderate DIF, we
require a sample size of larger than 1000 (N� 1000). Fur-
thermore, for the severe of DIF (DIF� 0.8) and τ � 0.156, the
power of the PML,ML, andWLRwas 75%, 78%, and 83% for
I� 5 and 80%, 81%, and 87% for I� 15, respectively, when
N� 600 and R� 1, 2. However, under DIF� 0.8, τ � 0.069,
R� 1, and N� 1000, the power of the PML, ML, and WLR
was 66%, 69%, and 77% for I� 5 and 72%, 74%, and 81% for
I� 15, respectively.

Table 2 reports the empirical type I error rate of the LR
model under various combinations of imbalanced degree of
data, sample size, sample size ratio, magnitude of DIF, and
the number of items. In general, regardless of the magnitude
of DIF, sample size, sample size ratio, and the number of
items, the average type I error rates of the ML, PML, and
WLR were 0.06, 0.05, and 0.03 for τ � 0.156 and 0.06, 0.04,
and 0.01 for τ � 0.069. +ese findings indicate that when the
imbalanced degree, τ, increased from 0.156 to 0.069, the
average type I error rate of the WLR decreased dramatically,
while it was close to the 5% level for the ML and PML
methods. However, there were some exceptions where the
type I error rates of the ML, PML, and WLR were higher
than the nominal level of 5%. When DIF� 0.8, N� 1000,
I� 5, and τ � 0.156, the empirical type I error rate was 11%,
11%, and 9% for ML, 8%, 9%, and 8% for PML and 8%, 7%,
and 7% for WLR, when R was equal to 1, 2, and 3, re-
spectively. In this case, as shown in Table 2, when the
number of items increased from 5 to 15, the type I error rate
would be equal or less than 5%.

+e average power and type I error rate on measures
with 5 and 15 items are depicted in Figures 1 and 2.
According to Figure 1, irrespective of the number of items,
the highest power in all combinations belonged to WLR,
while PML and ML had relatively equivalent power.
Figure 2 indicates that, in most simulation conditions, type
I error rate was above or exactly at the nominal significance
level of 0.05 for ML and below or exactly equal to the
nominal level for the PML method (ML; range:
0.05–0.11and PML; range: 0.03–0.05). However, in WLR,
type I error rate was lower than the other two methods and
fluctuated between 0.02 and 0.05, from 0 to 0.01 for
τ � 0.156 and τ � 0.069, respectively.

3.1. Real Data Example. In this section, we used a real data
set to validate the simulation findings. Accordingly, 387
Serbian individuals (40.3% male and 50.7% female) were
selected out of a larger sample of 4192 people from eleven
countries participating in a cross-cultural study [31]. +e
participants completed the 47-item Revised Child Anxiety
and Depression Scale (RCADS). +e RCADS divided into
six subscales including social phobia, separation anxiety
disorder, generalized anxiety, panic disorder, obsessive
compulsive disorder, and major depressive disorder. All
items use the same 4-point Likert-type response scales to
assess the frequency of a certain symptom. We binarized
the item responses after transformation of never and
sometimes into “no symptom,” and often and always into
“symptom.” For details on the RCADS as used in this
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project, see [31]. +e results of DIF analysis of the RCADS
across male and female Serbian adolescents based on three
inferential methods (WLR, PML, and ML) are shown in
Table 3. Our findings showed that ten items with DIF and
33 items without DIF were common across the three

methods. However, the results indicate that the WLR
method is more sensitive than the PML and ML for
detecting DIF. For example, in the separation anxiety
subscale, while the WLR model identified four items with
DIF, one and three items exhibited DIF according to PML

Table 2: Type I error rate of different methods of estimation under different combinations.

Item Ratio N
DIF: 0.4 DIF: 0.8

τ: 0.156 τ: 0.069 τ: 0.156 τ: 0.069
ML PML WLR ML PML WLR ML PML WLR ML PML WLR

5 nf � nr
200 0.07 0.05 0.02 0.07 0.05 0.01∗ 0.07 0.05 0.03 0.07 0.05 0.01∗
600 0.05 0.04 0.03 0.05 0.03 0.01∗ 0.08 0.06 0.05 0.06 0.04 0.01∗
1000 0.07 0.05 0.04 0.06 0.04 0.01 0.11 0.08 0.08 0.06 0.05 0.01

5 nf � 2nr
200 0.07 0.05 0.03 0.07 0.05 0.01 0.08 0.06 0.04 0.07 0.05 0.01
600 0.06 0.04 0.02 0.04 0.04 0.01 0.08 0.06 0.05 0.05 0.04 0.01
1000 0.06 0.05 0.03 0.05 0.04 0.01 0.11 0.09 0.07 0.06 0.04 0.01

5 nf � 3nr
200 0.06 0.04 0.03 0.05 0.04 0.01 0.07 0.05 0.04 0.06 0.04 0.01
600 0.07 0.05 0.03 0.07 0.05 0.01 0.08 0.06 0.04 0.07 0.05 0.01
1000 0.07 0.06 0.04 0.06 0.04 0.01 0.09 0.07 0.07 0.06 0.05 0.01

15 nf � nr
200 0.05 0.03 0.02 0.05 0.03 0.01 0.05 0.03 0.02 0.05 0.03 0.01
600 0.05 0.04 0.02 0.05 0.04 0.01 0.06 0.04 0.03 0.05 0.04 0.01
1000 0.05 0.05 0.03 0.05 0.05 0.01 0.05 0.05 0.03 0.05 0.05 0.01

15 nf � 2nr
200 0.07 0.05 0.03 0.06 0.05 0.01∗ 0.07 0.05 0.03 0.07 0.05 0.01∗
600 0.06 0.04 0.03 0.06 0.05 0.01 0.06 0.05 0.03 0.06 0.05 0.01
1000 0.04 0.04 0.02 0.04 0.03 0.01∗ 0.05 0.04 0.02 0.04 0.04 0.01∗

15 nf � 3nr
200 0.06 0.05 0.02 0.06 0.05 0.01 0.06 0.05 0.02 0.06 0.05 0.01
600 0.05 0.05 0.02 0.05 0.04 0.01∗ 0.05 0.05 0.02 0.05 0.05 0.01∗
1000 0.05 0.04 0.02 0.05 0.04 0.01 0.05 0.04 0.02 0.05 0.04 0.01∗

Note. Ratio: sample size ratio between the reference and focal groups. nr and nf represent sample sizes in reference and focal groups, respectively. N� total
sample size; N� nr + nf. τ: the fraction of 1s in the population. DIF: differential item functioning; ML: maximum likelihood; PML: penalized maximum
likelihood; WLR: Weighted Logistic Regression. ∗Near to 0.01.

Table 1: Statistical power of different methods of estimation under different combinations.

Item Ratio N
DIF: 0.4 DIF: 0.8

τ: 0.156 τ: 0.069 τ: 0.156 τ: 0.069
ML PML WLR ML PML WLR ML PML WLR ML PML WLR

5 nf � nr
200 0.13 0.10 0.16 0.09 0.06 0.12 0.34 0.30 0.42 0.20 0.15 0.28
600 0.29 0.26 0.33 0.17 0.15 0.21 0.78 0.75 0.83 0.49 0.45 0.58
1000 0.46 0.42 0.51 0.23 0.21 0.27 0.94 0.92 0.96 0.69 0.66 0.77

5 nf � 2nr
200 0.13 0.11 0.16 0.09 0.07 0.13 0.32 0.29 0.41 0.19 0.15 0.30
600 0.29 0.27 0.32 0.16 0.15 0.22 0.74 0.72 0.82 0.45 0.44 0.59
1000 0.41 0.39 0.46 0.23 0.22 0.29 0.89 0.88 0.93 0.62 0.61 0.73

5 nf � 3nr
200 0.13 0.11 0.17 0.09 0.08 0.16 0.30 0.28 0.41 0.17 0.16 0.29
600 0.21 0.20 0.26 0.13 0.13 0.18 0.61 0.60 0.73 0.37 0.36 0.51
1000 0.37 0.35 0.42 0.21 0.20 0.26 0.86 0.85 0.91 0.56 0.56 0.70

15 nf � nr
200 0.13 0.11 0.17 0.10 0.09 0.13 0.36 0.33 0.45 0.22 0.18 0.29
600 0.34 0.32 0.38 0.20 0.19 0.23 0.81 0.80 0.87 0.52 0.49 0.62
1000 0.48 0.46 0.53 0.28 0.25 0.32 0.96 0.96 0.98 0.74 0.72 0.81

15 nf � 2nr
200 0.13 0.12 0.17 0.11 0.09 0.15 0.35 0.33 0.44 0.22 0.20 0.32
600 0.34 0.32 0.39 0.20 0.20 0.25 0.77 0.77 0.85 0.51 0.50 0.65
1000 0.45 0.44 0.50 0.25 0.24 0.31 0.94 0.94 0.97 0.70 0.70 0.80

15 nf � 3nr
200 0.13 0.13 0.17 0.10 0.08 0.14 0.31 0.31 0.41 0.19 0.19 0.31
600 0.25 0.25 0.31 0.15 0.15 0.21 0.74 0.74 0.83 0.43 0.44 0.57
1000 0.37 0.37 0.43 0.23 0.24 0.30 0.90 0.89 0.94 0.64 0.66 0.77

Note. Ratio: sample size ratio between the reference and focal groups. nr and nf represent sample sizes in reference and focal groups, respectively. N� total
sample size; N� nr + nf. τ: the fraction of 1s in the population. DIF: differential item functioning; ML: maximum likelihood; PML: penalized maximum
likelihood; WLR: Weighted Logistic Regression.
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Figure 1: Continued.
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Figure 2: Continued.
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Figure 1: +e average power of MLE (solid lines), PML (dotted line), and WLR (broken line) methods on measures with 5 and 15 items.
Note. Left panel for DIF� 0.4 and right panel for DIF� 0.8. From top to bottom, the four panels are (nf � nr, τ � 0.156), (nf � 3nr, τ � 0.156),
(nf � nr, τ � 0.069), and (nf � 3nr, τ � 0.069).

8 BioMed Research International



and ML, respectively. Moreover, as compared with ML and
PML, WLR gives smaller standard error for regression
coefficient, and it can result in increased likelihood of
finding DIF.

4. Discussion

Detecting DIF based on the logistic regression model can be
challenging for binary data where events are rare or severely
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Figure 2: +e average type I error rates of MLE (solid lines), PMLE (dotted line), and WLR (broken line) methods on measures with 5 and
15 items. Note. Left panel for DIF� 0.4 and right panel for DIF� 0.8. From top to bottom, the four panels are (nf � nr, τ � 0.156), (nf � 3nr,
τ � 0.156), (nf � nr, τ � 0.069), and (nf � 3nr, τ � 0.069).

Table 3: +e results of DIF analysis across male and female Serbian individuals based on ML, PML, and WLR methods.

Item
ML PML WLR

B SE P value B SE P value B SE P value τ

Social phobia

7 0.61 0.29 0.032 0.6 0.29 0.042 0.61 0.31 0.042 0.24
20 − 1.16 0.44 0.007 − 1.13 0.44 0.01 − 1.19 0.42 0.002 0.17
38 1.24 0.44 0.002 1.19 0.43 0.004 1.18 0.41 0.001 0.19
43 − 1.57 0.47 <0.001 − 1.52 0.46 0.001 − 1.56 0.44 <0.001 0.19

Separation anxiety

9 − 0.89 0.48 0.06 − 0.86 0.47 0.1 − 0.83 0.36 0.015 0.31
17 2.06 1.22 0.045 1.7 1.06 0.092 0.97 0.75 0.008 0.11
45 0.96 0.48 0.034 0.91 0.47 0.059 1.04 0.56 0.036 0.09
46 − 3.04 1.14 0.001 − 2.69 1.01 0.003 − 1.9 0.51 <0.001 0.14

Generalized anxiety disorder 13 1.14 0.35 0.001 1.12 0.35 0.001 1.12 0.35 0.001 0.31
37 − 2.01 0.44 <0.001 − 1.96 0.44 <0.001 − 1.95 0.44 <0.001 0.22

Obsessive compulsive disorder 23 0.79 0.43 0.059 0.75 0.43 0.1 0.79 0.41 0.038 0.18

Major depression
2 1.23 0.45 0.004 1.18 0.44 0.006 1.19 0.45 0.003 0.19
6 − 1.22 0.58 0.031 − 1.18 0.56 0.043 − 1.15 0.42 0.004 0.12
21 0.63 0.32 0.048 0.62 0.32 0.072 0.65 0.34 0.049 0.26

Note. P value is reported in three decimal places for more accuracy of comparing the three models. τ: the fraction of 1s in the population that is extracted from
a data set of 4192 adolescents in eleven countries. B: regression coefficient for testing uniform DIF. SE: standard error of regression coefficient.
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imbalanced. +e present study is designed to clarify the
unknown consequences of rare events data in the context of
DIF analysis based on the LR model with and without
applying bias correction methods. Hence, in the compre-
hensive simulation study, we compared the performance of
the WLR, PML, and ML methods for detecting DIF with
focus on imbalanced binary response data.

According to our simulation findings, of the three es-
timation methods for detecting DIF, the WLR seems to be
the most appealing with regards to its statistical properties:
its type I error rate is close to or less than the nominal 0.05
level and its power is considerably higher than the PML and
ML. Moreover, in the present study, comparing the three
inferential methods for the real data set confirmed the
findings of the simulation. Accordingly, as compared with
WLR, PML and ML were less sensitive for detecting DIF
across male and female Serbian adolescents.

It is worthwhile to explain why the WLR outperforms the
PML and ML estimation methods for DIF analysis. Indeed,
the WLR is an extension of the small-sample bias corrections,
as described by Cordeiro and McCullagh, to the weighted
likelihood [32]. A previous simulation study has shown that
this bias correction method reduces both the bias and the
variance, thereby offering the smallest Mean Squared Error
(MSE) when compared with that of PML and ML estimation
methods [33]. Hence, applying the WLR in DIF analysis can
lead to reduction in the standard error of the parameter
estimates, which consequently increases the likelihood of
finding DIF. Another advantage of the WLR is that it gives
unbiased predicted probability [15, 20]. However, the pre-
dicted probabilities from the WLRmodel may fall outside the
plausible range of 0 to 1 [15].

Furthermore, our findings revealed that the logistic
regression model based on the traditional ML estimation
method had a slightly better performance than the PML for
imbalanced or rare events data. +ese findings were similar
to those of Lee who reported that the ML slightly out-
performed the PML for detecting DIF in small samples [9].
In this case, as described by Lee, it seems that the sacrifice in
the precision cannot be compensated for the bias reduction
of the PML estimates in imbalanced data. It should also be
noted that while Firth’s PML method reduces the bias in the
estimates of regression coefficients, it introduces bias in the
predicted probabilities, and this bias is not negligible for rare
events data [15]. To overcome this problem, Puhr et al.
proposed two modified versions of Firth’s PML resulting in
unbiased predicted probabilities [15]. Accordingly, the
proposed methods, including Firth’s logistic regression with
intercept correction and Firth’s logistic regression with
added covariate, efficiently improve on predictions from
Firth’s logistic regression [15]. Since these methods were not
implemented in the standard statistical software such as R,
we were not able to apply them in the context of DIF analysis
and compare their results with those of the WLR model.
Hence, in the present study, the WLR is the most efficient
method for DIF analysis under rare events data. +e WLR
not only reduces the bias of regression coefficients but also
provides unbiased predicted probability in comparison to
the PML method [15, 20].

What distinguishes this study from the previous one is
that we simultaneously evaluated the effect of imbalanced data
and small samples (as well as large samples) on the perfor-
mance of the three estimation methods for DIF analysis. In
addition, one of the advantages of the present study is that it
provides a guideline about the required sample size for DIF
analysis with imbalanced or rare events data. Previous sim-
ulation studies have shown that the minimum sample size for
DIF analysis with logistic regression should be within the
range of 100 to 200 per group [34, 35]. However, for moderate
imbalanced data (τ � 0.156) and severe DIF (DIF� 0.8), as a
general rule of thumb, we would suggest imposing a mini-
mum of 300 respondents per group to achieve the adequate
power with the WLR method. In addition, for severe im-
balance rate (τ � 0.069) and DIF� 0.8, theWLR performs well
to ensure the acceptable power with samples of 500 per group.
To find what the minimum number of sample size is to
achieve the adequate power (%80) for moderate DIF, we
simulated items with DIF� 0.4, τ � 0.156 and 0.069, and
sample sizes greater than 500 in each group, not reported in
the results section. +e findings revealed that sample sizes of
at least 1000 per group for τ � 0.156 and 2000 per group for
τ � 0.069 are required to detect DIF� 0.4 based on the WLR
method.

In the present study, we restricted our simulation to only
two bias correction methods for detecting DIF, namely,
WLR and PML. Nevertheless, there are a limited number of
studies that evaluated DIF based on other penalization
methods such as LASSO. For example, Tutz and Schauberger
applied LASSO penalization for DIF analysis which includes
continuous variables [36]. Furthermore, Magis et al. pro-
posed a new DIF detection method based on LASSO where
all items were simultaneously evaluated for DIF in a single
modeling approach so that multiple testing would not be a
problem [37].

5. Conclusion

Although the logistic regression (LR) model is one the most
common methods for detecting DIF, certain sampling
strategies and appropriate bias correction techniques should
be applied when LR is implemented on moderate or severe
imbalanced data sets. In summary, our findings revealed
that, as compared with ML and PML, the WLR is a more
sensitive method for detecting DIF when data are imbal-
anced or rare. Hence, as well as its easy application to
existing software, the WLR introduced by King and Zeng is
strongly recommended for detecting DIF due to higher
power and lower type I error rate in comparison to PML and
ML inferential methods. However, in the future studies of
DIF, penalized and bias correction methods should be
proposed for ordinal logistic regression in the presence of
rare events or small sample setting.
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