
A comparison between several NoSQL databases
with comments and notes

Bogdan George Tudorica, Cristian Bucur
Department for Economical Mathematics and Economical Informatics

Petroleum-Gas University of Ploiesti
Ploiesti, Romania

tudorica_bogdan@yahoo.com

Abstract—This paper is trying to comment on the various NoSQL
(Not only Structured Query Language) systems and to make a
comparison (using multiple criteria) between them. The NoSQL
databases were created as a mean to offer high performance
(both in terms of speed and size) and high availability at the price
of loosing the ACID (Atomic, Consistent, Isolated, Durable) trait
of the traditional databases in exchange with keeping a weaker
BASE (Basic Availability, Soft state, Eventual consistency)
feature. Remains to be seen which of the multiple solutions
created since the official appearance of the NoSQL concept
(which was defined in 1998 and reintroduced in 2009, around
which moment several NoSQL solutions emerged; at the present
moment there are known over 120 such solutions) are really
delivering on these promises of higher performance (although
several of them are already used with very good results).

Keywords-component; database; NoSQL; performance;
comparison

I. INTRODUCTION
The concept described by the term NoSQL (meaning a

database system which is distributed, may not require fixed
table schemas, usually avoids join operations, typically scales
horizontally, does not expose a SQL interface and may be open
source [1] – some are even using the term with the meaning of
a completely non relational system) is also referred by the more
academic sources as a form of structured storage
[4][10][11][12] (although the terms may not be equivalent; the
relational databases also comply by the official definition of the
structured storage term and they are somehow opposite to the
NoSQL term).

One can not simply label the terms RDBMS and NoSQL as
being the exact opposite. There do even exist some middleware
appliances (such as CloudTPS for Google’s BigTable and
Amazon’s SimpleDB [17]) or various solutions (such as
Percolator for Google’s BigTable [14] and an unnamed
prototype system for Google’s Hbase [7]) which are adding full
ACID features to some NoSQL systems.

It is certain that the NoSQL databases are one of the
byproducts of the Web 2.0 era – they were really used only at
the time when the designers of web services with very large
number of users discovered that the traditional relational
database management systems (RDBMS) are fit either for
small but frequent read/write transactions or for large batch

transactions with rare write accesses, and not for heavy
read/write workloads (which is often the case for these large
scale web services – we mean Google, Amazon, Facebook,
Yahoo and such).

It seems that at least some of the major RDBMS producers
are learning something from this evolution (e.g. Microsoft
introduced some NoSQL type features such as snapshot
isolation, although used at a single table level, into its newer
RDBMS product labeled Azure; Oracle 11g is also containing
a similar facility called Oracle Streams, but this one is limited
in the same way as the MS product, this time to a single
instance [7]).

II. WHAT DO WE COMPARE
In order to be able to compare a set of NoSQL solutions the

first step should be to select / classify some products which are
fulfilling similar purposes or have similar qualities / features.

For the moment there is no official taxonomy for this kind
of software although several attempts do exist.

First one is provided by Stefan Edlich on his page [8] and it
is providing the following categories:

A. Core NoSQL Systems, most of them created as
component systems for Web 2.0 services, with the following
subtypes:

• Wide Column Store / Column Families (Hadoop /
HBase, Cassandra, Hypertable, Cloudata, Amazon
SimpleDB, SciDB),

• Document Store (CouchDB, MongoDB, Terrastore,
ThruDB, OrientDB, RavenDB, Citrusleaf, SisoDB,
CloudKit, Perservere, Jackrabbit),

• Key Value / Tuple Store (Azure Table Storage,
MEMBASE, Riak, Redis, Chordless, GenieDB,
Scalaris, Tokyo Cabinet / Tyrant, GT.M, Keyspace,
Berkeley DB, MemcacheDB, HamsterDB, Faircom C-
Tree, Mnesia, LightCloud, Pincaster, Hibari, Scality),

• Eventually Consistent Key Value Store (Amazon
Dynamo, Voldemort, Dynomite, KAI, SubRecord,
Mo8onDb, Dovetaildb),

• Graph Databases (Neo4J, Infinite Graph, Sones,
InfoGrid, HyperGraphDB, Trinity, AllegroGraph,
Bigdata, DEX, OpenLink Virtuoso, VertexDB,
FlockDB, Java Universal Network / Graph
Framework, Sesame, Filament, OWLim, NetworkX,
iGraph),

B. Soft NoSQL Systems, most of them being older or
newer systems which are not related to any Web 2.0 service but
are sharing the traits being described as NoSQL characteristics
(A/N: some of them are having strong ACID / relational
capabilities and, from this reason, they may be misplaced in a
list of NoSQL systems; further analysis may be needed on this
subject), with the following subtypes:

• Object Databases (db4o, Versant, Objectivity,
Gemstone, Progress, Starcounter, Perst, ZODB, NEO,
PicoLisp, Sterling, StupidDB, KiokuDB, Durus),

• Grid & Cloud Database Solutions (GigaSpaces,
Queplix, Hazelcast, Joafip, GridGain, Infinispan,
Coherence, eXtremeScale),

• XML Databases (Mark Logic Server, EMC
Documentum xDB, Tamino, eXist, Sedna, BaseX,
Xindice, Qizx, Berkeley DB XML),

• Multivalue Databases (U2, OpenInsight, OpenQM,
Globals),

• other NoSQL related databases (IBM Lotus/Domino,
Intersystems Cache, eXtremeDB, ISIS Family,
Prevayler, Yserial).

Another taxonomy is provided by an unknown author on an
wiki page [23] and provides the following categories of
NoSQL databases:

• Document store (Apache Jackrabbit, Apache
CouchDB, Lotus Notes, MongoDB, MarkLogic
Server, eXist, SimpleDB, Terrastore),

• Graph (AllegroGraph, Neo4j, DEX, FlockDB),

• Key-value store, with the following subtypes:
Eventually‐consistent key‐value store (Cassandra,
Dynamo, Hibari, Project Voldemort, Riak),
Hierarchical key-value store (GT.M), Hosted services
(Freebase), Key-value cache in RAM (Citrusleaf
database, memcached, Oracle Coherence, Redis, Tuple
space, Velocity), Key-value stores implementing the
Paxos algorithm (Keyspace), Key-value stores on disk
(BigTable, CDB, Citrusleaf database, Dynomite,
Keyspace, membase, MemcacheDB, Redis, Tokyo
Cabinet, TreapDB, Tuple space, MongoDB),
Multivalue databases (Extensible Storage Engine -
ESE/NT, OpenQM, Revelation Software's
OpenInsight, Rocket U2), Object database (db4o,
GemStone/S, InterSystems Caché, JADE,
Objectivity/DB, ObjectStore, Versant Object Database,
ZODB), Ordered key-value store (Berkeley DB, IBM
Informix C-ISAM, MemcacheDB, NMDB), Tabular
(BigTable, Hbase, Hypertable, Mnesia), Tuple store
(Apache River).

As it is not in authors’ intention to provide a NoSQL
taxonomy in this paper, we will not tread further on the reasons
the two sources used for their results.

It is easy for one to see that the two taxonomies, although
seemingly using the same reason (the manner of
implementation) are providing different results (products which
are in the same category in one taxonomy are listed in separate
categories in the other one, the categories labels and divisions
are different).

For this reason we decided to use as grouping criteria,
instead of a single property, an ad-hoc set composed of: main
intended usage, manner of implementation, ease of obtaining
and testing. We only searched for open-source solutions,
having roughly the same number of “users” (we mean
implementations in use), and with more or less the same size
for the average and the largest installation and, if possible, with
the same intended use.

As such, from the multitude of NoSQL solutions available
we restricted our research to a single type of NoSQL databases
(meaning “the Wide Column Store / Column Families” subtype
from the first taxonomy which is roughly equivalent with the
“Key-value store” type from the second taxonomy) and from
this set we took two of the products which have larger use at
the present moment. The result was that we took into
consideration for this study only Hbase and Cassandra (which,
besides the qualities given earlier are also products from the
same family and based on the same framework – Hadoop).

As some description of the selected solutions maybe in
order, here it is:

“The Apache Hadoop software library is a framework that
allows for the distributed processing of large data sets across
clusters of computers using a simple programming model. It is
designed to scale up from single servers to thousands of
machines, each offering local computation and storage. Rather
than rely on hardware to deliver high-availability, the library
itself is designed to detect and handle failures at the application
layer, so delivering a highly-available service on top of a
cluster of computers, each of which may be prone to
failures.”[20]

 “HBase is an open-source, distributed, versioned, column-
oriented store modeled after Google' Bigtable: A Distributed
Storage System for Structured by Chang et al. Just as Bigtable
leverages the distributed data storage provided by the Google
File System, HBase provides Bigtable-like capabilities on top
of Hadoop.”[21]

“The Apache Cassandra Project develops a highly scalable
second-generation distributed database, bringing together
Dynamo's fully distributed design and Bigtable's
ColumnFamily-based data model.”[19]

As a reference element we also took MySQL (also open-
source, but full relational/SQL able) to see what is lost and
what is gained by using a NoSQL solution instead of a
“classic” one.

III. A QUALITATIVE POINT OF VIEW
One can compare some items based on qualitative or

quantitative criteria. As such we will start by comparing what
features are available for the NoSQL databases taken into
account. The features we searched for are:

• Persistence (1)

• Replication (2)

• High Availability (3)

• Transactions (4)

• Rack-locality awareness (5)

• Implementation Language (6)

• Influences / sponsors (7)

• License type (8)

The results are given in the following table. One can see
that the three products offer the same features, the only
differences being the ones related to transactions,
implementation language and license type (although the other
features are not implemented or working in the same way). The
dual licensing solution available now for MySQL is a result of
the series of acquisitions from the last few years (Sun bought
MySQL, Oracle bought Sun).

TABLE I. A COMPARATIVE TABLE WITH THE FEATURES OF THE THREE
SELECTED PRODUCTS

Feat. Cassandra HBase MySQL

1 yes yes yes (using a
different type of

connection than the
typical one)

2 yes yes yes

3 distributed distributed distributed, available
with MySQL Cluster

4 eventually
consistent

locally
(row-level)
consistent

consistent (full
ACID actually)

5 yes

(inherited from
Hadoop)

yes

(inherited
from

Hadoop)

yes

(with MySQL
Cluster)

6 Java Java ANSI C / ANSI C++

7 Dynamo and
BigTable,

Facebook/Digg/
Rackspace

BigTable Oracle

8 Apache 2.0 Apache 2.0 GPL+FLOSS /
proprietary

IV. A QUANTITATIVE POINT OF VIEW
For quantitative evaluation criteria we used two different

sets, one related to size and one related to performance.

A. Common instalations size measurements
The information used for size related criteria are mainly

taken from [19], [22] but also form various sources. There will
be no values given for MySQL as the NoSQL products are
specially designed for large size databases so there is no point
in comparing them with MySQL (it is common knowledge that
the largest MySQL installations cannot be larger than, let’s say,
1 million records of average size without memory caching and
extended sharding; over that limit information retrieval is
becoming too slow to be useful in any situation [15]).

There is no official measurement unit for the size of a DB
installation but we can take several factors into account:

• Number of records / rows /documents stored: [22]
is giving values of 6 to 450 million records for
different installations of HBase, most of them
being in the range of 6 to 25 million records;
various sources are giving sizes of 2 to 150 million
records for diverse installations of Cassandra;

• Number of nodes in an installation: [22] is giving
values of 5 to 110 nodes for Hbase, most of them
being in the range of 6 to 20 nodes; 4 to 150 nodes
for Cassandra with most installations in the span
of 5 to 25 nodes;

• Total size of the installations: less documented;
some instances are showing maximal sizes for
current installations of 140 TB for Hbase and 150
TB for Cassandra.

B. Performance measurements
Most of the data from the following paragraphs, included in

the figures is obtained from [2] which is describing a
laboratory based benchmark which uses YCSB (Yahoo! Cloud
Serving Benchmark) as a measurement tool (more on YCSB
can be found at [25]). The benchmark was run on 120 million
records of small size (1kB), 6 node, and 0.12 TB equivalent
installations of the three products.

1) Performance in a write intensive environment (the
number of writes is equal to the one of reads)

The performance achieved can be seen in Figure 1 and 2.

Figure 1. Read latency in a write intensive environment (source: [2])

Figure 2. Write latency in a write intensive environment (source: [2])

The latency for both reading and writing in Figures 1 and 2

is given as a dependency of number of operations per second.

The two figures are indicating that:

• Over approximately 7000 read or write operations
per second both MySQL and its variation called
Sherpa are becoming unresponsive – the latency
time is becoming too great for a real life
application;

• The write performance of Hbase is greatly
improved by the fact that it’s committing to
memory (and not directly to disk as the other
products). [2] is indicating that the write
performance of Cassandra, Sherpa and MySQL
can also be improved by using a log disk.

2) Performance in a read intensive environment (the read
operations are accounting for 95% of the total number of
operations)

Studying Figures 3 and 4, one can see that:

• In a read intensive environment, MySQL and its
Sherpa variation are offering better results,
keeping the pace with the NoSQL products
(although, taken into account that the benchmark
database was not of a real large size, we do not
think that this trend will look the same for larger
installations);

• A particular figure is given again by Hbase which
is obtaining a very good write performance by
committing to memory.

Figure 3. Read latency in a read intensive environment (source: [2])

Figure 4. Write latency in a read intensive environment (source: [2])

V. CONCLUSIONS
Although the SQL and the NoSQL databases are having

some shared features their behaviors are not similar in given
instances. This is suggesting that they cannot be used
interchangeable for solving any type of problem but one shall
rather choose between the two types of databases for a given
instance.

REFERENCES
[1] Agrawal, Rakesh et al., "The Claremont report on database research",

http://doi.acm.org/10.1145/1462571.1462573, SIGMOD Record (ACM)
37 (3): 9–19. ISSN 0163-5808,

[2] Cooper, Brian F., “Yahoo! Cloud Serving Benchmark”,
http://research.yahoo.com/files/ycsb-v4.pdf, (unpublished)

[3] Bucur, Cristian; Tudorica, Bogdan George, “Solutions for working with
large data volumes in web applications”, The Proceedings of the IE 2011
„Education, Research & Business Technologies” International
Conference, 5-7 May 2011, (in press),

[4] Chang, Fay, et al., “Bigtable: A Distributed Storage System for
Structured Data”, http://labs.google.com/papers/bigtable-osdi06.pdf,
Google, (unpublished),

[5] Cook, John D., “ACID versus BASE for database transactions”,
http://www.johndcook.com/blog/2009/07/06/brewer-cap-theorem-base/.

[6] Cooper, Brian F.; Silberstein, Adam; Tam, Erwin; Ramakrishnan,
Raghu; Sears, Russell, “Yahoo! cloud serving benchmark”,
http://research.yahoo.com/files/ycsb.pdf, ACM Symposium on Cloud
Computing, ACM, Indianapolis, IN, USA (2010),

[7] De Sterck, Hans, Zhang, Chen, “Supporting multi-row distributed
transactions with global snapshot isolation using bare-bones Hbase”,
http://www.cs.uwaterloo.ca/~c15zhang/ZhangDeSterckGrid2010.pdf,
The 11th ACM/IEEE International Conference on Grid Computing
(Grid 2010), Oct 25-29, 2010, Brussels, Belgium

[8] Edlich, Stefan, “NoSQL, your ultimate guide to the non - relational
universe!”, http://nosql-database.org/, (unpublished)

[9] Eure, Ian, "Looking to the future with Cassandra | Digg about",
http://about.digg.com/blog/looking-future-cassandra, About.digg.com.
2009-09-09, (unpublished),

[10] Hamilton, James, “One size does not fit all”,
http://perspectives.mvdirona.com/CommentView,guid,afe46691-a293-
4f9a-8900-5688a597726a.aspx, (unpublished),

[11] Kellerman, Jim, "HBase: structured storage of sparse data for Hadoop"
http://blog.rapleaf.com/wp-content/uploads/2007/12/hbase.pdf,
(unpublished),

[12] Lakshman, Avinash; Malik, Prashant, “Cassandra, a decentralized
structured storage system”,
http://www.cs.cornell.edu/projects/ladis2009/papers/lakshman-
ladis2009.pdf, Cornell University, (unpublished),

[13] Lakshman, Avinash; Malik, Prashant, “Cassandra, Structured storage
system over a P2P network”, http://static.last.fm/johan/nosql-
20090611/cassandra_nosql.pdf, (unpublished),

[14] Peng, Daniel; Dabek, Frank, “Large-scale incremental processing using
distributed transactions and notifications”,
http://www.google.ca/url?sa=t&source=web&cd=3&ved=0CCQQFjAC
&url=http%3A%2F%2Fwww.usenix.org%2Fevents%2Fosdi10%2Ftech
%2Ffull_papers%2FPeng.pdf&rct=j&q=Large-
scale%20Incremental%20Processing%20Using%20Distributed%20Tran
sactions%20and%20Notifications&ei=eM24TOYnjqedB_mHmLUN&u
sg=AFQjCNGGm1Xfaml5lq6Aj1R2BlX7WilIuQ&sig2=ZZcPWxhiMV
SnY-DmewIFIg&cad=rja, The 9th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 2010), Oct 4–6, 2010,
Vancouver, BC, Canada,

[15] Peters, Mike, “How to install Cassandra + Thrift (and why you should
care)”, http://www.softwareprojects.com/resources/programming/t-how-
to-install-cassandra-+-thrift-and-why-you-shou-1956.html,
(unpublished)

[16] Stack, Michael, “HBasics: an introduction to Hadoop Hbase”,
http://static.last.fm/johan/huguk-20090414/michael_stack-hbase.pdf,
HUGUK, April 14th, 2009,

[17] Wei, Zhou; Pierre, Guillaume; Chi, Chi-Hung, “CloudTPS: scalable
transactions for web applications in the cloud”,
http://www.globule.org/publi/CSTWAC_ircs53.html, Technical report
IR-CS-53, Vrije Universiteit, February 2010, to be published at IEEE
Transactions on Services Computing, 2011 (in press),

[18] Wei, Zhou; Pierre, Guillaume; Chi, Chi-Hung, “Consistent join queries
in cloud data stores”,
http://www.globule.org/publi/CJQCDS_ircs68.html, Technical report
IR-CS-68, Vrije Universiteit, January 2011 (unpublished),

[19] ***, “Cassandra”, http://cassandra.apache.org, (unpublished)
[20] ***, “Hadoop”, http://hadoop.apache.org, (unpublished)
[21] ***, ”Hbase”, http://hbase.apache.org, (unpublished)
[22] ***, “Hbase / Powered by”,

http://wiki.apache.org/hadoop/Hbase/PoweredBy, (unpublished)
[23] ***, “NoSQL”, http://en.wikipedia.org/wiki/NoSQL, (unpublished)
[24] ***, “The next generation cloud database“,

http://www.microsoft.com/windowsazure/sqlazure/database/,
(unpublished),

[25] ***, “Yahoo! Cloud Serving Benchmark (YCSB)”,
https://github.com/brianfrankcooper/YCSB/wiki, (unpublished)

