
A Comparison of Alternative Parse Tree Paths
for Labeling Semantic Roles

Reid Swanson and Andrew S. Gordon

Institute for Creative Technologies
University of Southern California

13274 Fiji Way, Marina del Rey, CA 90292 USA
swansonr@ict.usc.edu, gordon@ict.usc.edu

Abstract

The integration of sophisticated infer-
ence-based techniques into natural lan-
guage processing applications first re-
quires a reliable method of encoding the
predicate-argument structure of the pro-
positional content of text. Recent statisti-
cal approaches to automated predicate-
argument annotation have utilized parse
tree paths as predictive features, which
encode the path between a verb predicate
and a node in the parse tree that governs
its argument. In this paper, we explore a
number of alternatives for how these
parse tree paths are encoded, focusing on
the difference between automatically
generated constituency parses and de-
pendency parses. After describing five al-
ternatives for encoding parse tree paths,
we investigate how well each can be
aligned with the argument substrings in
annotated text corpora, their relative pre-
cision and recall performance, and their
comparative learning curves. Results in-
dicate that constituency parsers produce
parse tree paths that can more easily be
aligned to argument substrings, perform
better in precision and recall, and have
more favorable learning curves than
those produced by a dependency parser.

1 Introduction

A persistent goal of natural language processing
research has been the automated transformation
of natural language texts into representations that
unambiguously encode their propositional
content in formal notation. Increasingly, first-
order predicate calculus representations of

textual meaning have been used in natural
lanugage processing applications that involve
automated inference. For example, Moldovan et
al. (2003) demonstrate how predicate-argument
formulations of questions and candidate answer
sentences are unified using logical inference in a
top-performing question-answering application.
The importance of robust techniques for
predicate-argument transformation has motivated
the development of large-scale text corpora with
predicate-argument annotations such as
PropBank (Palmer et al., 2005) and FrameNet
(Baker et al., 1998). These corpora typically take
a pragmatic approach to the predicate-argument
representations of sentences, where predicates
correspond to single word triggers in the surface
form of the sentence (typically verb lemmas),
and arguments can be identified as substrings of
the sentence.

Along with the development of annotated
corpora, researchers have developed new
techniques for automatically identifying the
arguments of predications by labeling text
segments in sentences with semantic roles. Both
Gildea & Jurafsky (2002) and Palmer et al.
(2005) describe statistical labeling algorithms
that achieve high accuracy in assigning semantic
role labels to appropropriate constituents in a
parse tree of a sentence. Each of these efforts
employed the use of parse tree paths as
predictive features, encoding the series of up and
down transitions through a parse tree to move
from the node of the verb (predicate) to the
governing node of the constituent (argument).
Palmer et al. (2005) demonstrate that utilizing
the gold-standard parse trees of the Penn tree-
bank (Marcus et al., 1993) to encode parse tree
paths yields significantly better labeling accuracy
than when using an automatic syntactical parser,
namely that of Collins (1999).

Parse tree paths (between verbs and arguments
that fill semantic roles) are particularly interest-
ing because they symbolically encode the rela-
tionship between the syntactic and semantic as-
pects of verbs, and are potentially generalized
across other verbs within the same class (Levin,
1993). However, the encoding of individual
parse tree paths for predicates is wholly depend-
ent on the characteristics of the parse tree of a
sentence, for which competing approaches could
be taken.

The research effort described in this paper fur-
ther explores the role of parse tree paths in iden-
tifying the argument structure of verb-based
predications. We are particularly interested in
exploring alternatives to the constituency parses
that were used in previous research, including
parsing approaches that employ dependency
grammars. Specifically, our aim is to answer four
important questions:

1. How can parse tree paths be encoded when
employing different automated constituency
parsers, i.e. Charniak (2000), Klein & Manning
(2003), or a dependency parser (Lin, 1998)?

2. Given that each of these alternatives creates
a different formulation of the parse tree of a sen-
tence, which of them encodes branches that are
easiest to align with substrings that have been
annotated with semantic role information?

3. What is the relative precision and recall per-
formance of parse tree paths formulated using
these alternative automated parsing techniques,
and do the results vary depending on argument
type?

4. How many examples of parse tree paths are
necessary to provide as training examples in or-
der to achieve high labeling accuracy when em-
ploying each of these parsing alternatives?

Each of these four questions is addressed in
the four subsequent sections of this paper, fol-
lowed by a discussion of the implications of our
findings and directions for future work.

2 Alternative Parse Tree Paths

Parse tree paths were introduced by Gildea &
Jurafsky (2002) as descriptive features of the
syntactic relationship between predicates and
arguments in the parse tree of a sentence. Predi-
cates are typically assumed to be specific target
words (usually verbs), and arguments are as-
sumed to be a span of words in the sentence that
are governed by a single node in the parse tree. A
parse tree path can be described as a sequence of
transitions up and down a parse tree from the

target word to the governing node, as exempli-
fied in Figure 1.

The encoding of the parse tree path feature is
dependent on the syntactic representation that is
produced by the parser. This, in turn, is depend-
ant on the training corpus used to build the
parser, and the conditioning factors in its prob-
ability model. As result, encodings of parse tree
paths can vary greatly depending on the parser
that is used, yielding parse tree paths that vary in
their ability to generalize across sentences.

In this paper we explore the characteristics of
parse tree paths with respect to different ap-
proaches to automated parsing. We were particu-
larly interested in comparing traditional constitu-
ency parsing (as exemplified in Figure 1) with
dependency parsing, specifically the Minipar
system built by Lin (1998). Minipar is increas-
ingly being used in semantics-based nlp applica-
tions (e.g. Pantel & Lin, 2002). Dependency
parse trees differ from constituency parses in that
they represent sentence structures as a set of de-
pendency relationships between words, typed
asymmetric binary relationships between head
words and modifying words. Figure 2 depicts the
output of Minipar on an example sentence, where
each node is a word or an empty node along with
the word lemma, its part of speech, and the
relationship type to its governing node.

Our motivation for exploring the use of Mini-
par in for the creation of parse tree paths can be
seen by comparing Figure 1 and Figure 2, where

Figure 1: An example parse tree path from

the predicate ate to the argument NP He, rep-
resented as VB↑VP↑S↓NP.

Figure 2. An example dependency parse,

with a parse tree path from the predicate ate
to the argument He.

the Minipar path is both shorter and simpler for
the same predicate-argument relationship, and
could be encoded in various ways that take ad-
vantage of the additional semantic and lexical
information that is provided.

To compare traditional constituency parsing
with dependency parsing, we evaluated the accu-
racy of argument labeling using parse tree paths
generated by two leading constituency parsers
and three variations of parse tree paths generated
by Minipar, as follows:

Charniak: We used the Charniak parser

(2000) to extract parse tree paths similar to those
found in Palmer et al. (2005), with some slight
modifications. In cases where the last node in the
path was a non-branching pre-terminal, we added
the lexical information to the path node. In addi-
tion, our paths led to the lowest governing node,
rather than the highest. For example, the parse
tree path for the argument in Figure 1 would be
encoded as:

VB↑VP↑S↓NP↓PRP:he

Stanford: We also used the Stanford parser

developed by Klein & Manning (2003), with the
same path encoding as the Charniak parser.

Minipar A: We used three variations of parse

tree path encodings based on Lin’s dependency
parser, Minipar (1998). Minipar A is the first and
most restrictive path encoding, where each is
annotated with the entire information output by
Minpar at each node. A typical path might be:

ate:eat,V,i↓He:he,N,s

Minipar B: A second parse tree path encoding

was generated from Minipar parses that relaxes
some of the constraints used in Minpar A. In-
stead of using all the information contained at a
node, in Minipar B we only encode a path with
its part of speech and relational information. For
example:

V,i↓N,s

Minipar C: As the converse to Minipar A we

also tried one other Minipar encoding. As in
Minipar A, we annotated the path with all the
information output, but instead of doing a direct
string comparison during our search, we consid-
ered two paths matching when there was a match
between either the word, the stem, the part of
speech, or the relation. For example, the follow-
ing two parse tree paths would be considered a
match, as both include the relation i.

ate:eat,V,i↓He:he,N,s
was:be,VBE,i↓He:he,N,s

We explored other combinations of depend-

ency relation information for Minipar-derived
parse tree paths, including the use of the deep
relations. However, results obtained using these
other combinations were not notably different
from those of the three base cases listed above,
and are not included in the evaluation results re-
ported in this paper.

3 Aligning arguments to parse trees
nodes in a training / testing corpus

We began our investigation by creating a training
and testing corpus of 400 sentences each contain-
ing an inflection of one of four target verbs (100
each), namely believe, think, give, and receive.
These sentences were selected at random from
the 1994-07 section of the New York Times gi-
gaword corpus from the Linguistic Data Consor-
tium. These four verbs were chosen because of
the synonymy among the first two, and the re-
flexivity of the second two, and because all four
have straightforward argument structures when
viewed as predicates, as follows:

predicate: believe
arg0: the believer
arg1: the thing that is believed

predicate: think
arg0: the thinker
arg1: the thing that is thought

predicate: give
arg0: the giver
arg1: the thing that is given
arg2: the receiver

predicate: receive
arg0: the receiver
arg1: the thing that is received
arg2: the giver

This corpus of sentences was then annotated

with semantic role information by the authors of
this paper. All annotations were made by assign-
ing start and stop locations for each argument in
the unparsed text of the sentence. After an initial
pilot annotation study, the following annotation
policy was adopted to overcome common dis-
agreements: (1) When the argument is a noun
and it is part of a definite description then in-

clude the entire definite description. (2) Do not
include complementizers such as ‘that’ in ‘be-
lieve that’ in an argument. (3) Do include prepo-
sitions such as ‘in’ in ‘believe in’. (4) When in
doubt, assume phrases attach locally. Using this
policy, an agreement of 92.8% was achieved
among annotators for the set of start and stop
locations for arguments. Examples of semantic
role annotations in our corpus for each of the
four predicates are as follows:

1. [Arg0Those who excavated the site in 1907]
believe [Arg1 it once stood two or three stories
high.]

2. Gus is in good shape and [Arg0 I] think [Arg1
he's happy as a bear.]

3. If successful, [Arg0 he] will give [Arg1 the
funds] to [Arg2 his Vietnamese family.]

4. [Arg0 The Bosnian Serbs] have received [Arg1
military and economic support] from [Arg2 Ser-
bia.]

The next step was to parse the corpus of 400
sentences using each of three automated parsing
systems (Charniak, Stanford, and Minipar), and
align each of the annotated arguments with its
closest matching branch in the resulting parse
trees. Given the differences in the parsing models
used by these three systems, each yield parse tree
nodes that govern different spans of text in the
sentence. Often there exists no parse tree node
that governs a span of text that exactly matches
the span of an argument in the annotated corpus.
Accordingly, it was necessary to identify the
closest match possible for each of the three pars-
ing systems in order to encode parse tree paths
for each. We developed a uniform policy that
would facilitate a fair comparison between pars-
ing techniques. Our approach was to identify a
single node in a given parse tree that governed a
string of text with the most overlap with the text
of the annotated argument. Each of the parsing
methods tokenizes the input string differently, so
in order to simplify the selection of the govern-
ing node with the most overlap, we made this
selection based on lowest minimum edit distance
(Levenshtein distance).

All three of these different parsing algorithms
produced single governing nodes that overlapped
well with the human-annotated corpus. However,
it appeared that the two constituency parsers pro-
duced governing nodes that were more closely
aligned, based on minimum edit distance. The
Charniak parser aligned best with the annotated
text, with an average of 2.40 characters for the
lowest minimum edit distance (standard de-
viation = 8.64). The Stanford parser performed

slightly worse (average = 2.67, standard devia-
tion = 8.86), while distances were nearly two
times larger for Minipar (average = 4.73,
standard deviation = 10.44).

In each case, the most overlapping parse tree
node was treated as correct for training and test-
ing purposes.

4 Comparative Performance Evaluation

In order to evaluate the comparative performance
of the parse tree paths for each of the five encod-
ings, we divided the corpus in to equal-sized
training and test sets (50 training and 50 test ex-
amples for each of the four predicates). We then
constructed a system that identified the parse tree
paths for each of the 10 arguments in the training
sets, and applied them to the sentences in each
corresponding test sets. When applying the 50
training parse tree paths to any one of the 50 test
sentences for a given predicate-argument pair, a
set of zero or more candidate answer nodes were
returned. For the purpose of calculating precision
and recall scores, credit was given when the cor-
rect answer appeared in this set. Precision scores
were calculated as the number of correct answers
found divided by the number of all candidate
answer nodes returned. Recall scores were calcu-
lated as the number of correct answers found di-
vided by the total number of correct answers
possible. F-scores were calculated as the equally-
weighted harmonic mean of precision and recall.

Our calculation of recall scores represents the
best-possible performance of systems using only
these types of parse-tree paths. This level of per-
formance could be obtained if a system could
always select the correct answer from the set of
candidates returned. However, it is also informa-
tive to estimate the performance that could be
achieved by randomly selecting among the can-
didate answers, representing a lower-bound on
performance. Accordingly, we computed an ad-
justed recall score that awarded only fractional
credit in cases where more than one candidate
answer was returned (one divided by the set
size). Adjusted recall is the sum of all of these
adjusted credits divided by the total number of
correct answers possible.

Figure 3 summarizes the comparative recall,
precision, f-score, and adjusted recall perform-
ance for each of the five parse tree path formula-
tions. The Charniak parser achieved the highest
overall scores (precision=.49, recall=.68, f-
score=.57, adjusted recall=.48), followed closely

by the Stanford parser (precision=.47, recall=.67,
f-score=.55, adjusted recall=.48).

Our expectation was that the short, semanti-
cally descriptive parse tree paths produced by
Minipar would yield the highest performance.
However, these results indicate the opposite; the
constituency parsers produce the most accurate
parse tree paths. Only Minipar C offers better
recall (0.71) than the constituency parsers, but at
the expense of extremely low precision. Minipar
A offers excellent precision (0.62), but with ex-
tremely low recall. Minipar B provides a balance
between recall and precision performance, but
falls short of being competitive with the parse
tree paths generated by the two constituency
parsers, with an f-score of .44.

We utilized the Sign Test in order to deter-
mine the statistical significance of these differ-
ences. Rank orderings between pairs of systems
were determined based on the adjusted credit that
each system achieved for each test sentence. Sig-
nificant differences were found between the per-
formance of every system (p<0.05), with the ex-
ception of the Charniak and Stanford parsers.
Interestingly, by comparing weighted values for
each test example, Minipar C more frequently
scores higher than Minipar A, even though the

sum of these scores favors Minipar A.
In addition to overall performance, we were

interested in determining whether performance
varied depending on the type of the argument
that is being labeled. In assigning labels to argu-
ments in the corpus, we followed the general
principles set out by Palmer et al. (2005) for la-
beling arguments arg0, arg1 and arg2. Across
each of our four predicates, arg0 is the agent of
the predication (e.g. the person that has the belief
or is doing the giving), and arg1 is the thing that
is acted upon by the agent (e.g. the thing that is
believed or the thing that is given). Arg2 is used
only for the predications based on the verbs give
and receive, where it is used to indicate the other
party of the action.

Our interest was in determining whether these
five approaches yielded different results depend-
ing on the semantic type of the argument. Fig-
ure 4 presents the f-scores for each of these en-
codings across each argument type.

Results indicate that the Charniak and Stan-
ford parsers continue to produce parse tree paths
that outperform each of the Minipar-based ap-
proaches. In each approach argument 0 is the
easiest to identify. Minipar A retains the general
trends of Charniak and Stanford, with argument

Figure 3. Precision, recall, f-scores, and adjusted recall for five parse tree path types

Figure 4. Comparative f-scores for arguments 0, 1, and 2 for five parse tree path types

1 easier to identify than argument 2, while Mini-
par B and C show the reverse. The highest f-
scores for argument 0 were achieved Stanford
(f=.65), while Charniak achieved the highest
scores for argument 1 (f=.55) and argument 2
(f=.49).

5 Learning Curve Comparisons

The creation of large-scale text corpora with syn-
tactic and/or semantic annotations is difficult,
expensive, and time consuming. The PropBank
effort has shown that producing this type of cor-
pora is considerably easier once syntactic analy-
sis has been done, but substantial effort and re-
sources are still required. Better estimates of total
costs could be made if it was known exactly how
many annotations are necessary to achieve ac-
ceptable levels of performance. Accordingly, we
investigated the learning curves of precision, re-
call, f-score, and adjusted recall achieved using
the five different parse tree path encodings.

For each encoding approach, learning curves
were created by applying successively larger
subsets of the training parse tree paths to each of
the items in the corresponding test set. Precision,
recall, f-scores, and adjusted recall were com-
puted as described in the previous section, and
identical subsets of sentences were used across
parsers, in one-sentence increments. Individual
learning curves for each of the five approaches
are given in Figures 5, 6, 7, 8, and 9. Figure 10
presents a comparison of the f-score learning
curves for all five of the approaches.

In each approach, the precision scores slowly
degrade as more training examples are provided,
due to the addition of new parse tree paths that
yield additional candidate answers. Conversely,
the recall scores of each system show their great-
est gains early, and then slowly improve with the
addition of more parse tree paths. In each ap-
proach, the recall scores (estimating best-case
performance) have the same general shape as the
adjusted recall scores (estimating the lower-
bound performance). The divergence between
these two scores increases with the addition of
more training examples, and is more pronounced
in systems employing parse tree paths with less
specific node information. The comparative f-
score curves presented in Figure 10 indicate that
Minipar B is competitive with Charniak and
Stanford when only a small number of training
examples is available. There is some evidence
here that the performance of Minipar A would
continue to improve with the addition of more

training data, suggesting that this approach might
be well-suited for applications where lots of
training data is available.

6 Discussion

Annotated corpora of linguistic phenomena en-
able many new natural language processing ap-
plications and provide new means for tackling
difficult research problems. Just as the Penn
Treebank offers the possibility of developing
systems capable of accurate syntactic parsing,
corpora of semantic role annotations open up
new possibilities for rich textual understanding
and integrated inference.

In this paper, we compared five encodings of
parse tree paths based on two constituency pars-
ers and a dependency parser. Despite our expec-
tations that the semantic richness of dependency
parses would yield paths that outperformed the
others, we discovered that parse tree paths from
Charniak’s constituency parser performed the
best overall. In applications where either preci-
sion or recall is the only concern, then Minipar-
derived parse tree paths would yield the best re-
sults. We also found that the performance of all
of these systems varied across different argument
types.

 In contrast to the performance results reported
by Palmer et al. (2005) and Gildea & Jurafsky
(2002), our evaluation was based solely on parse
tree path features. Even so, we were able to ob-
tain reasonable levels of performance without the
use of additional features or stochastic methods.
Learning curves indicate that the greatest gains
in performance can be garnered from the first 10
or so training examples. This result has implica-
tions for the development of large-scale corpora
of semantically annotated text. Developers
should distribute their effort in order to maxi-
mize the number of predicate-argument pairs
with at least 10 annotations.

An automated semantic role labeling system
could be constructed using only the parse tree
path features described in this paper, with esti-
mated performance between our recall scores and
our adjusted recall scores. There are several ways
to improve on the random selection approach
used in the adjusted recall calculation. For exam-
ple, one could simply select the candidate answer
with the most frequent parse tree path.

The results presented in this paper help inform
the design of future automated semantic role la-
beling systems that improve on the best-
performing systems available today (Gildea &

Figure 5. Charniak learning curves

Figure 6. Stanford learning curves

Figure 7. Minipar A learning curves

Figure 8. Minipar B learning curves

Figure 9. Minipar C learning curves

Figure 10. Comparative F-score curves

Jurafsky, 2002; Moschitti et al., 2005). We found
that different parse tree paths encode different
types of linguistic information, and exhibit dif-
ferent characteristics in the tradeoff between pre-
cision and recall. The best approaches in future
systems will intelligently capitalize on these dif-
ferences in the face of varying amounts of train-
ing data.

In our own future work, we are particularly in-
terested in exploring the regularities that exist
among parse tree paths for different predicates.
By identifying these regularities, we believe that
we will be able to significantly reduce the total
number of annotations necessary to develop lexi-
cal resources that have broad coverage over natu-
ral language.

Acknowledgments
The project or effort depicted was sponsored by
the U. S. Army Research, Development, and En-
gineering Command (RDECOM). The content or
information does not necessarily reflect the posi-
tion or the policy of the Government, and no of-
ficial endorsement should be inferred.

References
Baker, Collin, Charles J. Fillmore and John B. Lowe.

1998. The Berkeley FrameNet Project, In Proceed-
ings of COLING-ACL, Montreal.

Charniak, Eugene. 2000. A maximum-entropy-
inspired parser, In Proceedings NAACL.

Collins, Michael. 1999. Head-Driven Statistical Mod-
els for Natural Language Parsing, PhD thesis, Uni-
versity of Pennsylvania.

Gildea, Daniel and Daniel Jurafsky. 2002. Automatic
labeling of semantic roles, Computational Linguis-
tics, 28(3):245--288.

Klein, Dan and Christopher Manning. 2003. Accurate
Unlexicalized Parsing, In Proceedings of the 41st
Annual Meeting of the Association for Computa-
tional Linguistics, 423-430.

Levin, Beth. 1993. English Verb Classes and Alterna-
tions: A Preliminary Investigation. Chicago, IL:
University of Chicago Press.

Lin, Dekang. 1998. Dependency-Based Evaluation of
MINIPAR, In Proceedings of the Workshop on the
Evaluation of Parsing Systems, First International
Conference on Language Resources and Evaluation,
Granada, Spain.

Marcus, Mitchell P., Beatrice Santorini and Mary Ann
Marcinkiewicz. 1993. Building a Large Annotated
Corpus of English: The Penn Treebank, Computa-
tional Linguistics, 19(35):313-330

Moldovan, Dan I., Christine Clark, Sanda M. Hara-
bagiu & Steven J. Maiorano. 2003. COGEX: A
Logic Prover for Question Answering, HLT-
NAACL.

Moschitti, A., Giuglea, A., Coppola, B. & Basili, R.
2005. Hierarchical Semantic Role Labeling. In
Proceedings of the 9th Conference on Computa-
tional Natural Language Learning (CoNLL 2005
shared task), Ann Arbor(MI), USA.

Palmer, Martha, Dan Gildea and Paul Kingsbury.
2005. The Proposition Bank: An Annotated Corpus
of Semantic Roles, Computational Linguistics.

Pantel, Patrick and Dekang Lin. 2002. Document
clustering with committees, In Proceedings of
SIGIRO2, Tampere, Finland.

