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1 Optimization Problems 

In this paper three optimization problems are chosen to demonstrate the various strengths of 

each algorithm, being four peaks, count ones and knapsack problem. 

Four peaks and count ones were chosen due to their intuitive solutions which may not be 

obvious to machines. At the same time the representation of the two problems are very 

different; four peaks may lead an optimizer towards the local optima, whilst due to the 

oscillating effect in count ones, this does not occur.  

The knapsack problem was chosen due to its ability assess a wide range of parameters and 

different scenarios which is helpful when comparing different optimization approaches. 

Furthermore since changes in configuration would lead to different solutions means that a 

greedy algorithm is unlikely to find the optimal knapsack solution. 

1.1 Four Peaks 
The Four Peaks problem is taken from (Baluja and Caruana, 1995). Given an 𝑁-dimensional 

input vector 𝑋 , the four peaks evaluation function is defined as: 

𝑓 𝑋 , 𝑇 = max 𝑡𝑎𝑖𝑙 0, 𝑋  , 𝑕𝑒𝑎𝑑 1, 𝑋   + 𝑅(𝑋 , 𝑇)  

where 

𝑡𝑎𝑖𝑙 0, 𝑋  =  number of trailing 0's in𝑋  

𝑕𝑒𝑎𝑑 1, 𝑋  =  number of leading 1's in𝑋  

𝑅 𝑋 , 𝑇 =   𝑁 if 𝑡𝑎𝑖𝑙 0, 𝑋  > 𝑇 and 𝑕𝑒𝑎𝑑 1, 𝑋  > 𝑇

0 otherwise
  

There are two global maxima for this function. They are achieved either when there are 𝑇 + 1 

leading 1′𝑠 followed by all 0's or when there are 𝑇 + 1 trailing 0's preceded by all 1's. There are 

also two suboptimal local maxima that occur with a string of all 1′𝑠 or all 0's. Within this paper I 

have set 𝑇 =
𝑁

5
. 



  

  

Left: Two views of the same four peaks problem, when N=100 and T=N/5 (Baluja and Caruana 1995).                

Right: The value of count ones with respect to the integer representation of a bit-vector. 

1.2 Count ones 
Count ones is a discrete function defined for a bit-vector of length 𝑁. The goal is to search for an 

1 filled solution. This can be defined by trying to maximize:  

𝑓 𝑿 =  𝑔 𝑥𝑖 

𝑛

𝑖=0

 

Where 𝑔 𝑥 =  1 if 𝑥 =  1
0 otherwise

 .  

Although this function is obvious to a human, the function oscillates with integer 

representation, since small changes in 𝑥 (i.e. flipping a bit) will lead to small changes in the 

results as shown in the graph below. 

1.3 Knapsack Problem 
The knapsack problem is a constrained optimization problem: given a set of items, each with a 

mass and a value, determined the number of each item to include in a collection so that the total 

weight is less than or equal to a given limit and the total value is as large as possible.  

The knapsack problem can be formulated as follows. Let there be 𝑛 items, 𝑧1 to 𝑧𝑛  where 𝑧𝑖  has 

a non-negative value 𝑣𝑖  and non-negative weight 𝑤𝑖 . 𝑥𝑖 is the number of copies of the item 𝑧𝑖 . 

This is subject to the constraint 𝑊, which is the weight we can carry, and also 𝑐𝑖  which is the 

total number of copies we have for each item 𝑥𝑖 . Then we must attempt to maximize: 



 𝑣𝑖𝑥𝑖

𝑛

𝑖=1

subject to  𝑤𝑖𝑥𝑖 ≤ 𝑊

𝑛

𝑖=1

,     𝑥𝑖 ∈  0, 1, … , 𝑐𝑖  

2 Methodology 

To solve the three problems above, the ABAGAIL library was used. This library has been 

modified, instructions on how to reproduce my results can be found in README.  

For the neural network problem, MATLAB's implementation of genetic algorithm, simulated 

annealing and randomized hill climbing was used.  

2.1 Parameter Tuning 
Each dimension in the three problems above were run 10 times and the results averaged. The 

choice of parameters for SA, GA, and MIMIC were determined by an exhaustive  grid search.  

For SA the parameter varied was: 

 Cooling Schedule - 0.7, 0.8, 0.95 

For GA, five parameters were varied: 

 Population Size - 50%, 100%, 200%, 400% of Problem Size 

 Crossover Type - One point, Two Point, Uniform 

 Crossover Rate - 10%, 40%, 60%, 80%, 100% 

 Mutation Rate - 0.001, 0.01, 0.1, 0.2, 0.5, 0.8, 1 

For MIMIC, two parameters were varied: 

 Number of Samples taken each iteration - 40, 60, 80, 100, 120, 140 

 Number of Samples to be kept each iteration - 20%, 50%, 70%, 90% 

 
Parameter choice does make a difference to the performance of the particular algorithm. The 

graphs and table below demonstrate impact of choice for four peaks and determining weights 

for neural networks. 

 

 

Problem 

Size 

Population 

Size 

Crossover 

Type 

Crossover 

Rate 

Mutation 

Rate 

20 200% Uniform 80% 10% 

40 400% Two Point 60% 20% 

60 400% One Point 100% 20% 

80 400% One Point 100% 20% 

100 400% One Point 60% 40% 

Left: histogram of GA optimal result based on different choice of parameters, Right: Optimal Parameters selected by 

exhaustive grid search for GA 



 

 

Cooling Function MSE 

Exponential: 𝑇𝑘 = 𝑇0 × 0.95𝑘  0.1663 

Exponential: 𝑇𝑘 = 𝑇0 × 0.8𝑘  0.2080 

Exponential: 𝑇𝑘 = 𝑇0 × 0.7𝑘  0.2296 

Boltzman: 𝑇𝑘 = 𝑇0 /log⁡(𝑘) 0.2273 

Fast: 𝑇𝑘 = 𝑇0/𝑘 0.2062 

Left: Graph showing the temperatures of various SA cooling functions at various iterations, Right: the MSE of neural 

networks weights chosen by SA, where 𝑻𝒌 is the temperature at time 𝒌. 

The graph and table above demonstrates why choice of parameters is important. The histogram 

shows the spread of possible values for Four Peaks with problem size = 100 for GA only, this 

shows a wide range of values. The table above also shows the optimal parameters for the Four 

peaks for different problem size. It is clear that different problems will have different solutions 

and thus need to be treated differently. The choice of optimal parameter was performed for 

each of the three problems.  

3 Results 

3.1 Four Peaks 
Four Peaks 

 

Four peaks was run for 𝑛 = {20, 40, 60, 80, 100}, where 𝑛 is the dimension of the vector 𝑋  as 

defined in 1.1. The three graphs below show the average maximum value found by each 



algorithm for each problem size, The number of function calls for each algorithm and the time 

taken as a ratio to RHC. 

GA is clearly the best algorithm, having the highest value, requiring the moderate number of 

function calls and very quick from a time perspective. In fact, on problem sizes 20, 40 and 60, GA 

indeed finds the global maximum.  

Looking at the number of function evaluations completed by each algorithm, we MIMIC and GA 

have less evaluations that RHC and SA whilst generally achieving better scores, with both 

algorithms taking increasingly longer relative to the size of the problem size. 

 In comparison, RHC and SA only managed to reach the local maxima for each problem size. This 

is a reflection of the greedy nature of the algorithm, which fails to cross the large gap which is 

present in the four peaks problem as drawn in section 1.1. This highlights the greedy nature of 

SA and RHC, since it has become stuck on the local optima. In contrast, MIMIC's ability to discern 

structure and history has allowed it to perform better than the local optima, whilst GA's 

crossover operation has allowed it to propagate into the optimal solution. 

3.2 Count ones Function 
Count Ones 

 

Count ones was run for 𝑛 = {40, 60, 80, 100, 120, 140}. where 𝑛 is the size of the problem as 

defined in 1.2. For every problem size, SA and RHC algorithms managed to reach the optimal 

point for this problem. 

From the graphs above, SA and RHC actually reach the optimal value, with the absolute 

difference between MIMIC and the optimal result being minimal, whilst GA's optimal solution 

appears to be degrading at an exponential rate.  



This problem reflects the performance of RHC and SA when there is no discernable structure to 

the problem, as shown in section 1.2. Since GA does not gain much from mutation, and MIMIC's 

knowledge of past points does not truly assist in improving the performance, this allows RHC 

and SA to excel. Furthermore SA and RHC only required 5,000 iterations to reach the optimal 

point, unlike MIMIC or GA which required over 10,000 iterations to reach a sub-optimal 

solution. 

Count ones contrasts well with four peaks as it highlights situations where SA and RHC would 

perform well, compared with MIMIC and GA. When there is structure, GA and MIMIC's 

representation allow it to find better points, whilst when the problem at hand lacks such a 

structure, RHC and SA would perform better. 

3.3 Knapsack 
Knapsack 

 

The knapsack problem was configured by varying the number of items, 𝑛, which were generated 

for 𝑛 = {40, 60, 80, 100, 120, 140}, the maximum weight and maximum volume of the items 

were held constant at 50 for both, with weights and volume of each item randomized for each 

particular run.  

The graph shows the relationship between MIMIC, the best performing algorithm in this 

example compared with the other 3 algorithms. It was completed this way since Knapsack does 

not have an analytical solution and the optimization problem is NP-hard. Overall it is clear that 

MIMIC and GA has the best performance, not only in terms of maximizing the value, but also in 

number of function evaluations, whilst RHC and SA have extremely similar results. 

Knapsack highlights the greedy nature of RHC and SA, since from the top left graph we can see 

the erratic results that RHC and SA have compared with MIMIC and GA which have a consistent 



relationship. This is further evidenced by the fact that despite having twice as many function 

calls as MIMIC and GA, RHC and SA still perform at least 10% worse.  

One reason why GA performs comparably to MIMIC and well compared with RHC and SA for the 

knapsack problem is due to GA's attempt to "capture structure by an ad hoc embedding of the 

parameters onto a line (the chromosome)" (De Bonet, Isbell, and Viola 1997). The ability to 

perform the crossover operation would be equivalent to sampling from a distribution, thus 

allowing GA to match the underlying structure of the problem. This allows GA to perform 

stronger than RHC and SA which does not utilize the structure in the optimization problem. 

Thus in conclusion, for problems where retaining history would assist in creating a better 

optimization problem, MIMIC or GA would be a better performing algorithm, as indicated by 

Four Peaks and Knapsack problems. However, when the optimal point is random over a wide 

range of values RHC and SA may be the better solution as shown by Count ones. 

4 Neural Network 

The Pima Indian Diabetes data set from UCI Machine Learning repository was used for this 

portion of analysis.  

The standard minimization of sum of squared error was used with regularization term as the 

function to minimize. Each algorithm was run until it met the tolerance of 1e-6 or 20 minutes of 

run time, whichever came first. 

RHC was implemented using MATLAB function "patternsearch", whilst GA was implemented 

using MATLAB function "ga". SA was implemented through writing our own implementation, 

this may explain the lower number of function evaluations which SA had, despite having similar 

run time as the other two algorithms. The results were optimized and chosen based on the 

lowest validation error found and are tabulated below. 

Algorithm Optimization Time Function-Evaluations Training Error Validation Error  Testing Error  

RHC 20 min 33,674 0.1503 0.1663 0.1820 

SA 20 min 20,275 0.1415 0.1739 0.1651 

GA 20 min 30,021 0.1528 0.1755 0.1777 

Backpropagation   0.1376 0.1652 0.1666 

 

All approaches had very little to differentiate from each other, however we will examine how 

the inherent nature of the three randomized optimization algorithms result in different weights 

for the neural networks. 



4.1 RHC 
The graphs below show the progression of the search for the minimum point as well as the 

number of function evaluations at each iteration. Since this algorithm was allowed to run for 20 

minutes, the algorithm did not terminate early when caught in a local minima, instead it 

expanded the search mesh in order to determine if any better points can be found in its vicinity. 

This is reflected at around iterations 50 and 70, where the mesh size peaked and the values on 

the best function value graph started to stall. 

Again, RHC demonstrates its greediness when we examine the weights chosen. It has clearly 

simply chosen a few features which it then gave weightings in excess of 2 × 1014  

Left to right: The best point based on the minimizing validation error, the training, validation and test errors over RHC 
iterations, and the mesh size searched against 

 

4.2 SA 
MATLAB's native implementation was tested and but ultimately not used. This was due to the 

default settings of reannealing, which performed worse than a custom implementation with no 

reannealing. Similar to the three problems above, different cooling schedules (Exponential, Fast 

and Boltzman annealing schedule) and parameters, were tested and the best one was chosen 

and shown in the graphs below.  

In contrast to the results from RHC, we can see that at least in the first 30 iterations, SA try to 

look around and accept points may not be the best point. However after the temperature falls 

down low enough it does indeed behave quite similar to RHC. From the number of function 

evaluations, we can see that it evaluated the loss function 40% less times than RHC, and have 

much fewer iterations. Despite this SA performed with similar MSE compared with RHC, which 

is a reflection of the hybrid nature of the algorithm; allowing for random walk-like behavior at 

higher temperatures and RHC behavior at lower temperatures. 

This is further evidenced by the final point selected, which has a much larger mix of weights 

chosen for the hidden layer compared with RHC, with also a much smaller scaling.  



Left to right: The best point based on the minimizing validation error, the training, validation and test errors over RHC 
iterations, and the route which SA algorithm travelled in.

 

Judging by the validation and test plot, it appears that SA does not suffer from as much 

overfitting compared to RHC since it was much later that the validation and test error began to 

bottom out. This is confirmed in the tabular results above. This mirrors the temperature 

schedule (see graph in 2.1 for "exp95" to compare the temperature decrease rate with the 

training error graphs) which will begin to flatten out the errors when the algorithm begins to 

act more like RHC.  

4.3 GA 
Parameter tuning via exhaustive search was used to determine the optimal parameters as 

described in section 2.1. Judging solely by the graphs, it would appear with more lax conditions, 

GA would have terminated early by generation 40. However it continue to try to find better 

points, which we can see from the decrease in error between validation and test error in the 

later generations. This strong performance in GA is most likely related to the cross over model 

structural changes of connections of the layers and therefore lead to good results.  

Left to right: The best point based on the minimizing validation error, the training, validation and test errors over RHC 

iterations, and the best and mean fitness of the population for each generation. 

 

Again, from the best point, we can see how it differs from the greedy nature of RHC, since it has 

a much richer profile similar to SA.  

If the best algorithm was based only on the numbers presented in the original table, it would be 

different to list a preference, however by examining these graphs, GA appears to be the 



strongest performing algorithm since under more lax conditions it would still appear to perform 

well. 

5 Conclusion 

From the experiments performed above, we can see the close relationship between SA and RHC. 

Both of these routines had extremely similar performance with SA requiring less function 

evaluations to get a similar performance to RHC.  

For more complex problems where structure is important, MIMIC and GA performed the best. 

For exhaustive search problem SA or RHC would be preferable depending on the function 

evaluation cost.  

Ultimately it depends on the nature of the problem and what particular factors are most 

important which will determine which of the four algorithms is the best algorithm to use. For a 

time sensitive problem, RHC or SA would be preferable, however when functions are expensive 

to compute, then MIMIC would be the best option. 
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