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A Compilation of Examples for Using Excel for Solving Heat Transfer 

Problems 
 

 

Abstract 

 

Excel spreadsheet available on most desktop or laptop computers can serve as an effective and 

inexpensive computational tool in a heat transfer course. This paper focuses on the application of 

“Solver” and “Goal Seek” functions of Excel in solving those heat transfer problems requiring 

iteration solution process.  It provides a collection of examples demonstrating the application of 

Excel in solving heat transfer problems. Some of the examples have been previously presented at 

various conferences including regional meetings, but not all can be easily accessed.  The paper is 

augmented with additional example to expand the range heat transfer problem areas previously 

presented. Therefore, one aim of the paper is to provide a choice for selection of examples for 

integration into a heat transfer course. Some of the examples provided in this paper can be easily 

integrated into an introductory undergraduate heat transfer course. Those examples employing 

higher level mathematical functions or numerical schemes can be used in an advanced 

undergraduate or an introductory graduate level heat transfer course.  The procedures and 

examples presented in this paper were well received by undergraduate and graduate students 

enrolled in an introductory graduate level heat transfer course.  

 

Introduction 

 

In an introductory undergraduate heat transfer course the coverage of topics includes 

introductions to basic modes of heat transfer, solutions of steady state and transient conduction 

problems, free and forced convection, and an exposure to radiation heat transfer.  Analytical 

solutions are typically limited to one-dimensional steady-state heat conduction problems, one-

dimensional transient conduction problem subject to simplest form of boundary condition, and 

evaluation of radiation view factors for objects displaying simple geometries.  Solutions to heat 

convection problems are based on the empirical formulas provided in the textbooks. To 

demonstrate the application of heat transfer concepts, the course coverage typically includes one-

dimensional heat conduction in fins of uniform cross-sectional area and the analysis of parallel or 

counter flow heat exchangers.  Many of the more complex analytic solutions to heat transfer 

problems given in the textbooks
1-15

 are in forms of graphs or charts. A few examples include 

graphs for fin efficiencies, transient temperature distribution charts for heat transfer in slabs, 

cylinders, or spheres (Heisler Charts), heat exchanger correction factors, NTU-effectiveness 

charts,  and radiation shape (view) factor charts. Many mechanical engineering programs also 

offer a more advanced general heat transfer course to serve advanced undergraduate or entry 

level graduate students.  The duel level course provides a more in-dept coverage of the topics 

included in an undergraduate heat transfer course.  Introductions to condensation and boiling 

heat transfer processes may also be included in dual level course coverage.  Integration of 

computational tool in a heat transfer course is an effective way to aid students in solving more 

complex problems, especially those requiring an iterative trial and error approach.   

 

Prior to the introduction of personal computers (PCs) in the early 1980’s, complex computer 

codes were needed for numerical solution of heat transfer problems. Access to mainframe 
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computers and proficiency in such programming languages as FORTRAN and PASCAL were 

necessary for solving complex heat transfer problems.  As the personal computers became more 

available and affordable, and as the operating systems became more user friendly, their 

applications were gradually integrated into introductory heat transfer courses. Simple 

programming languages such as BASIC were used for solving simple heat transfer problems in 

late 1980s or early 1990s. During this period, all mechanical engineering programs required a 

course in one of the structured computer programming languages. However, in more recent 

years, many degree programs no longer require a course in one of the structured programming 

languages. The trend is now shifted toward using software packages to solve problems 

numerically.   

 

Currently, many publishing companies provide computer software with heat transfer textbooks
10-

15
.  The most commonly used software packages accompanying heat transfer text books are 

Interactive Heat Transfer (IHT)
16

 and Engineering Equation Solver (EES)
17

.   These programs 

are general purpose, non-linear equation solvers with built-in property functions.  They are 

capable of exploring and graphing the effects of change in variables on the solution to a given 

problem. The most significant advantage of these software programs is that no prior knowledge 

of programming language is necessary in their applications. Other software packages are also 

available in the market that could be employed for solving heat transfer problems.  Most of these 

software packages are extremely useful tools for heat transfer analysis and design in an 

undergraduate or an introductory graduate level heat transfer courses. These include Microsoft 

Excel spreadsheet, Mathcad, MATLAB, and Maple. All these software programs can be used to 

solve open-ended problems or parametric studies of heat transfer problems.  Excel, which is 

available on almost all desktop or laptop computers, is an example. Recently, we compared these 

software packages for cost and ease of application for integration into a heat transfer course
18

. 

 

This paper focuses on the application of Microsoft Excel in solving heat transfer problems.  It 

will provide several examples demonstrating the use of “Solver” and “Goal Seek” tools of Excel 

in solving problems requiring iterative processes.  The examples include solutions to heat 

transfer problems involving: i) one-dimensional conduction in fins, ii) one-dimensional transient 

conduction, iii) transient conduction in a semi-infinite region, iv) two-dimensional conduction 

using finite difference formulation, v) laminar flow over an isothermal flat plate, and iv) heat 

exchanger analysis. Some of examples given in this paper for problems involving heat 

conduction in fins, heat exchangers, and solution of boundary layer problems were presented 

previously by the author and others in various regional and national conferences. Since not all 

the papers previously presented might be easily accessible to all readers, some of the examples 

are repeated in this paper.  However, the paper is augmented by examples covering three 

additional heat transfer areas as listed above.  Therefore, this paper provides a wider range of 

choice of examples for integration into a heat transfer course.   

 

 

Excel Spreadsheet 
 

It has been shown
19-26

 that Excel is an effective computational tool for solving heat transfer 

problems. Functions included in this software include 39 engineering functions, as well as 

various math and trigonometry functions.  Among the engineering functions are Bessel 

P
age 14.17.3



functions, error functions, and other functions appearing in heat transfer equations. To use 

functions in the Excel worksheet, the insert button on the Excel menu bar is clicked. Then 

selecting function among a list of options, a dialogue box appears on the screen, as shown on 

Fig. 1.  One can search for the desired function by typing a description of the function (financial, 

engineering, etc.) in the search box or using the “select category” box by scrolling through 

options for the desired function. 

 

For problems requiring iterative calculations, the “Goal Seek” or “Solver” tools can be 

employed.  By using the tool menu and selecting the solver option a dialog box appears, as 

shown in Fig 1. By selecting the target cell and fixing the desired value for that cell, values in the 

selected cells automatically change to correspond to the solution given for the target cell.  This 

will be demonstrated later in several examples.  

 

The following sections demonstrate how “Goal Seek” or “Solver” functions of Excel can be used 

as a tool to solve heat transfer problems requiring trial and error processes. Solutions to several 

example problems requiring trial and error iterative processes are presented to demonstrate the 

effectiveness of Goal Seek and Solver functions of Excel.  

 

 

Examples of Application of Excel 

 

A. One-Dimensional Heat Conduction in Fins 

 

The coverage of the analytical solution of conduction in fins in undergraduate heat transfer 

textbooks is usually limited to fins of uniform cross-sectional area.  For more complex fin 

configurations, only efficiency charts are provided in most heat transfer textbooks
1-15

.  Analysis 

for fins of variable cross-sectional areas or annular fins results in more complex differential 

equations.  The solutions for temperature distribution involve complex functions such as Bessel 

functions.  The analyses for these types of fins are not typically fully covered in an introductory 

heat transfer course.  Instead the results are shown in the form of fin efficiency charts.    

 

The fin efficiency is defined as   
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where, To and T∞ are the base of the fin and the ambient temperatures, respectively, h is the heat 

transfer coefficient, A is the fin surface area, qact denotes the actual heat transfer, qmax represents 

the maximum theoretical heat transfer by assuming that the entire fine is at the base temperature.   

 

Fin efficiency charts approximate the rate of heat transfer, but do not provide any information on 

the temperature distribution in fins.  Microsoft Excel, can be a useful tools in solving heat 

conduction problems for a variety of fin configurations. Several modern textbooks
9-12

 provide 

expressions for the efficiency of most common fin shapes. Somerton, et.al.
19

 and Karimi
20

 have 

demonstrated the use of Excel spreadsheet in solving one dimensional heat conduction problems 

in fins.  The followings are two examples
20

. 
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Fig. 1. Excel worksheet, function selection menu, and solver dialogue box P
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Example 1 

A straight fin of triangular profile (axial section) 0.1 m in length, 0.02 m thick at the base, and 

0.2 m in depth is used to extend the surface of a wall at 200
o
C.  The wall and the fin are made of 

mild steel (k = 54 W/m.
o
C). Air at 10 

o
C (h = 200 W/m

2
·
o
C) flows over the surface of the fin. 

Evaluate the temperature at 0.05 m from the base and at the tip of the fin. Determine the rate of 

heat removal from the fin and the fin efficiency. 

 

 
 

Fig. 2. Sketch of triangular fin in Example 1 

 

 

Solution 

An analytical solution to this problem
7
 gives the following expression for the dimensionless 

temperature distribution  
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where, L is the length of the fin, x is the distance from the tip of the fin, φ is one half of the 

thickness at the base, φkhm 2? , and Io is the modified Bessel function of the first kind of 

order zero.   

 

The rate of heat removal can be calculated by evaluating heat transfer at the base of the fin, 

where x=L.    

 

Lxdx
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kAq

?

/?        (3) 

 

Thus the rate of heat transfer at the base can be expressed by 
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A (x) =2 φ w (x/L) 
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where, w represents the width of the fin. The rate of heat removal from the base is equal to –q. 

Therefore, the fin efficiency can be determined by the following relation  
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The formulation of solution in Excel for this problem is shown in Fig. 3.  The data given in the 

problem statement are first entered into the cells of the worksheet.  Using these data, the 

formulas for the evaluation of m, mL, xLm , Io(mL), I1(mL), Io(mL), Io( xLm ), σ, T, q, and ϕ 

are entered into appropriate cells of the worksheet. To enter formulas an “=” sign is first entered 

into the cell followed with the terms needed for the evaluation of the formula. The basic 

mathematic operators used are +, -, * (multiplication), /, and ^ (power). The calculated results are 

presented in Fig. 4.  By pressing CTRL + ` (grave accent) one can switch between the worksheet 

displaying formulas and their resulting values.  

 

The worksheet shown in Fig. 4 can be expanded to evaluate the temperature profile in the fin and 

plot the results.  To achieve this, the values for x ranging between 0 and 0.1 are entered in 

column A (cells A16 through A-26), as shown in Fig. 5.  Then the cells B16 through E16 are 

highlighted and copied into lower rows by clicking on the bottom boundary corner of cell E16 

and dragging it all the way to cell E26.  By this copying action the values of xLm , Io( xLm ), 

σ, and T are automatically calculated for each value of x listed in column A.  To plot T as a 

function of x, the cells A15 through A26 and E15 through E26 were first highlighted by pressing 

the Ctrl and the mouse appropriate key (usually left key) while moving the cursor over the 

indicated cells.  Then by clicking the chart wizard icon on the menu bar of the worksheet, a menu 

appears offering several standard options for plotting data.  The x-y (scatter) option was selected 

and the four steps of chart wizard were preformed by providing the necessary information in 

each step and pressing the next button.  Finally the Finish button was pressed to show the results 

in the worksheet.  

 

It should be noted that the derivation of equations for temperature profile and heat transfer are 

based on the assumption of one-dimensional heat conduction in the axial direction of the fin.   

For this assumption to be valid, the Biot number, Bi, must satisfy the following condition 

 

∗ +
1.0p

k

PAh

k

hL
Bi ch ??        (6)  

 

where, Lch is a characteristic length, A is the cross sectional area, and P is the perimeter of the 

fin.   For fins of circular cross sectional area, Lch can be represented by the radius, R. 
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Fig. 3. Excel formulation of the solution for problem in Example 1 

 

 

Fig. 4. Solution to Example problem 1 
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Fig. 5. Procedure for the evaluation and plotting of the temperature profile in Example 1 

 

 

Example 2 

A fin of triangular profile (axial section) 0.1 m in length, 0.02 m thick at the base, 0.2 m in depth 

is used to extend the surface of a wall at 200°C. The wall and the fin are made of mild steel (k = 

54 W/m·°C). Air at 10°C (h = 200 W/m
2
·°C) flows over the surface of the fin. Evaluate the 

distance from the base where the temperature is 175°C. 
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Solution 

The solution to this problem is based on the same equations used in the previous example.  

However, in this case the distance, x, cannot explicitly be determined, since it is a part of the 

argument for Bessel function in Eq. 2.  A trial and error procedure is required to solve this 

problem.   

 

An Excel spreadsheet can be used to solve this problem.  One method is to use the same solution 

used in example 1, but in this case the values of x in the spreadsheet can be changed to achieve 

the desired temperature.  The result of this procedure is shown in Fig. 6.  

 

A simpler way to solve the problem is to take the advantage of “Goal Seek” tool in Excel.  The 

procedure and the final solution are shown in Fig.7.  Figure 7-a shows the value of the 

temperature at an arbitrary position in the fin.  By using the tool menu and selecting the Goal 

Seek option a dialog box appears, as shown in Fig 7.  The target cell (temperature in this case, 

cell E16) then is selected and its value is set to a desired value for that cell (175).  The cell that 

its value must be changed is identified (cell A16). After clicking on the Solve button, the value in 

the selected cell A16 (x) automatically changes to a value that yields the desired temperature of 

175 
o
C in the target cell (E16).  The solution is presented in Fig. 7-b.  

 
 Fig. 6   Solution of Example 2 by a trial and error procedure 
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(a) Initial guess 

 

 

 
 

 
 

 

(b) Final solution 

 

Fig 7 Procedure of using the Goal Seek tool to find x where T =175
o
C.   

 

 

B. Transient One Dimensional Heat Conduction  

 

Consider a wall of thickness L, initially at a uniform temperature of Ti.  One surface of the wall 

(at x= 0) is insulated and the other surface temperature (at x =L) is suddenly lowered to T∞.  The 

analytical solution for the temperature profile of this conduction problem is presented in most 

heat transfer textbooks and the dimensionless temperature profile can be expressed as
27
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When Fo > 0.2, only a few terms of the series solution in Eq. (7) is necessary for the evaluation 

of the temperature profile
9
.  Excel can be used to show this behavior.  Figure 8 shows the 

evaluation of Σ at x/L = 0.5 when Fo = 0.2, using Excel. It shows that the fourth term in series 

solution improves the accuracy of Σ∀only by 0.001 (or 0.1 %). For Fourier numbers grater than 

0.2, even less number of terms are necessary for the evaluation Σ.   However, for Fo < 0.2, more 

terms are necessary for the series in Eq. (7) to converge.  For example, Fig. 9 shows that for Fo = 

0.01 and x/L = 0.99, over 90 terms are necessary for the series to fully converge.  

 

Excel is a useful tool for evaluating transient temperature distribution in a wall from Eq. (7).  

When a problem requires the evaluation of position, x, or time, t, from Eq. (7), a trial and error 

procedure is necessary which is very tedious.  The Solver function of Excel can be employed to 

simplify the trial and error iteration process.  The following example demonstrates the use of 

Solver function of Excel in solving one-dimensional transient conduction problems when an 

iteration process is required. 

 

 

 
 

Fig. 8 Evaluation of dimensionless temperature using Excel for a 1-D transient conduction 

problem, Fo = 0.2  

 

P
age 14.17.12



 
Fig. 9 Evaluation of dimensionless temperature for a1-D transient conduction problem, Fo = 

0.01, x/L = 0.99 

 

Example 3 

A stainless steel plate has a thickness of 6 cm and is initially at 400 
o
C.  Both surfaces of the 

plate are suddenly lowered to 60 
o
C.  Calculate the time required for the temperature at 0.5 cm 

below the surface to reache 350 
o
C.  The thermal diffusivity of plate is χ =  4.4x10

-6
 m/s

2
.  

 

Solution 

The solution to this problem can be obtained from Eq. (7).  In this problem the center of the wall 

represents the insulated wall at x= 0, T∞ represents the temperature at x = L when t > 0. Since the 

problem requires the evaluation of time, t, a trial and error process is necessary to solve this 

problem.  The procedure, using Excel spreadsheet, and the final solution are shown in Fig.10.  In 

this procedure, as shown in Fig. 10-a, an assumed time of t =180 seconds was used as a first 

guess and was entered into cell C7. Other parameters given in the problem statement were also 

entered into the appropriate cells of the spreadsheet. The value of x (measured from the center of 

the plate) was set to 0.025 meter in cell C8. Cells C10 and C11 were formulated for the 

evaluation of Fourier number and x/L, respectively.  The values of n were entered in cells A14 

through A115. For each n, the corresponding formulas for νn, the function inside the Υ sign of 

Eq. (7), and Σn∀∀were entered in columns C through E (rows 14 though 102), respectively.  The 

value of T (x, t) was evaluated in cell F115.  
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(b) – Solver dialoug box 

 

 

 
(c) –Solver confirmation of results 

 

(a)- Initial solution based on assumed value of time 

 
(d)- final solution, showing t = 16.62, s 

 

 

Fig. 10.  Solution procedure and the results for Example problem 3 
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Based on the assumed value of t = 180 seconds, Fig 10-a shows that the temperature at 0.5 cm 

below the surface is 76.6 
o
C.  Note that since the calculated value of Fo in cell C10 is larger than 

0.2 (0.88), only the first term in Eq. (7) is needed for the series to converge. The calculated 

temperature in cell F115is different from the desired value of T = 350 
o
C.  Therefore, the time 

must be changed in an iterative process until the desired temperature is achieved.  Solver can be 

utilized for the iteration process.  

 

By using the tool menu and selecting the Solver option, a dialog box appears, as shown in Fig 

10-b. The target cell (temperature in this case, cell F115) is selected, its value is set to the desired 

value for that cell (350), and C7 is identified as the cell that its value (time) needs to be changed 

during the iteration process. When the Solve button is clicked, the value in cell C7 (t) 

automatically changes to a value that yields the desired temperature of 350 
o
C in the target cell 

(F115).  The final solution presented in Fig.10-d shows that at 0.5 cm below the surface the 

temperature reaches 350 
o
C after 16. 62 seconds (cell C7).  Note that for the final solution, 

several terms in the series are necessary for Eq. (7) to converge.  

 

Analytical solutions for one-dimensional transient conduction problems subjected to convective 

heat transfer at boundaries result in infinite series expressions similar to Eq. (7). However, in 

these equations the infinite series solutions contain eigenvalues which are not periodic. For 

example the transient temperature distribution in an infinitely long cylinder subjected for the 

case involving convective heat transfer at the surface may be expressed as
7
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where, the eigenvalues νn are evaluated from the following relationship 

 

  ∗ + ∗ +  01 nnn J
k

hR
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Since the solution of Eq. (9) for the determination of eigenvalues does not yield periodic 

behavior, the evaluation of the arguments r/R or Fo from equation (8) is complex.  Recently, 

Dent, et.al
22

 described a procedure for using Excel to evaluate the temperature from infinite 

series equations given for one-dimensional transient heat conduction problems.  Although the 

procedure described in this paper for using Excel for solving transient heat conduction problems, 

the procedure requires employing Visual Basic Application to create macros functions and 

subroutines.  This requires some programming knowledge.  Therefore no examples are included 

from these papers. 

 

 

C. Transient Heat Conduction in a Semi-infinite Slab. 

 

The following is an example of a transient heat conduction problem in a semi-infinite region, 

which its solution requires a trial and error process.  The solution shows how Solver or Goal 

Seek functions of Excel can be employed effectively to solve the trial and error problem.  
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Example 4 

A semi-infinite concrete slab (k = 0.8 W/m.
o
C) having a uniform temperature of 55 

o
C is 

suddenly exposed to an air stream at 10 
o
C.  The average heat transfer coefficient on the surface 

is 15 W/m
2.o

C.  Determine the distance below the surface of the slab where the temperature 

reaches 45 
o
C after 20 minutes. Thermal diffusivity of concrete is χ =  5.31x10

-7
 m/s

2
.  

 

Solution  

An analytical solution for transient temperature distribution in a semi-infinite slab is expressed 

as
7
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2

k
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δ ?         (12) 

erf denotes error function and, erfc is the complimentary error function. 

 

Since the location x is a part of the arguments for erf and erfc, it can not be found explicitly from 

Eq. (10).  Therefore, the solution requires a trail and error procedure.  Figure 11 shows the result 

of the trial and error process, using an Excel spreadsheet.  The formulas for the parameters of Eq. 

(10) wer entered into cells B9 through F9. An initial value was assumed for x (0.002, m) and 

entered into cell A-9.  The initial guess for x resulted in a value of 39.4 
o
C for the temperature 

(cell F9).  Cells B9 through F9 were copied into the following rows and the value of x was 

changed in each row until column F produced a temperature close to 45 
o
C.  Figure 11 shows 

that the location where T = 45 
o
C is somewhere between x = 0.014 m (T= 44.8 

o
C) and x = 0.016 

m (T = 45.6 
o
C).   

 

Solver tool of Excel can be used to speed up the iteration process.  Again the formulas for the 

parameters in Eq. (10) were entered into cells B-9 through F-9. The solution process is presented 

in Fig. 12. An initial value was assumed for x (0.001, m) and entered into cell A-9, which 

resulted in a corresponding temperature of 38.9 
o
C (Fig 12-a).  Using the tool menu on the 

spreadsheet, Solver was selected.  A dialog box appeared (Fig. 12-b) for setting the Solver 

parameters. In this box the target cell was set to F9 and its value was set to 45. Cell A9 was 

identified for the parameter that its value had to change by the Solver.  Then the Solve button 

was clicked which produced the final result as shown in Fig. 12-c.  The solution shows that at x 

= 0.0144 m below the surface, the temperature is 45 
o
C.  

 

 

D. Finite Difference Solution of Two Dimensional Heat Conduction Problem 

 

For a steady-state, two-dimensional heat conduction in a system having uniform properties and 

no heat generation, the general heat conduction equation reduces to 
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Fig. 11     Solution of example 4 using a trial and error process 

 

 

To find an approximation of temperature distribution, subject to specified boundary conditions, 

the system is typically divided into a network of nodal points and a discretization scheme is used 

to develop finite difference equations for each nodal point using Eq. (13) and the boundary 

conditions.  As a result the heat conduction equation reduces to a system of algebraic equations 

which can be solved using a matrix inversion scheme, Gauss-Seidel iteration method, or other 

iteration procedures.  The following example demonstrate the use of Solver function of Excel in 

steps required to solve a heat conduction problem requiring Gauss-Seidel iteration process.   

 

Example 5 

In a solid section illustrated in the adjacent figure, the 

left surface is insulated.  The right and bottom surfaces 

are maintained at 100 
o
C and 150 

o
C, respectively.  The 

top surface is exposed to a convective environment at T♣ 

= 20 
o
C. The heat transfer coefficient at the top surface 

is h = 30 W/(m
2
.
o
C) and the thermal conductivity of the 

solid k = 5.0 W/(m.
o
C). There is no heat generation in 

the solid. The solid is divided into a nodal network 

where Φx = Φy = 10 cm.  Find the temperatures at nodal 

points 1 through 9. 

 
1 2 1 3 

6 5 4 

7 8 9 
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(a) 

 

 

 
(c ) 

 

 

(b) 

 

 

 

 

 

 

 

 

 

 

 
(d) 

 

Fig. 12   Solution of Example 4, using Solver 

 

 

Solution 
Conducting an energy balance around each nodal point results in the following finite difference 

equations: 
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where, Bi = h Φx/k 

 

Gauss-Seidel iteration procedure can be employed to solve for temperatures at each nodal point.  

As a first step in this process, some values are assumed for T1 through T9. Then in the following 

steps Eqs. (14) through (22) are used to calculate new values for the temperatures at each nodal 

point. At each steps of the calculation, the most recent calculated values of the temperatures are 

used in the right hand side of Eqs. (14) through (22) and the new values of the temperatures at 

each nodal point is compared with the previous value to check if there is any significant changes.  

When all values of |Ti, new – Ti, old| are less than a sufficiently small number, φ, the calculation 

process is seized.  In most cases the procedure converges to final values of temperatures.  

However, there are situation that at each step process the values of |Ti,new – Ti,old| might get 

larger.  In these situations the new calculate value can be relaxed by adjusting the new values by 

the weighted values from the new and the previous iteration steps
28

.  

 

Figure 13 illustrates the Gauss-Seidel iteration process for solving this example problem.  As 

initial guesses, all temperatures were set equal to zero. Then the formulas from Eqs (14) through 

(22) were entered into cells B11 through J11.  The formulation used the last calculated values in 

the right hand side of equations.   The formulas for the calculation of |Ti,new – Ti,old| were also 

entered in cells K11 through S11 and cell T11 was formulated to identify the largest value of 

|Ti,new – Ti,old| = ΦTmax = φ. The formulas in row 11 were copied into the following rows.  The 

iteration process was stopped when φ < 0.01.   Figure 13 shows that this condition was met on 

the 24
th

 step. Cells B34 though J34 give the resulting values of temperatures at the nine nodal 

points.  

 

 

Example 6 

In a solid section illustrated in the figure for example 5, the left surface is insulated.  The right 

and bottom surfaces are maintained at 100 
o
C and 150 

o
C, respectively.  The top surface is 
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exposed to a convective environment where the heat transfer coefficient is h = 30 W/(m
2
.
o
C). 

The thermal conductivity of the solid k = 5.0 W/(m.
o
C). There is no heat generation in the solid. 

The solid is divided into a nodal network where Φx = Φy= 10 cm.  It is required to maintain T6 at 

90 
o
C. What should be the temperature of the convective fluid (T♣) to meet this requirement? 

 

 
 

Fig. 13 Solution of Example 5 using Gauss-Seidel iteration technique 

 

 

Solution 

Since the value of T♣ which is necessary for the evaluation of T1, T2, and T3, from Eqs. (14), 

(15), and (16), respectively, the solution to this example problem requires a second iteration 

scheme in addition to Gauss-Seidel iteration procedure.  The Solver tool of Excel can be utilized 

to solve this problem.  Figure 14 demonstrates the solution technique. 
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(a) – first step solution based on initial guess for T♣ 

   
(b) – Solver dialogue box and confirmation of solution 

 
(c) – final solution 

Fig. 14  Solution of Example problem 6 utilizing Gauss-Seidel iteration method and Solver  
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To solve this problem, a value was assumed for T♣ (20 
o
C) and the procedure described for 

example problem 5 was used to evaluate all nodal point temperatures, including T6.  Figure 14-a 

shows that T6 = 96.56 
o
C based on the assumed value of T♣. Therefore, the value of T♣ needs to 

be changed in a trial and error process in order to achieve the desired value for T6.  The Solver 

tool of Excel was used to speed up the iteration process.  Using the tool menu on the spreadsheet, 

Solver was selected.  The target cell was set to G32 in the dialogue box and its value was set to 

90, as shown in Fig. 14-b. Cell B3 was identified as the parameter that its value had to be 

changed by the Solver.  Then the Solve button was clicked which produced the final result as 

shown in Fig. 14-c.  The solution shows that T♣  must be 3.82 
o
C in order to maintain T6 at 90 

o
C. 

 

There have been other attempts in the recent years to use Excel to solving heat conduction 

problems via finite difference scheme. Sarker and Ketkar
21

 have described the use of Excel in 

solving one-dimensional transient heat conduction problems.  In this work the general heat 

diffusion equation in a cylindrical coordinate system was simplified by assuming no internal heat 

generation and ignoring heat transfer in the axial and angular directions.  The resulting equation 

was transformed into finite difference equations and the resulting matrix for the system of 

equations was solved using Excel. Baughn 
23

 developed a unified numerical technique for 

solving multi-dimensional steady state and transient conduction problems using Excel 

spreadsheet.  The numerical scheme uses Gauss-Seidel iteration process for steady state 

problems and explicit method for transient problems.  The solution method in both papers 

includes the use of macros and subroutines, therefore, these examples are not included. 

 

 

E. Similarity Solution for Laminar Flow over Isothermal Flat Plate 

 

Assuming steady incompressible laminar flow with constant fluid properties, the continuity, 

momentum, and energy equations, respectively, are given by the following relations 
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Using the Blasius method, the continuity and momentum equations reduce to a single ordinary 

differential equation.    
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subject to the following boundary conditions  
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where  

xuy πϕ ♣…         (28) 

 

It can be shown
11

 that the velocity components u and v can be express as  
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Therefore, the velocity components in the hydrodynamic boundary layer can be obtained from 

the solution of Eq. (26). 

 

Defining the following expression for the dimensionless temperature  
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Similar to the momentum equation, the energy equation, Eq. (25), can also be transformed into 

an ordinary differential equation, as presented below  
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Where, Pr is the Prandtl number. The applicable boundary conditions for Eq. (32) are  

 

 0
0

?
?ϕ

σ  and  1??
♣°ϕ

σ       (33) 

 

The standard procedure to find the velocity profile in the hydrodynamic boundary layer is to 

obtain a solution to Eq. (26) using a numerical scheme. The results of the solution of Eq. (26) are 

used in Eq. (32) to determine the temperature profile in the thermal boundary layer.  The solution 

of equation (26) is necessary for the evaluation of shear stress and skin friction of the flat plate.  

The solution of Eq. (32) is needed to derive an expression for the heat transfer coefficient and 

Nusselt number.  The results from the solution of Eq. (26) are presented in forms of table or 

graphs in many undergraduate heat transfer textbooks.  Very few textbooks show the temperature 

profile resulting from the solution of Eq. (32).   

 

Example 7 

Use a numerical scheme to solve Eqs (13) and (19) to evaluate velocity profile in the 

hydrodynamic boundary layer and temperature profile in the thermal boundary layer, 

respectively. Use the results to develop relationships for local friction factor and Nusselt number.  
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Solution 

The standard procedure for obtaining a numerical solution to Eq. (26) typically uses a Runga 

Kutta procedure for solving initial valued differential equations
29

.  However, since the value of f” 

at ϕ =0 is unknown at the initial step of the calculation process, a shooting method is usually 

employed to solve the differential equation.  The solution of the Eq. (26) in Excel through this 

procedure requires some programming skill and the use of Visual Basic for Applications (VBA).  

 

In two separate works Fakheri
24

 and Naraghi
25

 demonstrated the use of Excel in solving the 

boundary layer problem without the employment of VBA.  The following is a summary of 

procedure used by Naraghi
25

 who used the Solver tool of Excel to obtain solutions to Equations 

(26) and (32). 

 

Using a forward finite difference method, the first, second, and third derivatives of function f the 

following relations were obtained 

 

)(1 ϕΦ⁄−?− iii fff        (34) 

 

)(1 ϕΦ⁄⁄−⁄?⁄− iii fff        (35) 

 

)(1 ϕΦ−⁄⁄?⁄⁄− iii fff        (36) 

 

From Eq. (26)  

 

2

. ii
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ff
f

⁄⁄
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A procedure was developed to solve Eq. (26) in an Excel worksheet using Eqs. (34) through 

(37).   Figure 15 shows the process and the results of the procedure.  As shown in Fig. 15-a, ϕ 

was set to zero (0) in cell A3 and the boundary conditions from Eq. (27), f =f’ = 0, were entered 

into cells B3 and C3.  From Eq. (37), f’’’=0 at ϕ = 0.  Therefore, cell E3 was also set to zero.  

The value of f’’ at ϕ = 0 is unknown and it must be determined by trial and error.  Therefore, an 

arbitrary value of 0.8 was selected and entered into cell D3.  To obtain accurate results, the 

increment for Φϕ∀was set to 0.01 and entered into cell G1. The value of ϕ was increased by an 

increment of Φϕ in cells A4 through A803 where ϕ = 8. Equations (34) through (37) were 

entered in cells B4 through E4, respectively.  These cells were highlighted and their contents 

(formulas) were copied into the following rows, through row 803.  The third boundary condition 

requires that f’ approaches 1.0 as ϕbecomes very large.  This condition is not satisfied by the cell 

C803 in Fig. 15-a.  Therefore, the value of f” in cell D3 must be changed until the value of f’ in 

cell C803 approaches 1.   

 

To speed up this trial and error process the Solver tool of Excel was employed. The tool menu 

was used and Solver tool was selected.  A dialog box appeared for entering the parameters for 

the Solver tool.  As shown in Fig 15-b, the target cell was set to C803, the target value was set to 

1, and D3 was selected for the cell which its value had to change. After clicking on the solver 
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button, the values of the variables in the worksheet change to the final results.  The results are 

presented in Fig. 15-c.  

 

 
(a)- fist step solution  

 
(b) – Solver dialogue box 

 
(c ) – final solution 

 

 

Fig. 15 Solution of hydrodynamic boundary layer equation, Eq. (26) 

 

 

A comparison of data in Fig. 15-c with the accepted value in the literature indicates that the 

results are highly accurate.  The boundary layer thickness is defined as a location away from the 

surface of the plate where u = 0.99 u∞.   Therefore, Eq. (29) indicates that at the edge of 

boundary layer thickness, f’ must be equal to 0.99.   Fig 15-c shows that .∀f’=0.99.  This 

compares very well with the established value of ϕ = 4.92 (a relative error of 0.4%). The 

resulting value for f” at ϕ = 0 is used for the evaluation of shear stress at the wall ϖw,x and the 

local friction coefficient, Cf,x.  Fig. 15-c shows a value of 0.3298 for f’ at ϕ = 0 which compares 

well with the published value of 0.332 (0.7% relative error). Therefore, based on this results the 

following relations can be expressed for ϖw,x and Cf,x.  

 

P
age 14.17.25
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A similar procedure was used to solve Eq. (32) for the thermal boundary layer for various Pr 

numbers. Naraghi
25

 used this procedure to solve Eq. (32) in Excel for values of Pr number 

ranging between 0.6 and 100.  Again a forward finite difference method was used the express the 

first and second derivatives of function σ and resulting equations were rearranged into the 

following forms 

 

)(1 ϕσσσ Φ⁄−?− iii         (40) 

 

)(1 ϕσσσ Φ⁄⁄−⁄?⁄− iii         (41) 

 

From Eq. (32)  
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f σ
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The Excel worksheet that resulted in the solution of hydrodynamic boundary layer equation was 

expanded to include columns for σ, σ’, and σ”, as shown in Fig. 16. The boundary condition σ (ϕ 

= 0) = 0 was entered into cell F3.  From Eq. (37), σ’=0 at ϕ = 0.  Therefore, cell H3 was also set 

to zero.  The value of σ’ at ϕ = 0 is unknown and must be determined by trial and error.  Again, 

an arbitrary value of 0.8 was selected and entered into cell G3.  A specific value for Pr number 

was entered into cell I1 (2.0 in this case). Equations (40) through (42) were entered in cells F4 

through H4, respectively.  These cells were highlighted and their contents (formulas) were 

copied into the following rows, through row 803.  The second boundary condition in Eq. (33) 

requires that σ should approach 1.0 as ϕ∀becomes very large.  This condition is not satisfied by 

the cell C803’s value in Fig. 16.  Therefore, the value of σ in cell G3 must be changed until the 

value of σ’ in cell C803 approaches 1.0.  Again the Solver tool of Excel was employed to satisfy 

the second boundary condition.  Again the target cell was set to F803, the target value was set to 

1.0, and G3 was selected for the cell which its value to be changed. After clicking on the solver 

button, the values of the variables in the worksheet change to the final results.  The results are 

presented in Fig. 17. 

 

The thermal boundary layer thickness is defined as a location away from the surface of the plate 

where σ = 0.99.  Figure 17 shows that this condition is met where ϕ = 3.79 for Pr = 2.0.   

 

The local Nusselt number can be expressed as a function of σ’(ϕ =0)  

 

∗ +0Re 21 σ ⁄?? xx
k

hx
Nu        (43) 
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Fig. 16 Initial attempt to solve the thermal boundary layer equation, Pr =2.0 

 

 

The procedure described was repeated for pr numbers ranging between 0.6 and 100.  For each 

value of Pr, the corresponding value of σ’(0) were entered into an Excel worksheet and the 

results were plotted on a graph.  The equation for trend-line resulted in the following correlation 

(R
2
 =0.9999) 

 

∗ + 3357.0Pr3313.00' ?σ        (44) 

 

Combining Eqs (43) and (44) yields the following relationship 

 

3357.021 PrRe3313.0 xx
k

hx
Nu ??        (45) 

 

Equation (45) compares well with the established relationship for the local Nux. 
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k
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Fig. 17 Results of the solution for the thermal boundary layer equation, Pr =2.0 

 

 

F. Heat Exchanger Analysis 

 

In an undergraduate heat transfer course students are introduced to two different types of heat 

exchangers analysis: Logarithmic Mean Temperature Difference (LMTD) and Effectiveness-

NTU methods.   

 

In a heat exchanger the flow heat capacity rate is defined as 

 

      pcmC &?         (47) 
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where,       m& denotes the mass flow rate and cp represents the specific heat of a given fluid stream.  

The rate of heat transfer from or to each fluid stream can be calculated from the following 

relations 

 

 )(     )( ,,,, icoccohihh TTCTTCq /?/?       (48) 

 

where, q is the rate of heat transfer, T denotes temperature; subscripts c and h identify cold and 

fluids, respectively; and subscripts i and o represent inlet and outlet conditions respectively.   

 

The heat transfer rate, based on heat transfer concepts, is expressed as 

 

     )( LMTDFUAq s?        (49) 

 

where, U is the overall heat transfer coefficient, As is the surface area separating the two fluid 

streams, LMTD is the logarithmic mean temperature difference between the two fluid streams, 

and F is an appropriate correction factor which value depends on the type of heat exchanger and 

flow conditions.   

 

In general, LMTD can be expressed as  

 

∗ +ba

ba

TT

TT
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ΦΦ

Φ/Φ
?
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        (50) 

 

where, ΦTa and ΦTb are the temperature differences between the two fluid streams at the terminal 

points of the heat exchangers, as shown in Fig. 18.  

 

 
Fig. 18 Temperature profile of hot and cold fluids in parallel-flow and counter flow heat 

exchanges
7
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The terminal point temperature differences shown for the counter-flow heat exchangers in Fig. 

18 are used in Eq. (50) for the evaluation of LMTD of fluid streams in any other types of heat 

exchangers such as shell-and-tube or cross flow heat exchangers.   

 

For parallel-flow and counter-flow heat exchangers, the correction factor in Eq. (49) has a value 

of F=1.  For other types of heat exchangers, specific charts or equations are used for the 

correction factor, F.   For example, Fig. 19 is a correction factor chart for a one shell-pass, even 

number tube-pass heat exchanger.   

 

 
Fig. 19. LMTD correction factor, F, for a one shell-pass, even number of tube-passes heat 

exchanger.
7
 

 

As shown in Fig. 19, the correction factor, F, is a function of two parameters P and R.   The first 

parameter is defined as  
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Since the denominator in Eq. (51) represents the maximum temperature difference between the 

two fluid streams, the value of P is always less than one.  The second parameter, R, is defined as  
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Depending on the flow heat capacity ratios (or temperature changes for the hot and cold fluids), 

the value of R could be less than one or greater than one.  If the value of R in Eq. (52) ends up be 

greater than one, then R should be replaced by 1/R and P  replaced by PR, since Fig. 19 displays 

curves only for R values that are less than or equal to one.  In other words, 

 

∗ +     )/1,( , RRPFRPFF ??        (53) 
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LMTD method is useful for sizing heat exchangers. That is when the inlet and outlet 

temperatures of the fluid streams are known or could be calculated directly from Eq. (49), 

LMTD and correction factor, F, can be easily evaluated and used in Eq. (50) to calculate the 

surface area or the overall heat transfer coefficient of heat exchangers. However, when two of 

the terminal temperatures of a heat exchanger are unknown and must be evaluated, LMTD can 

not be evaluated explicitly from Eq. (50).  Hence, in these situations an iterative procedure is 

required for the evaluation of LMTD and the correction factor.  In these cases the effectiveness-

NTU method is employed for the analysis of heat exchangers.  

 

The effectiveness of a heat exchanger is defined as  

 

ferheat trans possible maximum

ferheat trans actual
?γ  

 

or  
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where, the Cmin is the smaller of the Ch and Cc.  Combining Eqs (48) and (54) it follows that  

 

  )( ,,min icih TTCq /? γ        (55) 

 

The number of transfer units is defined as 

 

minC

UA
NTU ?          (56) 

 

The capacitance ratio is defined as  

 

max

min

C

C
CR ?          (57) 

 

The derivation of heat exchanger effectiveness equation for parallel-flow is given in most heat 

transfer textbooks.  For a parallel flow heat exchanger, the effectiveness is expressed as  
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In this form the effectiveness is explicitly expressed as a function of NTU and CR.  Alternatively, 

NTU could be expressed as a function of γ and CR.   For a parallel-flow heat exchanger, NTU is 

given as  

 

P
age 14.17.31



∗ +] _

R

R

C

C
NTU

−

−/
?

1

11ln γ         (59) 

 

Heat transfer textbooks provide effectiveness charts for several types of heat exchangers.  For 

example, Fig. 20 displays the effectiveness chart for a single pass cross-flow heat exchanger, one 

fluid unmixed. 

 

 
 Fig. 20  Effectiveness chart for a one-pass cross-flow heat exchanger, one fluid unmixed

7
 

 

 

More recent heat transfer textbooks also provide equations for ∗ +RCNTU ,γγ ?  or 

∗ +RCNTUNTU ,γ?  for several types of heat exchanger.   

 

There are two inherent problems with using charts in thermal analysis of heat exchanger systems. 

First, the accuracy of solutions is highly dependent on how precise one can read the charts, but 

also in problems requiring several stages of iteration, the process could become extremely 

tedious.  Use of equations for correction factors or the effectiveness in a numerical scheme 

increases the accuracy and eases the task of solving problems involving repeated calculations.  

Microsoft Excel is one of the tools that can be used in solving heat exchanger problems.  

Recently, Karimi
26

 descried methods of application of Excel in heat exchanger analysis and 

provided a few examples.  Two examples are included  

 

Example 8 

Water at 15 
o
C with a mass flow rate of 8 kg/s is available to cool hot oil from 90 

o
C to 30 

o
C.  

The oil mass flow rate is 4 kg/s.  A shell-and-tube heat exchanger with one-shell pass and four-

tube-passes is proposed for this process. Using uniform cp values of 2.5 kJ/(kg
 o

C) and 4.2 kJ/(kg
 

o
C) for oil and water, respectively, and assuming an overall heat transfer coefficient of 250 

W/(m
2
.
o
C) for the heat exchanger 

a) determine the surface area of the heat exchanger 

b) plot the heat exchanger surface area as a function of water mass flow rate, when the mass 

flow rates vary between 6 and 30 kg/s.  
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Solution  

This problem can be easily solved, using the LMTD method and the correction chart in Fig. 19.  

Using the specific heat and mass flow rate data given in the problem statement, Eq. (47) yields 

the following results: 

Cc= 33.6 kW/
 o
C 

Ch=10 kW/
 o
C 

The results are substituted into Eq. (48) to obtain Tc, o  

 

q = Ch ΦTh = 10 kW/
 o
C (90-30) 

o
C = 600 kW 

q = 600 kW = Cc (Tc, o –Tc,i ) =33.6 kW/
 o
C (Tc, o -15) 

o
C.   This gives 

Tc, o =32.86 
o
C 

Then, 

ΦTa = 90 – 32.86 = 57.14 
o
C 

ΦTb = 30 – 15 = 15 
o
C 

Substituting ΦTa and ΦTb into Eq. (50), yields 

LMTD = 31.51 
o
C 

In order to evaluate the correction factor, the terminal temperatures of the heat exchanger are 

substituted into Eqs. (51) and (52) to find the values of P and R. 

icih

icoc

TT

TT
P

,,

,,

/

/
? = 0.2381 

icoc

ohih

TT

TT
R

,,

,,

/

/
? = 3.36 

However, since R> 1, in order to use Fig. 19 to evaluate the correction factor, P needs to be 

replaced with PR, and R replaced with 1/R 

PR = (0.2381) (3.36) =0.8 

1/R = 1/3.36= 0.2978 

Then from Fig.19, the correction factor is approximated as 

F = 0.74 

Substituting the known values into Eq. (49) the heat exchanger area is calculated   

     )( LMTDFUAq s?  

600 kW = 0.250 kW/(m
2
.
o
C) As (0.74) (31.51 

o
C) 

As = 102.9 m
2
 

 

The same procedure can be used to solve part (b) of this example, by varying the mass flow rate 

of water.  However, it is clear that the manual solution of part (b) will consume a great deal of 

time without adding much to the learning process.  Employing Excel will ease and speed up the 

calculation process.   

 

In order to use Excel to solve part (b) of this example, the correction factor chart, Fig. 19, must 

be replaced by an appropriate equation.  For a one-shell-pass and even number of tube passes, 

the equation for the correction factor is given as
8
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where, R and P are defined by Eqs. (51) and (52), respectively.   

 

Equation (60), along with equations for Cc, LMTD, P, R, were used in an Excel spreadsheet to 

determine the surface area of the heat exchanger by varying the cooling water mass flow rates.  

Table 1 represents the results of the heat exchanger area calculations.  Excel was used to plot the 

heat exchanger area as a function of water mass flow rate, as shown Fig. 21.  

 

Table 1.  Excel spreadsheet calculation of heat exchanger area for example 8. 

 

mw, 

kg/s 

Cc 

kW/
o
C 

Ch, 

kW/
o
C 

ΦΦΦΦTb, 
o
C 

Tc,o, 
o
C 

ΦΦΦΦTa, 
o
C 

LMTD 
o
C 

P R F 
A, 

m
2
 

6 25.2 10 15 38.81 51.19 29.48 0.3175 2.52 0.500 162.81 

7 29.4 10 15 35.41 54.59 30.65 0.2721 2.94 0.675 115.99 

8 33.6 10 15 32.86 57.14 31.51 0.2381 3.36 0.750 101.51 

9 37.8 10 15 30.87 59.13 32.17 0.2116 3.78 0.796 93.73 

10 42.0 10 15 29.29 60.71 32.70 0.1905 4.2 0.827 88.76 

11 46.2 10 15 27.99 62.01 33.12 0.1732 4.62 0.850 85.28 

12 50.4 10 15 26.90 63.10 33.48 0.1587 5.04 0.867 82.69 

13 54.6 10 15 25.99 64.01 33.78 0.1465 5.46 0.881 80.68 

14 58.8 10 15 25.20 64.80 34.03 0.1361 5.88 0.892 79.08 

15 63.0 10 15 24.52 65.48 34.25 0.1270 6.3 0.901 77.77 

16 67.2 10 15 23.93 66.07 34.45 0.1190 6.72 0.909 76.67 

17 71.4 10 15 23.40 66.60 34.61 0.1120 7.14 0.915 75.74 

18 75.6 10 15 22.94 67.06 34.76 0.1058 7.56 0.921 74.95 

19 79.8 10 15 22.52 67.48 34.90 0.1003 7.98 0.926 74.26 

20 84.0 10 15 22.14 67.86 35.02 0.0952 8.4 0.931 73.65 

21 88.2 10 15 21.80 68.20 35.13 0.0907 8.82 0.934 73.11 

22 92.4 10 15 21.49 68.51 35.23 0.0866 9.24 0.938 72.64 

23 96.6 10 15 21.21 68.79 35.32 0.0828 9.66 0.941 72.21 

24 100.8 10 15 20.95 69.05 35.40 0.0794 10.08 0.944 71.83 

25 105.0 10 15 20.71 69.29 35.48 0.0762 10.5 0.946 71.48 

26 109.2 10 15 20.49 69.51 35.55 0.0733 10.92 0.949 71.16 

27 113.4 10 15 20.29 69.71 35.61 0.0705 11.34 0.951 70.87 

28 117.6 10 15 20.10 69.90 35.67 0.0680 11.76 0.953 70.60 

29 121.8 10 15 19.93 70.07 35.73 0.0657 12.18 0.955 70.36 

30 126.0 10 15 19.76 70.24 35.78 0.0635 12.6 0.956 70.13 

 

 

Example 9 

Consider a cross-flow heat exchanger containing a tube bank that consists of a square array of 

100 thin-walled tubes (10x10), each 2.5 cm in diameter and 5 meter long.  The tubes are aligned 

with a transverse pitch of 5 cm.  Water is used in this heat exchanger to cool hot air from 800 K, 

to 500 K. Water makes a single pass through each tube entering at 12 
o
C.  Hot air enters the heat 

exchanger with a velocity of 5.0 m/s in a cross flow over tubes with a mass flow rate of 2.25 

kg/s.  Determine the water mass flow rate and the exit temperature.   
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Fig. 21 Example 8, Variation of heat exchanger area with the mass flow rate of cooling water 

 

 

Solution 

The following property values are given for air at an average temperature of 650 K: cp,a = 1063 

J/kg.K,  οa = 322.5 x10
-7

 N.s/m, πa = 60.21x10
-6

 m
2
/s, ka = 0.0497 W/m.K, and Pra = 0.69. 

Assuming an average temperature of 340 K for water, the following property values are obtained 

cp,w = 4188 J/kg.K,  οw = 420x10
-6

 N.s/m, πw = 5.35x10
-7

 m
2
/s, kw = 0.660 W/m.K, and Prw = 

2.66 

 

For the external flow over an aligned tube bundle, as shown in Fig. 22, the maximum velocity is 

given by   

 

♣
/

? u
DS

S
u

T

T

max
        (61) 

 

where u∞ is the free stream velocity, D denotes the tube diameter, ST represents the transverse 

pitch. Using the data given in the problem statement 

 umax = 10 m/s 

 

 
Fig. 22.  External flow over an aligned tube bundle

7
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The Reynolds number based on the maximum flow velocity is expressed as 

 

π

Du
D

max

max,Re ?        (62) 

 

where, m is the kinematic viscosity.  Using the kinematic viscosity value given for air 

 ReD,max = 4152.1 

 

For air flow across a tube bundles consisting of 10 or more rows, Grimsion
30

 gave the following 

correlation for the average Nusselt number 
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∝
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where nL represents the number of rows, and ho is the external heat transfer coefficient.  The 

values of C and m depend on the ratios of ST/D and SL/D.  For the case when ST/D = SL/D = 2 

(this example), the values of C and m are given as
30

 0.229 and 0.632, respectively. Based on 

these values, Eq. (51) reduces to  

 

   e 229.0
0.632

max,max, DD RNu ?       (64) 

 

Substituting the value of ReD,max = 4152.1, into Eq. (64) 

 

 NuD,max =44.318 

Then, 

 ho = k NuD,max/D = 88.11 W/m
2
.K 

 

For the internal flow, the Reynolds number is defined as 

 

∗ +

w

iw

D
D

mDu

ορπ

&4 
Re ??        (65) 

where 
iwm )( &  represents the mass flow rate in each tube. If ReD indicates a fully developed 

laminar flow, the Nusselt number, assuming constant surface temperature, is given as  

 

  66.3
 i ??
k

Dh
NuD

        (66) 

 

where, hi represents the heat transfer coefficient inside the tubes.  When ReD indicates a fully 

developed turbulent flow, the Nusselt number, can be approximated by Dittus-Boelter equation
31

 

 

4.08.0i PrRe023.0
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Ignoring the thermal resistance of the tube wall, the overall heat transfer coefficient is expressed 

as  

  

1

11
/









−?

oi hh
U        (68) 

The surface area of the heat exchanger is evaluated, using the following relationship  

  A= N ρ DL = 100 ρ (0.025 m) (4 m) = 31.42 m
2
 

 

NTU was defined in Eq. (56) as 
minC

UANTU ? . 

Using the specific heat and mass flow rate data, Ch is calculated from Eq. (47)  

Ch= Ca = 2364.8 W/
 
K 

The rate of heat transfer is calculated from Eq. (48)   

q = Ch ΦTh = 2364.8 W/
 
K (800-500) K = 709,425 W 

 

At this point there exist too many unknowns to solve the heat exchanger problem directly either 

by the LMTD method or the effectiveness method.  For the LMTD, the exit temperature of water 

is unknown and cannot be calculated directly.  For the effectiveness method NTU, CR, and γ 

cannot be calculated directly without the knowledge of the mass flow rate of water.  Therefore, 

an iterative procedure is required to solve this heat exchanger problem. 

 

We will employ the effectiveness-NTU method in the iterative procedure described below.  

Some steps in the procedure depend on which fluid is assumed to represent the Cmin.  When Cc= 

Cw is chosen as the Cmin, the steps operation is presented in [brackets and italic]. If the one 

assumption does not converge to an answer, then the other assumption can be implemented in the 

iteration process. 

 

1. Assume Ch= Ca represents Cmin  [Assume Cc= Cw represents Cmin] 

2. Assume a value for CR =Cmin/Cmax 

3. Evaluate Cc = Cw = Cmax = Cmin/CR = Ch/CR  [evaluate Cc = Cw = Cmin = CmaxCR = ChCR] 

4. Calculate the total mass flow rate of water, 
wm&  = Cw/cp,w; 

iwm )( & = 
wm& /100 

5. Use the calculated value of 
iwm )( & in Eq. (65) to evaluate ReD 

6. If the flow is laminar use Eq. (66) to evaluate NuD. Otherwise use Eq. (67) 

7. Calculate the internal heat transfer coefficient from the results in step 6 

8. Evaluate the overall heat transfer coefficient from Eq. (68) 

9. Evaluate NTU from Eq. (56) 

10. Substitute the values of NTU and CR in an appropriate effectiveness equation. For a cross-

flow heat exchanger when fluid representing Cmin is mixed and fluid representing Cmax is 

unmixed, the effectiveness, γ.∀is expressed as  

 

∗ +] _} ϒ} ϒ exp1exp1 1
NTUCC RR ////? /γ      (69) 

 

[or a cross-flow heat exchanger when fluid representing Cmax is mixed and fluid representing 

Cmin is unmixed, the effectiveness, γ.∀is expressed as 
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?γ  ]    (70) 

 

11. Use the value of Cc, evaluated at step 3, is used in Eq. (54), to calculate (Tc,o – Tc,i) 

∗ + ∗ +icihR

icoc

icih

icocc

TTC

TT

TTC

TTC

,,

,,

,,min

,, )()(

/

/
?

/

/
?γ , or  ∗ +icihRicoc TTCTT ,,,, )( /?/ γ  

[Use the value of Cc, evaluated at step 3, in Eq. (54), to calculate (Tc, o – Tc i)) 
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/

/
?γ , or  ∗ +icihicoc TTTT ,,,, )( /?/ γ ] 

12. Calculate (Th, i – Th, o) from Eq. (51) 

 )(     )( ,,,, icoccohihh TTCTTCq /?/? , or Rohihicochcohih CTTTTCCTT /)( ))(/(     )( ,,,,,, /?/?/  

[Calculate (Th, i – Th, o) from Eq. (51) 

 )(     )( ,,,, icoccohihh TTCTTCq /?/? , or )( ))(/(     )( ,,,,,, ohihRicochcohih TTCTTCCTT /?/?/ ] 

13. If the value of (Th,i – Th,o)cal evaluated in step 12 is the same (or approximately the same) as 

the actual value of (Th,i – Th,o)act (determined from the values given in the problem 

statement), stop the process and use the last values of Cc and (Tc,o – Tc,i) to evaluate the mass 

flow rate and exit temperature for water.  Otherwise, assume a new value for CR, go to step 3 

and repeat the iteration process.   

 

Excel was employed to implement the procedure described above.  In this process it was 

assumed that Ch= Ca represents Cmin. Table 2 shows the results of the iteration process.  It shows 

that when CR = 0.26105, the calculated value of ΦTh converges to the actual value of ΦTh =300.   

Then water exit temperature can be calculated from 

 Tw, o = Tw, i + ΦTc = 12+78.31 = 90.31 
o
C 

 

Table 2 shows that the water mass flow rate in each tube is 0.0216 kg/s or the total mass flow 

rate of water is 2.16 kg/s. 

 

The Goal Seek or the Solver tools of Excel can be employed to speed up the iteration process for 

solving the example problem 9.  Fig. 23-a shows the assumed (CR) and calculated values for each 

step of the procedure described earlier for the iteration process.  It shows that for an assumed 

value of CR = 0.4 the procedure calculates (ΦTh)calc= 278.66 
o
C, which is different from the 

actual value of ΦTh = 300 
o
C given in the problem statement.   

 

By using the tool menu on the Excel worksheet and selecting the Solver option a menu appears 

as shown in Figure 23-b.  In this menu we can set the target cell (K22) equal to a value of 300 

[(ΦTh)calc = 300 
o
C].  We also identify the cell (A22, CR) that its value needs to be changed 

during the iteration process. By clicking on the Solve button, the Solver will search for a value of 

CR that results in a value of (ΦTh)calc = 300 
o
C.  The values of all other cells will be changed to 

correspond to the final value of CR. The final results obtained from Excel’s Solver tool for 

example 9 is shown in Fig. 23-c.  
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Table 2 Iteration process results from Excel spreadsheet for example 9  

 

step 2 step 3 Step 4 step 5 step 6 Step 7 step 8 step 9 step10 step 11 step 12 

CR Cc =Cmax (mw)i ReD NuD hi U NTU γγγγ∀∀∀∀ ΦΦΦΦTc∀∀∀∀ (ΦΦΦΦTh)calc 

0.1 23648 0.0565 6847.0 39.82 1051.2 81.29 1.0800 0.6407 33.00 329.98 

0.2 11824 0.0282 3423.5 22.87 603.8 76.89 1.0214 0.6030 62.11 310.55 

0.3 7883 0.0188 2282.3 16.53 436.5 73.31 0.9739 0.5702 88.10 293.67 

0.21 11261 0.0269 3260.5 21.99 580.6 76.50 1.0163 0.5995 64.84 308.76 

0.22 10749 0.0257 3112.3 21.19 559.4 76.12 1.0112 0.5961 67.54 307.00 

0.23 10282 0.0245 2977.0 20.45 539.9 75.74 1.0063 0.5927 70.21 305.26 

0.24 9853 0.0235 2852.9 19.77 521.8 75.38 1.0014 0.5894 72.85 303.54 

0.25 9459 0.0226 2738.8 19.13 505.0 75.02 0.9966 0.5861 75.46 301.85 

0.26 9095 0.0217 2633.5 18.54 489.4 74.66 0.9919 0.5829 78.05 300.17 

0.27 8758 0.0209 2535.9 17.99 474.9 74.32 0.9873 0.5796 80.60 298.52 

0.261 9060 0.0216 2623.4 18.48 487.9 74.63 0.9915 0.5825 78.30 300.01 

0.262 9026 0.0216 2613.4 18.43 486.5 74.59 0.9910 0.5822 78.56 299.84 

0.2611 9057 0.0216 2622.4 18.48 487.8 74.63 0.9914 0.5825 78.33 299.99 

0.26105 9059 0.0216 2622.9 18.48 487.9 74.63 0.9914 0.5825 78.31 300.00 

 

 

Integration into Heat transfer Course 

 

Examples included in this paper were integrated into an advanced heat transfer course open to 

advanced undergraduate students and entry level graduate students.   The integration covered two 

semesters when the course was offered in the last three years.  The enrollment included 

approximately 10 % undergraduate and 90% master level students.  All students had previously 

taken an undergraduate introductory heat transfer course.  Is solving problems that required 

iteration process, student were given a choice of using Excel or any other software available 

them.  Even though students had easy access to such software programs as IHT or MATLAB, 

approximately 70% of students chose Excel to complete their assignments.  The author has not 

taught an introductory undergraduate heat transfer course in the last two years, but he plans to 

integrate the examples into the undergraduate course when the next opportunity of teaching the 

course.  However, the author has successfully integrated the use of Solver or Goal Seek tools of 

Excel in the undergraduate thermodynamic courses for solving problems requiring trail and error 

processes.   

 

 

Summary 

 

The application of Excel spreadsheet in solving a variety of heat transfer problems was 

demonstrated through several examples.  It was shown that Excel is a useful computational tool 

when the solution to problems requires (a) varying one of the parameters, (b) plotting the results 

of calculations, and (c) an iteration process.  Excel is accessible to all students and, typically is 

available on most desktop and laptop computers. 
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(a) – First step of iteration process 

 
(b) – Solver dialogue box 

 
(c) -Final solution 

Fig. 23.  First step in using Solver for the iteration process in Example problem 9 

P
age 14.17.40



References 

 
1. Kreith, F., Principles of Heat Transfer, Second Edition, International Book Company, New York, 1965. 

2. Bayley, F. J, Owen, M.J, and Turner, A. B, Heat Transfer, Barnes and Noble, New York, 1972. 

3. Chapman, A. J, Fundamentals of Heat Transfer, Macmillan, New York, 1974. 

4. Wolf, H., Heat Transfer, Harper and Row Publishers, New York, 1983. 

5. White, F., 1984, Heat Transfer, Addison-Wesley Publishing, Reading, Massachusetts, 1984. 

6. Ozisik, M. N., Heat Transfer, A Basic Approach, McGraw Hill, New York, 1985. 

7. Lienhard, J. H IV and Lienhard, J. H. V,  A Heat Transfer Textbook, phlogiston, Press, Cambridge, MA, 2003. 

8. Thomas, A.C., Heat Transfer, Prentice Hall, New Jersey, 1992. 

9. Holman, J.P., Heat Transfer, Ninth Edition, New York, 2002. 

10. Mills, A.F., Basic Heat and Mass Transfer, 2
nd

 edition, Prentice Hall, New Jersey, 1999. 

11. Incropera, F. P., De Witt, D.P., Bergman, T. L., Lavin, A.S., Introduction to Heat Transfer, Fifth Edition, John 

Wiley, New York, 2007. 

12. Cengel, Y. A., Heat Transfer, A Practical Approach, Second Edition, McGraw Hill, New York,2003. 

13. Cengel Y. A., Turner, R. H., Fundamentals of Thermal-Fluid Sciences, 2
nd

 Edition, McGraw Hill, New York 

2005. 

14. Moran, M. J., Shapiro, H. N., Munson, B. R., and DeWitt, D. P., Introduction to Thermal Systems Engineering: 

Thermodynamics, Fluid Mechanics, and Heat Transfer, John Wiley, New York 2003. 

15. Kaviany, M., Principles of Heat Transfer, John Wiley, New York, 2002.  

16. Smith, T. F. and Wen, J., Interactive Heat Transfer, V.2.0, John Wiley, New York, 2002. 

17. Beckman, W. A., and Klein, S. A., http://www.fchart.com/ees/ees.shtml  

18. Karimi, A, Deleon, J., and Hannan, M. “A Review of Available Computer Software Packages for Use in an 

Undergraduate Heat Transfer Course,” IMECE2007-43289, Proceedings of 2007 International Mechanical 

Engineering Congress and Exposition, Seattle, Washington, 2007. 

19. Somerton, C. W., Schroeder, J. B., Lacin, F., and Harrier R. “Alternative Approaches to Teaching Extended 

Surface Heat Transfer,” ASEE 2003-1333 Proceedings of the 2003 American Society for Engineering 

Education Annual Conference & Exposition, Nashville, Tennessee.  

20. Karimi, A., “Use of Spreadsheet in Solving Heat Conduction Problems in Fins,” AC 2008-1870, Proceedings of 

the 2008 American Society for Engineering Education Annual Conferences & Exposition, Pittsburgh, 

Pennsylvania. 

21. Sarker, N. N.and Ketkar, M. A., “Developing Excel Macros for Solving Heat Diffusion Problems,” ASEE-

2004-1520, Proceedings of the 2004 American Society for Engineering Education Annual Conferences & 

Exposition, Salt Lake City, Utah. 

22. Dent, T., Woodbury, K., and Taylor, R., “Microsoft Excel Heat Transfer Add-in for Engineering Courses,” AC 

2008-933, Proceedings of the 2008 American Society for Engineering Education Annual Conferences & 

Exposition, Pittsburgh, Pennsylvania 
23. Baughn J. W. “A Spreadsheet Approach to Teaching Numerical Methods For Steady and Unsteady Heat 

Transfer,” ASEE 2005-2588, Proceedings of the 2005 American Society for Engineering Education Annual 

Conferences & Exposition,, Portland, Oregon. 

24. Fakheri, A., “Spreadsheet Solution of the Boundary Layer Equations,” IMECE2004-59515, Proceedings of 

2004 International Mechanical Engineering Congress and Exposition, Anaheim, California, 2004. 

25. Naraghi, M H. “Solution of Similarity Transform Equation for Boundary Layers Using Spreadsheets,” 

IMECE2004-61491, Proceedings of 2004 International Mechanical Engineering Congress and Exposition, 

Anaheim, California, 2004. 

26. Karimi, A., “Application of Excel in Solving Heat Exchanger Problems,” ASEE-GSW 5-1, Proceedings of the 

2008 ASEE-GSW section Annual Conference, March 26-28, Albuquerque, New Mexico, 2008. 

27. Kakac S. and Yener, Y., Heat Conduction, 3
rd

 Edition, Taylor and Francis, Washington D.C., 1993. 

28. Chapra, S.C. and Canale, R., Numerical Methods for Engineers, Fourth Edition, McGraw Hill, New York, 

2002. 

29. Smith, F., Viscous Fluid Flo, 3
rd

 Edition, McGraw Hill Publishing, New York 2005. 

30. Grimison, E.D., Trans. ASME, Vol. 59, pp. 583, 1937. 

31. Winterton, R. H., “Where Did the Dittus and Boelter Equation Come From?”  Int. J. Heat Mass Transfer, Vol 

41, pp. 809, 1998. 

 

P
age 14.17.41



 

Nomenclature 
A = surface area or cross-sectional area, m

2
 

Bi= Biot number 

C= Fluid capacitance, W/K 

CR= capacitance ratio, Cmin/Cmax 

cp specific heat, J/kg.K 

D diameter, m 

F= correction factor 

Fo= Fourier number 

h = heat transfer coefficient, W/m
2
·K 

Io (x), I1 (x) = modified Bessel function of the first kind of order zero, order one 

Jo (x) or J1 (x) =Bessel function of the first kind of order zero or order one 

Ko (x), K1 (x) = modified Bessel function of the first kind of order zero, order one 

k = thermal conductivity, W/m·K 

L= length, m 

m& = mass flow rate, kg/s 

LMTD= logarithmic mean temperature difference, K 

NTU= number of transfer units 

Nu Nusselt number 

P= correction factor parameter or perimeter 

Pr = Prandtl number 

q = heat transfer rate, W 

R = correction factor parameter or radius 

Re =  Reynolds number 

S pitch 

T = temperature, 
o
C or K 

U = overall heat transfer coefficient, W/m
2
·K 

 

Greek letters 

χ = thermal diffusivity, m
2
/s 

Φ difference 

γ∀ heat exchanger effectiveness 

σ = dimensionless temperature parameter, a ratio of temperature differences 

fϕ
 = fin efficiency 

ο = viscosity, N.s/m 

π∀∀?∀ kinematic viscosity, m
2
/s 

ϖ = shear stress 

∀
Subscripts 

Act= actual 

c= cold fluid stream 

ch= characteristic 

h =  hot fluid stream 

i = inlet condition 

L linear 

min= minimum value 

max maximum value 

o = outlet condition or location at x=0 

T transverse 

∞ = ambient condition 

f = fin 
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