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A Compilation of Examples for Using Excel for Solving Heat Transfer
Problems

Abstract

Excel spreadsheet available on most desktop or laptop computers can serve as an effective and
inexpensive computational tool in a heat transfer course. This paper focuses on the application of
“Solver” and “Goal Seek” functions of Excel in solving those heat transfer problems requiring
iteration solution process. It provides a collection of examples demonstrating the application of
Excel in solving heat transfer problems. Some of the examples have been previously presented at
various conferences including regional meetings, but not all can be easily accessed. The paper is
augmented with additional example to expand the range heat transfer problem areas previously
presented. Therefore, one aim of the paper is to provide a choice for selection of examples for
integration into a heat transfer course. Some of the examples provided in this paper can be easily
integrated into an introductory undergraduate heat transfer course. Those examples employing
higher level mathematical functions or numerical schemes can be used in an advanced
undergraduate or an introductory graduate level heat transfer course. The procedures and
examples presented in this paper were well received by undergraduate and graduate students
enrolled in an introductory graduate level heat transfer course.

Introduction

In an introductory undergraduate heat transfer course the coverage of topics includes
introductions to basic modes of heat transfer, solutions of steady state and transient conduction
problems, free and forced convection, and an exposure to radiation heat transfer. Analytical
solutions are typically limited to one-dimensional steady-state heat conduction problems, one-
dimensional transient conduction problem subject to simplest form of boundary condition, and
evaluation of radiation view factors for objects displaying simple geometries. Solutions to heat
convection problems are based on the empirical formulas provided in the textbooks. To
demonstrate the application of heat transfer concepts, the course coverage typically includes one-
dimensional heat conduction in fins of uniform cross-sectional area and the analysis of parallel or
counter flow heat exchangers. Many of the more complex analytic solutions to heat transfer
problems given in the textbooks' " are in forms of graphs or charts. A few examples include
graphs for fin efficiencies, transient temperature distribution charts for heat transfer in slabs,
cylinders, or spheres (Heisler Charts), heat exchanger correction factors, NTU-effectiveness
charts, and radiation shape (view) factor charts. Many mechanical engineering programs also
offer a more advanced general heat transfer course to serve advanced undergraduate or entry
level graduate students. The duel level course provides a more in-dept coverage of the topics
included in an undergraduate heat transfer course. Introductions to condensation and boiling
heat transfer processes may also be included in dual level course coverage. Integration of
computational tool in a heat transfer course is an effective way to aid students in solving more
complex problems, especially those requiring an iterative trial and error approach.

Prior to the introduction of personal computers (PCs) in the early 1980’s, complex computer
codes were needed for numerical solution of heat transfer problems. Access to mainframe
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computers and proficiency in such programming languages as FORTRAN and PASCAL were
necessary for solving complex heat transfer problems. As the personal computers became more
available and affordable, and as the operating systems became more user friendly, their
applications were gradually integrated into introductory heat transfer courses. Simple
programming languages such as BASIC were used for solving simple heat transfer problems in
late 1980s or early 1990s. During this period, all mechanical engineering programs required a
course in one of the structured computer programming languages. However, in more recent
years, many degree programs no longer require a course in one of the structured programming
languages. The trend is now shifted toward using software packages to solve problems
numerically.

Currently, many publishing companies provide computer software with heat transfer textbooks'®"
The most commonly used software packages accompanying heat transfer text books are
Interactive Heat Transfer (IHT)'® and Engineering Equation Solver (EES)'”. These programs
are general purpose, non-linear equation solvers with built-in property functions. They are
capable of exploring and graphing the effects of change in variables on the solution to a given
problem. The most significant advantage of these software programs is that no prior knowledge
of programming language is necessary in their applications. Other software packages are also
available in the market that could be employed for solving heat transfer problems. Most of these
software packages are extremely useful tools for heat transfer analysis and design in an
undergraduate or an introductory graduate level heat transfer courses. These include Microsoft
Excel spreadsheet, Mathcad, MATLAB, and Maple. All these software programs can be used to
solve open-ended problems or parametric studies of heat transfer problems. Excel, which is
available on almost all desktop or laptop computers, is an example. Recently, we compared these
software packages for cost and ease of application for integration into a heat transfer course'®.

This paper focuses on the application of Microsoft Excel in solving heat transfer problems. It
will provide several examples demonstrating the use of “Solver” and “Goal Seek” tools of Excel
in solving problems requiring iterative processes. The examples include solutions to heat
transfer problems involving: i) one-dimensional conduction in fins, ii) one-dimensional transient
conduction, iii) transient conduction in a semi-infinite region, iv) two-dimensional conduction
using finite difference formulation, v) laminar flow over an isothermal flat plate, and iv) heat
exchanger analysis. Some of examples given in this paper for problems involving heat
conduction in fins, heat exchangers, and solution of boundary layer problems were presented
previously by the author and others in various regional and national conferences. Since not all
the papers previously presented might be easily accessible to all readers, some of the examples
are repeated in this paper. However, the paper is augmented by examples covering three
additional heat transfer areas as listed above. Therefore, this paper provides a wider range of
choice of examples for integration into a heat transfer course.

Excel Spreadsheet

It has been shown'>2® that Excel is an effective computational tool for solving heat transfer
problems. Functions included in this software include 39 engineering functions, as well as
various math and trigonometry functions. Among the engineering functions are Bessel
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functions, error functions, and other functions appearing in heat transfer equations. To use
functions in the Excel worksheet, the insert button on the Excel menu bar is clicked. Then
selecting function among a list of options, a dialogue box appears on the screen, as shown on
Fig. 1. One can search for the desired function by typing a description of the function (financial,
engineering, etc.) in the search box or using the “select category” box by scrolling through
options for the desired function.

For problems requiring iterative calculations, the “Goal Seek” or “Solver” tools can be
employed. By using the tool menu and selecting the solver option a dialog box appears, as
shown in Fig 1. By selecting the target cell and fixing the desired value for that cell, values in the
selected cells automatically change to correspond to the solution given for the target cell. This
will be demonstrated later in several examples.

The following sections demonstrate how “Goal Seek” or “Solver” functions of Excel can be used
as a tool to solve heat transfer problems requiring trial and error processes. Solutions to several
example problems requiring trial and error iterative processes are presented to demonstrate the
effectiveness of Goal Seek and Solver functions of Excel.

Examples of Application of Excel
A. One-Dimensional Heat Conduction in Fins

The coverage of the analytical solution of conduction in fins in undergraduate heat transfer
textbooks is usually limited to fins of uniform cross-sectional area. For more complex fin
configurations, only efficiency charts are provided in most heat transfer textbooks'"”. Analysis
for fins of variable cross-sectional areas or annular fins results in more complex differential
equations. The solutions for temperature distribution involve complex functions such as Bessel
functions. The analyses for these types of fins are not typically fully covered in an introductory
heat transfer course. Instead the results are shown in the form of fin efficiency charts.

The fin efficiency is defined as

q 1 QLICT
— ac — 1

ny

where, T, and T, are the base of the fin and the ambient temperatures, respectively, h is the heat
transfer coefficient, A is the fin surface area, g, denotes the actual heat transfer, qmax represents
the maximum theoretical heat transfer by assuming that the entire fine is at the base temperature.

Fin efficiency charts approximate the rate of heat transfer, but do not provide any information on
the temperature distribution in fins. Microsoft Excel, can be a useful tools in solving heat
conduction problems for a variety of fin configurations. Several modern textbooks’"'? provide
expressions for the efficiency of most common fin shapes. Somerton, et.al.” and Karimi® have
demonstrated the use of Excel spreadsheet in solving one dimensional heat conduction problems
in fins. The followings are two examples=’.
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Example 1

A straight fin of triangular profile (axial section) 0.1 m in length, 0.02 m thick at the base, and
0.2 m in depth is used to extend the surface of a wall at 200°C. The wall and the fin are made of
mild steel (k = 54 W/m.°C). Air at 10 °C (h = 200 W/m?-°C) flows over the surface of the fin.

Evaluate the temperature at 0.05 m from the base and at the tip of the fin. Determine the rate of
heat removal from the fin and the fin efficiency.

A (x) =238 w(x/L)

Fig. 2. Sketch of triangular fin in Example 1

Solution

An analytical solution to this problem’ gives the following expression for the dimensionless
temperature distribution

T-1, 1,0Jnixks) 1, (mIx)

_ - 2
T,-T. 1lnjks)  1,(mL) *

where, L is the length of the fin, x is the distance from the tip of the fin, 4 is one half of the

thickness at the base, m = 2,/h/kS , and 1, is the modified Bessel function of the first kind of
order zero.

0=

The rate of heat removal can be calculated by evaluating heat transfer at the base of the fin,
where x=L.

drl
q = kA" 3)
dx| _,

Thus the rate of heat transfer at the base can be expressed by
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where, w represents the width of the fin. The rate of heat removal from the base is equal to —q.
Therefore, the fin efficiency can be determined by the following relation

q=-2w\hks (T, -T,) (4)

n, = n 5)
I+ 8 [w(T, -T,)]

The formulation of solution in Excel for this problem is shown in Fig. 3. The data given in the
problem statement are first entered into the cells of the worksheet. Using these data, the
formulas for the evaluation of m, mL, m\/x_L , Io(mL), I;(mL), I,(mL), I( m\/x_L ), 0, T, q,and n
are entered into appropriate cells of the worksheet. To enter formulas an “=" sign is first entered
into the cell followed with the terms needed for the evaluation of the formula. The basic
mathematic operators used are +, -, ¥ (multiplication), /, and  (power). The calculated results are
presented in Fig. 4. By pressing CTRL + ° (grave accent) one can switch between the worksheet
displaying formulas and their resulting values.

The worksheet shown in Fig. 4 can be expanded to evaluate the temperature profile in the fin and
plot the results. To achieve this, the values for x ranging between 0 and 0.1 are entered in
column A (cells A16 through A-26), as shown in Fig. 5. Then the cells B16 through E16 are
highlighted and copied into lower rows by clicking on the bottom boundary corner of cell E16
and dragging it all the way to cell E26. By this copying action the values of m~xL I( mxL ),
0, and T are automatically calculated for each value of x listed in column A. To plot T as a
function of x, the cells A15 through A26 and E15 through E26 were first highlighted by pressing
the Ctrl and the mouse appropriate key (usually left key) while moving the cursor over the
indicated cells. Then by clicking the chart wizard icon on the menu bar of the worksheet, a menu
appears offering several standard options for plotting data. The x-y (scatter) option was selected
and the four steps of chart wizard were preformed by providing the necessary information in
each step and pressing the next button. Finally the Finish button was pressed to show the results
in the worksheet.

It should be noted that the derivation of equations for temperature profile and heat transfer are
based on the assumption of one-dimensional heat conduction in the axial direction of the fin.
For this assumption to be valid, the Biot number, Bi, must satisfy the following condition

Bi:hL—"’:M<O.1 (6)
k k

where, L., is a characteristic length, A is the cross sectional area, and P is the perimeter of the
fin. For fins of circular cross sectional area, L., can be represented by the radius, R.
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Fig. 5. Procedure for the evaluation and plotting of the temperature profile in Example 1

Example 2

A fin of triangular profile (axial section) 0.1 m in length, 0.02 m thick at the base, 0.2 m in depth
is used to extend the surface of a wall at 200°C. The wall and the fin are made of mild steel (k =
54 W/m-°C). Air at 10°C (h = 200 W/rnz-oC) flows over the surface of the fin. Evaluate the
distance from the base where the temperature is 175°C.
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Solution
The solution to this problem is based on the same equations used in the previous example.
However, in this case the distance, x, cannot explicitly be determined, since it is a part of the
argument for Bessel function in Eq. 2. A trial and error procedure is required to solve this
problem.

An Excel spreadsheet can be used to solve this problem. One method is to use the same solution
used in example 1, but in this case the values of x in the spreadsheet can be changed to achieve
the desired temperature. The result of this procedure is shown in Fig. 6.

A simpler way to solve the problem is to take the advantage of “Goal Seek” tool in Excel. The
procedure and the final solution are shown in Fig.7. Figure 7-a shows the value of the
temperature at an arbitrary position in the fin. By using the tool menu and selecting the Goal
Seek option a dialog box appears, as shown in Fig 7. The target cell (temperature in this case,
cell E16) then is selected and its value is set to a desired value for that cell (175). The cell that
its value must be changed is identified (cell A16). After clicking on the Solve button, the value in
the selected cell A16 (x) automatically changes to a value that yields the desired temperature of
175 °C in the target cell (E16). The solution is presented in Fig. 7-b.
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B. Transient One Dimensional Heat Conduction

Consider a wall of thickness L, initially at a uniform temperature of T;. One surface of the wall
(at x=0) is insulated and the other surface temperature (at x =L) is suddenly lowered to Tw. The
analytical solution for the temperature profile of this conduction problem is presented in most
heat transfer textbooks and the dimensionless temperature profile can be expressed as’

T-T, 4~ (—1y’+1 ( xj 5
= L =— A — |Exp\- 4. .F. 7
°=1-1, ﬂznl(Zn—l)COS "L ol Fo) ™
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When Fo > 0.2, only a few terms of the series solution in Eq. (7) is necessary for the evaluation
of the temperature profile’. Excel can be used to show this behavior. Figure 8 shows the
evaluation of ® at x/L = 0.5 when Fo = 0.2, using Excel. It shows that the fourth term in series
solution improves the accuracy of ® only by 0.001 (or 0.1 %). For Fourier numbers grater than
0.2, even less number of terms are necessary for the evaluation ®. However, for Fo < 0.2, more
terms are necessary for the series in Eq. (7) to converge. For example, Fig. 9 shows that for Fo =
0.01 and x/L = 0.99, over 90 terms are necessary for the series to fully converge.

Excel is a useful tool for evaluating transient temperature distribution in a wall from Eq. (7).
When a problem requires the evaluation of position, x, or time, t, from Eq. (7), a trial and error
procedure is necessary which is very tedious. The Solver function of Excel can be employed to
simplify the trial and error iteration process. The following example demonstrates the use of
Solver function of Excel in solving one-dimensional transient conduction problems when an
iteration process is required.
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Fig. 8 Evaluation of dimensionless temperature using Excel for a 1-D transient conduction
problem, Fo =0.2
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Fig. 9 Evaluation of dimensionless temperature for al-D transient conduction problem, Fo =
0.01, x/L =0.99

Example 3

A stainless steel plate has a thickness of 6 cm and is initially at 400 °C. Both surfaces of the
plate are suddenly lowered to 60 °C. Calculate the time required for the temperature at 0.5 cm
below the surface to reache 350 °C. The thermal diffusivity of plate is o = 4.4x10° m/s”.

Solution

The solution to this problem can be obtained from Eq. (7). In this problem the center of the wall
represents the insulated wall at x= 0, T represents the temperature at x = L. when t > 0. Since the
problem requires the evaluation of time, t, a trial and error process is necessary to solve this
problem. The procedure, using Excel spreadsheet, and the final solution are shown in Fig.10. In
this procedure, as shown in Fig. 10-a, an assumed time of t =180 seconds was used as a first
guess and was entered into cell C7. Other parameters given in the problem statement were also
entered into the appropriate cells of the spreadsheet. The value of x (measured from the center of
the plate) was set to 0.025 meter in cell C8. Cells C10 and C11 were formulated for the
evaluation of Fourier number and x/L, respectively. The values of n were entered in cells A14
through A115. For each n, the corresponding formulas for A,, the function inside the ¥ sign of
Eq. (7), and ®, were entered in columns C through E (rows 14 though 102), respectively. The
value of T (x, t) was evaluated in cell F115.
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Fig. 10. Solution procedure and the results for Example problem 3
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Based on the assumed value of t = 180 seconds, Fig 10-a shows that the temperature at 0.5 cm
below the surface is 76.6 °C. Note that since the calculated value of Fo in cell C10 is larger than
0.2 (0.88), only the first term in Eq. (7) is needed for the series to converge. The calculated
temperature in cell F115is different from the desired value of T = 350 °C. Therefore, the time
must be changed in an iterative process until the desired temperature is achieved. Solver can be
utilized for the iteration process.

By using the tool menu and selecting the Solver option, a dialog box appears, as shown in Fig
10-b. The target cell (temperature in this case, cell F115) is selected, its value is set to the desired
value for that cell (350), and C7 is identified as the cell that its value (time) needs to be changed
during the iteration process. When the Solve button is clicked, the value in cell C7 (t)
automatically changes to a value that yields the desired temperature of 350 °C in the target cell
(F115). The final solution presented in Fig.10-d shows that at 0.5 cm below the surface the
temperature reaches 350 °C after 16. 62 seconds (cell C7). Note that for the final solution,
several terms in the series are necessary for Eq. (7) to converge.

Analytical solutions for one-dimensional transient conduction problems subjected to convective
heat transfer at boundaries result in infinite series expressions similar to Eq. (7). However, in
these equations the infinite series solutions contain eigenvalues which are not periodic. For
example the transient temperature distribution in an infinitely long cylinder subjected for the
case involving convective heat transfer at the surface may be expressed as’

X i ATe T L G el ®

[ «© n=l1 1

where, the eigenvalues A, are evaluated from the following relationship
hR
j’n‘ll (ﬂ’n ) = 7 ‘]0 (ﬂn ) (9)

Since the solution of Eq. (9) for the determination of eigenvalues does not yield periodic
behavior, the evaluation of the arguments /R or Fo from equation (8) is complex. Recently,
Dent, et.al”* described a procedure for using Excel to evaluate the temperature from infinite
series equations given for one-dimensional transient heat conduction problems. Although the
procedure described in this paper for using Excel for solving transient heat conduction problems,
the procedure requires employing Visual Basic Application to create macros functions and
subroutines. This requires some programming knowledge. Therefore no examples are included
from these papers.

C. Transient Heat Conduction in a Semi-infinite Slab.
The following is an example of a transient heat conduction problem in a semi-infinite region,

which its solution requires a trial and error process. The solution shows how Solver or Goal
Seek functions of Excel can be employed effectively to solve the trial and error problem.
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Example 4

A semi-infinite concrete slab (k = 0.8 W/m.°C) having a uniform temperature of 55 °C is
suddenly exposed to an air stream at 10 °C. The average heat transfer coefficient on the surface
is 15 W/m>.°C. Determine the distance below the surface of the slab where the temperature
reaches 45 °C after 20 minutes. Thermal diffusivity of concrete is o. = 5.31x107 m/s’.

Solution
An analytical solution for transient temperature distribution in a semi-infinite slab is expressed
7
as
9:77":_—77}; =e1f%+exp(ﬂ;’+ﬂ2{e;fc(%+ﬂﬂ (10)
where,
h
pe == (11)
k
2
B = hk{f’ (12)

erf denotes error function and, erfc is the complimentary error function.

Since the location x is a part of the arguments for erf and erfc, it can not be found explicitly from
Eq. (10). Therefore, the solution requires a trail and error procedure. Figure 11 shows the result
of the trial and error process, using an Excel spreadsheet. The formulas for the parameters of Eq.
(10) wer entered into cells B9 through F9. An initial value was assumed for x (0.002, m) and
entered into cell A-9. The initial guess for x resulted in a value of 39.4 °C for the temperature
(cell F9). Cells B9 through F9 were copied into the following rows and the value of x was
changed in each row until column F produced a temperature close to 45 °C. Figure 11 shows
that the location where T = 45 °C is somewhere between x = 0.014 m (T=44.8 °C) and x = 0.016
m (T =45.6 °C).

Solver tool of Excel can be used to speed up the iteration process. Again the formulas for the
parameters in Eq. (10) were entered into cells B-9 through F-9. The solution process is presented
in Fig. 12. An initial value was assumed for x (0.001, m) and entered into cell A-9, which
resulted in a corresponding temperature of 38.9 °C (Fig 12-a). Using the tool menu on the
spreadsheet, Solver was selected. A dialog box appeared (Fig. 12-b) for setting the Solver
parameters. In this box the target cell was set to F9 and its value was set to 45. Cell A9 was
identified for the parameter that its value had to change by the Solver. Then the Solve button
was clicked which produced the final result as shown in Fig. 12-c. The solution shows that at x
= 0.0144 m below the surface, the temperature is 45 °C.

D. Finite Difference Solution of Two Dimensional Heat Conduction Problem

For a steady-state, two-dimensional heat conduction in a system having uniform properties and
no heat generation, the general heat conduction equation reduces to

P P 0 (13)
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Fig. 11  Solution of example 4 using a trial and error process

To find an approximation of temperature distribution, subject to specified boundary conditions,
the system is typically divided into a network of nodal points and a discretization scheme is used
to develop finite difference equations for each nodal point using Eq. (13) and the boundary
conditions. As a result the heat conduction equation reduces to a system of algebraic equations
which can be solved using a matrix inversion scheme, Gauss-Seidel iteration method, or other
iteration procedures. The following example demonstrate the use of Solver function of Excel in
steps required to solve a heat conduction problem requiring Gauss-Seidel iteration process.

Example 5

In a solid section illustrated in the adjacent figure, the
left surface is insulated. The right and bottom surfaces 1
are maintained at 100 °C and 150 °C, respectively. The
top surface is exposed to a convective environment at T,
= 20 °C. The heat transfer coefficient at the top surface
is h =30 W/(m2.°C) and the thermal conductivity of the
solid k = 5.0 W/(m.°C). There is no heat generation in
the solid. The solid is divided into a nodal network 7
where Ax = Ay = 10 cm. Find the temperatures at nodal
points 1 through 9.

~ ~
\ \

2 3
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Fig. 12 Solution of Example 4, using Solver
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Conducting an energy balance around each nodal point results in the following finite difference

equations:
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_T2 +T4+BiTw (14)

h (2+ Bi)

T, - T, + R;@ZE;)ZB;‘TOO (15)
T, = T, + 27;6(; fRBJ;)ZBlTw (16)
T, - W# (17)
T, - w (18)
R (19)
T, = %”Ts (20)
R-lti et 1)
T, = w (22)

where, Bi = h Ax/k

Gauss-Seidel iteration procedure can be employed to solve for temperatures at each nodal point.
As a first step in this process, some values are assumed for T; through Ty. Then in the following
steps Eqgs. (14) through (22) are used to calculate new values for the temperatures at each nodal
point. At each steps of the calculation, the most recent calculated values of the temperatures are
used in the right hand side of Egs. (14) through (22) and the new values of the temperatures at
each nodal point is compared with the previous value to check if there is any significant changes.
When all values of IT;, new — Ti, ol are less than a sufficiently small number, o, the calculation
process is seized. In most cases the procedure converges to final values of temperatures.
However, there are situation that at each step process the values of IT;pew — Tioal might get
larger. In these situations the new calculate value can be relaxed by adjusting the new values by
the weighted values from the new and the previous iteration steps™.

Figure 13 illustrates the Gauss-Seidel iteration process for solving this example problem. As
initial guesses, all temperatures were set equal to zero. Then the formulas from Eqgs (14) through
(22) were entered into cells B11 through J11. The formulation used the last calculated values in
the right hand side of equations. The formulas for the calculation of IT;ew — Tiol Were also
entered in cells K11 through S11 and cell T11 was formulated to identify the largest value of
[Tinew — Tioldl = ATmax = 6. The formulas in row 11 were copied into the following rows. The
iteration process was stopped when & < 0.01. Figure 13 shows that this condition was met on
the 24™ step. Cells B34 though J34 give the resulting values of temperatures at the nine nodal
points.

Example 6
In a solid section illustrated in the figure for example 5, the left surface is insulated. The right
and bottom surfaces are maintained at 100 °C and 150 °C, respectively. The top surface is
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exposed to a convective environment where the heat transfer coefficient is h = 30 W/(m2.°C).
The thermal conductivity of the solid k = 5.0 W/(m.’C). There is no heat generation in the solid.
The solid is divided into a nodal network where Ax = Ay= 10 cm. It is required to maintain T at
90 °C. What should be the temperature of the convective fluid (T.) to meet this requirement?
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Fig. 13 Solution of Example 5 using Gauss-Seidel iteration technique

Solution

Since the value of T, which is necessary for the evaluation of T;, T, and T3, from Egs. (14),
(15), and (16), respectively, the solution to this example problem requires a second iteration
scheme in addition to Gauss-Seidel iteration procedure. The Solver tool of Excel can be utilized
to solve this problem. Figure 14 demonstrates the solution technique.
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(b) — Solver dialogue box and confirmation of solution
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(c) — final solution

Fig. 14 Solution of Example problem 6 utilizing Gauss-Seidel iteration method and Solver
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To solve this problem, a value was assumed for T, (20 °C) and the procedure described for
example problem 5 was used to evaluate all nodal point temperatures, including Ts. Figure 14-a
shows that T = 96.56 °C based on the assumed value of T,. Therefore, the value of T,, needs to
be changed in a trial and error process in order to achieve the desired value for Ts. The Solver
tool of Excel was used to speed up the iteration process. Using the tool menu on the spreadsheet,
Solver was selected. The target cell was set to G32 in the dialogue box and its value was set to
90, as shown in Fig. 14-b. Cell B3 was identified as the parameter that its value had to be
changed by the Solver. Then the Solve button was clicked which produced the final result as
shown in Fig. 14-c. The solution shows that T,, must be 3.82 °C in order to maintain Ts at 90
°C.

There have been other attempts in the recent years to use Excel to solving heat conduction
problems via finite difference scheme. Sarker and Ketkar®' have described the use of Excel in
solving one-dimensional transient heat conduction problems. In this work the general heat
diffusion equation in a cylindrical coordinate system was simplified by assuming no internal heat
generation and ignoring heat transfer in the axial and angular directions. The resulting equation
was transformed into finite difference equations and the resulting matrix for the system of
equations was solved using Excel. Baughn ** developed a unified numerical technique for
solving multi-dimensional steady state and transient conduction problems using Excel
spreadsheet. The numerical scheme uses Gauss-Seidel iteration process for steady state
problems and explicit method for transient problems. The solution method in both papers
includes the use of macros and subroutines, therefore, these examples are not included.

E. Similarity Solution for Laminar Flow over Isothermal Flat Plate

Assuming steady incompressible laminar flow with constant fluid properties, the continuity,
momentum, and energy equations, respectively, are given by the following relations

e v _y (23)

U—FV—=V — (24)

U—+v—=0——— (25)

Using the Blasius method, the continuity and momentum equations reduce to a single ordinary
differential equation.

LT

= " . ”= 26
i 2"+ f.f"=0 (26)

subject to the following boundary conditions
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df ’ 4
f|17 =0 E”:O =/ |17:0 =0 and an| =/ | =1 (27)

where

0=y fx (28)

It can be shown'' that the velocity components u and v can be express as

U=u, % (29)

g (i N (30)

Therefore, the velocity components in the hydrodynamic boundary layer can be obtained from
the solution of Eq. (26).

Defining the following expression for the dimensionless temperature

- €1V

Similar to the momentum equation, the energy equation, Eq. (25), can also be transformed into
an ordinary differential equation, as presented below

d%o LB
Rl __9" fO = 32
e fd,7 f (32)

Where, Pr is the Prandtl number. The applicable boundary conditions for Eq. (32) are
6,,-0 and =6| =1 (33)

The standard procedure to find the velocity profile in the hydrodynamic boundary layer is to
obtain a solution to Eq. (26) using a numerical scheme. The results of the solution of Eq. (26) are
used in Eq. (32) to determine the temperature profile in the thermal boundary layer. The solution
of equation (26) is necessary for the evaluation of shear stress and skin friction of the flat plate.
The solution of Eq. (32) is needed to derive an expression for the heat transfer coefficient and
Nusselt number. The results from the solution of Eq. (26) are presented in forms of table or
graphs in many undergraduate heat transfer textbooks. Very few textbooks show the temperature
profile resulting from the solution of Eq. (32).

Example 7

Use a numerical scheme to solve Eqs (13) and (19) to evaluate velocity profile in the
hydrodynamic boundary layer and temperature profile in the thermal boundary layer,
respectively. Use the results to develop relationships for local friction factor and Nusselt number.
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Solution

The standard procedure for obtaining a numerical solution to Eq. (26) typically uses a Runga
Kutta procedure for solving initial valued differential equations29. However, since the value of f”
at 1 =0 is unknown at the initial step of the calculation process, a shooting method is usually
employed to solve the differential equation. The solution of the Eq. (26) in Excel through this
procedure requires some programming skill and the use of Visual Basic for Applications (VBA).

In two separate works Fakheri** and Naralghi25 demonstrated the use of Excel in solving the
boundary layer problem without the employment of VBA. The following is a summary of
procedure used by Nauralghi25 who used the Solver tool of Excel to obtain solutions to Equations
(26) and (32).

Using a forward finite difference method, the first, second, and third derivatives of function f the
following relations were obtained

fin = fi + fi(Am) (34)
fia = fi+ fi(An) (35)
fla= 1"+ f;(An) (36)
From Eq. (26)
n__Ji-f
fr=—4 (37)

A procedure was developed to solve Eq. (26) in an Excel worksheet using Eqs. (34) through
(37). Figure 15 shows the process and the results of the procedure. As shown in Fig. 15-a, n
was set to zero (0) in cell A3 and the boundary conditions from Eq. (27), f =f* = 0, were entered
into cells B3 and C3. From Eq. (37), f>’=0 at n = 0. Therefore, cell E3 was also set to zero.
The value of f” at 1 = 0 is unknown and it must be determined by trial and error. Therefore, an
arbitrary value of 0.8 was selected and entered into cell D3. To obtain accurate results, the
increment for An was set to 0.01 and entered into cell G1. The value of | was increased by an
increment of An in cells A4 through A803 where n = 8. Equations (34) through (37) were
entered in cells B4 through E4, respectively. These cells were highlighted and their contents
(formulas) were copied into the following rows, through row 803. The third boundary condition
requires that f* approaches 1.0 as nbecomes very large. This condition is not satisfied by the cell
C803 in Fig. 15-a. Therefore, the value of f” in cell D3 must be changed until the value of f* in
cell C803 approaches 1.

To speed up this trial and error process the Solver tool of Excel was employed. The tool menu
was used and Solver tool was selected. A dialog box appeared for entering the parameters for
the Solver tool. As shown in Fig 15-b, the target cell was set to C803, the target value was set to
1, and D3 was selected for the cell which its value had to change. After clicking on the solver
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button, the values of the variables in the worksheet change to the final results. The results are
presented in Fig. 15-c.
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Fig. 15  Solution of hydrodynamic boundary layer equation, Eq. (26)

A comparison of data in Fig. 15-c with the accepted value in the literature indicates that the
results are highly accurate. The boundary layer thickness is defined as a location away from the
surface of the plate where u = 0.99 u,. Therefore, Eq. (29) indicates that at the edge of
boundary layer thickness, f* must be equal to 0.99. Fig 15-c shows that , £=0.99. This
compares very well with the established value of n = 4.92 (a relative error of 0.4%). The
resulting value for £ at n = 0 is used for the evaluation of shear stress at the wall ty,x and the
local friction coefficient, C¢x. Fig. 15-c shows a value of 0.3298 for f* at 1 = 0 which compares
well with the published value of 0.332 (0.7% relative error). Therefore, based on this results the
following relations can be expressed for ty,x and Cgy.
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7, =0.3298u \Ju, [vx (38)

c __Tua 0659

fx pu’ /2 B Re"?

(39)

A similar procedure was used to solve Eq. (32) for the thermal boundary layer for various Pr
numbers. Nauraghi25 used this procedure to solve Eq. (32) in Excel for values of Pr number
ranging between 0.6 and 100. Again a forward finite difference method was used the express the

first and second derivatives of function 0 and resulting equations were rearranged into the
following forms

0, =0, +6;(Amn) (40)
0!, =6 +0/(An) 41)
From Eq. (32)

gr—_Priio 42)
2

The Excel worksheet that resulted in the solution of hydrodynamic boundary layer equation was
expanded to include columns for 0, 6°, and 0”, as shown in Fig. 16. The boundary condition 6 (n
= 0) = 0 was entered into cell F3. From Eq. (37), 6’=0 at = 0. Therefore, cell H3 was also set
to zero. The value of 0’ at n = 0 is unknown and must be determined by trial and error. Again,
an arbitrary value of 0.8 was selected and entered into cell G3. A specific value for Pr number
was entered into cell I1 (2.0 in this case). Equations (40) through (42) were entered in cells F4
through H4, respectively. These cells were highlighted and their contents (formulas) were
copied into the following rows, through row 803. The second boundary condition in Eq. (33)
requires that 0 should approach 1.0 as n becomes very large. This condition is not satisfied by
the cell C803’s value in Fig. 16. Therefore, the value of 0 in cell G3 must be changed until the
value of 0’ in cell C803 approaches 1.0. Again the Solver tool of Excel was employed to satisfy
the second boundary condition. Again the target cell was set to F803, the target value was set to
1.0, and G3 was selected for the cell which its value to be changed. After clicking on the solver
button, the values of the variables in the worksheet change to the final results. The results are
presented in Fig. 17.

The thermal boundary layer thickness is defined as a location away from the surface of the plate
where 0 = 0.99. Figure 17 shows that this condition is met where 1 = 3.79 for Pr = 2.0.

The local Nusselt number can be expressed as a function of 6’(n =0)

N, :%:Reyz 6'0) (43)
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Fig. 16  Initial attempt to solve the thermal boundary layer equation, Pr =2.0

The procedure described was repeated for pr numbers ranging between 0.6 and 100. For each
value of Pr, the corresponding value of 6°(0) were entered into an Excel worksheet and the
results were plotted on a graph. The equation for trend-line resulted in the following correlation

(R*=0.9999)
6'(0)=0.3313 pr ¥ (44)

Combining Eqs (43) and (44) yields the following relationship

Nu, = %" =0.3313Re!/? pr033%7 45)

Equation (45) compares well with the established relationship for the local Nu.

Nu =};—x=0.332 Re!/? pr'/? (46)

X
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Fig. 17  Results of the solution for the thermal boundary layer equation, Pr =2.0

F. Heat Exchanger Analysis

In an undergraduate heat transfer course students are introduced to two different types of heat
exchangers analysis: Logarithmic Mean Temperature Difference (LMTD) and Effectiveness-

NTU methods.

In a heat exchanger the flow heat capacity rate is defined as

C=mcp

(47)
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where, m denotes the mass flow rate and c, represents the specific heat of a given fluid stream.
The rate of heat transfer from or to each fluid stream can be calculated from the following
relations

q = Ch (]—;‘l,i - T;z,o) = Cc (T'c,o - ’Tc,i) (48)

where, q is the rate of heat transfer, T denotes temperature; subscripts ¢ and h identify cold and
fluids, respectively; and subscripts i and o represent inlet and outlet conditions respectively.

The heat transfer rate, based on heat transfer concepts, is expressed as
q=UA, (F)LMTD 49)

where, U is the overall heat transfer coefficient, A is the surface area separating the two fluid
streams, LMTD is the logarithmic mean temperature difference between the two fluid streams,

and F is an appropriate correction factor which value depends on the type of heat exchanger and
flow conditions.

In general, LMTD can be expressed as

AT, — AT,

LMTD = ——~——"_
In(AT, /AT,)

(50)

where, AT, and AT, are the temperature differences between the two fluid streams at the terminal
points of the heat exchangers, as shown in Fig. 18.

T T
A

Th:

Thin m.m
4

ﬂ'h ﬁLj\&_TT_‘ T::ljjtt

—T- Thut
—J’E:-’ ATy

Lengeh or area Length or :.r!:a
Counnarllow
~
Fig. 18 = Temperature profile of hot and cold fluids in parallel-flow and counter flow heat
exchanges’
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The terminal point temperature differences shown for the counter-flow heat exchangers in Fig.
18 are used in Eq. (50) for the evaluation of LMTD of fluid streams in any other types of heat
exchangers such as shell-and-tube or cross flow heat exchangers.

For parallel-flow and counter-flow heat exchangers, the correction factor in Eq. (49) has a value
of F=1. For other types of heat exchangers, specific charts or equations are used for the

correction factor, F. For example, Fig. 19 is a correction factor chart for a one shell-pass, even
number tube-pass heat exchanger.

.

0.9 =

0.8 —

Cosrection factar, F

08—

0.5 |

Fig. 19. LMTD correction factor, F, for a one shell-pass, even number of tube-passes heat
exchanger.’

As shown in Fig. 19, the correction factor, F, is a function of two parameters P and R. The first
parameter is defined as

T -T.
P — c,0 c,l (5 1)
Th,i - Tu

Since the denominator in Eq. (51) represents the maximum temperature difference between the
two fluid streams, the value of P is always less than one. The second parameter, R, is defined as

R — 7;1,1' _7;1.() — c (52)

Depending on the flow heat capacity ratios (or temperature changes for the hot and cold fluids),
the value of R could be less than one or greater than one. If the value of R in Eq. (52) ends up be
greater than one, then R should be replaced by 1/R and P replaced by PR, since Fig. 19 displays
curves only for R values that are less than or equal to one. In other words,

F =F(P,R)= F(RP,1/R) (53)
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LMTD method is useful for sizing heat exchangers. That is when the inlet and outlet
temperatures of the fluid streams are known or could be calculated directly from Eq. (49),
LMTD and correction factor, F, can be easily evaluated and used in Eq. (50) to calculate the
surface area or the overall heat transfer coefficient of heat exchangers. However, when two of
the terminal temperatures of a heat exchanger are unknown and must be evaluated, LMTD can
not be evaluated explicitly from Eq. (50). Hence, in these situations an iterative procedure is
required for the evaluation of LMTD and the correction factor. In these cases the effectiveness-
NTU method is employed for the analysis of heat exchangers.

The effectiveness of a heat exchanger is defined as

actual heat transfer

E =
maximum possible heat transfer

or

c,i

Cmin (Th,i - Tu ) B Cmin (Th,i -T. i )

c,

¢, -1,) cl(r,-T.,) (54)

where, the Cyi, 1s the smaller of the Cy, and C.. Combining Eqs (48) and (54) it follows that
q = 8Cmin (th,i - Tc,i) (55)
The number of transfer units is defined as

nru = YA (56)
c

min
The capacitance ratio is defined as

C, = Cin (57)

max

a

The derivation of heat exchanger effectiveness equation for parallel-flow is given in most heat
transfer textbooks. For a parallel flow heat exchanger, the effectiveness is expressed as

o= l—exp[— NTU(1+CR)] (58)
1+Cy

In this form the effectiveness is explicitly expressed as a function of NTU and Cg. Alternatively,

NTU could be expressed as a function of € and Cr. For a parallel-flow heat exchanger, NTU is
given as
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NTU = 1n[1—5(1+CR )] (59)
1+C,

Heat transfer textbooks provide effectiveness charts for several types of heat exchangers. For
example, Fig. 20 displays the effectiveness chart for a single pass cross-flow heat exchanger, one
fluid unmixed.

Fig. 20 Effectiveness chart for a one-pass cross-flow heat exchanger, one fluid unmixed’

More recent heat transfer textbooks also provide equations for ¢=¢(NTU,C,) or
NTU = NTU (s, C,) for several types of heat exchanger.

There are two inherent problems with using charts in thermal analysis of heat exchanger systems.
First, the accuracy of solutions is highly dependent on how precise one can read the charts, but
also in problems requiring several stages of iteration, the process could become extremely
tedious. Use of equations for correction factors or the effectiveness in a numerical scheme
increases the accuracy and eases the task of solving problems involving repeated calculations.
Microsoft Excel is one of the tools that can be used in solving heat exchanger problems.
Recently, Karimi®® descried methods of application of Excel in heat exchanger analysis and
provided a few examples. Two examples are included

Example 8

Water at 15 °C with a mass flow rate of 8 kg/s is available to cool hot oil from 90 °C to 30 °C.

The oil mass flow rate is 4 kg/s. A shell-and-tube heat exchanger with one-shell pass and four-

tube-passes is proposed for this process. Using uniform c, values of 2.5 kJ/(kg °C) and 4.2 kJ/(kg

°C) for oil and water, respectively, and assuming an overall heat transfer coefficient of 250

W/(m2.°C) for the heat exchanger

a) determine the surface area of the heat exchanger

b) plot the heat exchanger surface area as a function of water mass flow rate, when the mass
flow rates vary between 6 and 30 kg/s.
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Solution
This problem can be easily solved, using the LMTD method and the correction chart in Fig. 19.
Using the specific heat and mass flow rate data given in the problem statement, Eq. (47) yields
the following results:

C.=33.6 kW/°C

Cn=10 kW/°C
The results are substituted into Eq. (48) to obtain T, ,

q = Cy ATy, = 10 kW/°C (90-30) °C = 600 kW
q =600 kW = C, (T¢ o —Te,i) =33.6 kW/°C (T, -15) °C. This gives
T, ,=32.86°C
Then,
AT, =90 -32.86 =57.14 °C
AT, =30-15=15°C
Substituting AT, and AT}, into Eq. (50), yields
LMTD = 31.51°C
In order to evaluate the correction factor, the terminal temperatures of the heat exchanger are
substituted into Egs. (51) and (52) to find the values of P and R.

T -T.
P=—"—""=0.2381

hi ~ tei
R _ Th,i _Th,o - 336
T -T

However, since R> 1, in order to use Fig. 19 to evaluate the correction factor, P needs to be
replaced with PR, and R replaced with 1/R
PR =(0.2381) (3.36) =0.8
1/R =1/3.36=0.2978
Then from Fig.19, the correction factor is approximated as
F=0.74
Substituting the known values into Eq. (49) the heat exchanger area is calculated
q=UA, (F)LMTD
600 kW = 0.250 kW/(m>.°C) A, (0.74) (31.51 °C)
As=1029 m’

The same procedure can be used to solve part (b) of this example, by varying the mass flow rate
of water. However, it is clear that the manual solution of part (b) will consume a great deal of
time without adding much to the learning process. Employing Excel will ease and speed up the
calculation process.

In order to use Excel to solve part (b) of this example, the correction factor chart, Fig. 19, must
be replaced by an appropriate equation. For a one-shell-pass and even number of tube passes,
the equation for the correction factor is given as®

iRk (1-re\ (2-Plie RN R))| (60)
TR 1“(1—10][1“(2_1:(1””@)]]
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where, R and P are defined by Egs. (51) and (52), respectively.

Equation (60), along with equations for C., LMTD, P, R, were used in an Excel spreadsheet to
determine the surface area of the heat exchanger by varying the cooling water mass flow rates.
Table 1 represents the results of the heat exchanger area calculations. Excel was used to plot the
heat exchanger area as a function of water mass flow rate, as shown Fig. 21.

Table 1. Excel spreadsheet calculation of heat exchanger area for example 8.

m, C. Ch | ATy, | Teo .. | LMTD A,
kgs | KWFC | kWPC | oC oc | ATw’C | o P R F m’
6 52| 10 15 3881 | 51.19| 2948 | 03175| 252| 0500 162.81
7 2094 10 15 3541 | 5459 | 3065 | 02721 | 294| 0675 11599
8 336 10 15 3286 | 57.14| 3151 02381 | 336| 0750 101.51
9 378 | 10 15 3087 | 59.03 | 3217 | 02116 | 378 | 079 | 93.73
10 £20] 10 15 2929 | 60.71| 3270 | 0.1905 42| 0827] 8876
11 462 10 15 2799 | 6201 | 33.12] 01732 | 462| 0850 85.28
12 504 | 10 15 2690 | 63.10 | 3348 | 0.1587 | 5.04| 0867 | 82.69
13 546 10 15 2599 | 6401 | 3378 | 0.1465 | 546| 0881 80.68
14 588 | 10 15 2520 | 6480 | 3403 | 0.1361 | 588 | 0892 79.08
15 630 10 15 2452 | 6548 | 3425 0.1270 63| 0901 | 7777
16 672 10 15 2393 | 6607 | 3445] 01190 | 62| 0909 7667
17 714 10 15 2340 | 6660 | 3461 | 01120 7.14| 0915| 7574
18 756 | 10 15 2204 | 67.06| 3476 01058 | 7.56| 0921 7495
19 798 | 10 15 2252 | 6748 | 3490 | 0.1003 | 798| 0926 | 7426
20 840 10 15 22.14| 67.86| 3502 0.0952 84| 0931 7365
21 882 10 15 2180 | 6820 | 3513 | 00907 | 882| 0934 73.11
2 24| 10 15 2149 | 6851 | 3523 | 00866 | 924| 0938 | 72.64
23 96| 10 15 2121 | 6879| 3532] 00828 | 966| 0941 7221
2 1008 | 10 15 2095 | 69.05 | 3540 | 0.0794 | 10.08| 0944 | 7183
25 1050 | 10 15 2071| 6929 | 3548 | 00762| 105| 0946 7148
26 1092 10 15 2049 | 6951 | 3555| 00733 | 1092| 0949 | 7116
27 1134 10 15 2029 | 69.71| 3561 | 0.0705| 1134| 0951 7087
23 176 10 15 2010 | 69.90 | 3567 | 0.0680 | 1176 | 0953 | 70.60
29 1218 10 15 1993 | 7007 | 3573 | 00657 | 12.18] 0955| 7036
30 1260 10 15 1976 | 7024 | 3578 | 00635 | 126| 0956| 70.13
Example 9

Consider a cross-flow heat exchanger containing a tube bank that consists of a square array of
100 thin-walled tubes (10x10), each 2.5 cm in diameter and 5 meter long. The tubes are aligned
with a transverse pitch of 5 cm. Water is used in this heat exchanger to cool hot air from 800 K,
to 500 K. Water makes a single pass through each tube entering at 12 °C. Hot air enters the heat
exchanger with a velocity of 5.0 m/s in a cross flow over tubes with a mass flow rate of 2.25
kg/s. Determine the water mass flow rate and the exit temperature.
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Fig. 21 = Example 8, Variation of heat exchanger area with the mass flow rate of cooling water

Solution

The following property values are given for air at an average temperature of 650 K: ¢, , = 1063
JkgK, p, = 322.5 x107 N.s/m, v, = 60.21x10° m%/s, k, = 0.0497 W/m.K, and Pr, = 0.69.
Assuming an average temperature of 340 K for water, the following property values are obtained

Cow = 4188 J/kg K, p, = 420x10° N.s/m, vy, = 5.35x10” m%s, k,, = 0.660 W/m.K, and Pr,, =
2.66

For the external flow over an aligned tube bundle, as shown in Fig. 22, the maximum velocity is
given by

U = u (61)

where u, is the free stream velocity, D denotes the tube diameter, St represents the transverse
pitch. Using the data given in the problem statement
Umax = 10 m/s

Aligoed 1ubse roed

Fow &1 Pow #3 s 90

Fig. 22. External flow over an aligned tube bundle’
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The Reynolds number based on the maximum flow velocity is expressed as

Re _ _max (62)

where, m is the kinematic viscosity. Using the kinematic viscosity value given for air
Rep max =4152.1

For air flow across a tube bundles consisting of 10 or more rows, Grimsion®’ gave the following
correlation for the average Nusselt number
n, >210

2000< Re
Pr~0.7

where np represents the number of rows, and h, is the external heat transfer coefficient. The
values of C and m depend on the ratios of St/D and S;/D. For the case when S1/D = S;/D =2
(this example), the values of C and m are given as>® 0.229 and 0.632, respectively. Based on
these values, Eq. (51) reduces to

h,D

NuD,max =——=CRe,,

D,max

< 40,000 (63)

D,max

Nu, .. =0.229 Re}” (64)

D,max
Substituting the value of Rep max = 4152.1, into Eq. (64)

NUp max =44.318
Then,
ho = k Nup max/D = 88.11 W/m>.K

For the internal flow, the Reynolds number is defined as

4{m ).
Re, _uD_ (), (65)
v Dy,
where (), represents the mass flow rate in each tube. If Rep indicates a fully developed

laminar flow, the Nusselt number, assuming constant surface temperature, is given as

Nu, =hiTD=3.66 (66)

where, h; represents the heat transfer coefficient inside the tubes. When Rep indicates a fully
developed turbulent flow, the Nusselt number, can be approximated by Dittus-Boelter equation3 !

h. D
Nu, = T =0.023Re};® Pr"* (67)
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Ignoring the thermal resistance of the tube wall, the overall heat transfer coefficient is expressed

as
1 1]
v —[Tﬂ (©8)

The surface area of the heat exchanger is evaluated, using the following relationship
A=N 1 DL = 100 7 (0.025 m) (4 m) = 31.42 m*

NTU was defined in Eq. (56) as NTU = U%, .

Using the specific heat and mass flow rate data, C, is calculated from Eq. (47)
Ch=C,=2364.8 W/ K

The rate of heat transfer is calculated from Eq. (48)
q = Cp AT, =2364.8 W/ K (800-500) K = 709,425 W

At this point there exist too many unknowns to solve the heat exchanger problem directly either
by the LMTD method or the effectiveness method. For the LMTD, the exit temperature of water
is unknown and cannot be calculated directly. For the effectiveness method NTU, Cg, and ¢
cannot be calculated directly without the knowledge of the mass flow rate of water. Therefore,
an iterative procedure is required to solve this heat exchanger problem.

We will employ the effectiveness-NTU method in the iterative procedure described below.
Some steps in the procedure depend on which fluid is assumed to represent the Cp,j,. When Cc=
Cy is chosen as the C.,, the steps operation is presented in [brackets and italic]. If the one
assumption does not converge to an answer, then the other assumption can be implemented in the
iteration process.

Assume Cp= C, represents Cpin [Assume C.= C,, represents Cy;,]

Assume a value for Cr =Cpin/Crnax

Evaluate C. = Cy, = Crax = Cin/Cr = Ci/Cr [evaluate C. = C,, = Cpin = CinaxCr = CrCr]
Calculate the total mass flow rate of water, i, = Cw/Cpw; (i), = m, /100

Use the calculated value of (ii1,),in Eq. (65) to evaluate Rep

If the flow is laminar use Eq. (66) to evaluate Nup. Otherwise use Eq. (67)

Calculate the internal heat transfer coefficient from the results in step 6

Evaluate the overall heat transfer coefficient from Eq. (68)

Evaluate NTU from Eq. (56)

0. Substitute the values of NTU and Cg in an appropriate effectiveness equation. For a cross-
flow heat exchanger when fluid representing C,;, is mixed and fluid representing Cpax 1S
unmixed, the effectiveness, €, is expressed as

e e A A S e

£=1-expl-C;' {1 - exp(- C,NTU )} (69)

[or a cross-flow heat exchanger when fluid representing C,, is mixed and fluid representing
Coin 1s unmixed, the effectiveness, &, is expressed as

/€ )T 1T abed



&= [CLRJ(l —exp{- Cp[l—exp(- NTU)]}) ] (70)

11. Use the value of C,, evaluated at step 3, is used in Eq. (54), to calculate (T, — T¢;)
e Ll t) U L) o g 1) ac,(r, 7,
Cmin (Th,i - Tr,i ) CR (Th,i - Tc,i )
[Use the value of C,., evaluated at step 3, in Eq. (54), to calculate (T, , — T )
oo el h) BTl o g el 1)
Cmin (Th,i - Tc,i) (Th,i - Tc,i)
12. Calculate (T, i — Th, o) from Eq. (51)
q=C, T, -1,,)= C. T.,-T.,) ,or T,,-T,,) = (C./C)T.,~T.,)=T,,; ~T,,)/ Cyg
[Calculate (Ty,, ; — Ty, ») from Eq. (51)
q=C,(T,,-T,,)= C. T, -T,) ,or(T,, T,

h,i 1,0

) = (Cc /Ch )(Tco - Tu )= CR (Th,i - Th.o )]

13. If the value of (Th; — Tho)ca €valuated in step 12 is the same (or approximately the same) as
the actual value of (Thi — Tho)at (determined from the values given in the problem
statement), stop the process and use the last values of C. and (T, — T;) to evaluate the mass
flow rate and exit temperature for water. Otherwise, assume a new value for Cg, go to step 3
and repeat the iteration process.

Excel was employed to implement the procedure described above. In this process it was
assumed that Cy= C, represents Cy,i,. Table 2 shows the results of the iteration process. It shows
that when Cg = 0.26105, the calculated value of AT}, converges to the actual value of ATy, =300.
Then water exit temperature can be calculated from

Ty, o=Tw i+ AT = 12+78.31 =90.31 °C

Table 2 shows that the water mass flow rate in each tube is 0.0216 kg/s or the total mass flow
rate of water is 2.16 kg/s.

The Goal Seek or the Solver tools of Excel can be employed to speed up the iteration process for
solving the example problem 9. Fig. 23-a shows the assumed (Cr) and calculated values for each
step of the procedure described earlier for the iteration process. It shows that for an assumed
value of Cr = 0.4 the procedure calculates (AT})cac= 278.66 °C, which is different from the
actual value of ATy, = 300 °C given in the problem statement.

By using the tool menu on the Excel worksheet and selecting the Solver option a menu appears
as shown in Figure 23-b. In this menu we can set the target cell (K22) equal to a value of 300
[(ATh)cae = 300 °C]. We also identify the cell (A22, Cg) that its value needs to be changed
during the iteration process. By clicking on the Solve button, the Solver will search for a value of
Cr that results in a value of (ATh)cae = 300 °C. The values of all other cells will be changed to
correspond to the final value of Cgr. The final results obtained from Excel’s Solver tool for
example 9 is shown in Fig. 23-c.
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Table 2 Iteration process results from Excel spreadsheet for example 9

step 2 step3 | Stepd4 | stepS |step6 | Step7 | step8 | step9 | stepl) | step 11 | step 12
Cr Ce=Cax | (my); Rep Nup h; U NTU € AT, (ATh)calc
0.1 23648 | 0.0565 | 6847.0 | 39.82 | 1051.2 | 81.29 | 1.0800 | 0.6407 33.00 329.98

0.2 11824 | 0.0282 | 3423.5 | 22.87 603.8 | 76.89 | 1.0214 | 0.6030 62.11 310.55

0.3 7883 | 0.0188 | 2282.3 | 16.53 436.5 | 73.31 | 0.9739 | 0.5702 88.10 293.67
0.21 11261 | 0.0269 | 3260.5 | 21.99 580.6 | 76.50 | 1.0163 | 0.5995 64.84 308.76
0.22 10749 | 0.0257 | 31123 | 21.19 559.4 | 76.12 | 1.0112 | 0.5961 67.54 307.00
0.23 10282 | 0.0245 | 2977.0 | 20.45 539.9 | 75.74 | 1.0063 | 0.5927 70.21 305.26

0.24 9853 |1 0.0235 | 28529 | 19.77 | 521.8 | 75.38 | 1.0014 | 0.5894 72.85 303.54
0.25 9459 1 0.0226 | 2738.8 | 19.13 | 505.0 | 75.02 | 0.9966 | 0.5861 75.46 301.85
0.26 9095 | 0.0217 | 2633.5 | 18.54 | 4894 | 74.66 | 0.9919 | 0.5829 78.05 300.17
0.27 8758 | 0.0209 | 25359 | 17.99 | 4749 | 74.32 | 0.9873 | 0.5796 80.60 298.52
0.261 9060 | 0.0216 | 26234 | 18.48 | 487.9 | 74.63 | 0.9915 | 0.5825 78.30 300.01
0.262 9026 | 0.0216 | 26134 | 18.43 | 486.5 | 74.59 | 0.9910 | 0.5822 78.56 299.84
0.2611 9057 | 0.0216 | 26224 | 1848 | 487.8 | 74.63 | 0.9914 | 0.5825 78.33 299.99
0.26105 9059 | 0.0216 | 26229 | 1848 | 487.9 | 74.63 | 0.9914 | 0.5825 78.31 300.00

Integration into Heat transfer Course

Examples included in this paper were integrated into an advanced heat transfer course open to
advanced undergraduate students and entry level graduate students. The integration covered two
semesters when the course was offered in the last three years. The enrollment included
approximately 10 % undergraduate and 90% master level students. All students had previously
taken an undergraduate introductory heat transfer course. Is solving problems that required
iteration process, student were given a choice of using Excel or any other software available
them. Even though students had easy access to such software programs as IHT or MATLAB,
approximately 70% of students chose Excel to complete their assignments. The author has not
taught an introductory undergraduate heat transfer course in the last two years, but he plans to
integrate the examples into the undergraduate course when the next opportunity of teaching the
course. However, the author has successfully integrated the use of Solver or Goal Seek tools of
Excel in the undergraduate thermodynamic courses for solving problems requiring trail and error
processes.

Summary

The application of Excel spreadsheet in solving a variety of heat transfer problems was
demonstrated through several examples. It was shown that Excel is a useful computational tool
when the solution to problems requires (a) varying one of the parameters, (b) plotting the results
of calculations, and (c) an iteration process. Excel is accessible to all students and, typically is
available on most desktop and laptop computers.
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Fig. 23. First step in using Solver for the iteration process in Example problem 9
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Nomenclature
= surface area or cross-sectional area, m’

Bi= Biot number

C= Fluid capacitance, W/K

Cr= capacitance ratio, C,/Ciax

Cp specific heat, J/kg. K

D diameter, m

F= correction factor

Fo= Fourier number

h= heat transfer coefficient, W/m*K

I, (x), I} (x) = modified Bessel function of the first kind of order zero, order one
J, (x) or J; (x) =Bessel function of the first kind of order zero or order one
K, (x), K; (x) = modified Bessel function of the first kind of order zero, order one

k= thermal conductivity, W/m-K
L= length, m
m= mass flow rate, kg/s

LMTD= logarithmic mean temperature difference, K
NTU= number of transfer units

Nu Nusselt number
P= correction factor parameter or perimeter
Pr= Prandtl number

q= heat transfer rate, W
R= correction factor parameter or radius
Re = Reynolds number
S pitch

T= temperature, °C or K

U= overall heat transfer coefficient, W/m?>K

Greek letters

o = thermal diffusivity, m*/s
A difference
€ heat exchanger effectiveness

= dimensionless temperature parameter, a ratio of temperature differences

" = fin efficiency

p = viscosity, N.s/m

v = kinematic viscosity, m*/s
T = shear stress

Subscripts

Act= actual

c= cold fluid stream
ch= characteristic

h= hot fluid stream
i= inlet condition

L linear

min=  minimum value
max maximum value
o= outlet condition or location at x=0
T transverse

0 = ambient condition
f= fin
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