A Composite NDI Training Course to Address the Growing Need for Composite Laminate Inspections

Airlines for America NDT – September 2016

Stephen Neidigk, Dennis Roach, Tom Rice Sandia National Labs FAA Airworthiness Assurance Center

> Alex Melton Delta Air Lines

David Westlund, Rusty Jones FAA

Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Presentation Overview

Introduction and Background

 0° +45° -45° -45° -45° -0° +45° 0°

Class Modules and Objectives

•••••		00000

Hands-On Training and Proficiency Specimen Set

First Deployment of the Composite NDI Training Class

Carbon laminate Carbon sandwici Fiberglass Aluminum

Motivation for Composite NDI Training Class

Motivation - Extensive/increasing use of solid laminate composites on commercial aircraft and need for inspectors to maintain a level of proficiency via training and hands-on practice.

altairenlighten.com

Motivation for Composite NDI Training Class

Boeing 787 1,161 Ordered 455 Delivered All Nippon Airways – 83, 50 United – 49, 30 American – 42, 17 Delta – 18, 0

Airbus A350810 Ordered 36 Delivered Qatar Airways - 80, 10 United - 35, 0 American - 22, 0 Delta - 25, 0

<u>"Boeing 787: Orders and Deliveries (updated monthly)"</u>. The Boeing Company. August 31, 2016. Retrieved September 8, 2016 http://www.airbus.com/company/market/orders-deliveries/

Solid Laminate Flaw Detection Experiment

Probability of Detection (POD) Experiment

Thickness Range: 12 – 64 plies Simple Tapers **Complex tapers** Substructure Flaws **Curved Surfaces** Array of flaw types

Evaluate the performance of conventional ultrasonic inspection methods for flaw detection in solid laminate structures. 70 inspectors from 14 airlines participated.

POD Curves for 12-20 Ply Solid Laminate Family

Individual and Cumulative Comparisons Overall: 0.9 POD_[90/95] = 1.29" dia. 0.8 **Constant Thickness** Probability of Detection (12, 20, 28 plies): 0.7 ---- Insp B ---- Insp A POD_[90/95] = 0.86" dia. ---- Insp C ---- Insp D 0.6 ---- Insp E ---- Insp F **Complex Geometry** ---- Insp G ---- Insp H 0.5 -- Insp I ---- Insp J (tapered, curved, --- Insp K --- Insp L substructure, 0.4 --- Insp M ---- Insp N fasteners, --- Insp O ---- Insp P 0.3 -- Insp Q honeycomb): ---- Insp R Insp S ---- Insp T POD_[90/95] = 1.49" dia. 0.2 Insp U ---- Insp V ---- Insp X Insp W 0.1 Insp Y ---- Insp Z - Cum. POD Insp AA 0.2 0.8 1.2 0.4 0.6 1.4 1.6 1.8 2 0 Flaw Size (Diameter in Inches)

False Calls: Constant thickness = 0.4/inspector Complex Geometry = 4.0/inspector 34 ft.² inspection area

Composite NDI Training Survey

In addition to the POD experiment, a Composite NDI Training Survey was conducted.

Question 16 - In your opinion, do Level I, II, and III training/qualifications provide the necessary expertise for both metal and composite NDI or should additional training take place for composite inspections?

Airline and MRO NDI Survey

Composite NDI Training Survey Participants				
Company	Completed Survey			
AAR-ASI (Indy)	Yes			
American Airlines (Tulsa)	Yes			
Aviation Technical Services, Inc (Seattle)	Yes			
Delta Air Lines (Atlanta)	Yes			
Delta Air Lines (MN)	Yes			
FedEx (Indy)	Yes			
FedEx (Los Angeles)	Yes			
Goodrich Aerostructures (Chula Vista)	Yes			
Kalitta Air LLC (Michigan)	Yes			
Rohr Aero Services LLC (Alabama)	Yes			
Southwest Airlines (TX)	Yes			
Tim co (Georgia)	Yes			
United Airlines (Houston)	Yes			
United Airlines (San Fran.)	Yes			
UPS(KY)	Yes			
US Airways (PA)	Yes			

Only 25% of responders currently have special composite NDI training in place

Recommendations – How to move inspectors from "average" to "good" to "outstanding"

The POD experiment and NDI Training Survey led to several key recommendations resulting in the Composite Inspector Training Class.

- Increased exposure to representative composite inspections common industry NDI Proficiency Specimens
- Increased, focused composite NDI training
- Enhanced NDI procedures deployment, signal interpretation, clear schematics showing structural configuration
 - Use of inspection coverage aids
 - Divide large area inspections into a number of smaller regions
 - Follow procedures
- Identified need for specific training that specifically addresses composite inspection
 - Unique challenges associated with composites
 - Additional routine exposure to composite laminate inspections

Composite Laminate NDI Training Class

<u>Class Definition – General Training Content (cont.)</u>

- Target Class Length 2 days (1/2 classroom, 1/2 hands-on)
- Format stand-alone course but assumption is minimum of Level I student
- Instructor modifies for specific needs

Goal of training is to enhance aircraft safety & optimize aircraft utilization by improving NDI flaw detection performance in composite aircraft structure.

Composite Laminate NDI Training Class

Class Modules

- 1. Introduction, Objectives & Expected Outcome from Class
- 2. Composite Awareness Materials, Design, Fabrication and Use
- 3. Composite NDI Theory and Practice
- 4. Special Cases Challenges & Lessons Learned
- 5. NDI Proficiency Specimens
- 6. Hands-On Exercises

2. Composite Awareness – Materials, Design, Fabrication and Use

What are Composites?

Common Materials used

Autoclave and VARTM Processing

Types of Damage

Introduction to Repairs

3. Composite NDI – Theory and Practice

- Visual inspection of composites
- Basic ultrasonic inspection theory
- Ultrasonic deployment and options
- Ultrasonic equipment set up
- Mapping damage
- Ultrasonic signals from normal and damaged structure
- Phased array inspection
 - C-Scan generation
- Solid laminate inspection methods and sample results

Reference Standards

 TCG Curves

 Setting Gates

 Bon
 D.1
 D.2
 D.3
 D.4
 D.5
 D.6
 D.7
 D.8
 D.9
 L.0

Transducers and Delay Lines

Deployment Options

3. Composite NDI – Theory and Practice

A-Scan, B-Scan, C-Scan

Perimeter of Minimum Inspection Area C Delamination Extent of visible damage

"Go" / "No-Go" Devices

Scan Indexing, Tapers and Substructure

3. Composite NDI – Theory and Practice

Brief introduction and sample results from:

- Various phased array systems
- CT Scanning
- DolphiCam
- Thermography
- Roller Probes
- LaserUT
- Digital Acoustic Video

4. Special Cases – Challenges & **Lessons Learned**

- **Examples of operational damage and field inspection results**
- Read and Follow the Procedures

Gouge 5.9"×1.0"

- Caution using saved settings
- Embrace New Technology It Can Be Helpful
- Follow OEM Documentation

Accidental **Damage from Ground Handling** Equipment

Lightning Strike Damage

Initial design guidelines were assembled at the 1st (August 2014) project kick-off meeting with industry partners and the FAA.

• Thickness, materials, flaw types, structural configurations etc.

Development Considerations:

- Support hands-on training exercises
- Support recurrent training and composite NDI exposure
- Can be used in "blind mode" to demonstrate inspector proficiency
- Multiple flaw profiles and configurations designed so that end users can put together a set that fits their specific training needs and budget
- All lessons and teaching points will be encompassed in a limited number of panel configurations (minimize cost)
- Specimen geometry designed for ease of construction

Panel Configuration Summary - 8 total panels

- Configuration 1 3 variations
- Configuration 2 2 variations
- Configuration 3 3 variations

Panel Configuration	Structure	Test Specimen	Primary Variation
Configuration 1 24"x18" Panel with complex taper (10:1 and 20:1) and secondary bond	1a	Standard configuration 1	
	1b	Additional Secondary bond and more subtle flaws (different flaw profile)	
	1c	Additional thickness (up to 64 plies) and different flaw profile	
Configuration 2	24"x18" Panel with pads, fasteners, co-	2a	Standard configuration 2
sealant, sound dampers	2b	Different flaw profile	
Configuration 3 ¹¹	16 ply solid lamiante skin	За	Standard configuration 3
		3b	Subtle impact
		3c	Large impact

Example Engineered Flaws in Proficiency Specimens

Pillow insert *Delamination

Carbospheres *Localized porosity

Embedded in the panels

Grease *Contamination

Paper Backing in the bond line *Foreign object damage

Pillow insert in the bond line *Disbond

Grafoil® insert *Tight delamination

Example Engineered Flaws in Proficiency SpecimensAdded to the panels after fabrication

Concentric flat bottom holes *Impact damage

Grinder Cut *Cracked or broken substructure

Flat bottom holes *Significant delamination

Grinder Disk Grove *Gouge or deep scratch

Missing Sealant

Sealant *Raised material, not a flaw

Specimen Design 1c – Flaw Profile

Structure: Thick Specimen - Taper (10:1 and 20:1) and secondary bond

Fabrication support from NORDAM Interiors and Structures

Darryl Graham and Jeff Harper

Specimen 1c – Inspection Results

Structure: *Thick Specimen* - Taper (10:1 and 20:1) and secondary bond

Teaching Points:

Follow procedures to set proper gates and detect second layer defects

aboratories

Teaching Points:

- Defect detection using PA can require combination of Amp., TOF and A-Scan.
- dB drop criteria

Configuration 2

Structure: Uniform thickness skin, pads, fastened shear tie flanges, co-cured stiffeners, sealant

14

9

Specimen Design 2a – Flaw Profile 10 ITEM # FLAW TYPE SIZE PLY LAYER MISSING SEALANT **BTN PLY 8 & SHEAR TIE FLANGE** AS SHOWN 2 PILLOW INSERT Ø2.00 BTN PLY 16 & SOUND DAMPER ۲ 5 3 PILLOW INSERT 1.00 X 1.00 BTN LAM PLY 16 & ST PAD PLY 1 ۲ **PILLOW INSERT** 1.00 X 1.00 4 BTN PLY 2 & 3 OF STIFFENER PILLOW INSERT Ø1.50 5 BTN PLY 4 & 5 (25%) 11 19)(17)2X 6 PILLOW INSERT 1.75 X 0.50 BTN PLY 4 & 5 OF ST PAD 7 **PILLOW INSERT** Ø1.25 BTN PLY 8 & 9 (50%) 8 **PILLOW INSERT** Ø0.50 BTN PLY 6 & 7 OF ST PAD 10 12 9 DREMEL CUT ~0.05 X 1.00 SHEAR TIE FLANGE AS SHOWN Ø0.25 10 FLAT BOTTOMED HOLE 0.015" ↓ (BTN PLIES 6 & 7) 11 FLAT BOTTOMED HOLE Ø0.75 0.030" ↓ (BTN PLIES 12 & 13) 12 PREPREG BACKING 1.25 x 1.25 BTN PLY 16 & STIFFENER PLY 1 13 PREPREG BACKING 2.00 X 2.00 BTN PLY 8 & 9 (50%) 7 4 14 GREASE Ø1.50 BTN PLY 8 & 9 (50%) ITEM # DESCRIPTION QUANTITY DESIGNATION ۲ 15 FLAT HEAD BOLT 100° FL HD, 1/4-20UNC-2A X 0.500 12 16 HEX NUT 12 1/4-20UNC-2B ۲ 18) 4X 17 2 SHEAR TIE FLANGE SEE SHEAR TIE FLANGE DRAWING ۲ 4 18 SOUND DAMPER 4.5" X 5.0" SMACSONIC PADS 2 19 SEALANT AS NEEDED ۲ 13 12X(16 8 3 **ZINSPECTION SIDE (TOOL SIDE)**

Specimen 2a – Inspection Results

Structure: Uniform thickness skin, pads, fastened shear tie flanges, co-cured stiffeners, sealant

OmniScan 3.5L64 (3.5 MHz)

Back

TOF

6. Hands-On Exercises

A-Scan Exercises	Panels
General A-Scan Inspection Procedure	All panels
1 - Calibration - Set Material Velocity and TCG Curve	Ref Std
2 - Mark substructure on surface	1a,1b,1c,2a,2b
3 - Defect detection in uniform thickness skin	1a,1b,1c,3a,3b,3c
4 - Defect detection in tapered skin	1a,1b,1c
5 - Inspection of bonded substructure	1a,1b,1c
6 - Inspection of co-cured substructure	2a,2b
7 - Defect detection around other aircraft elements	2a,2b

PA Exercises	Panels
General C-Scan Inspection Procedure	All panels
1 - PA Calibration	Ref Std
2 - Set up TCG Curve	ST8872
3 - Setting gates	All panels
4 - Analyzing C-Scan results	All panels

6. Hands-On Exercises

- Students follow inspection procedure and exercises to conduct inspections on the Proficiency Specimens
- Templates are used to check inspection results
- Immediate instructor feedback to identify hits, misses and false calls
- Markings on panel are compared to C-Scan inspection results

First Deployment of the Composite NDI Training Class - July 2016

- Conducted the class at Delta Air Lines
- 20 inspectors, engineers, and FAA participants
- Presented the full class and conducted hands-on exercises using the Proficiency Specimens

Feedback from the first class deployment:

- Helpful background on composite materials and NDI refresher
- TCG, inspection over acoustic tiles, C-Scan data analysis, set up and calibration of phased array transducer, new appreciation for setup files, immediate hit/miss feedback

Comfort level increased

Outcome and Path Forward

- Development of NDI training class is complete
- Successful completion of first class deployment with an airline
- Class will provide:
 - A general understanding of composite materials
 - An in-depth understanding of the nondestructive testing methods used to inspect carbon fiber parts
 - An overall inspection proficiency on composite aircraft parts made up of a variety of structural configurations
- Airlines/users customize for their particular needs

In the process of making the class materials available to the public:

- Class modules
- Proficiency specimen drawings and specifications
- Generalized A-Scan and C-Scan inspection procedures
- Hands-on exercises
- Grading and instructor materials

Questions?

If you are interested in obtaining the Composite Inspector Training materials, contact me:

> Stephen Neidigk sneidig@sandia.gov

