
A Computational Approach to Biblical
Hebrew Conjugation

Joachim Lambek and Noson S. Yanofsky

November 19, 2006

Abstract

We study the Hebrew verb as it occurs in the Torah, according to the
Masoretic tradition. Potentially, each verb has 7× 2× 10 = 140 finite
conjugational forms corresponding to seven patterns, two tenses and
ten persons. We present a simple computational method for generat-
ing these conjugational forms step by step.

1 Introduction

In J. Weingreen’s authoritative A Practical Grammar For Classical Hebrew
[11], he writes (page vii) “Hebrew grammar is essentially schematic and,
starting from simple primary rules, it is possible to work out, almost math-
ematically, the main groups of word-building.” We claim that the adverb
“almost” in his assertion can be removed. We shall present such a scheme
in a mathematical language. The mathematics involved is that of a finitely
generated partially ordered semi-group, also called “semi-Thue system” by
mathematicians, “rewrite system” by computer scientists and “production
grammar” (Chomsky’s Type zero) by linguists.

We do not intend to offer any new discoveries about biblical Hebrew gram-
mar. No new grammatical rule will be introduced, nor will we offer any deep
insight that has been overlooked in millennia of work by the Hebrew gram-
marians. We simply aim at a clear mathematical way of presenting the rules
of conjugation for a small fragment of biblical Hebrew. This presentation is
concise, exact (perhaps too exact for the text evaluated) and intended to be
an easily intelligible expression of the rules. We hope that the rules presented

1

2 Lambek and Yanofsky

here are an improvement over the usual paradigm tables or the long English
statements explaining them. The improvements will be seen with the ease
that the examples are computed. We should add that in order to calculate
a word form, one always applies the first rewrite rule that is applicable.

We accept the traditional grammar as presented, say, in the admirable
text of Weingreen [11], with only minor quibbles. We have also consulted
the classical treatment by Gesenius [7]. What we are concerned with is the
computational aspect: how could a speaker of biblical Hebrew calculate the
correct verb form in a step by step manner? Phonological reasons for some
of the grammatical rules will be offered when they are apparent.

While our goal is to be as inclusive as possible, we are ignoring many
different parts of Hebrew conjugation. There will be no discussion of the co-
hortative, imperative, jussive, infinitive, or participle tenses. In general, we
ignore the modifications of the verb form when it is followed by a pronominal
suffix. We also — perhaps in error — wave our hands at accents and whether
or not a syllable is open or closed. There are some grammatical constructions
and rules that are dependent on these factors. For example, without consid-
ering if a syllable is open or closed, it is hard to tell if a shewa is vocal or
silent. Similarly, an accent on a verb can move when there is a prefixed waw.
We suspect that the accents can be computed from the phonological rules
rather then the other way around. Because of space and time considerations,
we choose to work with the fragment of biblical Hebrew conjugation dealing
with the “finite” forms of the verb.

Like classical Latin [9], biblical Hebrew is an inflected language. It has
140 finite verb forms, constructed from seven patterns, two tenses and ten
persons, while Latin has 90 finite verb forms, constructed from three patterns
(amo, amavi, amor), five tenses and six persons. One thing both languages
have in common is that not every verb possesses all possible patterns. Thus,
Latin memini and nascor exist only in the second and third pattern respec-
tively; similarly in Hebrew, many verbs fail to possess a full complement of
all seven patterns.

We mention two points of difference between Latin and Hebrew. In Latin,
each pattern displays a separate conjugation paradigm, whereas in Hebrew,
all patterns are conjugated exactly alike, thus making Hebrew computation-
ally easier to manipulate than Latin. On the other hand, Latin pattern 1
determines the semantics of patterns 2 and 3; but in Hebrew, the meanings of
the other patterns cannot always be inferred from that of pattern 1. For ex-
ample, nikbad, the alleged passive of kābad “to be heavy”, can unpredictably

Computational Hebrew Conjugation 3

mean “to gain honor”1. The passive of pāqad “to visit” is the seemingly un-
related nipqad ”to be lacking”. (We have here represented each verb by the
third person singular of the past tense.)

2 The Hebrew Consonants

To make this paper accessible to readers not familiar with Hebrew, we do
not use Hebrew grammatical terminology in the metalanguage, although we
sometimes mention the Hebrew word for completeness. We present Hebrew
letters in Roman transliteration. Concerning the consonants, we adopt the
transliteration system A of the Encyclopedia Judaica (volume VIII page 79):

’ b g d h w z h. t. y k l m n s ‘ p s. q r š ś t

Some sample transliterations are

Aleph ’ Bet b Dalet d
H. et h. Tet t. Kaph k

Samek s ‘Ayin ‘ S. ade s.
Qoph q Šin š Śin ś

Taw t

We follow the Gileadites2 in maintaining the distinctions between the let-
ters š and ś, which were not distinguished in the original text. Essentially the
Hebrew consonants aim to represent what are called “phonemes” in modern
linguistics. We will not distinguish between the plosives b g d p k t and their
spirant (fricative) allophones bh gh dh th ph kh th (denoted by b, g,
etc in the Encyclopedia). Plosives will automatically appear at the beginning
of a word (denoted by # if necessary), after certain prefixes (in which case
we place the symbol + between the prefix and the stem), and after another
consonant. Otherwise, the letter b, g, etc. should be read as spirants bh, gh

etc. In particular, when we have two consecutive consonants, the former is
a spirant, if possible, and the latter is a plosive, if possible. A problem may
arise when the first consonant has no spirant allophone. However, we will
ignore such marginal phenomena.

4 Lambek and Yanofsky

3 The Masoretic vowels

Apparently, biblical Hebrew contained three basic vowel phenomes3 a, i and
u, like modern standard Arabic. (Note moslem = muslim). These were not
written originally, although they might be revealed by attached consonants
h, y and w respectively4.

The vowel system now in use goes back to the Tiberian Masoretes5

(around 800 A.D.), who were closer in time to us than to Ezra (around 600
B.C.), the traditional final editor of the Torah. They claimed to preserve the
original pronunciation in all its nuances6; but can they really be trusted after
such a long time spread?7 Still, it is difficult to ignore them now. Rather
than to question them, we aim to formulate the grammar implied in their
system of spelling.

The Masoretes essentially acknowledge seven short and five long 8 vowels:

a ā(h)
ä ȧ ey ow

e o iy uw
i u

They failed to distinguish between ā (qāmes. − gadol) and ȧ (qāmes. −
katan). These have indeed complementary distribution, the former occurs
only in open syllables and the latter before two consecutive consonants. Both
ä and ȧ might have been allophones of a, although later they became allo-
phones of e and o respectively. In pattern 4, the so called hoph‘al, there is
even a variation between ȧ and u.

The Masoretes occasionally also admitted the long vowels äy (s.ere−yud)
and äh perhaps representing the same sound. In addition, they had a symbol,
the shewa, for the so called schwa, a neutral vowel recognized by modern
linguists. We shall denote this with a raised ()e. They introduced a very
short a, ä and ȧ (h.atep− patah. , h.atep− segol and h.atep− qāmes.) which we
shall denote by raised a, ä and ȧ.

The Masoretes also admitted a silent shewa between two consecutive con-
sonants. This we shall omit in our transliteration. Although they used the
same symbol for both vocalic and silent schwa, there are standard rules to
distinguish them.9

Computational Hebrew Conjugation 5

4 Vowel transformations

It is not clear to us how exactly the phoneme-allophone distinction may
be incorporated into a computational description of Hebrew. What seems
important is that a certain symbol (a), is to be pronounced differently in
different contexts. In fact we require the following rule:

(V) −→




V before CC ′ or C#
()V before CV ′

()e before CV̄ ′
(4.1)

where V = a, ä or ȧ. Here C and C ′ denote consonants, V and V ′ short
vowels, V̄ ′ a long vowel, and # denotes the space between words. The way
to read this is that (a) becomes a, ()a or ()e depending on what follows,
and similarly for (ä) and (ȧ). If she wishes, the reader may take (a) to be a
phoneme with three allophones.

We shall also postulate

(V) −→
{

V before CC ′ or C#
()e before CV ′ or CV̄ ′ (4.2)

where V = e, i, o or u, except when C or C ′ = w or y or when C = C ′. We
shall deal with these exceptional cases later.

Unfortunately, (e) must be distinguished from a related symbol (é) which
will turn into a different vowel before two consecutive consonants:

(é) −→




a before CC ′

e before C#
()e before CV ′ or CV̄ ′

(4.3)

In order not to make our notation too cumbersome, we shall henceforth
drop the parentheses around (a), (e), etc. But this will imply that, before a
vowel takes its final form, we will have to look at two or three letters following
it (three because a long vowel may be represented by two letters).

6 Lambek and Yanofsky

5 The Hebrew verb

Most Hebrew verbs are presented by three consonants, called “radicals”, and
two vowels, which we call “characteristic vowels”. This triliteralness10 is a
defining property of all Semitic languages. Three consonants may determine
a verb and one forms related words by placing different vowels between these
consonants. This is in stark contrast to non-Semitic languages such as En-
glish, where the words boot, bait, but, bat, bet, boat, bit, etc. have nothing to
do with each other.

A verb V will be presented as follows:

V = FMLα1, α2

where F,M, and L stand for the F irst, M iddle, and Last radical respectively
and α1 and α2 are equal to a, é or o. The characteristic vowels appear in
pattern 1 of the verb only, α1 in the future and α2 in the past. For example,
Weingreen discusses four verbs, in our notation:

qt.loa, qt.nao, kbdaé, yt.baa

(they mean, respectively, “to kill”, “to be small”, “to be heavy”, “to be
good”). The third person masculine singular of the future and of the past in
pattern 1 is seen as follows

yiqt.ol / qāt.al

yiqt.an / qāt.on

yikbad / kābed

yiyt.ab / yātab.

Unfortunately, it must be admitted that different scholars are not neces-
sarily in agreement. Thus Gesenius writes qet.āl and Halkin [8] writes kābad.
We prefer Weingreen, who asserts that the vowels oa characterize “active”
verbs, that is verbs denoting an action, and that ao, aé and aa characterize
“stative” verbs, that is verbs denoting a state11.

The characteristic vowels may be affected by phonological rules. For
example, there is an active verb šlh.aa “to send” in which the o has been
replaced by a, in view of the fact that h. is a guttural consonant.

Computational Hebrew Conjugation 7

If we look at the first person singular of the past tense of pattern 1, we
find that é −→ a in kbdaé

kābédtiy −→ kābadtiy.

This follows from rule (4.3).

In the third person feminine, the characteristic vowel α2 turns into a
schwa and we obtain

qāt.
elāh, qāt.

enāh, kābedāh, yātebnāh,

from rule (4.1).

6 The Conjugation formula

We distinguish 140 possible finite verb forms Ci,j,k(V) for every verb V where

i = 1, 2m, 2f, 3m, 3f, 4, 5m, 5f, 6m, 6f

denotes the three persons singular followed by the three persons plural, and
m stands for masculine, f for feminine;

j = 1, 2

denotes the future (also called “imperfect” or “incomplete”) tense and the
past (also called the “perfect” or “complete”) tense respectively;

k = 1, 2, . . . , 7

denotes the seven patterns (also called the “forms”, “conjugations,” or “binyanim”).

The 140 verb forms are calculated by the formula

Ci,j,k(V) −→ Pi,jSj,k(V)Qi,j (6.1)

where Pi,j and Qi,j are given by the following table.

8 Lambek and Yanofsky

Table I

Prefixes and Suffixes

i Pi,1 Qi,1 Pi,2 Qi,2

1 ’ ∅ ∅ tiy
2m t ∅ ∅ tā
2f t iy ∅ t

3m y ∅ ∅ ∅
3f t ∅ ∅ ah
4 n ∅ ∅ nuw

5m t uw ∅ täm
5f t nah ∅ tän

6m y uw ∅ uw
6f t nah ∅ uw

The table encapsulates a number of rewrite rules such as P1,1 −→ ’, and
Q1,1 −→ ∅ (the empty string). Note, in particular, that Pi,2 −→ ∅ for all i,
hence for j = 2 conjugation rule (6.1) may be simplified to

Ci,2,k(V) −→ S2,k(V)Qi,2. (6.2)

The seven patterns Sj,k(V) are given by the following table:

Table II

Stem Rewrite Rules

k Pattern Future S1,k(V) Past S2,k(V)

1 qal iFMα1L [F āMα2L]
2 niph‘al niFF āMéL niFMaL
3 hiph‘il haFM [ey]L hiFM [ay]L
4 hoph‘al hȧFMaL hȧFMaL
5 pi‘el iFaMMeL FiMMéL
6 pu‘al iFuMMaL FuMMaL
7 hitpa‘el hit + FaMMéL hit + FaMMéL

Computational Hebrew Conjugation 9

(Recall from Section 5 that V = FMLα1α2 and from Section 2 that we
place the symbol + between prefix and stem.)

Halkin differs from Weingreen in his treatment of S1,7(V). In our nota-
tion, he would put

S1,7(V) −→ hit + FaMMel,

replacing é by e.
The patterns12 usually have the following shades of meaning:

Pattern

Simple Intensive Causative Reflexive

Active qal k = 1 pi‘el k = 5 hiph‘il k = 3
Passive niph‘al k = 2 pu‘al k = 6 hoph‘al k = 4

hitpa‘el k = 7

Before embarking on any actual calculations, we must state a number of
phonological rewrite rules:

h −→
{ ∅ after C

h otherwise
(6.3)

n −→
{ ∅ after C

n otherwise
(6.4)

’i −→




’ä before CC ′

except when C or C ′ = y or w
’a before CV

(6.5)

When a verb is prefixed with something that ends in a t, the following
rule holds13

t + C −→





Ct if C = š, ś or s
Ct. if C = s.

CC if C = t., d, z or n (often)
tC otherwise

(6.6)

[ey] −→
{

e after CC ′

iy otherwise
(6.7)

10 Lambek and Yanofsky

[ay] −→
{

a after CC ′ when unstressed
iy otherwise

(6.8)

[F āMV L] −→




F eMȧL when V = o before täm or tän
F eMV L when V = a, or é before täm or tän
F āMV L otherwise

(6.9)

(The third case also allows V = ā in anticipation of Section 10.)

7 Sample calculations for regular verbs

In the following sample calculations, we will show how to calculate Ci,j,k(V)
when V is a regular (aka “strong”) verb. This means that none of the three
radicals is n,w or y, nor a guttural ’, h, h. , ‘ (and sometimes r). We follow
Weingreen and look at the verb qt.loa “to kill”14 in all seven patterns. Most
of our rules will be illustrated by taking i = 1 and 6f . When j = 2, we
will occasionally also look at i = 3m and 5m to illustrate the rôle of rewrite
rules replacing é by e, ā by ()e and o by ȧ in certain contexts. The number
below the arrow −→(#) is the rule number in this paper. We only supply it
when the rule is not obvious.

C1,1,1(V) −→ P1,1S1,1(V)Q1,1 −→ ’S1,1(V)Q1,1 −→ ’iqt.olQ1,1

−→(6.5) ’äqt.olQ1,1 −→ ’äqt.ol

C6f,1,1(V) −→ · · · −→ tiqt.olQ6f,1 −→ tiqt.olnāh

C1,2,1(V) −→ S2,1(V)Q1,2 −→ [qāt.al]Q1,2 −→ [qāt.al]tiy
−→(6.9) qāt.altiy

C5m,2,1(V) −→ · · · −→ [qāt.al]täm −→(6.9) qet.altäm

Computational Hebrew Conjugation 11

By contrast, for V′ = qt.nao “to be small”, we have

C5m,2,1(V
′) −→ · · · −→ [qāt.on]täm −→(6.9) qet.ȧntäm

Returning to V = qt.loa,

C6f,2,1(V) −→ · · · −→ [qāt.al]uw −→(6.9) qāt.aluw −→(4.1) qāt.
eluw

C1,1,2(V) −→ P1,1S1,2(V)Q1,1 −→ ’S1,2(V)Q1,1 −→ ’niqqāt.élQ1,1

−→(6.4) ’iqqāt.élQ1,1 −→(6.5) ’äqqāt.él −→(4.3) ’äqqāt.el

C6f,1,2(V) −→ · · · −→ tiqqāt.élnāh −→(4.3) tiqqāt.alnāh

C1,2,2(V) −→ S2,2(V)Q1,2 −→ niqt.alQ1,2 −→ niqt.altiy

C6f,2,2(V) −→ · · · −→ niqt.aluw −→(4.1) niqt.
eluw

C1,1,3(V) −→ P1,1S1,3(V)Q1,1 −→ ’haqt.[ey]lQ1,1 −→(6.3) ’aqt.[ey]lQ1,1

−→ ’aqt.[ey]l −→(6.7) ’aqt.iyl

C6f,1,3(V) −→ · · · −→ taqt.[ey]lnāh −→(6.7) taqt.elnāh

C1,2,3(V) −→ S2,3(V)Q1,2 −→ hiqt.[ay]lQ1,2 −→ hiqt.[ay]ltiy −→(6.8)

hiqt.altiy

C6f,2,3(V) −→ · · · −→ hiqt.[ay]luw −→(6.8) hiqt.iyluw

This example forces us to add the proviso “when unstressed” in case 1 of
(6.8), otherwise we would have obtained hiqt.aluw −→ hiqt.

eluw instead.

C1,1,4(V) −→ P1,1S1,4(V)Q1,1 −→ ’S1,4(V)Q1,1 −→ ’hȧqt.alQ1,1

12 Lambek and Yanofsky

−→(6.3) ’ȧqt.alQ1,1 −→ ’ȧqt.al

C6f,1,4(V) −→ · · · −→ tȧqtalQ6f,1 −→ tȧqt.alnāh

C1,2,4(V) −→ S2,4(V)Q1,2 −→ hȧqt.alQ1,2 −→ hȧqt.altiy

C6f,2,4(V) −→ · · · −→ hȧqt.aluw −→(4.1) hȧqt.
eluw

C1,1,5(V) −→ P1,1S1,5(V)Q1,1 −→ ’S1,5(V)Q1,1 −→ ’iqat.t.elQ1,1

−→(6.5) ’aqat.t.elQ1,1 −→ ’aqat.t.el

C1,2,5(V) −→ S2,5(V)Q1,2 −→ qit.t.élQ1,2 −→ qit.t.éltiy −→(4.3) qit.t.altiy

C3m,2,5(V) −→ · · · −→ qit.t.él −→(4.3) qit.t.el

C6f,2,5(V) −→ · · · −→ qit.t.éluw −→(4.3) qit.t.
eluw

C1,1,6(V) −→ P1,1S1,6(V)Q1,1 −→ ’S1,6(V)Q1,1 −→ ’iqut.t.alQ1,1

−→(6.5) ’aqut.t.alQ1,1 −→ ’aqut.t.al

C6f,1,6(V) −→ · · · −→ tiqut.t.alQ6f,1 −→(4.2) tequt.t.alQ6f,1 −→ tequt.t.alnāh

C1,2,6(V) −→ · · · −→ S2,6(V)Q1,2 −→ qut.t.alQ1,2 −→ qut.t.altiy

C6f,2,6(V) −→ · · · −→ qut.t.aluw −→(4.1) qut.t.
eluw

C1,1,7(V) −→ P1,1S1,7(V)Q1,1 −→ · · · −→ ’hit + qat.t.élQ1,1

−→(6.3) ’it + qat.t.élQ1,1 −→(6.6) ’itqat.t.élQ1,1 −→(6.5) ’ätqat.t.élQ1,1

−→ ’ätqat.t.él −→(4.3) ’ätqat.t.el

Computational Hebrew Conjugation 13

C6f,1,7(V) −→ · · · −→ titqat.t.élnāh −→(4.3) titqat.t.alnāh

C1,2,7(V) −→ · · · −→ hit + qat.t.élQ1,2 −→(6.6) hitqat.t.élQ1,2

−→ hitqat.t.éltiy −→(4.3) hitqat.t.altiy

C6f,2,7(V) −→ · · · −→ hitqat.t.éluw −→(4.3) hitqat.t.
eluw

8 Quadriliterals

While most verbs have exactly three consonants, there are some with four.
Weingreen mentions only one such verb explicitly, namely krs.s.; but implic-
itly he allows that others appear in late Biblical Hebrew such as qwwm
and mwtt, in certain patterns of otherwise triliteral verbs. In modern He-
brew, as in modern standard Arabic, quadriliterals proliferate (see Halkin
[8]). Both Hebrew and Arabic apply the same trick to derive the conjugation
of quadriliterals from triliterals. Noting that in patterns 5,6 and 7 of regular
verbs the medial consonant is doubled, all one has to do is to replace MM
by M1M2, where M1 6= M2. It follows that quadriliterals can exist only in
patterns 5,6 and 7.

For example, here is how we can calculate pattern 5 of V = krsm “to
gnaw”. (There is no need for characteristic vowels, which appear only in
pattern 1.)

C1,1,5(V) −→ P1,1S1,5(V)Q1,1 −→ ’S1,5(V)Q1,1 −→ ’ikarsemQ1,1

−→(6.5) ’akarsemQ1,1 −→ ’akarsem

C6f,1,5(V) −→ · · · −→ tikarsemQ6f,1 −→(4.2) tekarsemQ6f,1 −→ tekarsemnāh

C1,2,5(V) −→ · · · −→ kirsémQ1,2 −→ kirsémtiy −→(4.3) kirsamtiy

C3m,2,5(V) −→ · · · −→ kirsém −→(4.3) kirsem

C6f,2,5(V) −→ · · · −→ kirsémuw −→(4.3) kirsemuw

14 Lambek and Yanofsky

This verb is found in the Bible with a pronominal suffix: yekarsemännāh
“he (a boar) doth ravage it (a vine)” (Psalms 80:14). We shall not analyze
pronominal suffixes here.

Several other quadraliteral verbs found in the Bible are

• rut.
apaš “To grow fresh again” (Job 33:25). Chomsky [6] on page 216

footnote 349, mentions a source which explains the hatef-patah. under
the t. due to euphonic difficulties in the transition from t. to p. There
are many who say that the word is not a quadriliteral but is in fact
a portmanteau word combined of two other words. (See the commen-
taries ad loc. and on the Babylonian Talmud Nedarim 41a.) There are
still others who think that the r is a dittographic from the previous
word.

• mekurbāl “to clothe” (I Chronicals 15:27) which is similar to the passive
particle (hence the me) of the pual.

• paršez “to spread” (Job 26:9). Some authors say that this is an infini-
tive absolute of the piel pattern.

There are no five-letter verbs in Biblical Hebrew. In contrast, there are many
in modern Hebrew. There are numerous quadriliterals and five-letter nouns
in Biblical Hebrew.15

9 Weak Verbs and Weak Verbs with F = n

Triliteral verbs are said to be “weak” if they contain the gutturals ’, h, h. , ‘
and sometimes r, the assimilable n or the semi-consonants y or w. As Wein-
green puts it: “weak verbs [...] are explained rationally by the simple method
of applying to these verbs the ordinary rules governing ‘peculiar’ letters and
working out the forms which they, respectively, assume.” In other words,
weak verbs are conjugated like regular ones and then transformed with the
help of appropriate phonological rules. In principle, these rules are not re-
stricted to verbal contexts, but these are the only contexts we have looked
at here. How this program is carried out in detail will occupy most of the
remaining sections of this paper.

Special considerations must also be given to verbs where two contiguous
radicals coincide. We will look at this in Section 15.

Computational Hebrew Conjugation 15

In the present section we consider the case F = n. When the letter n
occurs as the first radical of a verb, and sometimes elsewhere, it may be
assimilated to the following consonant. We will write (n) for the assimilable
n, to distinguish it from the usual letter n. It obeys the following rule:

V (n)C −→




V nC if C is a gutteral
V nn if C = (n)

V CC otherwise
(9.1)

(n) −→ n before a vowel or # (9.2)

We also note that, in unstressed syllables,

V CC −→ uCC if V = o or ȧ (9.3)

The restriction to unstressed syllables is necessary in view of qāt.onnuw
and tiqt.onnāh.

We will now calculate some representative finite forms of the verb V =
(n)ploa “to fall”.

C1,1,1(V) −→ P1,1S1,1(V)Q1,1 −→ ’S1,1(V)Q1,1 −→ ’i(n)polQ1,1

−→(6.5) ’ä(n)polQ1,1 −→(9.1) ’äppolQ1,1 −→ ’äppol

C6f,1,1(V) −→ · · · −→ tippolnāh

C1,2,1(V) −→ S1,2(V)Q1,2 −→ [(n)āpal]Q1,2 −→(9.2) [nāpal]Q1,2

−→ [nāpal]tiy −→(6.9) nāpaltiy

C5m,2,1(V) −→ · · · −→ [nāpal]täm −→(6.9) nepaltäm

C6f,2,1(V) −→ · · · −→ nāpaluw −→(4.1) nāpeluw

C1,1,2(V) −→ P1,1S1,2(V)Q1,1 −→ ’S1,2(V)Q1,1 −→ ’i(n)(n)āpélQ1,1

−→(6.5) ’ä(n)(n)āpélQ1,1 −→(9.1) ’ännapélQ1,1 −→ ’ännapél −→(4.3) ’ännapel

16 Lambek and Yanofsky

C6f,1,2(V) −→ · · · −→ tinnāpélnāh −→(4.3) tinnāpalnāh

C1,2,2(V) −→ S2,2(V)Q1,2 −→ ni(n)palQ1,2 −→(9.1) nippalQ1,2 −→ nippaltiy

C1,1,3(V) −→ P1,1S1,3(V)Q1,1 −→ ’S1,3(V)Q1,1 −→ ’ha(n)p[ey]lQ1,1

−→(6.3) ’a(n)p[ey]lQ1,1 −→(9.1) ’app[ey]lQ1,1 −→ ’app[ey]l −→(6.7) ’appiyl

C1,2,3(V) −→ S2,3(V)Q1,2 −→ hi(n)p[ay]lQ1,2 −→(9.1) hipp[ay]lQ1,2

−→ hipp[ay]ltiy −→(6.8) hippaltiy

C1,1,4(V) −→ P1,1S1,4(V)Q1,1 −→ ’S1,4(V)Q1,1 −→ ’hȧ(n)palQ1,1

−→(6.3) ’ȧ(n)palQ1,1 −→(9.1) ’ȧppalQ1,1 −→(9.3) ’uppalQ1,1 −→ ’uppal

C1,2,4(V) −→ S2,4(V)Q1,2 −→ hȧ(n)palQ1,2 −→(9.1) hȧppalQ1,2

−→(9.3) huppalQ1,2 −→ huppaltiy

Weingreen lists no other pattern for this verb, but Halkin considers pat-
tern 7 (hitpa‘el) which contains no surprises. But recall that he has e in
place of é in table II, and so he obtains

C6f,1,7(V) −→ tit + (n)appelQ6f,1 −→(6.6) tit(n)appelQ6f,1

−→(9.2) titnappelQ6f,1 −→ titnappelnāh
where we would expect titnappalnāh.

There is one verb in which the letter l is similarly assimilable, lqh.aa “to
take”. Note that α1 = a rather than o since h. is a guttural.

There is one common verb in which both the first and the last radical
is an assimilable n, the verb (n)t(n)éa “to give”. This is an example of a
doubly weak verb about which we shall see more of in Section 16. For some
reason, α1 = é rather then o. At the beginning, this verb is treated like
(n)ploa, so we only have to look at the end of the calculations.

C1,1,1(V) −→ · · · −→ ’ätte(n) −→(9.2) ’ätten

Computational Hebrew Conjugation 17

C6f,1,1(V) −→ · · · −→ titté(n)nāh −→(9.1) titténnāh −→(4.3) tittannāh

C1,2,1(V) −→ · · · −→ nāta(n)tiy −→(9.1) nātattiy

C3m,2,1(V) −→ · · · −→ nāta(n) −→(9.2) nātan

C6f,1,2(V) −→ · · · −→ ’ännaté(n) −→(9.2) ’ännatén −→(4.3) ’ännaten

C3m,2,2(V) −→ · · · −→ nitta(n)tiy −→(9.1) nittattiy

10 Weak verbs with guttural radicals

The gutturals (also called “laryngals”) in Hebrew are ’, h,h. ,‘. Here ’ and ‘
can be subclassified as weak gutturals in contrast to h and h. which are called
strong gutturals. Because there is latitude about the level of “gutturalness”,
there is latitude about the extent that each letter follows the guttural rules.

Although r is technically not a guttural, it still follows several guttural
rules.

In Hebrew a guttural can not be doubled 16 (i.e., accept a dagesh). Rather
than extending the guttural, we lengthen the vowel before the guttural:

iGG −→ eG (10.1)

uGG −→ oG (10.2)

aGG −→ āG (10.3)

(Note that the vowel before a doubled consonant other then n is always a, i
or u in unstressed syllables.)

Gutturals cannot even be immediately followed by another consonant.
Thus, we have (except for G = r)

V GC −→ V GV C when V = ä, a, ȧ, (10.4)

18 Lambek and Yanofsky

assuming that C 6= G. Recalling that, for such V , V −→ ()V , by (4.1) we
infer that

V GC −→ V GV C (10.5)

before a short vowel V ′.
There is also a rule introducing a so-called furtive a at the end of a verb

form:

V̄ G −→ V̄ aG before #, when V̄ is any long vowel. (10.6)

Furthermore, there is a rule which transforms the vowel i before a preliminary
guttural-consonant combination:

iGC −→
{

äGC after ’ or h or in pattern 1 of stative verbs
aGC otherwise,

(10.7)

assuming that C 6= G.
It follows from (10.7) and (10.4) that

iGC −→ äGäC or aGaC before V ′ (10.8)

in the two cases respectively.
Which gutturals may occur in different places of a triliteral verb? One

considers the following cases:

F = G = ’, h, h. or ‘,

with exceptions when ’ is quiescent or when h. is harsh.

M = G = ’, h, h. , ‘, r,

where r is perhaps pronounced as in Parisian French (see sec. 22q,r of [7]).

L = G = ‘ or h.

L = ’ is quiescent and L = h really stands for L = y or L = w, as we shall
see in Section 14 below.

The letter h. is harsh in some exceptional verbs and can be followed by a
consonant after all, as in the future yäh. šak “he will be dark” of the stative

Computational Hebrew Conjugation 19

verb h. škaé “to be dark” or the future yah.mod “he will be desired” of the
active verb h.mdoa“to be desired”.

The letter ’ is always quiescent before # or constants, that is, it does not
count as a consonant when applying rule (4.1). We postulate:

a’ −→
{

ā’ before # or]
e’ before C 6= h

(10.9)

ā’, e’, é’ −→ ä’ before nāh (10.10)

Here are some sample calculations. First consider F = G, e.g. for V =
‘mdoa “to stand”.

C1,1,1(V) −→ P1,1S1,1(V)Q1,1 −→ ’S1,1(V)Q1,1 −→ ’i‘modQ1,1

−→(10.7) ’ä‘modQ1,1 −→(10.5) ’ä‘ämodQ1,1 −→ ’ä‘ämod

C6f,1,1(V) −→ · · · −→ ta‘modQ6f,1 −→(10.5) ta‘amodQ6f,1 −→ ta‘amodnāh

C1,1,2(V) −→ P1,1S1,2(V)Q1,1 −→ ’S1,2(V)Q1,1 −→ ’ni“āmédQ1,1

−→(6.4) ’i“āmédQ1,1 −→(10.1) ’e‘āmédQ1,1 −→ ’e‘āméd −→(4.3) ’e‘āmed

C3m,2,3(V) −→ P3m,2S2,3(V)Q3m,2 −→ hi‘m[ay]dQ3m,2 −→(10.8) hä‘äm[ay]dQ3m,2

−→ hä‘äm[ay]d −→(6.8) hä‘ämiyd

As an example of a weak verb with M = G, take V = brkaa “to bless”,

C1,1,5(V) −→ P1,1S1,5(V)Q1,1 −→ ’ibarrekQ1,1 −→(6.5) ’abarrekQ1,1

−→(10.3) ’abārekQ1,1 −→ ’abārek

C1,2,5(V) −→ S2,5(V)Q1,2 −→ birrékQ1,2 −→(10.1) berékQ1,2

−→ beréktiy −→(4.3) beraktiy

C1,1,6(V) −→ · · · −→ ’iburrakQ1,1 −→(6.5) ’aburrakQ1,1

−→(10.2) ’aborakQ1,1 −→ ’aborak

20 Lambek and Yanofsky

As an example of a weak verb with L = G, take V = šlh.aa “to send”.

C1,1,3(V) −→ · · · −→ ’hašl[ey]h.Q1,1 −→(6.3) ’ašl[ey]h.Q1,1 −→ ’ašl[ey]h.
−→(6.7) ’ašliyh. −→(10.6) ’ašliyah.

C3m,2,3(V) −→ · · · −→ hišliyh. −→(10.6) hišliyah.

As an example of a weak verb in which L is a quiescent ’, take V = ms. ’aa
“to find”.

C1,1,1(V) −→ · · · −→ ’äms.a’ −→(10.9) ’äms. ā’

C6f,1,1(V) −→ · · · −→ tims.a’nāh −→(10.10) tims. ä’nāh

C1,2,1(V) −→ · · · −→ [mās.a’]tiy −→(10.9) [mās. ā’]tiy −→(6.9) mās. ā’tiy

C1,1,2(V) −→ · · · −→ ’ämmās. é’ −→(4.3) ’ämmās.e’

C1,1,2(V) −→ · · · −→ nims.a’tiy −→(10.9) nims.e’tiy

C6f,1,3(V) −→ · · · −→ tams.e’nāh −→(10.10) tams. ä’nāh

In five exceptional verbs ’bdaā “to perish” (or “to lose”), ’bhaa “to be
willing”, ’klaa “to eat”, ’mraa “to say” and ’phaa “to bake” F = ’ is qui-
escent. This affects the conjugational form but only for j = 1 (future) and
k = 1 (qal).

i’C −→
{

oC after ’
o’C otherwise

(10.11)

Here are some sample calculations for V = ’klaa,
C1,1,1(’klaa) −→ P1,1S1,1(’klaa)Q1,1 −→ ’iS1,1(’klaa)Q1,1 −→ ’i’kalQ1,1

−→(10.11) ’okalQ1,1 −→ ’okal

C3f,1,1(’klaa) −→ P3f,1S1,1(’klaa)Q3f,1 −→ tS1,1(’klaa)Q3f,1 −→ ti’kalQ3f,1

Computational Hebrew Conjugation 21

−→(10.11) to’kalQ3f,1 −→ to’kal

C6m,1,1(’klaa) −→ P6m,1S1,1(’klaa)Q6m,1 −→ yS1,1(’klaa)Q6m,1 −→ yi’kalQ6m,1

−→(10.11) yo’kalQ6m,1 −→ yo’kaluw −→(4.1) yo’keluw.

For j 6= 1 or k 6= 1, the regular conjugations will work. The other verbs
with F = ’ quiescent are treated similarly, except that the two with L = h
(or rather L = y in line with Section 14) are doubly weak and fall under
Section 16.

When one of the root letters is a guttural, the changes to the stem rewrite
rules can be seen by looking at the guttural rules. Not every case requires a
change. We have summarized which rewrites change in the following table.
The table is split into two parts depending on which of the first two root
letters is a guttural.

Table IIa

Stem Rewrite Rules For Guttural Verbs

k Future S1,k(V) Past S2,k(V)

F=G

1 iGMα1L [GāMα2L]
2 niGGāMéL −→(10.1) neGāMéL niGMaL
3 haGM [ey]L −→(10.4) haGaM [ey]L hiGM [ay]L
4 hȧGMaL −→(10.4) hȧGȧMaL hȧGMaL −→(10.4) hȧGȧMaL
5 iGaMMeL GiMMéL
6 iGuMMaL GuMMaL
7 hit + GaMMéL hit + GaMMéL

M=G

1 iFGα1L [F āGα2L]
2 niFF āGéL niFGaL
3 haFG[ey]L hiFG[ay]L
4 hȧFGaL hȧFGaL
5 iFaGGeL −→(10.3) iF āGeL FiGGéL −→(10.1) FeGéL
6 iFuGGaL −→(10.2) iFoGaL FuGGaL −→(10.2) FoGaL
7 hit + FaGGéL −→(10.3) hit + F āGéL hit + FaGGéL −→(10.3) hit + F āGéL

The only changes when L = G depend on and must take account of the suf-

22 Lambek and Yanofsky

fixes and cannot be summarized in our table.

11 Weak verbs with F = y or w

According to Weingreen, there are two types of verbs with F = y or F = w.
The former occurs in the stative verb yt.baa“to be good” and requires the
following phonological rules:

ay −→ ey (11.1)

hiy −→ hey (11.2)

Note that ’iy does not change.
F = w occurs only in patterns 2,3 and 4. It is replaced by F = y in

patterns 5,6 and 7 (not discussed by Weingreen) and by F = (y) in pattern
1, where (y) is a potential y. An example is the verb (y)šbéa/wšb/yšb. We
require the following phonological rules:

iw −→ ow except before w (11.3)

aw −→ ow except before w (11.4)

ȧw −→ uw (11.5)

i(y) −→ e (11.6)

#(y) −→ #y. (11.7)

Here are some sample calculations for V = yt.baa:

C1,1,1(V) −→ P1,1S1,1(V)Q1,1 −→ ’S1,1(V)Q1,1 −→ ’iyt.abQ1,1 −→ ’iyt.ab

C1,1,3(V) −→ P1,1S1,3(V)Q1,1 −→ ’S1,3(V)Q1,1 −→ ’hayt.[ey]bQ1,1

−→(6.3) ’ayt.[ey]bQ1,1 −→(11.1) ’eyt.[ey]bQ1,1 −→ ’eyt.[ey]b −→(6.7) ’eyt.iyb

C6f,1,3(V) −→ · · · −→ tayt.[ey]bQ6f,1 −→(11.1) teyt.[ey]bQ6f,1

−→ teyt.[ey]bnāh −→(6.7) teyt.ebnāh

Computational Hebrew Conjugation 23

Actually, Weingreen lists teyt.abnāh on page 268, but we cannot reconcile
this with our rules. However, Gesenius on page 523 agrees with us. The
following calculations are for the verb V = (y)šbéa/wšb/yšb “to sit” for
patterns 1 / 2,3,4 / 5,6,7 respectively.

C1,1,1(V) −→ P1,1S1,1(V)Q1,1 −→ ’S1,1(V)Q1,1 −→ ’i(y)šébQ1,1

−→(11.6) ’ešébQ1,1 −→ ’ešéb −→(4.3) ’ešeb

C6f,1,1(V) −→ · · · −→ tešébQ6f,1 −→ tešébnāh −→(4.3) tešabnāh

C1,1,2(V) −→ P1,1S1,2(V)Q1,1 −→ ’S1,2(V)Q1,1 −→ ’niwwāšéb
−→(6.4) ’iwwāšéb −→(4.3) ’iwwāšeb

C1,2,2(V) −→ S2,2(V)Q1,2 −→ niwšabQ1,2 −→(11.3) nowšabQ1,2

−→ nowšabtiy

C1,1,3(V) −→ · · · −→ ’awš[ey]bQ1,1 −→(11.4) ’owš[ey]bQ1,1 −→ ’owš[ey]b
−→ ’owšiyb

C1,2,3(V) −→ · · · −→ hiwš[ay]bQ1,2 −→(11.3) howš[ay]bQ1,2

−→ howš[ay]btiy −→(6.8) howšabtiy

C1,2,4(V) −→ S2,4(V)Q1,2 −→ hȧwšabQ1,2 −→(11.5) huwšabQ1,2

−→ huwšabtiy

C1,1,5(V) −→ · · · −→ ’ayaššebQ1,1 −→ ’ayaššeb

C1,2,5(V) −→ · · · −→ yiššébQ1,2 −→ yiššébtiy −→(4.3) yiššabtiy

24 Lambek and Yanofsky

12 Weak verbs with M = y or w

Most difficult among weak verbs are those whose middle radical y or w is
unable to decide whether it is a consonant or a vowel. Weingreen discusses
the following three examples: qwmoa, šyméa and kwn, the last not known
in pattern 1.

To start with, we require the following rewrite rules:

iCwo −→ āC[uw] (12.1)

iCwé −→ āC[ey] (12.2)

iCwa −→ āC[ow] (12.3)

We have already discussed the symbol [ey] in Section 6 and we now in-
troduce the following rules for evaluating [uw] and [ow].

[uw] −→
{

o before CC ′

uw before CV̄ or C#
(12.4)

[ow] −→





ȧ before Ctäm
o before CC ′ otherwise

uw before CV
ow before CV̄ or C#

(12.5)

We can now make some sample calculations for V = qwmoa “to arise”.

C1,1,1(V) −→ P1,1S1,1(V)Q1,1 −→ ’S1,1(V)Q1,1 −→ ’iqwomQ1,1

−→(12.1) ’āq[uw]mQ1,1 −→ ’āq[uw]m −→(12.4) ’āquwm

C6f,1,1(V) −→ · · · −→ tāq[uw]mnāh −→(12.4) tāqomnāh

At least, this is the form presented by Halkin, but Weingreen follows a
different strategy for avoiding the impossible combination wmn and obtains
tequwmāynāh instead. Calculating C6f,1,1(V

′) for V′ = šyméa “to place”,
both authors obtain tāšemnāh, easily calculated with the help of our old
rules for evaluating [ey], as well as the alternative form tešiymäynā. We will

Computational Hebrew Conjugation 25

now discuss how the alternative forms are to be constructed. The following
rules introduce so-called “buffer vowels” between two consonants C ′ and C ′′,
hence we postulate: before C ′′.

āC[uw]C ′ −→e CuwC ′äy (12.6)

āC[ey]C ′ −→e CiwC ′äy (12.7)

āC[ow]C ′ −→e CuwC ′o (12.8)

āC[ay]C ′ −→e CiyC ′ow (12.9)

To handle the past tense, we require furthermore:

āwa, āya −→
{

ā before CV̄ or C#
a before CC ′ (12.10)

ewa −→ a before CC ′ (12.11)

allowing us to calculate
C1,2,1(V) −→ S2,1(V)Q1,2 −→ [qāwam]Q1,2 −→ [qāwam]tiy

−→(6.9) qāwamtiy −→(12.10) qamtiy

C3m,2,1(V) −→ · · · −→ qāwam −→(12.10) qām

C5m,2,1(V) −→ · · · −→ [qāwam]täm −→(6.9) qewamtäm −→(12.11) qamtäm

Similarly we obtain šamtiy, šām and šamtäm.
To deal with the second pattern, we require another rule:

āwé −→ [ow]. (12.12)

We will now calculate C1,1,2(V). But since V = qwmoa does not pos-
sess a passive, we replace it by V′ = kwn (the characteristic vowels being
irrelevant.)

26 Lambek and Yanofsky

C1,1,2(V
′) −→ · · · −→ ’äkkāwén −→(12.12) ’äkk[ow]n −→(12.5) ’äkkown

C6f,1,2(V
′) −→ · · · −→ tikkāwénnāh −→(12.12) tikk[ow]nnāh −→(12.5)

tikkonnāh

At least, this is Halkin’s result. Weingreen, unaccountably, omits this
form.

C1,2,2(V
′) −→ S1,2(V

′)Q1,2 −→ nikwanQ1,2 −→(12.3) nāk[ow]nQ1,2

−→ nāk[ow]ntiy −→(12.8) nekuwnotiy

C3m,2,2(V
′) −→ · · · −→ nāk[ow]n −→(12.5) nākown

C3f,2,2(V
′) −→ · · · −→ nāk[ow]nt −→(12.8) nekuwnot

C4,2,2(V
′) −→ · · · −→ nāk[ow]nnuw −→(12.8) nekuwnonuw

For the third and fourth pattern, we require new rewrite rules:

aCw −→ āC
iCw −→ eC
ȧCw −→ uwC



 before [ey] or [ay] (12.13)

C1,1,3(V) −→ P1,1S1,3(V)Q1,1 −→ ’S1,3(V)Q1,1 −→ ’haqw[ey]mQ1,1

−→(6.3) ’aqw[ey]mQ1,1 −→(12.13) āq[ey]mQ1,1 −→ ’āq[ey]m −→(6.7) ’āqiym

C6f,1,3(V) −→ · · · −→ tāq[ey]mnāh −→(6.7) tāqemnāh
though Weingreen offers the alternative teqiymäynāh, which may be justified
by (12.7).

C1,2,3(V) −→ · · · −→ hiqw[ay]mQ1,2 −→(12.13) heq[ay]mQ1,2

−→ heq[ay]mtiy −→(6.8) heqamtiy
where again Weingreen offers the alternative haqiymowtiy, although we would
predict ()e instead of ()a by (12.8).

Computational Hebrew Conjugation 27

C6f,2,3(V) −→ · · · −→ heq[ay]muw −→ heqiymuw

C1,1,4(V) −→ · · · −→ ’ȧqwamQ1,1 −→(12.13) ’uwqamQ1,1 −→ ’uwqam

C6f,1,4(V) −→ · · · −→ tuwqamnāh

C1,2,4(V) −→ · · · −→ huwqamQ1,2 −→ huwqam

C6f,2,4(V) −→ · · · −→ huwqamuw −→(4.1) huwqemuw

The pattern 5,6 and 7 for verbs with medial y or w were only used in late
biblical times. Due to a reluctance to double the medial y or w, the triliteral
root qwmoa was replaced by the quadriliteral qwmm. See Section 8 above.

13 Weak verbs with M = (w), a potential w

The stative verbs m(w)taé“to die” and b(w)šao “to be ashamed” require
special consideration. Here (w) denotes a potential w, to be distinguished
from an actual w and subject to the following rewrite rules:

ā(w)o −→ [ow] (13.1)

ā(w) −→ ∅ when not followed by o (13.2)

e(w) −→ ∅ before ȧ (13.3)

(w) −→ w otherwise. (13.4)

Here are some sample calculations:

C1,1,1(V) −→ · · · −→ ’im(w)atQ1,1 −→ ’ām(w)atQ1,1 −→ ’āmwatQ1,1

−→ ’ām[uw]tQ1,1 −→ ’ām[uw]t −→(12.4) ’āmuwt

C6f,1,1(V) −→ · · · −→ tām[uw]tnāh −→(12.4) tāmotnāh
with an alternative temuwtäynāh by (12.6).

28 Lambek and Yanofsky

C1,2,1(V) −→ S2,1(V)Q1,2 −→ [mā(w)ét]Q1,2 −→ [mā(w)ét]tiy
−→(6.9) mā(w)éttiy −→(13.2) méttiy −→(4.3) mattiy

C3m,2,1(V) −→ · · · −→ mā(w)ét −→(13.2) mét −→(4.3) met

C6f,2,1(V) −→ · · · −→ mā(w)étuw −→(13.2) métuw −→(4.3) metuw

Pattern 2 does not exist for m(w)taé. For patterns 3 and 4, we adopt the
rules:

aC(w) −→ āC
iC(w) −→ eC before [ey] or [ay]

uC(w) −→ uwC
(13.5)

C1,1,3(V) −→ · · · −→ ’am(w)[ey]tQ1,1 −→(13.5) ’ām[ey]tQ1,1

−→ ’ām[ey]t −→(6.7) ’āmiyt

C6f,1,3(V) −→ · · · −→ tām[ey]tnāh −→(6.7) tāmetnāh
with the alternative temiytäynāh by (12.7).

C1,2,3(V) −→ · · · −→ him(w)[ay]tQ1,2 −→(13.5) hem[ay]tQ1,2

−→ hem[ay]ttiy −→(6.8) hemattiy

C6f,2,3(V) −→ · · · −→ hem[ay]tuw −→(6.8) hemiytuw

C1,1,4(V) −→ · · · −→ hum(w)atQ1,2 −→(13.5) huwmatQ1,2 −→ huwmattiy

C6f,2,4(V) −→ · · · −→ huwmatuw −→(4.1) huwmetuw

To obtain patterns 5 and 6, we must replace the triliteral m(w)taé by the
quadrilitiral mwtt.

Next, consider V = b(w)šao. Then we calculate:

Computational Hebrew Conjugation 29

C1,1,1 −→ · · · −→ ’ib(w)ašQ1,1 −→(13.1) ’eb[ow]šQ1,1 −→ ’eb[ow]š
−→(12.5) ’ebowš

C6f,1,1(V) −→ · · · −→ teb[uw]šnāh −→(12.4) tebošnāh

C1,2,1(V) −→ · · · −→ bā(w)ošQ1,2 −→ b[ow]šQ1,2 −→(13.1) b[ow]štiy
−→(12.5) boštiy

C3m,2,1(V) −→ · · · −→ [bā(w)oš]Q5m,2 −→ [bā(w)oš]täm −→(6.9) be(w)ȧštäm
−→ be(w)ȧštäm −→ bȧštäm

14 Weak verbs with L = y or w

As already mentioned, the traditional L = h should really be treated as
L = y or w. For example, consider V = qlyéa. The easiest way to describe
the conjugation of these verbs is by revising Table II above as follows:

Table IIb

Stem Rewrite Rules for L = y or w

k Pattern Future S1,k(V) Past S2,k(V)

1 qal iFM [äy] [F āM [iy]]
2 niph‘al niFF āM [äy] niFM [iy]
3 hiph‘il hiFM [äy] hiFM [iy]
4 hoph‘al hȧFM [äy] hȧFM [iy]
5 pi‘el iFaMM [äy] FiMM [iy]
6 pu‘al iFuMM [äy] FuMM [iy]
7 hitpa‘el hit + FaMM [äy] hit + FuMM [iy]

where

[äy] −→




∅ before a long vowel
äh before #
äy before nāh

(14.1)

30 Lambek and Yanofsky

and

[iy] −→





∅ before uw
et before āh

āh before #
iy otherwise

(14.2)

When k = 3 to 7, iy may or must be replaced by ey; see Weingreen pages
218 to 220 for details .

Sample calculations for V = glyéa :

C1,1,1(V) −→ · · · −→ ’ägläh

C2f,1,1(V) −→ · · · −→ tigl[äy]iy −→(14.1) tigliy

C6f,1,1(V) −→ · · · −→ tigl[äy]nāh −→(14.1) tigläynāh

C1,2,1(V) −→ · · · −→ gā[iy]tiy −→(14.2) gāliytiy

C3m,2,1(V) −→ · · · −→ gāl[iy] −→(14.2) gālāh

C3f,2,1(V) −→ · · · −→ gāl[iy]āh −→(14.2) gāletāh

C6f,2,1(V) −→ · · · −→ gāl[iy]uw −→(14.2) gāluw

C5m,2,1(V) −→ · · · −→ [gāl[iy]]täm −→(14.2) [gāliy]täm −→(6.9) geliytäm

15 Weak verbs with M = L

The so-called “doubled” verbs with M = L give rise to a number of com-
plications. Weingreen treats two examples: the active verb sbboa and the

Computational Hebrew Conjugation 31

stative verb qllaa, the former only in patterns 1,2 and 3, the latter only in
pattern 1. Are we to infer that then verbs are regular in patterns 5,6 and 7?

Let us consider V = sbboa. A straight forward calculation would yield
C1,1,1(V) −→ ’äsbob. It is difficult to see why this form was not acceptable to
the ancient Hebrews, but apparently it was not. In fact, Weingreen offers two
alternatives for C1,1,1(V), namely ’āsob and ’ässob. The second form suggests
that we are dealing with a different verb altogether, namely ssboa with M =
F . Perhaps the verb in question originally had only two radicals and the
doubling of M was merely a device to force it into the triliteral straight-
jacket. The second alternative seems to be acceptable for the entire future
of pattern 1, and its conjugation is quite regular. For the first alternative,
which applies also to the past of pattern 1 and to both tenses of patterns 2,3
and 4, the easiest way is to rewrite Table II as follows:

Table IIc

Stem Rewrite Rules for M = L

k Pattern Future S1,k(V) Past S2,k(V)

1 qal āFα1(MM) Fα2(MM)
2 niph‘al niFFa(MM) nāFa(MM)
3 hiph‘il hāFe(MM) heFe(MM)
4 hoph‘al huwFa(MM) huwFa(MM)

where

(CC) −→





C before #
CC before a long vowel

CCäy before nāh
CCow otherwise

(15.1)

The äy and ow serve as long buffer vowels.
We present some sample calculations for V = sbboa, but with some ques-

tion marks that will require an explanation.

32 Lambek and Yanofsky

C1,1,1(V) −→ · · · −→ ’āso(bb) −→(15.1) ’āsob

C6f,1,1(V) −→ · · · −→ tāso(bb)nāh −→(15.1) tāsobbäynāh −→? tesubbäynāh

C1,2,1(V) −→ · · · −→ sa(bb)tiy −→(15.1) sabbowtiy

C3m,2,1(V) −→ · · · −→ sa(bb) −→(15.1) sab

C6f,2,1(V) −→ · · · −→ sa(bb)uw −→(15.1) sabbuw

C1,1,2(V) −→ · · · −→ ’ässa(bb) −→(15.1) ’ässab

C3m,1,2(V) −→ · · · −→ yissa(bb) −→(15.1) yissab

C6f,1,2(V) −→ · · · −→ tissa(bb)nāh −→(15.1) tissabbäynāh

C1,2,2(V) −→ · · · −→ nāsa(bb)tiy −→(15.1) nāsabbowtiy −→? nesabbowtiy

C3m,2,2(V) −→ · · · −→ nāsa(bb) −→(15.1) nāsab

C6f,2,2(V) −→ · · · −→ nāsa(bb)uw −→(15.1) nāsabbuw

C1,1,3(V) −→ · · · −→ ’āse(bb) −→(15.1) ’āseb

C6f,1,3(V) −→ · · · −→ tāse(bb)nāh −→(15.1) tāsebbäynāh −→? tesibbäynāh

C1,2,3(V) −→ · · · −→ hese(bb)tiy −→(15.1) hesebbowtiy −→? hasibbowtiy

Computational Hebrew Conjugation 33

C3m,2,3(V) −→ · · · −→ hese(bb) −→(15.1) heseb

C1,1,4(V) −→ · · · −→ ’uwsa(bb) −→(15.1) ’uwsab

C6f,1,4(V) −→ · · · −→ tuwsa(bb)nāh −→(15.1) tuwsabbäynāh

C1,2,4(V) −→ · · · −→ huwsa(bb)tiy −→(15.1) huwsabbowtiy

C3m,2,4(V) −→ · · · −→ huwsa(bb) −→(15.1) huwsab

C6f,2,4(V) −→ · · · −→ huwsa(bb)nāh −→(15.1) huwsabbäynāh

The question marks in the above calculations indicate a missing explana-
tion for the change of the two vowels before the long buffer vowels is reached.
The problem is that our system does not take the accent of the vowel into
account. We can fix the problem but our solution seems a bit ad hoc. We
are forced to adopt the following awkward revisions:

āFoMM −→ eFuMM
āFaMM −→ eFaMM
āFeMM −→ eFiMM
eFeMM −→ aFiMM





before a long buffer vowel äy or ow (15.2)

What is the rationale behind these revisions? First, the initial vowel must
be shortened when too far removed from the stressed syllable, and so ā −→e,
and e −→a. Second, as we have already noticed, when unstressed, o −→ u
and e −→ i before CC. We had hoped that the verb V′ = qllaa “to be
light” would be covered by the same rules. Unfortunately, we cannot explain
why C1,1,1(V

′) −→ ’eqal rather than ’āqal as expected, except by modifying
Table IIc accordingly.

16 Doubly weak verbs

Doubly weak verbs are verbs that have two radicals that are weak. Its seems
that one has to work with the rules of each radical one at a time. All our

34 Lambek and Yanofsky

examples worked by applying the rules from left to right.
We begin with the verb that starts with an assimilative F = (n) and

concludes with a guttural L = ‘. The verb is V = (n)g‘aa “to touch”.
C1,2,1(V) −→ · · · −→ [(n)āga‘]Q1,2 −→(6.9) (n)āga‘Q1,2

−→(9.2) nāga‘Q1,2 −→ nāga‘tiy

C3f,1,1(V) −→ · · · −→ ti(n)ga‘Q3f,1 −→(9.1) tigga‘Q3f,1 −→ tiygga‘Q3f,1

−→ tiygga‘

C3f,1,3(V) −→ · · · −→ tha(n)g[ey]‘Q3f,1 −→(6.3) ta(n)g[ey]‘Q3f,1

−→ tagg[ey]‘Q3f,1 −→ tagg[ey]‘ −→(6.8) taggiy‘ −→(10.6) taggiya‘

C6f,2,3(V) −→ · · · −→ hi(n)g[ay]‘Q6f,2 −→(9.1) higg[ay]‘Q6f,2 −→ higgiy‘Q6f,2

−→ higgiy‘uw

Another doubly weak verb is V = (n)ś’aa “to raise”. We require a new
rule supplementing (4.1):

a −→ ā before ’. (16.1)

C1,1,1(V) −→ · · · −→ ’i(n)śa’Q1,1 −→(6.5) ’ä(n)śa’Q1,1 −→(9.1) ’äśśa’Q1,1

−→ ’äśśa’ −→(15.2) ’äśśā’

C1,2,1(V) −→ · · · −→ [(n)āśa’]Q1,2 −→(6.9) (n)āśa’Q1,2 −→(9.2) nāśa’Q1,2

−→ nāśa’tiy −→(15.2) nāśā’tiy

C2m,2,2(V) −→ · · · −→ ni(n)śa’Q2m,2 −→(9.1) niśśa’Q2m,2 −→(10.9) niśśe’Q2m,2

−→ niśśe’tā

Now let us calculate a doubly weak verb with F = (y)/w. The verb is
V = (y)d‘aa/wd‘aa“to know”.

C3f,1,1(V) −→ · · · −→ ti(y)da‘Q3f,1 −→(11.6) teda‘Q3f,a −→ teda‘

C3f,1,2(V) −→ · · · −→ tniwwādé‘ −→(6.4) tiwwādé‘ −→(4.3) tiwwāda‘

Computational Hebrew Conjugation 35

C3f,1,7(V) −→ · · · −→ thit+waddé‘ −→(6.3) tit+waddé‘ −→(6.6) titwaddé‘
−→(4.3) titwadda‘

And finally, let us do one calculation where both the first and last radicals
are gutturals. V = ‘lhaa “to ascend”.

C3f,1,3(V) −→ · · · −→ tha‘l[ey]h −→(6.3) ta‘l[ey]h −→(10.5) ta‘al[ey]h
−→(6.7) ta‘aliyh.
But Weingreen has this as ta‘aläh. So, what is wrong here? According to
Section 14, the final h should presumably be replaced by y; but this won’t
help. One solution is to suppliment (6.7) by

[ey] −→ ä before h. (16.2)

There are many more examples that can be easily calculated. However
there is not much to gain from going on. We have not found any great
surprises. There are two reasons why doubly weak verbs do not seem so
hard. First, all the examples that Weingreen describes have a weakness in
the first radical and the third radical. Not the second radical. Hence, the
second radical separates the two weak radicals. This separation ensures that
the different rules do not effect each other. Second, all the examples that
Weingreen deals with have the last radical as a guttural. As we have seen,
since the last radical is never doubled, there are not many rules that apply
to that guttural.

17 Conclusion and a comparison with Arabic

We have shown how the finite forms of the regular verbs can be calculated
with the help of certain rewriting rules, embedded in the conjugation formula
of Section 6 and tables I and II, together with a few phonological rules. We
have also shown how the finite forms of the so-called “weak” verbs can be
calculated in the same way, using additional phonological rules. We are not
entirely satisfied with our effort, for the following reasons.

• We have ignored the non-finite forms of the verb and the modifications
necessary when pronominal suffixes are added.

• The ultimate phonological rules should apply not only to the verb, but
to other aspects of biblical Hebrew morphology as well.

36 Lambek and Yanofsky

• We had started ignoring stress, but were forced to incorporate it into
two of our rules, namely (6.8) and (9.3), and to mention it parentheti-
cally after (10.3) and after (15.2).

• The final modifications contained in (15.2) and (16.1) suggest that there
are still gaps in our account.

Hebrew resembles Arabic [2] even more closely than English resembles
German. For example, a typical verb in both Semitic languages is completely
described by three consonants and two vowels. Although classical Hebrew
was written down about a thousand years before classical Arabic, its inflec-
tional grammar is much simpler. Like English, it has replaced the cases of
the nouns by prepositions and has undergone erosion of many conjugational
forms.

Where modern standard Arabic has potentially 18 different patterns, 10
active and 8 passive for each verb, standard Hebrew has only seven17. We
would therefore expect the computational treatment of Hebrew verbs to be
much simpler then that of Arabic ones. Unfortunately, this is not the case,
because written Arabic presumably records only phonemes, whereas written
Hebrew records either no vowel phonemes or, according to the Masoretic
tradition, numerous vowel allophones, which we found difficult to ignore.
Hopefully, our approach can also be applied to the pre-Masoretic text, if one
starts with the three vowel phonemes a, i and u.

18 Appendix: Waw Conjunctions

Many of the verbs in the Bible start with “and”. To write “and” in Hebrew,
one prefixes a verb (most of the rules below work for nouns also) with a w.
Biblical Hebrew makes use of a strange convention18: if two sentences in a
continuous narrative both refer to the past (future), then only the first verb
is expressed in this tense, while the second is expressed in the future (past)
tense preceded by a waw. This works for more than two verbs by continually
switching back and forth. The waw switches the tenses.

w + Ci,j,k(V) −→ wCi,3−j,k(V) (18.1)

Such a waw is called a “waw consecutive” (also called “waw conversive”).

Computational Hebrew Conjugation 37

Punctuating a verb with a w prefix conforms to the following rules:

w + C −→




weC If the verb is past
waCC If the verb is future where C 6= ’

wāC If the verb is future where C = ’
(18.2)

The third case is actually a specialization of rule (10.3) that deals with gut-
turals.19

For the first rule we have further changes. If the first letter of the word
has a shewa, then we change the first shewa into a shuriq:

weCe −→ wuCe where C 6= b,m, p, y. (18.3)

Before labials b, m, p, the w also takes a shuriq:

weL −→ wuL where L = b,m, p. (18.4)

Before a ye, the w takes the h. ireq and the y loses its shewa:

weye −→ wiy. (18.5)

Before a composite shewa, the w takes the corresponding short vowel:

weC ä −→ wäC ä. (18.6)

weC ā −→ wāC ā. (18.7)

weCa −→ waCa. (18.8)

38 Lambek and Yanofsky

Notes

1 With some stretch of the imagination, the connection between these two
concepts can be seen in English also. A man who demands honor does “not
take himself lightly.”

2Judges 12. As far as we know, the distinction between š and ś is not
explained by any phonetic rule, but that between b and bh is.

3See Gesenius Section 7a.

4According to [3], the main reason for the Masoretic enterprise was to
ensure that these attached consonants do not make their way into the sacred
texts. They are used to represent vowels in written Yiddish.

5There are two other Masoretic traditions: Babylonian and Yemenite.
They have different symbols and different conventions. For example, they
make no distinction between a (patach) and ä (segol). We shall only deal
with the more commonly used Tiberian system.

6There has been much variation in pronunciation even after the introduc-
tion of the Masoretic symbols. Within the last two centuries, the Hasidic
pronunciation has varied widely from the “standard” Ashkenazi pronuncia-
tion from which it sprang. Hasidim are in the habit of effectively adding a
consonant y after every e (S. ere). So they go from sefär to seyfär. Their
pronunciation of Torāh is Toyrāh.

7Within classical Rabbinic Judaism, there is some discussion about the
Talmud not having the exact (consonant) spelling of certain words (e.g.,
Babylonian Talmud Kiddushin 30a). Furthermore, Rabbi Akiva Eiger Guenz
(1761-1835) gives a list of places where the Rabbinic tradition of the Bible
text conflicts with our accepted text op. cit. Babylonian Talmud Saabath
55b. See also Nedarim 38a. There is much discussion on the varieties of
“the” Masoretic text and the elasticity of the text in the passing millennia.
One imagines that this uncertainty would extend from written consonants to
the unwritten vowel pronunciation. c.f. Nehemiah 8:8. We shall not go into
this.

Computational Hebrew Conjugation 39

8 The traditional names of the short vowels are:

patah.
segol qāmes. − katan

s.ere h. olem
h. ireq qibbus

The names of the long vowels are:

qāmes. − gadol
s.ere− yud h. olem

h. ireq − yud šureq

9Denoting the silent shewa as s and the mobile/vocalic shewa as m, we
might write some of the easier rules as follows:
A. In the middle of a word, when there are two shewas in a row, the first one
is a silent shewa and the second one is a mobile one:

CV XeX ′eC ′ −→ CV XsX ′mC ′.

B. When a shewa is under a doubled letter(usually indicated by a dot=dagesh),
then the above rule applies:

Xe· = XeXe −→ XsXm.

C. After a long vowel, the syllable is over and the following shewa is a mo-
bile/vocalic shewa starting the next syllable. In contrast, after a short vowel,
the following shewa is finishing that syllable and hence is a silent shewa:

CV̄ Xe −→ CV̄ Xm where V̄ = ā, ey, iy, uw, ow

CV Xe −→ CV Xs where V = a, ä, ȧ, i

10One of the most surprising facts about Hebrew grammar is how late the
triliteralness of Hebrew words was recognized. Although this seems obvious
to us, it was not known until Yehuda ibn David Hayyuj (940 - 1010) wrote
of it. It seems Rashi (1040 - 1105), the “first of the commentators”, was not
aware of this or not convinced of it. For Rashi, words might have three literal
roots (e.g., Exodus 23:27, Deuteronomy 12:30, Deuteronomy 32:26), but more

40 Lambek and Yanofsky

commonly two letter roots (e.g., Genesis 2:19, Genesis 3:15, Numbers 22:32)
and even one letter roots (e.g., Numbers 21:11).

11This categorization exists in Arabic also.

12There are actually many other less common patterns found in the Bible.
Some are more common in Mishnaic, medieval, and modern Hebrew. There
are: po‘el, hitpo‘el; pa‘lel, hitpa‘lel; pe‘al‘al; pilpel, hitpilpel; tiph‘el; šaph‘el
as well as several others.

13The only exception to the first case we have found is wehitšot.at.nāh
(Jeremiah 49:3) avoiding three t-sounds in close proximity.

14Weingreen is following a long tradition of using this word. K. imh. i uses
the more peaceful verb pqdoa “to visit”; but qt.loa has the advantage of being
similar in other Semitic languages and so is used in comparative linguistics.
It has the disadvantage of not being found that often in the Hebrew Bible
(only Psalms 139:14; Job 13:15; Job 24:14 c.f. Obadiah 1:9.). Its Aramaic
equivalent occurs seven times in Daniel.

15Some of the more interesting five-letter nouns are:

• šalhābät “flame” (Job 15:30 and Canticles 8:6). Most scholars take this
to be a case of a conjugation of the word lāb by a very strange šaph‘el
pattern.

• s.
epardde‘a “frog” (Exodus Chaps 7 and 8, Psalms 78:45, 105:30).

• h.
abas.s. älät “a lily” or “a meadow saffron” (Canticles 2:1, Isaiah 35:1)

• s.almāwät “shadow of death” (e.g. Psalms 23:4, Amos 5:8, Job 12:22).
This is usually seen as a composite word.

16In contrast, Arabic does allow a doubling of a guttural which makes the
language significantly harder for a non-native speaker to pronounce.

17See however footnote 12.

18According to Gesenius [7] page 132, this is one of the most “striking
peculiarities” even within the family of Semitic languages. Phoenician is one
of the only other Semitic languages that has anything similar.

Computational Hebrew Conjugation 41

19Some exceptions to the third case are wa’agāreš (in fact, some bibles
do have it as wā’agāreš) (Judges 6:9), wa’amottehuw (2Samuel 1:10), and
wa’akasek (Ezekiel 16:10).

References

[1] Bargelli, D. and Lambek, J. “A Computational View of Turkish Conju-
gation.” Lingustic Analysis 29 (1999), 248-256.

[2] Bargelli, D. and Lambek, J. “A Computational Approach to Arabic
Conjugation.” Lingustic Analysis 30 (2001/2002), 1-22.

[3] Chomsky, William. “The history of our vowel-system in Hebrew,”Jewish
Quarterly Review, 32,(1941), 27-49.

[4] Chomsky, William. Hebrew: The Eternal Language, Jewish Publication
Society of America (1958).

[5] Chomsky, William. “The pronunciation of the shewa,”Jewish Quartely
Review, 62, (1971), 88-94.

[6] Chomsky, William. David K. imh. i’s Hebrew Grammar (Mikhlol), Bloch
Publishing Company, (2001 edition).

[7] Gesenius, William and Kautzsch, Emil (ed.), Gesenius’ Hebrew Gram-
mar, translated from German by A. E. Cowley, Oxford, Oxford Univer-
sity Press, 1985.

[8] Halkin, Abraham S. 201 Hebrew Verbs. Barron’s Educational Series,
Woodbury, N.Y. 1970.

[9] Lambek, J, “A Mathematician Looks at Latin Conjugation.” Theoretical
Linguistics 6 (1979), 221-234.

[10] Sáenz-Badillos, Angel. A History of the Hebrew Language (Translated
by John Elwolde), Cambridge University Press (1993).

[11] Weingreen, J, A Practical Grammar for Classical Hebrew, Second Edi-
tion, Oxford, Oxford University Press, 1959.

42 Lambek and Yanofsky

19 Postscript

After we completed this article in March 2005, two recent articles dealing
with Hebrew morphology were brought to our attention:

[12] R. Finkel and G. Stump, “Generating Hebrew verb morphology by de-
fault inheritance hierarchies”, University of Kentucky, preprint.

[13] S. Yona and S. Wintner, “A finite-state morphological grammar of He-
brew”, to appear in Natural Language Engineering 1, received May 2006.

Both papers offer interesting but different computational approaches to
Hebrew verb morphology, although to a smaller extent and in less details
than ours, which ultimately goes back to Panini and incorporates insights of
medieval grammarians.

J. Lambek
Department of Mathematics and Statistics
McGill University
805 Sherbrooke Street West
Montreal, QC, Canada H3A 2K6
email: lambek@math.mcgill.ca

Noson S. Yanofsky
Department of Computer and Information Science
Brooklyn College, CUNY
Brooklyn, N.Y., U.S.A. 11210
email: noson@sci.brooklyn.cuny.edu

