Cambridge University Press

978-0-521-51644-0 - A Computational Introduction to Number Theory and Algebra: Second Edition
Victor Shoup
Frontmatter
More information

A COMPUTATIONAL INTRODUCTION TO NUMBER THEORY AND ALGEBRA

Second Edition

Cambridge University Press

978-0-521-51644-0 - A Computational Introduction to Number Theory and Algebra: Second Edition
Victor Shoup
Frontmatter
More information

A COMPUTATIONAL INTRODUCTION TO NUMBER THEORY AND ALGEBRA

Second Edition

VICTOR SHOUP

Cambridge University Press

978-0-521-51644-o - A Computational Introduction to Number Theory and Algebra: Second Edition
Victor Shoup
Frontmatter
More information

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sáo Paulo, Delhi, Mexico City
Cambridge University Press
The Edinburgh Building, Cambridge cB2 8RU, UK
Published in the United States of America by Cambridge University Press, New York
www.cambridge.org
Information on this title: www.cambridge.org/9780521516440

© V. Shoup 2009
This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2009
A catalogue record for this publication is available from the British Library

ISBN 978-O-52I-5I644-O Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Information regarding prices, travel timetables, and other factual information given in this work is correct at the time of first printing but Cambridge University Press does not guarantee the accuracy of such information thereafter.

Cambridge University Press
978-0-521-51644-0 - A Computational Introduction to Number Theory and Algebra: Second Edition Victor Shoup
Frontmatter
More information

Contents

Preface page x
Preliminaries xiv
1 Basic properties of the integers 1
1.1 Divisibility and primality 1
1.2 Ideals and greatest common divisors 5
1.3 Some consequences of unique factorization 10
2 Congruences 15
2.1 Equivalence relations 15
2.2 Definitions and basic properties of congruences 16
2.3 Solving linear congruences 19
2.4 The Chinese remainder theorem 22
2.5 Residue classes 25
2.6 Euler's phi function 31
2.7 Euler's theorem and Fermat's little theorem 32
2.8 Quadratic residues 35
2.9 Summations over divisors 45
3 Computing with large integers 50
3.1 Asymptotic notation 50
3.2 Machine models and complexity theory 53
3.3 Basic integer arithmetic 55
3.4 Computing in \mathbb{Z}_{n} 64
3.5 Faster integer arithmetic (*) 69
3.6 Notes 71
4 Euclid's algorithm 74
4.1 The basic Euclidean algorithm 74
4.2 The extended Euclidean algorithm 77
4.3 Computing modular inverses and Chinese remaindering 82

Cambridge University Press
978-0-521-51644-0 - A Computational Introduction to Number Theory and Algebra: Second Edition Victor Shoup
Frontmatter
More information

Contents

4.4 Speeding up algorithms via modular computation 84
4.5 An effective version of Fermat's two squares theorem 86
4.6 Rational reconstruction and applications 89
4.7 The RSA cryptosystem 99
4.8 Notes 102
5 The distribution of primes 104
5.1 Chebyshev's theorem on the density of primes 104
5.2 Bertrand's postulate 108
5.3 Mertens' theorem 110
5.4 The sieve of Eratosthenes 115
5.5 The prime number theorem ... and beyond 116
5.6 Notes 124
6 Abelian groups 126
6.1 Definitions, basic properties, and examples 126
6.2 Subgroups 132
6.3 Cosets and quotient groups 137
6.4 Group homomorphisms and isomorphisms 142
6.5 Cyclic groups 153
6.6 The structure of finite abelian groups (*) 163
7 Rings 166
7.1 Definitions, basic properties, and examples 166
7.2 Polynomial rings 176
7.3 Ideals and quotient rings 185
7.4 Ring homomorphisms and isomorphisms 192
7.5 The structure of \mathbb{Z}_{n}^{*} 203
8 Finite and discrete probability distributions 207
8.1 Basic definitions 207
8.2 Conditional probability and independence 213
8.3 Random variables 221
8.4 Expectation and variance 233
8.5 Some useful bounds 241
8.6 Balls and bins 245
8.7 Hash functions 252
8.8 Statistical distance 260
8.9 Measures of randomness and the leftover hash lemma (*) 266
8.10 Discrete probability distributions 270
8.11 Notes 275

Cambridge University Press
978-0-521-51644-o - A Computational Introduction to Number Theory and Algebra: Second Edition Victor Shoup
Frontmatter
More information

Contents
9 Probabilistic algorithms 277
9.1 Basic definitions 278
9.2 Generating a random number from a given interval 285
9.3 The generate and test paradigm 287
9.4 Generating a random prime 292
9.5 Generating a random non-increasing sequence 295
9.6 Generating a random factored number 298
9.7 Some complexity theory 302
9.8 Notes 304

10 Probabilistic primality testing 306
10.1 Trial division 306
10.2 The Miller-Rabin test 307
10.3 Generating random primes using the Miller-Rabin test 311
10.4 Factoring and computing Euler's phi function 320
10.5 Notes 324

11 Finding generators and discrete logarithms in $\mathbb{Z}_{p}^{*} 327$
11.1 Finding a generator for $\mathbb{Z}_{p}^{*} \quad 327$
11.2 Computing discrete logarithms in $\mathbb{Z}_{p}^{*} 329$
11.3 The Diffie-Hellman key establishment protocol 334
11.4 Notes 340

12 Quadratic reciprocity and computing modular square roots 342
12.1 The Legendre symbol 342
12.2 The Jacobi symbol 346
12.3 Computing the Jacobi symbol 348
12.4 Testing quadratic residuosity 349
12.5 Computing modular square roots 350
12.6 The quadratic residuosity assumption 355
12.7 Notes 357

13 Modules and vector spaces 358
13.1 Definitions, basic properties, and examples 358
13.2 Submodules and quotient modules 360
13.3 Module homomorphisms and isomorphisms 363
13.4 Linear independence and bases 367
13.5 Vector spaces and dimension 370

14 Matrices 377
14.1 Basic definitions and properties 377
14.2 Matrices and linear maps 381
14.3 The inverse of a matrix 386

Cambridge University Press
978-0-521-51644-o - A Computational Introduction to Number Theory and Algebra: Second Edition Victor Shoup
Frontmatter
More information
14.4 Gaussian elimination 388
14.5 Applications of Gaussian elimination 392
14.6 Notes 398
15 Subexponential-time discrete logarithms and factoring 399
15.1 Smooth numbers 399
15.2 An algorithm for discrete logarithms 400
15.3 An algorithm for factoring integers 407
15.4 Practical improvements 414
15.5 Notes 418
16 More rings 421
16.1 Algebras 421
16.2 The field of fractions of an integral domain 427
16.3 Unique factorization of polynomials 430
16.4 Polynomial congruences 435
16.5 Minimal polynomials 438
16.6 General properties of extension fields 440
16.7 Formal derivatives 444
16.8 Formal power series and Laurent series 446
16.9 Unique factorization domains (*) 451
16.10 Notes 464
17 Polynomial arithmetic and applications 465
17.1 Basic arithmetic 465
17.2 Computing minimal polynomials in $F[X] /(f)(\mathrm{I})$ 468
17.3 Euclid's algorithm 469
17.4 Computing modular inverses and Chinese remaindering 472
17.5 Rational function reconstruction and applications 474
17.6 Faster polynomial arithmetic $(*)$ 478
17.7 Notes 484
18 Linearly generated sequences and applications 486
18.1 Basic definitions and properties 486
18.2 Computing minimal polynomials: a special case 490
18.3 Computing minimal polynomials: a more general case 492
18.4 Solving sparse linear systems 497
18.5 Computing minimal polynomials in $F[X] /(f)(\mathrm{II})$ 500
18.6 The algebra of linear transformations (*) 501
18.7 Notes 508
19 Finite fields 509
19.1 Preliminaries 509

Cambridge University Press
978-0-521-51644-o - A Computational Introduction to Number Theory and Algebra: Second Edition Victor Shoup
Frontmatter
More information
Contents ix
19.2 The existence of finite fields 511
19.3 The subfield structure and uniqueness of finite fields 515
19.4 Conjugates, norms and traces 516
20 Algorithms for finite fields 522
20.1 Tests for and constructing irreducible polynomials 522
20.2 Computing minimal polynomials in $F[X] /(f)($ III $)$ 525
20.3 Factoring polynomials: square-free decomposition 526
20.4 Factoring polynomials: the Cantor-Zassenhaus algorithm 530
20.5 Factoring polynomials: Berlekamp's algorithm 538
20.6 Deterministic factorization algorithms (*) 544
20.7 Notes 546
21 Deterministic primality testing 548
21.1 The basic idea 548
21.2 The algorithm and its analysis 549
21.3 Notes 558
Appendix: Some useful facts 561
Bibliography 566
Index of notation 572
Index 574

Preface

Number theory and algebra play an increasingly significant role in computing and communications, as evidenced by the striking applications of these subjects to such fields as cryptography and coding theory. My goal in writing this book was to provide an introduction to number theory and algebra, with an emphasis on algorithms and applications, that would be accessible to a broad audience. In particular, I wanted to write a book that would be appropriate for typical students in computer science or mathematics who have some amount of general mathematical experience, but without presuming too much specific mathematical knowledge.

Prerequisites. The mathematical prerequisites are minimal: no particular mathematical concepts beyond what is taught in a typical undergraduate calculus sequence are assumed.

The computer science prerequisites are also quite minimal: it is assumed that the reader is proficient in programming, and has had some exposure to the analysis of algorithms, essentially at the level of an undergraduate course on algorithms and data structures.

Even though it is mathematically quite self contained, the text does presuppose that the reader is comfortable with mathematical formalism and also has some experience in reading and writing mathematical proofs. Readers may have gained such experience in computer science courses such as algorithms, automata or complexity theory, or some type of "discrete mathematics for computer science students" course. They also may have gained such experience in undergraduate mathematics courses, such as abstract or linear algebra. The material in these mathematics courses may overlap with some of the material presented here; however, even if the reader already has had some exposure to this material, it nevertheless may be convenient to have all of the relevant topics easily accessible in one place; moreover, the emphasis and perspective here will no doubt be different from that in a traditional mathematical presentation of these subjects.

Structure of the text. All of the mathematics required beyond basic calculus is developed "from scratch." Moreover, the book generally alternates between "theory" and "applications": one or two chapters on a particular set of purely mathematical concepts are followed by one or two chapters on algorithms and applications; the mathematics provides the theoretical underpinnings for the applications, while the applications both motivate and illustrate the mathematics. Of course, this dichotomy between theory and applications is not perfectly maintained: the chapters that focus mainly on applications include the development of some of the mathematics that is specific to a particular application, and very occasionally, some of the chapters that focus mainly on mathematics include a discussion of related algorithmic ideas as well.

In developing the mathematics needed to discuss certain applications, I have tried to strike a reasonable balance between, on the one hand, presenting the absolute minimum required to understand and rigorously analyze the applications, and on the other hand, presenting a full-blown development of the relevant mathematics. In striking this balance, I wanted to be fairly economical and concise, while at the same time, I wanted to develop enough of the theory so as to present a fairly well-rounded account, giving the reader more of a feeling for the mathematical "big picture."

The mathematical material covered includes the basics of number theory (including unique factorization, congruences, the distribution of primes, and quadratic reciprocity) and of abstract algebra (including groups, rings, fields, and vector spaces). It also includes an introduction to discrete probability theory - this material is needed to properly treat the topics of probabilistic algorithms and cryptographic applications. The treatment of all these topics is more or less standard, except that the text only deals with commutative structures (i.e., abelian groups and commutative rings with unity) - this is all that is really needed for the purposes of this text, and the theory of these structures is much simpler and more transparent than that of more general, non-commutative structures.

The choice of topics covered in this book was motivated primarily by their applicability to computing and communications, especially to the specific areas of cryptography and coding theory. Thus, the book may be useful for reference or self-study by readers who want to learn about cryptography, or it could also be used as a textbook in a graduate or upper-division undergraduate course on (computational) number theory and algebra, perhaps geared towards computer science students.

Since this is an introduction, and not an encyclopedic reference for specialists, some topics simply could not be covered. One such, whose exclusion will undoubtedly be lamented by some, is the theory of lattices, along with algorithms for and applications of lattice basis reduction. Another omission is fast algorithms for

Preface

integer and polynomial arithmetic—although some of the basic ideas of this topic are developed in the exercises, the main body of the text deals only with classical, quadratic-time algorithms for integer and polynomial arithmetic. However, there are more advanced texts that cover these topics perfectly well, and they should be readily accessible to students who have mastered the material in this book.

Note that while continued fractions are not discussed, the closely related problem of "rational reconstruction" is covered, along with a number of interesting applications (which could also be solved using continued fractions).

Guidelines for using the text.

- There are a few sections that are marked with a " $(*)$," indicating that the material covered in that section is a bit technical, and is not needed elsewhere.
- There are many examples in the text, which form an integral part of the book, and should not be skipped.
- There are a number of exercises in the text that serve to reinforce, as well as to develop important applications and generalizations of, the material presented in the text.
- Some exercises are underlined. These develop important (but usually simple) facts, and should be viewed as an integral part of the book. It is highly recommended that the reader work these exercises, or at the very least, read and understand their statements.
- In solving exercises, the reader is free to use any previously stated results in the text, including those in previous exercises. However, except where otherwise noted, any result in a section marked with a " $(*)$," or in $\S 5.5$, need not and should not be used outside the section in which it appears.
- There is a very brief "Preliminaries" chapter, which fixes a bit of notation and recalls a few standard facts. This should be skimmed over by the reader.
- There is an appendix that contains a few useful facts; where such a fact is used in the text, there is a reference such as "see $\S A n$, ," which refers to the item labeled "A n " in the appendix.

The second edition. In preparing this second edition, in addition to correcting errors in the first edition, I have also made a number of other modifications (hopefully without introducing too many new errors). Many passages have been rewritten to improve the clarity of exposition, and many new exercises and examples have been added. Especially in the earlier chapters, the presentation is a bit more leisurely. Some material has been reorganized. Most notably, the chapter on probability now follows the chapters on groups and rings - this allows a number of examples and concepts in the probability chapter that depend on algebra to be
more fully developed. Also, a number of topics have been moved forward in the text, so as to enliven the material with exciting applications as soon as possible; for example, the RSA cryptosystem is now described right after Euclid's algorithm is presented, and some basic results concerning quadratic residues are introduced right away, in the chapter on congruences. Finally, there are numerous changes in notation and terminology; for example, the notion of a family of objects is now used consistently throughout the book (e.g., a pairwise independent family of random variables, a linearly independent family of vectors, a pairwise relatively prime family of integers, etc.).

Feedback. I welcome comments on the book (suggestions for improvement, error reports, etc.) from readers. Please send your comments to
victor@shoup.net.
There is also a web site where further material and information relating to the book (including a list of errata and the latest electronic version of the book) may be found:
www. shoup.net/ntb.
Acknowledgments. I would like to thank a number of people who volunteered their time and energy in reviewing parts of the book at various stages: Joël Alwen, Siddhartha Annapureddy, John Black, Carl Bosley, Joshua Brody, Jan Camenisch, David Cash, Sherman Chow, Ronald Cramer, Marisa Debowsky, Alex Dent, Nelly Fazio, Rosario Gennaro, Mark Giesbrecht, Stuart Haber, Kristiyan Haralambiev, Gene Itkis, Charanjit Jutla, Jonathan Katz, Eike Kiltz, Alfred Menezes, Ilya Mironov, Phong Nguyen, Antonio Nicolosi, Roberto Oliveira, Leonid Reyzin, Louis Salvail, Berry Schoenmakers, Hovav Shacham, Yair Sovran, Panos Toulis, and Daniel Wichs. A very special thanks goes to George Stephanides, who translated the first edition of the book into Greek and reviewed the entire book in preparation for the second edition. I am also grateful to the National Science Foundation for their support provided under grants CCR-0310297 and CNS-0716690. Finally, thanks to David Tranah for all his help and advice, and to David and his colleagues at Cambridge University Press for their progressive attitudes regarding intellectual property and open access.

New York, June 2008
Victor Shoup

Preliminaries

We establish here some terminology, notation, and simple facts that will be used throughout the text.

Logarithms and exponentials

We write $\log x$ for the natural \log arithm of x, and $\log _{b} x$ for the \log arithm of x to the base b.

We write e^{x} for the usual exponential function, where $e \approx 2.71828$ is the base of the natural logarithm. We may also write $\exp [x]$ instead of e^{x}.

Sets and families

We use standard set-theoretic notation: \emptyset denotes the empty set; $x \in A$ means that x is an element, or member, of the set A; for two sets $A, B, A \subseteq B$ means that A is a subset of B (with A possibly equal to B), and $A \subsetneq B$ means that A is a proper subset of B (i.e., $A \subseteq B$ but $A \neq B$). Further, $A \cup B$ denotes the union of A and $B, A \cap B$ the intersection of A and B, and $A \backslash B$ the set of all elements of A that are not in B. If A is a set with a finite number of elements, then we write $|A|$ for its size, or cardinality. We use standard notation for describing sets; for example, if we define the set $S:=\{-2,-1,0,1,2\}$, then $\left\{x^{2}: x \in S\right\}=\{0,1,4\}$ and $\{x \in S: x$ is even $\}=\{-2,0,2\}$.

We write $S_{1} \times \cdots \times S_{n}$ for the Cartesian product of sets S_{1}, \ldots, S_{n}, which is the set of all n-tuples $\left(a_{1}, \ldots, a_{n}\right)$, where $a_{i} \in S_{i}$ for $i=1, \ldots, n$. We write $S^{\times n}$ for the Cartesian product of n copies of a set S, and for $x \in S$, we write $x^{\times n}$ for the element of $S^{\times n}$ consisting of n copies of x. (This notation is a bit non-standard, but we reserve the more standard notation S^{n} for other purposes, so as to avoid ambiguity.)

A family is a collection of objects, indexed by some set I, called an index set. If for each $i \in I$ we have an associated object x_{i}, the family of all such objects is denoted by $\left\{x_{i}\right\}_{i \in I}$. Unlike a set, a family may contain duplicates; that is, we may have $x_{i}=x_{j}$ for some pair of indices i, j with $i \neq j$. Note that while $\left\{x_{i}\right\}_{i \in I}$ denotes a family, $\left\{x_{i}: i \in I\right\}$ denotes the set whose members are the (distinct) x_{i} 's. If the index set I has some natural order, then we may view the family $\left\{x_{i}\right\}_{i \in I}$ as being ordered in the same way; as a special case, a family indexed by a set of integers of the form $\{m, \ldots, n\}$ or $\{m, m+1, \ldots\}$ is a sequence, which we may write as $\left\{x_{i}\right\}_{i=m}^{n}$ or $\left\{x_{i}\right\}_{i=m}^{\infty}$. On occasion, if the choice of index set is not important, we may simply define a family by listing or describing its members, without explicitly describing an index set; for example, the phrase "the family of objects a, b, c " may be interpreted as "the family $\left\{x_{i}\right\}_{i=1}^{3}$, where $x_{1}:=a, x_{2}:=b$, and $x_{3}:=c$."

Unions and intersections may be generalized to arbitrary families of sets. For a family $\left\{S_{i}\right\}_{i \in I}$ of sets, the union is

$$
\bigcup_{i \in I} S_{i}:=\left\{x: x \in S_{i} \text { for some } i \in I\right\},
$$

and for $I \neq \emptyset$, the intersection is

$$
\bigcap_{i \in I} S_{i}:=\left\{x: x \in S_{i} \text { for all } i \in I\right\}
$$

Note that if $I=\emptyset$, the union is by definition \emptyset, but the intersection is, in general, not well defined. However, in certain applications, one might define it by a special convention; for example, if all sets under consideration are subsets of some "ambient space," Ω, then the empty intersection is usually taken to be Ω.

Two sets A and B are called disjoint if $A \cap B=\emptyset$. A family $\left\{S_{i}\right\}_{i \in I}$ of sets is called pairwise disjoint if $S_{i} \cap S_{j}=\emptyset$ for all $i, j \in I$ with $i \neq j$. A pairwise disjoint family of non-empty sets whose union is S is called a partition of S; equivalently, $\left\{S_{i}\right\}_{i \in I}$ is a partition of a set S if each S_{i} is a non-empty subset of S, and each element of S belongs to exactly one S_{i}.

Numbers

We use standard notation for various sets of numbers:

$$
\begin{aligned}
& \mathbb{Z}:=\text { the set of integers }=\{\ldots,-2,-1,0,1,2, \ldots\} \\
& \mathbb{Q}:=\text { the set of rational numbers }=\{a / b: a, b \in \mathbb{Z}, b \neq 0\} \\
& \mathbb{R}:=\text { the set of real numbers } \\
& \mathbb{C}:=\text { the set of complex numbers. }
\end{aligned}
$$

We sometimes use the symbols ∞ and $-\infty$ in simple arithmetic expressions involving real numbers. The interpretation given to such expressions should be obvious: for example, for every $x \in \mathbb{R}$, we have $-\infty<x<\infty, x+\infty=\infty$, $x-\infty=-\infty, \infty+\infty=\infty$, and $(-\infty)+(-\infty)=-\infty$. Expressions such as $x \cdot(\pm \infty)$ also make sense, provided $x \neq 0$. However, the expressions $\infty-\infty$ and $0 \cdot \infty$ have no sensible interpretation.

We use standard notation for specifying intervals of real numbers: for $a, b \in \mathbb{R}$ with $a \leq b$,

$$
\begin{array}{ll}
{[a, b]:=\{x \in \mathbb{R}: a \leq x \leq b\},} & (a, b):=\{x \in \mathbb{R}: a<x<b\}, \\
{[a, b):=\{x \in \mathbb{R}: a \leq x<b\},} & (a, b]:=\{x \in \mathbb{R}: a<x \leq b\} .
\end{array}
$$

As usual, this notation is extended to allow $a=-\infty$ for the intervals (a, b] and (a, b), and $b=\infty$ for the intervals $[a, b)$ and (a, b).

Functions

We write $f: A \rightarrow B$ to indicate that f is a function (also called a map) from a set A to a set B. If $A^{\prime} \subseteq A$, then $f\left(A^{\prime}\right):=\left\{f(a): a \in A^{\prime}\right\}$ is the image of A^{\prime} under f, and $f(A)$ is simply referred to as the image of f; if $B^{\prime} \subseteq B$, then $f^{-1}\left(B^{\prime}\right):=\left\{a \in A: f(a) \in B^{\prime}\right\}$ is the pre-image of B^{\prime} under f.

A function $f: A \rightarrow B$ is called one-to-one or injective if $f(a)=f(b)$ implies $a=b$. The function f is called onto or surjective if $f(A)=B$. The function f is called bijective if it is both injective and surjective; in this case, f is called a bijection, or a one-to-one correspondence. If f is bijective, then we may define the inverse function $f^{-1}: B \rightarrow A$, where for $b \in B, f^{-1}(b)$ is defined to be the unique $a \in A$ such that $f(a)=b$; in this case, f^{-1} is also a bijection, and $\left(f^{-1}\right)^{-1}=f$.

If $A^{\prime} \subseteq A$, then the inclusion map from A^{\prime} to A is the function $i: A^{\prime} \rightarrow A$ given by $i(a):=a$ for $a \in A^{\prime}$; when $A^{\prime}=A$, this is called the identity map on A. If $A^{\prime} \subseteq A, f^{\prime}: A^{\prime} \rightarrow B, f: A \rightarrow B$, and $f^{\prime}(a)=f(a)$ for all $a \in A^{\prime}$, then we say that f^{\prime} is the restriction of f to A^{\prime}, and that f is an extension of f^{\prime} to A.

If $f: A \rightarrow B$ and $g: B \rightarrow C$ are functions, their composition is the function $g \circ f: A \rightarrow C$ given by $(g \circ f)(a):=g(f(a))$ for $a \in A$. If $f: A \rightarrow B$ is a bijection, then $f^{-1} \circ f$ is the identity map on A, and $f \circ f^{-1}$ is the identity map on B. Conversely, if $f: A \rightarrow B$ and $g: B \rightarrow A$ are functions such that $g \circ f$ is the identity map on A and $f \circ g$ is the identity map on B, then f and g are bijections, each being the inverse of the other. If $f: A \rightarrow B$ and $g: B \rightarrow C$ are bijections, then so is $g \circ f$, and $(g \circ f)^{-1}=f^{-1} \circ g^{-1}$.

Function composition is associative; that is, for all functions $f: A \rightarrow B$, $g: B \rightarrow C$, and $h: C \rightarrow D$, we have $(h \circ g) \circ f=h \circ(g \circ f)$. Thus, we

Cambridge University Press
978-0-521-51644-o - A Computational Introduction to Number Theory and Algebra: Second Edition Victor Shoup
Frontmatter
More information
can simply write $h \circ g \circ f$ without any ambiguity. More generally, if we have functions $f_{i}: A_{i} \rightarrow A_{i+1}$ for $i=1, \ldots, n$, where $n \geq 2$, then we may write their composition as $f_{n} \circ \cdots \circ f_{1}$ without any ambiguity. If each f_{i} is a bijection, then so is $f_{n} \circ \cdots \circ f_{1}$, its inverse being $f_{1}^{-1} \circ \cdots \circ f_{n}^{-1}$. As a special case of this, if $A_{i}=A$ and $f_{i}=f$ for $i=1, \ldots, n$, then we may write $f_{n} \circ \cdots \circ f_{1}$ as f^{n}. It is understood that $f^{1}=f$, and that f^{0} is the identity map on A. If f is a bijection, then so is f^{n} for every non-negative integer n, the inverse function of f^{n} being $\left(f^{-1}\right)^{n}$, which one may simply write as f^{-n}.

If $f: I \rightarrow S$ is a function, then we may view f as the family $\left\{x_{i}\right\}_{i \in I}$, where $x_{i}:=f(i)$. Conversely, a family $\left\{x_{i}\right\}_{i \in I}$, where all of the x_{i} 's belong to some set S, may be viewed as the function $f: I \rightarrow S$ given by $f(i):=x_{i}$ for $i \in I$. Really, functions and families are the same thing, the difference being just one of notation and emphasis.

Binary operations

A binary operation \star on a set S is a function from $S \times S$ to S, where the value of the function at $(a, b) \in S \times S$ is denoted $a \star b$.

A binary operation \star on S is called associative if for all $a, b, c \in S$, we have $(a \star b) \star c=a \star(b \star c)$. In this case, we can simply write $a \star b \star c$ without any ambiguity. More generally, for $a_{1}, \ldots, a_{n} \in S$, where $n \geq 2$, we can write $a_{1} \star \cdots \star a_{n}$ without any ambiguity.

A binary operation \star on S is called commutative if for all $a, b \in S$, we have $a \star b=b \star a$. If the binary operation \star is both associative and commutative, then not only is the expression $a_{1} \star \cdots \star a_{n}$ unambiguous, but its value remains unchanged even if we re-order the a_{i} 's.

If \star is a binary operation on S, and $S^{\prime} \subseteq S$, then S^{\prime} is called closed under \star if $a \star b \in S^{\prime}$ for all $a, b \in S^{\prime}$.

