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Preface

Number theory and algebra play an increasingly significant role in computing
and communications, as evidenced by the striking applications of these subjects
to such fields as cryptography and coding theory. My goal in writing this book
was to provide an introduction to number theory and algebra, with an emphasis
on algorithms and applications, that would be accessible to a broad audience. In
particular, I wanted to write a book that would be appropriate for typical students in
computer science or mathematics who have some amount of general mathematical
experience, but without presuming too much specific mathematical knowledge.

Prerequisites. The mathematical prerequisites are minimal: no particular math-
ematical concepts beyond what is taught in a typical undergraduate calculus
sequence are assumed.

The computer science prerequisites are also quite minimal: it is assumed that the
reader is proficient in programming, and has had some exposure to the analysis of
algorithms, essentially at the level of an undergraduate course on algorithms and
data structures.

Even though it is mathematically quite self contained, the text does presup-
pose that the reader is comfortable with mathematical formalism and also has
some experience in reading and writing mathematical proofs. Readers may have
gained such experience in computer science courses such as algorithms, automata
or complexity theory, or some type of “discrete mathematics for computer science
students” course. They also may have gained such experience in undergraduate
mathematics courses, such as abstract or linear algebra. The material in these math-
ematics courses may overlap with some of the material presented here; however,
even if the reader already has had some exposure to this material, it nevertheless
may be convenient to have all of the relevant topics easily accessible in one place;
moreover, the emphasis and perspective here will no doubt be different from that
in a traditional mathematical presentation of these subjects.

x
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Preface xi

Structure of the text. All of the mathematics required beyond basic calculus
is developed “from scratch.” Moreover, the book generally alternates between
“theory” and “applications”: one or two chapters on a particular set of purely
mathematical concepts are followed by one or two chapters on algorithms and
applications; the mathematics provides the theoretical underpinnings for the appli-
cations, while the applications both motivate and illustrate the mathematics. Of
course, this dichotomy between theory and applications is not perfectly main-
tained: the chapters that focus mainly on applications include the development
of some of the mathematics that is specific to a particular application, and very
occasionally, some of the chapters that focus mainly on mathematics include a
discussion of related algorithmic ideas as well.

In developing the mathematics needed to discuss certain applications, I have
tried to strike a reasonable balance between, on the one hand, presenting the abso-
lute minimum required to understand and rigorously analyze the applications, and
on the other hand, presenting a full-blown development of the relevant mathemat-
ics. In striking this balance, I wanted to be fairly economical and concise, while at
the same time, I wanted to develop enough of the theory so as to present a fairly
well-rounded account, giving the reader more of a feeling for the mathematical
“big picture.”

The mathematical material covered includes the basics of number theory
(including unique factorization, congruences, the distribution of primes, and
quadratic reciprocity) and of abstract algebra (including groups, rings, fields, and
vector spaces). It also includes an introduction to discrete probability theory—this
material is needed to properly treat the topics of probabilistic algorithms and cryp-
tographic applications. The treatment of all these topics is more or less standard,
except that the text only deals with commutative structures (i.e., abelian groups and
commutative rings with unity)—this is all that is really needed for the purposes of
this text, and the theory of these structures is much simpler and more transparent
than that of more general, non-commutative structures.

The choice of topics covered in this book was motivated primarily by their
applicability to computing and communications, especially to the specific areas
of cryptography and coding theory. Thus, the book may be useful for reference
or self-study by readers who want to learn about cryptography, or it could also be
used as a textbook in a graduate or upper-division undergraduate course on (com-
putational) number theory and algebra, perhaps geared towards computer science
students.

Since this is an introduction, and not an encyclopedic reference for specialists,
some topics simply could not be covered. One such, whose exclusion will undoubt-
edly be lamented by some, is the theory of lattices, along with algorithms for and
applications of lattice basis reduction. Another omission is fast algorithms for
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xii Preface

integer and polynomial arithmetic—although some of the basic ideas of this topic
are developed in the exercises, the main body of the text deals only with classical,
quadratic-time algorithms for integer and polynomial arithmetic. However, there
are more advanced texts that cover these topics perfectly well, and they should be
readily accessible to students who have mastered the material in this book.

Note that while continued fractions are not discussed, the closely related prob-
lem of “rational reconstruction” is covered, along with a number of interesting
applications (which could also be solved using continued fractions).

Guidelines for using the text.
• There are a few sections that are marked with a “(∗),” indicating that the

material covered in that section is a bit technical, and is not needed else-
where.

• There are many examples in the text, which form an integral part of the
book, and should not be skipped.

• There are a number of exercises in the text that serve to reinforce, as well
as to develop important applications and generalizations of, the material
presented in the text.

• Some exercises are underlined. These develop important (but usually sim-
ple) facts, and should be viewed as an integral part of the book. It is highly
recommended that the reader work these exercises, or at the very least, read
and understand their statements.

• In solving exercises, the reader is free to use any previously stated results
in the text, including those in previous exercises. However, except where
otherwise noted, any result in a section marked with a “(∗),” or in §5.5,
need not and should not be used outside the section in which it appears.

• There is a very brief “Preliminaries” chapter, which fixes a bit of notation
and recalls a few standard facts. This should be skimmed over by the reader.

• There is an appendix that contains a few useful facts; where such a fact is
used in the text, there is a reference such as “see §An,” which refers to the
item labeled “An” in the appendix.

The second edition. In preparing this second edition, in addition to correcting
errors in the first edition, I have also made a number of other modifications (hope-
fully without introducing too many new errors). Many passages have been rewrit-
ten to improve the clarity of exposition, and many new exercises and examples
have been added. Especially in the earlier chapters, the presentation is a bit more
leisurely. Some material has been reorganized. Most notably, the chapter on prob-
ability now follows the chapters on groups and rings — this allows a number of
examples and concepts in the probability chapter that depend on algebra to be
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Preface xiii

more fully developed. Also, a number of topics have been moved forward in the
text, so as to enliven the material with exciting applications as soon as possible;
for example, the RSA cryptosystem is now described right after Euclid’s algorithm
is presented, and some basic results concerning quadratic residues are introduced
right away, in the chapter on congruences. Finally, there are numerous changes
in notation and terminology; for example, the notion of a family of objects is
now used consistently throughout the book (e.g., a pairwise independent family
of random variables, a linearly independent family of vectors, a pairwise relatively
prime family of integers, etc.).

Feedback. I welcome comments on the book (suggestions for improvement, error
reports, etc.) from readers. Please send your comments to

victor@shoup.net.

There is also a web site where further material and information relating to the book
(including a list of errata and the latest electronic version of the book) may be
found:

www.shoup.net/ntb.

Acknowledgments. I would like to thank a number of people who volunteered
their time and energy in reviewing parts of the book at various stages: Joël Alwen,
Siddhartha Annapureddy, John Black, Carl Bosley, Joshua Brody, Jan Camenisch,
David Cash, Sherman Chow, Ronald Cramer, Marisa Debowsky, Alex Dent, Nelly
Fazio, Rosario Gennaro, Mark Giesbrecht, Stuart Haber, Kristiyan Haralambiev,
Gene Itkis, Charanjit Jutla, Jonathan Katz, Eike Kiltz, Alfred Menezes, Ilya
Mironov, Phong Nguyen, Antonio Nicolosi, Roberto Oliveira, Leonid Reyzin,
Louis Salvail, Berry Schoenmakers, Hovav Shacham, Yair Sovran, Panos Toulis,
and Daniel Wichs. A very special thanks goes to George Stephanides, who trans-
lated the first edition of the book into Greek and reviewed the entire book in prepa-
ration for the second edition. I am also grateful to the National Science Foundation
for their support provided under grants CCR-0310297 and CNS-0716690. Finally,
thanks to David Tranah for all his help and advice, and to David and his colleagues
at Cambridge University Press for their progressive attitudes regarding intellectual
property and open access.

New York, June 2008 Victor Shoup
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Preliminaries

We establish here some terminology, notation, and simple facts that will be used
throughout the text.

Logarithms and exponentials
We write log x for the natural logarithm of x, and logb x for the logarithm of x to
the base b.

We write ex for the usual exponential function, where e ≈ 2.71828 is the base of
the natural logarithm. We may also write exp[x] instead of ex.

Sets and families
We use standard set-theoretic notation: ∅ denotes the empty set; x ∈ A means that
x is an element, or member, of the set A; for two sets A,B, A ⊆ B means that
A is a subset of B (with A possibly equal to B), and A � B means that A is a
proper subset of B (i.e., A ⊆ B but A �= B). Further, A ∪ B denotes the union of
A and B, A ∩ B the intersection of A and B, and A \ B the set of all elements of
A that are not in B. If A is a set with a finite number of elements, then we write
|A| for its size, or cardinality. We use standard notation for describing sets; for
example, if we define the set S := {−2,−1, 0, 1, 2}, then {x2 : x ∈ S} = {0, 1, 4}
and {x ∈ S : x is even} = {−2, 0, 2}.

We write S1 × · · · × Sn for the Cartesian product of sets S1, . . . ,Sn, which is
the set of all n-tuples (a1, . . . , an), where ai ∈ Si for i = 1, . . . , n. We write S×n for
the Cartesian product of n copies of a set S, and for x ∈ S, we write x×n for the
element of S×n consisting of n copies of x. (This notation is a bit non-standard,
but we reserve the more standard notation Sn for other purposes, so as to avoid
ambiguity.)

xiv
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Preliminaries xv

A family is a collection of objects, indexed by some set I , called an index set.
If for each i ∈ I we have an associated object xi, the family of all such objects
is denoted by {xi}i∈I . Unlike a set, a family may contain duplicates; that is, we
may have xi = xj for some pair of indices i, j with i �= j. Note that while {xi}i∈I
denotes a family, {xi : i ∈ I} denotes the set whose members are the (distinct)
xi’s. If the index set I has some natural order, then we may view the family {xi}i∈I
as being ordered in the same way; as a special case, a family indexed by a set of
integers of the form {m, . . . , n} or {m,m+1, . . .} is a sequence, which we may write
as {xi}ni=m or {xi}∞i=m. On occasion, if the choice of index set is not important, we
may simply define a family by listing or describing its members, without explicitly
describing an index set; for example, the phrase “the family of objects a, b, c” may
be interpreted as “the family {xi}3

i=1, where x1 := a, x2 := b, and x3 := c.”
Unions and intersections may be generalized to arbitrary families of sets. For a

family {Si}i∈I of sets, the union is⋃
i∈I

Si := {x : x ∈ Si for some i ∈ I},

and for I �= ∅, the intersection is⋂
i∈I

Si := {x : x ∈ Si for all i ∈ I}.

Note that if I = ∅, the union is by definition ∅, but the intersection is, in general,
not well defined. However, in certain applications, one might define it by a spe-
cial convention; for example, if all sets under consideration are subsets of some
“ambient space,” Ω, then the empty intersection is usually taken to be Ω.

Two sets A and B are called disjoint if A ∩ B = ∅. A family {Si}i∈I of sets is
called pairwise disjoint if Si∩Sj = ∅ for all i, j ∈ I with i �= j. A pairwise disjoint
family of non-empty sets whose union is S is called a partition of S; equivalently,
{Si}i∈I is a partition of a set S if each Si is a non-empty subset of S, and each
element of S belongs to exactly one Si.

Numbers
We use standard notation for various sets of numbers:

Z := the set of integers = {. . . ,−2,−1, 0, 1, 2, . . .},
Q := the set of rational numbers = {a/b : a, b ∈ Z, b �= 0},
R := the set of real numbers,

C := the set of complex numbers.
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xvi Preliminaries

We sometimes use the symbols ∞ and −∞ in simple arithmetic expressions
involving real numbers. The interpretation given to such expressions should be
obvious: for example, for every x ∈ R, we have −∞ < x < ∞, x + ∞ = ∞,
x − ∞ = −∞, ∞ + ∞ = ∞, and (−∞) + (−∞) = −∞. Expressions such as
x · (±∞) also make sense, provided x �= 0. However, the expressions ∞−∞ and
0 · ∞ have no sensible interpretation.

We use standard notation for specifying intervals of real numbers: for a, b ∈ R

with a ≤ b,

[a, b] := {x ∈ R : a ≤ x ≤ b}, (a, b) := {x ∈ R : a < x < b},
[a, b) := {x ∈ R : a ≤ x < b}, (a, b] := {x ∈ R : a < x ≤ b}.

As usual, this notation is extended to allow a = −∞ for the intervals (a, b] and
(a, b), and b =∞ for the intervals [a, b) and (a, b).

Functions
We write f : A → B to indicate that f is a function (also called a map) from
a set A to a set B. If A′ ⊆ A, then f (A′) := {f (a) : a ∈ A′} is the image of
A′ under f , and f (A) is simply referred to as the image of f ; if B′ ⊆ B, then
f−1(B′) := {a ∈ A : f (a) ∈ B′} is the pre-image of B′ under f .

A function f : A → B is called one-to-one or injective if f (a) = f (b) implies
a = b. The function f is called onto or surjective if f (A) = B. The function f

is called bijective if it is both injective and surjective; in this case, f is called a
bijection, or a one-to-one correspondence. If f is bijective, then we may define
the inverse function f−1 : B → A, where for b ∈ B, f−1(b) is defined to be
the unique a ∈ A such that f (a) = b; in this case, f−1 is also a bijection, and
(f−1)−1 = f .

If A′ ⊆ A, then the inclusion map from A′ to A is the function i : A′ → A given
by i(a) := a for a ∈ A′; when A′ = A, this is called the identity map on A. If
A′ ⊆ A, f ′ : A′ → B, f : A → B, and f ′(a) = f (a) for all a ∈ A′, then we say
that f ′ is the restriction of f to A′, and that f is an extension of f ′ to A.

If f : A → B and g : B → C are functions, their composition is the function
g ◦ f : A → C given by (g ◦ f )(a) := g(f (a)) for a ∈ A. If f : A → B is a
bijection, then f−1 ◦ f is the identity map on A, and f ◦ f−1 is the identity map on
B. Conversely, if f : A → B and g : B → A are functions such that g ◦ f is the
identity map on A and f ◦ g is the identity map on B, then f and g are bijections,
each being the inverse of the other. If f : A → B and g : B → C are bijections,
then so is g ◦ f , and (g ◦ f )−1 = f−1 ◦ g−1.

Function composition is associative; that is, for all functions f : A → B,
g : B → C, and h : C → D, we have (h ◦ g) ◦ f = h ◦ (g ◦ f ). Thus, we
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Preliminaries xvii

can simply write h ◦ g ◦ f without any ambiguity. More generally, if we have
functions fi : Ai → Ai+1 for i = 1, . . . , n, where n ≥ 2, then we may write their
composition as fn ◦· · ·◦f1 without any ambiguity. If each fi is a bijection, then so
is fn ◦ · · ·◦f1, its inverse being f−1

1 ◦ · · · ◦f
−1
n . As a special case of this, if Ai = A

and fi = f for i = 1, . . . , n, then we may write fn ◦ · · · ◦ f1 as fn. It is understood
that f1 = f , and that f0 is the identity map on A. If f is a bijection, then so is fn

for every non-negative integer n, the inverse function of fn being (f−1)n, which
one may simply write as f−n.

If f : I → S is a function, then we may view f as the family {xi}i∈I , where
xi := f (i). Conversely, a family {xi}i∈I , where all of the xi’s belong to some set
S, may be viewed as the function f : I → S given by f (i) := xi for i ∈ I . Really,
functions and families are the same thing, the difference being just one of notation
and emphasis.

Binary operations
A binary operation � on a set S is a function from S × S to S, where the value
of the function at (a, b) ∈ S × S is denoted a � b.

A binary operation � on S is called associative if for all a, b, c ∈ S, we have
(a � b) � c = a � (b � c). In this case, we can simply write a � b � c without
any ambiguity. More generally, for a1, . . . , an ∈ S, where n ≥ 2, we can write
a1 � · · · � an without any ambiguity.

A binary operation � on S is called commutative if for all a, b ∈ S, we have
a�b = b�a. If the binary operation � is both associative and commutative, then not
only is the expression a1 � · · · � an unambiguous, but its value remains unchanged
even if we re-order the ai’s.

If � is a binary operation on S, and S′ ⊆ S, then S′ is called closed under � if
a � b ∈ S′ for all a, b ∈ S′.
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