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A Computer Algorithm for Sprinkler Hydraulic Calculations © r 
 

By Jorge R. López, MSME, PE 
 

 
Introduction 
 

 In 1996, the National Fire Protection Association (NFPA) approved a new revision of 

Standard 13 – Standard for the Installation of Sprinkler Systems (NFPA-13). With this 

edition, the requirement of performing hydraulic calculations in lieu of pipe schedules for the 

design of sprinkler systems was made more stringent. Section 5-2.2.1 of NFPA-13 says, 

“… Pressure and flow requirements for Extra Hazard Occupancies shall be 

based on the hydraulic calculation methods of 5-2.3. The pipe schedule 

method shall be permitted only for new installations of 5000 ft2 (465m2) or 

less or for additions or modifications to existing pipe schedule systems sized 

according to the pipe schedules of Section 6-5….” 

 In this regard the standard provides only two exceptions. The first one allows the use 

of pipe schedules for Light and Ordinary Hazard systems with more than 5000ft2 (465m2) 

when the required flows on NFPA-13 table 5-2.2 is met with a minimum residual pressure of 

50 psi (3.4 bar) at the highest elevation of sprinkler. The other exception deals with additions 

or modifications to existing Extra Hazard pipe schedule systems.  

 Beyond the constrains imposed by NFPA-13 and current city water supply in Puerto 

Rico, there is another reason for using hydraulic calculations rather than using pipe schedule 

systems. When a system is hydraulically designed, the system can be arranged as a grid or a 

loop. The benefit of this type of pipe arrangement is that pipe sizes can be reduced (when 

compared to pipe schedules) and made uniform. Besides, hydraulic calculations provide an 

insight into the working conditions of the sprinkler system and can help to tailor the system 

meet the available water supplies. 

 Hydraulic calculations of systems designed using pipe schedules (tree arrangement) 

can be done by hand. The labor is math intensive, but simplification tables for pipe and 

fitting head loss have been made available through various resources. For systems arranged 

in a grid or a loop, the computation becomes tedious and challenging. The use of computer 

algorithms is a welcome relief for these cases.  
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Many computer programs are available commercially for the design of sprinkler 

systems. The cost of such programs can be as high as $1,500. But this is an exorbitant cost 

for a task that can be implemented in a computer using the BASIC language.  If an algorithm 

simple enough to be implemented would be available, almost everyone would agree that they 

would give it a try. The only problem is that many of the available algorithms need a little of 

magic in order to work for the design of sprinkler systems. Many program developers call 

this magic, coding secrets, and they concealed those secrets from any description on how the 

program works. Moreover, such secrets are not coding secrets at all, but physical 

interpretations or approximations on how the systems we want to design work. Should these 

“secrets” be made available, everyone could have a better understanding of how sprinkler 

systems work. 

In the next section a simple method to solve pipe networks is explained. The method 

alone is not enough to solve a sprinkler design problem. A few “secrets” on how to use it for 

sprinkler systems will be discussed in later sections. Finally two examples will be presented 

to demonstrate the accuracy and versatility of this algorithm. 

 

The Hardy Cross Method 

From the available algorithms, the easiest one to implement in a computer is the 

Hardy Cross Method. In general the basic principles that govern the solution of any pipe 

network system are the following: 

1. Conservation of mass at the nodes. 

2. Uniqueness of pressure at a given point in the loop. 

Hardy Cross assumption was that the conservation of mass at each node can be 

established initially without consideration of the uniqueness of pressure. Then the uniqueness 

of pressure can be used to calculate correction factors (∆Q) in the flow rate for the different 

loops[1]. Since head loss can be defined in terms of flow rate, Hardy Cross establishes that the 

correction factor is equal to, 
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 In Equation 1, ∆Qi is the correction factor for loop i, hj(|Qj|) is the head loss of 

element j evaluated at the absolute value of  the flow rate Qj, and 
jQ

j

Q

h

∂

∂
 is the derivative of 

the head loss with respect to flow rate evaluated at the absolute value of Qj the flow rate of 

element j. The function sgn(Qj) returns the sign value of the flow rate Qj. 

 For example, Figure 1 presents a simple pipe network system. The system is 

composed of 5 Pipe Elements. Pipe Element 1 goes from Node A to node B, 2 goes from C 

to B, 3 goes from A to D, 4 goes from C to D and 5 goes from A to C. In this case flow is 

entering at nodes A and C and leaving from nodes B and D. Note how the flow rate is 

assumed to go in the direction of the arrows. This is very important, because the solution will 

be presented based on these assumed directions. A positive flow rate means the flow 

direction follows the arrow. A negative flow rate means the flow direction is against the 

arrow. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – Simple Pipe Network 

 

There are two loops in the problem presented in Figure 1. Loop Number 1 is 

composed of Pipe Elements 1, 2 and 5. Loop 2 is composed of pipe elements 3, 5 and 4.  

When performing the summations in the correction factor numerator, a positive loop 

direction must be assumed. It can be either clockwise or counterclockwise. As long as all the 

loops use the same convention, the algorithm works. For this example let’s assume that loop 
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sign convention is positive in the clockwise direction. The correction factor for elements that 

belong to Loop 1 would be, 
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  Since it was established that the loop positive sign convention is clockwise 

and Pipe Elements 2 and 5 assumed flow rate is against this convention, a negative sign is 

used for h2 and h5. When applying this correction factor to each of the three elements in Loop 

1, one must also follow the loop sign convention. The new calculated flow rates for the 

elements in Loop 1 are as follows, 
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 Note that a correction factor have to be calculated for Loop 2 and that all the elements 

that form part of Loop 2 have to be corrected accordingly. Because Pipe Element 5 forms 

part of Loop 1 and Loop 2, it will be corrected twice. 

 The process of correcting the flow rates using Equation 1 is continued until a certain 

established convergence criteria is achieved. The criteria can be relative or absolute. A 

relative criterion is more powerful than an absolute one, because it assures convergence 

based on the relative magnitude of the variable compared to its change. An absolute criterion 

needs to be carefully evaluated before convergence is declared. NFPA-13 establishes 

absolute criteria for the pressure to be less than 0.5 psi, which is reasonable for sprinkler 

systems. A more stringent criterion can be used based on the change of flow rates. It is easier 

to implement because the change in the flow rates is the correction factor calculated using 

Hardy Cross. If every pipe element flow rate is used to divide its correction factor, a relative 

criteria based on flow rate is achieved. This is a preferred method for convergence check. 

 

Head Loss Equation for Pipe Elements 

 The head loss in a pipe can be calculated using numerous empirical formulas. Some 

are more accurate than other, some work for larger ranges of Reynolds Number than others. 
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NFPA-13 establishes that pipe friction losses shall be determined on the basis of the Hazen-

Williams equation. The Hazen-Williams formula in USC units is as follows, 

 87.485.1

85.152.4
dC

LQ
h =  Equation 2 

 In Equation 2, h is the frictional resistance in pounds per square inch (psi), L is the 

pipe length in feet (ft.), Q is the flow rate in gallons per minute (GPM), d is the actual 

internal diameter of the pipe in inches (in.), and C is an empirical friction loss coefficient 

(dimensionless). C values depend on the type of pipe material. Table 1 list C values for 

different types of pipe materials. 

 

Table 1 – Friction Loss Coefficient for Different Pipe Materials 

 

Pipe material C Value 

Standard Underground 140 

Steel Schedule 40 120 

Thinwall 100-120 

Copper Type M 150 

 

  The use of the Hazen-Williams equation in the Hardy-Cross formulation is a 

very easy implementation. Since the pipe diameter and length and the C-value do not change 

during the iterations, they are combined into a single K-factor as follows, 

 85.1KQh =  Equation 3 

 87.485.1

52.4
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L
K =  Equation 4 

The correction factor defined in Equation 1 based on the Hazen-Williams formula for 

a loop with pipe elements only would be as follows, 
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 Once again, one must be careful to use the loop sign convention when performing the 

summations in the numerator.  
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Head Loss Equation for Sprinkler Elements 

 In order to use The Hardy Cross method for hydraulic calculations of sprinkler 

systems, a head loss equation have to be used for the sprinklers. The head loss equation is 

also given in NFPA-13 as, 

 hKQ =  Equation 6 

 In this equation Q is the flow rate in gallons per minute (GPM), h is the head loss 

(psi) and K is head loss factor for a given sprinkler. A little of manipulation allows to put this 

equation into a more usable form for The Hardy Cross Method. Solving for h one obtains, 

 2
2

1
Q

K
h =  Equation 7 

 It is very helpful if this equation is re-arranged as, 

 2'QKh =  Equation 8 

 2
' 1

K
K =  Equation 9 

 Notice that Equation 8 resembles Equation 3 for pipe elements, but instead of having 

an exponent of 1.85 it has 2. Let’s assume that Pipe Element 5 in Figure 1 is a sprinkler 

element. The correction factor for Loop 1 would become, 
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 This gives us a better understanding on how to calculate correction factors for loops 

with different types of elements. As we are going to see there is still one more element type 

that needs to be taken into account in order to fully implement The Hardy Cross method for 

sprinkler systems. 

 

The Secrets of Hardy Cross for Sprinkler Systems 

 The Hardy Cross Method is a very useful method for evaluating flow and head loss 

distributions in pipe networks. Most examples where this method is shown assume that the 

inflows and outflows to the pipe network are known. But this is not the case for a sprinkler 

system. In a sprinkler system, the total flow rate is not known a priori. When one is 

designing a sprinkler system the only things that are known are, 

 



 7 

1. Assumed pipe diameters 

2. Pipe material and properties, mainly the C factor. 

3. Pipe lengths 

4. Required minimum flow rate at all sprinkler heads.  

Item number 1 mentions that pipe diameters are assumed because although you may 

have an idea of the required pipe sizes, this item might require adjustment once the 

calculations are done for given pipe sizes. One of the many constrains while designing 

sprinkler systems is that the velocity on a given pipe element should be less than 20 feet per 

minute (FPM)[5]. The rationale behind this constrain is that above 20 FPM, the Hazen-

William equation might yield inaccurate results of pipe friction. Another of the constrains is 

that the maximum pressure at a sprinkler head should be less than 60 psi[5]. Above this 

pressure, the water droplets that the sprinkler distributes are very small and can get vaporized 

by a fire before doing their job. For the moment these two constrains are going to be held to 

be checked once the calculations are performed. Item number 4 is calculated based on 

NFPA-13 depending on hazard type, most remote area and sprinkler flow rate density. 

 So how can we take into account the fact that we do not know the correct total flow 

rate and distribution among the sprinkler heads? If we look at the sprinkler system, one 

would see that all sprinkler heads are discharging at the same atmospheric pressure. This 

means that all sprinkler heads are discharging to a point that can be considered hydraulically 

the same. This point will be considered a pseudo node since it really does not exist in the 

pipe network. What this means in terms of Hardy Cross loop designation is illustrated in 

Figure 2. 

 

 

 

 

 

 

Figure 2 – The Pseudo Node 
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 Figure 2 presents the last three sprinkler heads in a tree arrangement. In the Hardy 

Cross Method, each active sprinkler head will be considered an element on its own. All the 

exits of the sprinklers are connected to the same pseudo node. In the system illustrated by 

Figure 2, two loops can be formed. Loop 1 is formed by Sprinkler Head 1, Sprinkler Head 2, 

and Pipe 1, Loop 2 is formed by Sprinkler Head 2, Sprinkler Head 3 and Pipe 2. With the 

pseudo node and the Sprinkler Element, we have taken into account the problem of modeling 

sprinkler head behavior. Still this do not fully solves the problem of unknown inflows and 

outflows. One more element type must be considered in order to fully complete the 

implementation of Hardy Cross for sprinkler systems. 

 Because a sprinkler system in operation is an open system, the available pressure at 

the base of the riser will determine the total flow rate of water. One way to look at this 

problem is to assume a given pressure at the base of the riser. In reality, a sprinkler system 

uses all the available residual pressure at a given flow rate to move the water through all the 

pipes to the sprinkler heads. Because of this, the pressure we are assuming at the base of the 

riser is going to be equal to the head loss from the base of the riser to the pseudo node that 

we have already defined. Because of the uniqueness of pressure, this head loss is going to be 

the same independently of the path we take to calculate it. This is where the third element we 

haven’t defined yet comes into play. 

 Let’s say that we have an element connecting the base of the riser to the pseudo node 

we defined. This connection does not really exist, but it is an artificial way to stipulate a 

fixed pressure level between the base of the riser and the exit of all the sprinkler heads 

(pseudo node). This element carries no flow, but it has a constant head loss. The head loss is 

equal to the pressure at the base of the riser. This element is called a pseudo element. A 

pseudo element can be used in the Hardy Cross to impose a fixed pressure level between two 

points [3]. In the flow correction equation for the loop, a pseudo element is taken into account 

by adding the head loss in the numerator, keeping in mind the loop sign convention. Since 

the head loss is constant, it’s derivative is zero and thus, it does not shows up in the 

denominator.  

There is still one more item that is of our concern. If we are assuming a fixed pressure 

level using the pseudo node, does this means that the minimum sprinkler flow rate will be 

achieved? No, the pseudo element in conjunction with the pseudo node only provides us with 
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a way to convert a sprinkler system to a pipe network suitable for use of the Hardy Cross 

Method. For a given pressure level there is going to be a unique flow rate distribution among 

the sprinkler heads. This is warranted by the uniqueness of pressure. The only way (with 

what have been discussed so far) to implement this constrain is that after declaring 

convergence, the flow rates at all the heads have to be checked for compliance with 

minimum flow rate and pressure, and all pipe elements should be checked for maximum 

velocity.  

 There is still a way to make The Hardy Cross Method find the minimum pressure that 

is going to satisfy the minimum flow rate at all the sprinkler heads. The program should 

provide that on every iteration, the sprinkler head with the smallest flow rate be determined. 

If this sprinkler head flow rate is less than the required minimum flow rate, the fixed pressure 

level established by the pseudo element is raised by the amount needed to bring the sprinkler 

head flow rate to minimum compliance. If the opposite is occurring, i.e. the sprinkler head 

with the smallest flow rate is greater than the required minimum; the head loss of the pseudo 

element is decreased. The required change in the head loss can be calculated by the following 

equation. 

 ( )22
min QQKh −′=∆  Equation 10 

 In this equation ∆h is the required head loss change, K’ is the K’ factor of the 

sprinkler head with the smallest flow rate as defined on Equation 9, Q is the flow rate factor 

of the sprinkler head with the smallest flow rate, Qmin is the required minimum flow at all 

heads. 

 We have already completed all the requirements to fully implement sprinkler 

hydraulic calculations using the Hardy Cross into a computer program. This is a very 

powerful algorithm. It can be used for a tree, a loop or a grid system. The next section 

presents a simple tree system example. Afterwards we need to deal with other issues of the 

algorithm and of sprinkler systems. 

  

Example 1- The Tree Arrangement 

 A tree system is by no means a hard problem to solve by hand. Pipe and fittings head 

loss tables make it even easier. But it can also be solved using the Hardy Cross Method as 

implemented in this article. In order to familiarize the reader with the workings of a problem 
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using this algorithm, the next example problem is presented. This problem was taken from 

NFPA-13 Appendix A page 13-125. The example can dissipate any doubts you may have 

regarding the use of pseudo nodes and pseudo elements.  

 Figure 3 and 4 show the plan view and the elevation view of the example problem. In 

this problem, the most remote area consists of 1500ft2. Also, it was calculated by NFPA-13 

to use 12 sprinklers in total with 4 sprinkler heads per line. 

 

Figure 3 –Plan View (Example 1)  

Figure 4 – Elevation View (Example 1) 
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Table 2. Pipe Element Data (Example 1) 
 

Element From 
Node 

To 
Node 

Estimated 
Flow Rate 

(GPM) 

Equivalent 
Length 

(Ft.) 

Diameter 
(Sch 40) 

(in.) 

Pipe Friction 
Coefficient 

Static Head 
Loss 
(Ft.) 

1 2 3 19.5 13’ 1” 120  
2 3 4 39.0 13’ 1 ¼” 120  
3 4 5 58.5 13’ 1 ½” 120  
4 5 14 78.0 19.5’ 1 ½” 120  
5 6 7 19.5 13’ 1” 120  
6 7 8 39.0 13’ 1 ¼” 120  
7 8 9 58.5 13’ 1 ½” 120  
8 9 16 78.0 19.5’ 1 ½” 120  
9 10 11 19.5 13’ 1” 120  

10 11 12 39.0 13’ 1 ¼” 120  
11 12 13 58.5 13’ 1 ½” 120  
12 13 18 78.0 19.5’ 1 ½” 120  
13 14 15 78.0 17’ 1 ½” 120  
14 15 17 78.0 10’ 2” 120  
15 16 17 78.0 17’ 1 ½” 120  
16 17 19 156 10’ 2” 120  
17 18 19 78 17’ 1 ½” 120  
18 19 20 234.0 70’ 2 ½” 120  
19 20 21 234.0 110’ 3” 120  
20 21 22 234.0 30’ 3” 120 15’ 
21 22 23 234.0 82.2’ 3”  C.M. 150  

 
Table 3. Pseudo Element Data (Example 1) 

 
Element From 

Node 
To 

Node 
Head Loss 

(PSI) 
1 23 1 60 

 
Table 4. Sprinkler Element Data (Example 1) 

 
Element Node Estimated 

Flow Rate 
(GPM) 

K 

1 2 19.5 5.65 
2 3 19.5 5.65 
3 4 19.5 5.65 
4 5 19.5 5.65 
5 6 19.5 5.65 
6 7 19.5 5.65 
7 8 19.5 5.65 
8 9 19.5 5.65 
9 10 19.5 5.65 

10 11 19.5 5.65 
11 12 19.5 5.65 
12 13 19.5 5.65 
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Table 5. Loop Data (Example 1) 
 

Loop #1 #2 #3 #4 #5 #6 #7 #8 

1 +PS1 -S12 -P12 -P17 -P18 -P19 -P20 -P21 

2 -S8 -P8 -P15 -P16 +P17 +P12 S12  

3 -S4 -P4 -P13 -P14 +P15 +P8 S8  

4 +P1 +S1 -S2      

5 +P2 +S2 -S3      

6 +P3 +S3 -S4      

7 +P5 +S5 -S6      

8 +P6 +S6 -S7      

9 +P7 +S7 -S8      

10 +P9 +S9 -S10      

11 +P10 +S10 -S11      

12 +P11 +S11 -S12      

Legend: P – Pipe Element, S- Sprinkler Element, PS – Pseudo Element 
 

 Tables 2 provides the data for all the pipe elements, Table 3 provides the data for 

pseudo elements, Table 4 provides the data for sprinkler head elements and Table 5 provides 

the loop data. In regard to the loop data it is important that all the elements are present in at 

least one of the loops. When deciding how to make the loop that contains the pseudo 

element, any path can be used. The path selected was taken to be the one with the least 

elements present. This minimizes data input. One must be careful to use the same loop sign 

convention for all loops not containing the pseudo element. On Figure 5 a schematic 

representation of the sprinkler system is presented with the loops and sprinkler heads 

identified. Notice how Loop 1, the one that contains the pseudo element, follows the shortest 

path from the pseudo node to the base of the riser.  It is important to notice that only for this 

loop, the positive sign convention has no effect as long as the correct positive or negative 

head loss in the pseudo element is used. If the path taken goes from the pseudo node to base 

of the riser in the pseudo element, it is negative (a negative head loss is equal to a pressure 
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increase) because you are going from a node of less pressure to one with higher pressure. The 

opposite also holds true. 

 

Figure 5 – Loops Diagram (Example 1) 

 

List 1 presents the converged flow rate, head loss and velocity through all the 

elements. List 2 presents the pressures at the start and end of each element, the start being 

from where the flow is coming in, and the end where the flow is going. These results were 

obtained using a computer program that I developed based on the algorithm presented in this 

article. The program took 734 iterations in 9 seconds to find the solution on a Pentium 

166MHz computer using Visual Basic 5.0 for Windows 95. Table 6 shows the hand 

computation presented in NFPA-13. As it can be seen, the results are almost identical. The 

hand calculation yielded a flow rate of 260.4GPM @66.3psi; the computer program results 

were 260.67GPM @66.47 psi. The small discrepancies are due to the rounding-off made in 

the hand computations. From these results it is obvious that the pseudo node and the pseudo 

element accomplished their task. They simulate the behavior of a sprinkler system when 

using The Hardy Cross Method.  
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For this problem, the NFPA-13 example also mentions that a city water supply with a 

static pressure of 90psi and 1000GPM @60psi of residual pressure is available. The results 

obtained with the hand calculation and the computer program is  not what is going to  happen  

 

List 1 – Flow results using The Hardy Cross Method 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Element Element Type      Head Loss  Flow Rate   Velocity 
                              PSI        GPM        FPS    
     1  Pipe                 1.6143    19.5000     7.2370  
     2  Pipe                 1.6248    40.2794     8.6377  
     3  Pipe                 1.7171    62.2714     9.8109  
     4  Pipe                 4.6276    85.4762    13.4669  
     5  Pipe                 1.6573    19.7792     7.3406  
     6  Pipe                 1.6679    40.8534     8.7608  
     7  Pipe                 1.7624    63.1550     9.9502  
     8  Pipe                 4.7494    86.6843    13.6572  
     9  Pipe                 1.7234    20.2014     7.4973  
    10  Pipe                 1.7340    41.7215     8.9470  
    11  Pipe                 1.8320    64.4913    10.1607  
    12  Pipe                 4.9362    88.5111    13.9450  
    13  Pipe                 4.0343    85.4762    13.4669  
    14  Pipe                 0.7028    85.4762     8.1703  
    15  Pipe                 4.1405    86.6843    13.6572  
    16  Pipe                 1.0803   172.1604    11.5336  
    17  Pipe                 4.3033    88.5111    13.9450  
    18  Pipe                16.2910   260.6715    17.4633  
    19  Pipe                 8.8886   260.6715    11.3098  
    20  Pipe                 8.9242   260.6715    11.3098  
    21  Pipe                 5.0568   260.6715    11.9796  
     1  Pseudo              66.4734     0.0000     0.0000  
     1  Sprinkler           11.9117    19.5000     0.0000  
     2  Sprinkler           13.5260    20.7794     0.0000  
     3  Sprinkler           15.1507    21.9920     0.0000  
     4  Sprinkler           16.8678    23.2048     0.0000  
     5  Sprinkler           12.2552    19.7792     0.0000  
     6  Sprinkler           13.9125    21.0742     0.0000  
     7  Sprinkler           15.5804    22.3017     0.0000  
     8  Sprinkler           17.3428    23.5292     0.0000  
     9  Sprinkler           12.7840    20.2014     0.0000  
    10  Sprinkler           14.5074    21.5200     0.0000  
    11  Sprinkler           16.2414    22.7698     0.0000  
    12  Sprinkler           18.0734    24.0198     0.0000  
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List 2 – Pressure results using The Hardy Cross Method 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

if the sprinkler system is connected to a city water supply. If the allowance for hose streams 

is not taken into consideration, more water is going to flow at a higher pressure. Actually, 

304.03gpm @86.68psi is going to be the point of operation.  This can be found graphically 

and using the hand calculation. To find this point, one has to draw the system curve for the 

sprinkler system and the city water supply curve. The intersection of both lines is the point of 

operation. The accuracy of a graphic solution is only as accurate as the definition of the 

drawn graph. A computational solution using the results of the hand calculation is also 

available. But because we need to check back to see if we exceed the pressures and velocities 

that are part of our constrains, it is a little bit lengthy approach. Once the point is found, one 

Element Element Type          Ps         Pe      
                              PSI        PSI     
     1  Pipe                13.5260    11.9117  
     2  Pipe                15.1507    13.5260  
     3  Pipe                16.8678    15.1507  
     4  Pipe                21.4954    16.8678  
     5  Pipe                13.9125    12.2552  
     6  Pipe                15.5804    13.9125  
     7  Pipe                17.3428    15.5804  
     8  Pipe                22.0921    17.3428  
     9  Pipe                14.5074    12.7840  
    10  Pipe                16.2414    14.5074  
    11  Pipe                18.0734    16.2414  
    12  Pipe                23.0096    18.0734  
    13  Pipe                25.5298    21.4954  
    14  Pipe                26.2326    25.5298  
    15  Pipe                26.2326    22.0921  
    16  Pipe                27.3129    26.2326  
    17  Pipe                27.3129    23.0096  
    18  Pipe                43.6039    27.3129  
    19  Pipe                52.4925    43.6039  
    20  Pipe                61.4167    52.4925  
    21  Pipe                66.4734    61.4167  
     1  Pseudo              66.4734     0.0000  
     1  Sprinkler           11.9117     0.0000  
     2  Sprinkler           13.5260     0.0000  
     3  Sprinkler           15.1507     0.0000  
     4  Sprinkler           16.8678     0.0000  
     5  Sprinkler           12.2552     0.0000  
     6  Sprinkler           13.9125     0.0000  
     7  Sprinkler           15.5804     0.0000  
     8  Sprinkler           17.3428     0.0000  
     9  Sprinkler           12.7840     0.0000  
    10  Sprinkler           14.5074     0.0000  
    11  Sprinkler           16.2414     0.0000  
    12  Sprinkler           18.0734     0.0000  
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has to re-compute back to each sprinkler head. The Hardy Cross Method is suitable for 

finding this solution on its own without much hesitation. The results given above were 

calculated using an adapted pseudo element that simulates city water supply conditions. 

Compared to what can be obtained from the graph in Figure 6, it is quite close 

(approximately 300GPM@ 87psi). The developments of the city water supply element and 

that of a fire pump simulation element are beyond the scope of this article. Neverless, the 

development of advance elements is a continuation of the method established in this article. 

There is still one more test that would convince us of the exceptional power of this 

algorithm. The next section deals with the solution to a grid problem. 

 
Table 6 –Manual Calculations (Example 1) 
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Flow 
In 
gpm 

 
 

Pipe 
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Pipe 
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Pipe 
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Psi 
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Pressure 
Summary 

 
 

Normal 
Pressure 

 
 
 

Notes  
Re

f.
 S

te
p 

 L  13.0 Pt  11.9 Pt  
q  F   Pe   Pv 

 T  13.0 Pf   1.6 Pn 1 

1  
 

BL-1  
Q  19.5 

1” 

  

C=120 
 
0.124 

  

q=130x.15=19.5  

 L  13.0 Pt  13.5 Pt  
q  20.7  F   Pe   Pv 

2 

2  

 
Q  40.2 

1 ¼”  T  13.0 

C=120 
 
0.125 Pf   1.6 Pn 

q=5.65(13.5)^.5

 

 

 L  13.0 Pt  15.1 Pt  
q  22.0  F   Pe   Pv 

2 

3  

 
Q  62.2 

1 ½”  T  13.0 

C=120 
 
0.132 Pf   1.7 Pn 

q=5.65(15.1)^.5  
 
4 

2T-16 L  20.5 Pt  16.8 Pt  
q  23.2  F  16.0 Pe   Pv 

4 

4  
DN 
RN  

Q  85.4 
1 ½”  T  36.5 

C=120 
 
0.237 Pf   8.6 Pn 

q=5.65(16.8)^.5  
 
5 

 L  10.0 Pt  25.4 Pt  
q    F   Pe   Pv 

5 

  
CM 
TO 

BL-2 
 
Q  85.4 

2”  T  10.0 

C=120 
 
0.070 Pf   0.7 Pn 

k=85.4/(25.4)^.5 
 

k=16.95 

 

 L  10.0 Pt  26.1 Pt  
q  86.6  F   Pe   Pv 

6 

 BL-2 
CM 
TO 

BL-3 
 
Q 172.0 

2 ½”  T  10.0 
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0.109 Pf   1.1 Pn 

q=16.95(26.1)^.5  
 
6 

 L  70.0 Pt  27.2 Pt  
q  88.4  F   Pe   Pv 

7 

  
BL-3 
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0.233 Pf  16.3 Pn 

q=16.95(27.2)^.5  

E5 L 119.0 Pt  43.5 Pt  
q AV15 F   Pe   6.5 Pv 

8 

  
CM 
TO 
FIS 

 
Q 260.4 

3” GV1 T 140.0 

C=120 
 
0.081 Pf  11.3 Pn 

 
Pe=15x0.433 

 
 
8 

E5 L  50.0 Pt  61.3 Pt  
q GV1 F  32.0 Pe   Pv 

9 

 THROUGH 
UNDER- 
GROUND 

TO 
CITY MAIN 

 
Q 260.4 

 T15 T  82.2 

C=150 
TYPE ‘M’ 
0.061 Pf   5.0 Pn 

COPPER 
21x1.51=32 

 
 
9 

 L   Pt  66.3 Pt  
q  F   Pe   Pv 

 

  

 
Q   

  T   

 
 

 Pf   Pn 
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Figure 6 – Demand and Supply Graph 

 
Example 2 – A Grid Arrangement 
 
 A grid arrangement provides a formidable way to distribute the water required by 

sprinkler systems. In a tree arrangement, a main line feeds the branches where the active 

sprinkler heads are located. Because of this, the main branch has to be capable of supplying 

all the water demanded by the system. In a grid arrangement the water is distributed to the 

active sprinkler heads using the branch lines that are not active. Unlike the tree arrangement, 

the branch lines are connected on both sides. This allows for a more efficient distribution of 

water and allows the use of smaller pipe sizes. The following example problem was taken 

from reference 2. Because the data input is more extensive, we are only going to show the 

results obtained. Figure 7 shows the solution obtained using the computer program that was 

developed for this article making use of this algorithm.  
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Figure 7 – Flow Distribution Solution (Example 2) 
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 For this example, the branch lines were 1 ½”, the supply side main was 4” and the tie-

in main was 3”. As it can be seen on Figure 7, the branch lines that are inactive are used to 

distribute the water to the far-end side of the branch lines that are active. The most 

hydraulically remote sprinkler heads are found in the last branch in the middle. NFPA-13 

requires two other hydraulic computations where the remote zone is moved to the left and/or 

to the right one sprinkler head in other to establish that the most remote zone is being used 

for the calculations. Since the amount of active heads do not change for the required two 

other calculations, it is a simple matter of changing the lengths to the elements entering the 

remote area. In this case elements 43, 50, 57 and 64 on the left side and elements 49, 56, 63 

and 68 on the right side lengths have to be changed accordingly. Using the algorithm shown 

in this article it is very simple to change the length data to accomplish this task. Mainly this 

will change the K factor of those pipe elements. 

 The solution found using the algorithm presented in this article showed that 

873.11GPM @ 65.18psi are required to meet the minimum required flow rate at the active 

sprinkler heads (2224 iterations and 84 seconds). Compared to the solution offered in 

reference 4 (873.11 GPM @65.16psi), both solutions are very close. The differences can be 

due to the convergence criteria and tolerance used as well as the use of double precision (15 

digits) in the program that was used for this article. As we have seen this algorithm can be 

used for any kind of sprinkler system configuration. There is still an aspect of the algorithm 

that we have not yet talked about. Next section explains another little secret. 

 

Convergence of The Hardy Cross Algorithm 

 As with any computer algorithm, there are instances were the convergence rate is 

poor. Sometimes, the algorithm never converges to a solution. There is information that 

points out convergence problems with The Hardy Cross Method [1]. Whenever a loop 

contains elements with high pressure loss and elements with low pressure loss, convergence 

difficulties might arise. Neverless, by exercising carefulness in the selection of the loops and 

by using a few other techniques, such problems can be readily solved. One such technique is 

the use of relaxation factors. A relaxation factor reduces the possibility of the algorithm to 

diverge. A relaxation factor is implemented in The Hardy Cross Method by using only a 

fixed percentage of the flow correction in all the loops. In solving the problems I have 
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presented in this article, a relaxation factor of 0.75 to 0.85 was used. Also, the correction to 

the pseudo elements in order to force compliance with minimum sprinkler head flow rate 

(Equation 10) has to use a relaxation factor. For the problems solved in this article a 

relaxation factor for the pseudo elements in the order of 0.1 to 0.2 was used.  There are other 

methods available that show much better convergence rates. All of them are based on the 

same principles presented in this article. The use of a pseudo element and a pseudo node is 

the key to implementing any of the available methods for sprinkler systems. 

 

Summary of the Hardy Cross Method 

 For those of you that are anxious to implement this algorithm in your computer, List 3 

provides a cookbook recipe of the steps to the Hardy Cross Iteration Technique. 

  

List 3 – The Hardy Cross Iteration Sequence 
 

1. Calculate the K and K’ of all elements. To include fitting pressure losses 

use the equivalent length method. 

2. Assume a flow rate in all the elements. For sprinkler elements use the 

required minimum flow rate. Start working from the sprinklers toward the 

base of the riser. 

3. Make sure that the assumed flow rate conforms to the conservation of 

mass principle at all nodes. 

4. Calculate the correction factor using Equation 1 for all loops. Make sure 

you are following the loop sign convention established. 

5. Apply the correction factor to all the element flow rates. 

6. For each element divide the sum of the correction factors applied to the 

element by its flow rate. 

7. Find which of those values is the biggest. This is your relative maximum 

flow rate error. 

8. Use the absolute value of the error to compare against a tolerance. 

9. Apply Equation 10 to the pseudo node and check the change in head at the 

pseudo node. Compared it to a preset tolerance. 

10. If any of the above convergence check above fail, go to step 4. 
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Conclusions 

 As we have seen, the use of computer algorithms holds a promise for the solution of 

pipe network problems. The Hardy Cross Method is the simplest method to implement and is 

especially suitable for sprinkler systems. The results that can be obtained using this method 

are accurate. The use of the pseudo node and the pseudo element provides a correct 

simulation of a sprinkler system operation. The development of advance elements that allows 

the understanding of problems involving pumps, reservoirs and city water supply resources 

are possible with this method.  

 The secrets revealed in this article are not coding secrets, but interpretations of how to 

simulate physical reality using a mathematical model. The disclosure of these techniques 

allows engineers to understand how sprinkler systems work.  
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