
June 7, 1999 10:10 owltex Sheet number 1 Page number imagentablack

A Computer Science Tapestry

Exploring Programming and Computer Science
with C++

June 7, 1999 10:10 owltex Sheet number 2 Page number iimagentablack

ii

A Computer Science Tapestry

Exploring Programming and Computer Science
with C++

Second Edition

Owen L. Astrachan
Duke University

Boston Burr Ridge,IL Dubuque,IA Madison,WI New York San Francisco St. Louis
Bankok Bogotá Caracas Lisbon London Madrid

Mexico City Milan New Delhi Seoul Singapore Sydney Taipei Toronto

June 7, 1999 10:10 owltex Sheet number 3 Page number iiimagentablack

iii

Front matter

June 7, 1999 10:10 owltex Sheet number 4 Page number ivmagentablack

iv

Copyright information

June 7, 1999 10:10 owltex Sheet number 5 Page number vmagentablack

v

About the Author
Owen L. Astrachan is Associate Professor of the Practice of Computer Science at Duke
University and the department’s Director of Undergraduate Studies for Teaching and
Learning. After receiving his A. B. degree from Dartmouth College, he taught high
school for seven years before returning to graduate school. He received his Ph.D. in
Computer Science from Duke in 1992. Professor Astrachan was a member of the Duke
programming team that placed fourth in the world in the ACM programming contest
in 1989 and coached the third place team in 1994. He was the chief Reader for the
Advanced Placement Computer Science Exam from 1990 to 1994. Professor Astra-
chan has written many technical and pedagogical articles and has been the Principal
Investigator in three NSF-sponsored educational projects: “The Applied Apprenticeship
Approach: An Object-Oriented/Object-Based Framework for CS2,” “CURIOUS: Cen-
ter for Undergraduate Education and Research: Integration through Performance and
Visualization,” and “Using and Developing Design Patterns.” A well-regarded teacher,
Professor Astrachan received the 1995 Robert B. Cox Distinguished Teaching in Science
Award.

June 7, 1999 10:10 owltex Sheet number 6 Page number vimagentablack

vi

To my teachers, colleagues, and friends, especially to those who are all three, for
educating, arguing, laughing, and helping.

To Laura and Ethan

June 7, 1999 10:10 owltex Sheet number 7 Page number viimagentablack

Preface

TheTapestryViewed from Afar
This book is designed for a first course1 in computer science that uses C++ as the language
by which programming is studied. My goal in writing the book has not been to cover
the syntax of a large language like C++, but to leverage the best features of the language
using sound practices of programming and pedagogy in the study of computer science
and software design. My intent is that mastering the material presented here will provide:

A strong grounding in the analysis, construction, and design of programs and
programming.

A means for honing problem-solving skills associated with the study of computer
programming and a taste of both the science and engineering aspects of program-
ming.

An introduction to computer science that gives the student more of an idea of what
the discipline is about than most introductory programming texts.

In particular, this is a book designed to teach programming using C++, not a book de-
signed to teach C++. Nevertheless, I expect students who use this book will become
reasonably adept C++ programmers. Object-oriented programming is not a program-
mer’s panacea, although it can make some jobs much easier. To mix metaphors, learning
to program is a hard task, no matter how you slice it—it takes time to master, just as
bread takes time to rise.

The material here is grounded in the concept that the study of computer science
should be part of the study of programming. I also want students to use classes before
writing them, so a library of useful classes is integrated into the text. Students will
better appreciate good design by seeing it in practice than by simply reading about
it. This requires studying and using classes that actually do something and that are
easy for novice programmers to use. For example, I don’t use any examples about
bank accounts or Automated Teller Machines. These traditional examples work well in
explaining concepts, but it’s not possible to implement a real bank account class or an
ATM in the first programming course. I do supply classes for calendar dates, unbounded
integers, timing program segments, reading directories, random numbers, and several
others. These classes can be used early (or late) in a semester, allowing students to write
more interesting programs without writing more code. For example, using theDate
class students can write a three-line program to determine how many days old they are
whenever they run the program, an eight-line program to find out what day Thanksgiving
falls on in any year, and a forty-line program to print a calendar for any year. Using

1This first course has traditionally been called CS1 after early ACM guidelines.

vii

June 7, 1999 10:10 owltex Sheet number 8 Page number viiimagentablack

viii

the classes for reading directories makes it possible to write a twenty-line program for
finding all files that are large, or were last modified yesterday, or a host of other problems.

Most importantly, this book takes the view that the study of computer science should
involve hands-on activity and be fun. The study of programming must cover those areas
that are acknowledged as fundamental to computer science, but the foundation that is
constructed during this study must be solid enough to support continued study of a rapidly
changing programming world, and the process of studying should make students want
to learn more. Support for this position can be found in several places; I offer two quotes
that express my sentiments quite well.

Having surveyed the relationships of computer science with other disciplines, it
remains to answer the basic questions: What is the central core of the subject?
What is it that distinguishes it from the separate subjects with which it is related?
What is the linking thread which gathers these disparate branches into a single
discipline? My answer to these questions is simple—it is the art of programming
a computer. It is the art of designing efficient and elegant methods of getting
a computer to solve problems, theoretical or practical, small or large, simple or
complex. It is the art of translating this design into an effective and accurate
computer program. This is the art that must be mastered by a practising computer
scientist; the skill that is sought by numerous advertisements in the general and
technical press; the ability that must be fostered and developed by computer science
courses in universities.

C. A. R. Hoare
Computer Science(reprinted in [Hoa89])

A supporting view is expressed in the following quote:

Programming is unquestionably the central topic of computing.
In addition to being important, programming is an enormously exciting in-

tellectual activity. In its purest form, it is the systematic mastery of complexity.
For some problems, the complexity is akin to that associated with designing a fine
mechanical watch, i.e., discovering the best way to assemble a relatively small
number of pieces into a harmonious and efficient mechanism. For other problems,
the complexity is more akin to that associated with putting a man on the moon,
i.e., managing a massive amount of detail.

In addition to being important and intellectually challenging, programming is
a great deal of fun. Programmers get to build things and see them work. What
could be more satisfying?

John V. Guttag
Why Programming Is Too Hard and What to Do about Itin [MGRS91]

Programming and Computer Science

This is more than a book about programming. Although its principal focus is on pro-
gramming using C++, this is also a book about computer science. However, this is

June 7, 1999 10:10 owltex Sheet number 9 Page number ixmagentablack

ix

neither a book that adopts what some have called a breadth-first approach to computer
science, nor is it a book whose only purpose is to teach object-oriented programming in
the first course (although glimpses of both approaches will be evident).

Introductory courses are evolving to take advantage of new and current trends in
software engineering and programming language design, specifically object-oriented
design and programming. Some schools will adopt the approach that learning object-
oriented design principles should be the focus of a first programming course. Although
this approach certainly has some merit, students in the first course traditionally have
a very difficult time with the design of loops, functions, and programs. I believe that
attempting to cover object-oriented design in addition to these other design skills will not
be as conducive to a successful programming experience as will using object-oriented
concepts in the context of learning to program by reading and using classes before writing
them. This may seem a subtle distinction, but if the focus of the course is on learning
about the design and use of objects, there may be a tendency to delve too quickly and
too deeply into the details of C++.

The approach taken in this book is that C++ and OOP permit students with little
or no programming background to make great strides toward developing foundational
knowledge and expertise in programming. In subsequent courses students will hone the
skills that are first learned in the study of the material in this book and will expand the
coverage of computer science begun here. Computer science is not just programming,
and students in a first course in computer science must be shown something of what the
discipline is about. At the same time, programming provides a means of relating the
subdisciplines that compose compter science. Many of the examples and programs in
this book rely on classes, code, and libraries that are documented and supplied with the
book.

A major tenet of the approach used here is that students should read, modify, and
extend programs in conjunction with designing and writing from scratch. This is enabled
to a large extent by using the object-oriented features of C++ whenever appropriate. I
view C++ as a tool to be used rather than studied. One of the most important ideas
underlying the use of classes and objects in C++, and one of the most important concepts
in computer science, is the idea ofabstraction.

Its [computer science’s] study involves development of the ability to abstract the
essential features of a problem and its solution, to reason effectively in the abstract
plane, without confusion by a mass of highly relevant detail. The abstraction must
then be related to the detailed characteristics of computers as the design of the
solution progresses; and it must culminate in a program in which all the detail
has been made explicit; and at this stage, the utmost care must be exercised to
ensure a very high degree of accuracy. … The need for abstract thought together
with meticulous accuracy, the need for imaginative speculation in the search for a
solution, together with a sound knowledge of the practical limitations of the tools
available for its implementation, the combination of formal rigour with a clear
style for its explanation to others—these are the combinations of attributes which
should be inculcated and developed in a student … and which must be developed
in high degree in students of computer science.

C. A. R. Hoare (reprinted in [Hoa89])

June 7, 1999 10:10 owltex Sheet number 10 Page number xmagentablack

x

Students and teachers of computer science are not obliged to understand the IEEE
standards for floating-point numbers in order to write code that uses such numbers. Al-
though at one time a deep understanding of machine architecture was necessary in order
to write programs, this is no longer the case. Just as Hoare exhorts the programmer to be
articulate about his or her activity, this book is designed to bring the novice programmer
and student of computer science and program design to a point where such behavior is
possible. The use of C++ provides a mechanism for doing so in which details can be
revealed if and when it is appropriate to do so and hidden otherwise.

Programming in C++

Although this book uses C++ as a tool to be used rather than studied, students coming
out of a first course must be well prepared for subsequent courses in computer science
and other disciplines. Therefore, the essential features of C++ must be used, studied,
and mastered. The syntactic and semantic features of C++ sufficient for an introductory
course are thoroughly covered. At Duke, we teach our first courses using C++, and then
we move to Java. We have had great success with this approach. This book uses C++,
not C. In particular, there is no coverage of I/O usingprintf andscanf , there is no
coverage of C-style (char *) strings, and the coverage of C-style arrays is minimal and
included only because initializing an array with several values shortens code. Instead,
we use streams for I/O, the standard C++ classstring , and a modification of the STL
vector class calledtvector that performs range-checking on all vector accesses.

Many thought and programming exercises are integrated in the text, particularly in
the pause and reflect sections. These exercises are designed to make students think
about what they’re doing and to cover some of the messier language details in thought-
provoking and interesting ways. On-line materials accessible via the World Wide Web
provide supporting programming lab assignments.

A CloserView of the CSTapestry
This book is different from most other introductory programming contexts in several
ways:

Functions are introduced very early, but in a natural way that makes programming
with functions easier than without.

Strings are used before ints or doubles, though all are introduced early in the text
so that numerical examples can be mixed with text and string examples.

Whenever possible, the computer is exploited—small programs do not necessarily
equate with toy programs. The classes included in the text make this possible.

A large number of classes, programs, and libraries are supplied with the book.
Students will use the classes first, studying only their interfaces, before delving
into implementation and design issues.

Features of C++ that simplify programming are used, but not all features of C++
are emphasized. For example, since we use string and vector classes rather than

June 7, 1999 10:10 owltex Sheet number 11 Page number ximagentablack

xi

pointer-based C-style objects, there is no reason to cover copy constructors or as-
signment operators. These topics are covered in the text, but there’s no compelling
reason to cover them.

How to Use the Book

I do not cover every section of the book in my courses, and instructors who used the first
edition indicated that they skip some sections as well. I’ll provide an overview of how
chapters can be covered, but the best recommendations will be your own after looking
at the material. I’ll also post sample syllabi on the book’s web site as people using the
book send the syllabi to me.

The How to Sections

The How to sections are new to this second edition. One of the common complaints from
users of the first edition was that it was not an ideal reference. Material on language-
specific features of C++ was introduced as needed so that related material was not
always found together. To address this valid concern, I have created How to sections
that condense C++ specific topics into a series of appendices, making it easier to use the
book as a reference as well as a textbook. The How to sections are referenced in the text
by a flying carpet icon as shown to the left, with the relevant How to referenced in the text.
For example, How to B provides detailed information on using streams and formatting
output. By including the material in the How to appendix, it can be found quickly and it
doesn’t clutter a more general discussion of computer science and programming design
with C++ specifics.

Chapter Coverage and Dependencies

Chapter 1 is an overview of computer science and programming. None of the material
is used in subsequent chapters, though covering Chapter 1 doesn’t take much time and
sets a tone for using the book.

Part 1: Foundations of C++ Programming

Chapters 2 through 5 cover material essential to what is covered in the rest of the text.
However certain sections in this part can be skipped or treated less thoroughly since the
material is repeated in other contexts later. TheBalloon class used in Section 3.4
introduces a simple and compelling class, but the section can be skipped since the
material on classes is studied again in Section 5.4. It’s also possible to cover all the
control statements early, then use the examples and classes introduced in Chapters 2
through 5. Chapters 2 through 5 should take less time to cover than Chapters 6 through
8. In general, the chapters later in the book take more time to digest than the earlier
chapters, but offer more material.

June 7, 1999 10:10 owltex Sheet number 12 Page number xiimagentablack

xii

Part 2: Program and Class Construction: Extending the Foun-
dation

The material in Chapters 6 through 8, combined with earlier material, will form the basis
of many first courses. It’s possible to use sections of chapters from Part 3 to augment
the material in the first eight chapters as noted below.

For those who prefer to cover vectors early, it’s possible to cover Sections 6.1, 6.2
and 7.4, then cover Chapter 8. The material in Section 8.4 on built-in arrays is completely
optional. The classtvector is modeled after the STL classvector , but performs
range-checking for the overloaded indexing operator. The discussion oftvector relies
on the methodpush_back for adding elements to a vector so that the vector resizes
itself as needed. The differences between size and capacity for vectors are emphasized
in Chapter 8.

The classWordStreamIterator introduced in Section 6.3 can be omitted each
time it’s used, though it’s much easier to use the class to read a file more than once
within the same program than using the stream functions described in How to B to reset
a stream. The material on sets of strings in Section 6.5 is used in later chapters, but it
can be skipped each time it’s covered. The random walk classes discussed in Section 7.3
can be skipped, though they’re used later in discussing inheritance and pointers.

Part 3: Design, Use, and Analysis: Building on the Foundation

Chapters 9 through 13 provide a wealth of material. It’s unlikely that all the chapters
can be covered in a single semester.

In general, most of the chapters in this part are independent of each other, though not
completely. The material in Chapter 13 can be covered early, though it uses pointers.
A quick discussion of allocation usingnew can finesse the use of pointers since the
pointers are used to store vectors of elements in an inheritance hierarchy, not for linked
structures.

Chapter 9, which coversgetline , string streams, and overloaded operators, and
Chapter 10 on recursion, can be covered in any order. Most of the material is not used
in subsequent chapters, though thegetline function is used in several examples and
recursion is used in quick sort. These chapters could be covered before Chapter 8 on
vectors except that the example of recursion in Section 10.3.3 that permutes the elements
in a vector. The material on immutable lists in Section 10.5 can be skipped though it is
used in a few examples in later chapters.

Most of material in Chapter 11 can be skipped entirely or covered immediately after
covering vectors. Section 11.3 on function objects is optional, though it’s the right way
of sorting by several criteria and function objects are important in the STL and the Java
Collections classes.

Thanks
Many people have contributed to this book and the material in it, and I hope that many
more will. I must single out several people who have offered criticisms and suggestions

June 7, 1999 10:10 owltex Sheet number 13 Page number xiiimagentablack

xiii

that have been extremely useful during the development of this project: Rich Pattis
(Carnegie Mellon University) and Dave Reed (Dickinson College). At Duke, Susan
Rodger taught using a draft of the first edition, waited patiently while chapters were
revised, and offered a nearly uncountable number of exercises, improvements, and pro-
grams. Her efforts have been very important in the development of this material. Greg
Badros (then at Duke) reviewed the entire manuscript of the first edition and offered abso-
lutely wonderful suggestions; he astonished me with his perspicacity. In the fall of 1995
David Levine used the first edition at Gettysburg College and made many constructive
suggestions based on this use. In the fall of 1996 Dee Ramm learned and taught using the
final draft, and made many useful suggestions. Through the auspices of McGraw-Hill,
Marjorie Anderson offered wonderful suggestions for improving the quality of the first
edition. Although I haven’t vanquished the passive voice, any progress is due to her
diligence, and all stylistic blunders are my own. Among the users of the first edition,
Beth Katz at Millersville University stands out for providing feedback that I’ve tried to
incorporate into this second edition.

The folks from McGraw-Hill involved with the second edition have been absolutely
wonderful. Betsy Jones, Emily Gray, and Amy Hill have helped with time, patience, and
support throughout the development of the second edition. John Rogosich at Techsetters
created LATEX macros and supplied support for those macros with great alacrity. Pat
Anton was my contact about the artwork at Techsetters; if it looks good it’s due to her,
and if it doesn’t it’s because I originated it all.

In addition, the following people have reviewed the material and offered many useful
suggestions both for the first edition and for this second edition (if I’ve left someone
out, I apologize): Robert Anderson, Deganit Armon, John Barr, Gail Chapman, Mike
Clancy, Robert Duvall, Arthur Farley, Sarah Fix, Donald Gotterbarn, Karen Hay, Andrew
Holey, Judy Hromcik, Beth Katz, David Kay, Joe Kmoch, Sharon Lee, Henry Leitner,
David Levine, Clayton Lewis, John McGrew, Jerry Mead, Judy Mullins, David Mutchler,
Richard Nau, Jeff Naughton, Chris Nevison, Bob Noonan, Richard Pattis, Robert Plantz,
Richard Prosl, Dave Reed, Margaret Reek, Stuart Reges, Stephen Schach, David Teague,
Beth Weiss, Lynn Zeigler

Development
The ideas and exercises in this book have been tested in the first course for majors at
Duke since 1993. Many people using the first edition contributed thoughts and ideas.
I’m grateful to all of them, especially students at Duke who saw many versions of the
material before it was a book.

Versions of all the programs used in the book are available for Windows, Unix, and
Macintosh operating systems. The software is currently available via anonymous ftp
from ftp.cs.duke.edu in pub/ola/book/ed2/code . It is also accessible via
the web at:

http://www.cs.duke.edu/csed/tapestry.

Although the first edition of the book went through extensive classroom testing, there are
undoubtedly errors that persist and new ones introduced with this edition. Nevertheless,

June 7, 1999 10:10 owltex Sheet number 14 Page number xivmagentablack

xiv

all code has been compiled and executed and is reproduced directly from the sources; it
is not retyped.

I will respond to all email regarding errors and will attempt to fix mistakes in subse-
quent printings. I would be ecstatic to hear about suggestions that might improve certain
sections, or comments about sections that caused problems even without suggestions for
improvement. Of course I love to hear that something worked well.

Please send all comments by email to

ola@cs.duke.edu

I will try to acknowledge all mail received. Materials for the book are also accessible
via the World Wide Web from the URL

http://www.cs.duke.edu/csed/tapestry/

A mailing list is available for discussing any aspects of the book or the course. To
subscribe, send email with the message

subscribe tapestry

as the message body to

majordomo@acpub.duke.edu

To unsubscribe, send the message

unsubscribe tapestry

to the same address. To send mail to the list, use the address

tapestry@acpub.duke.edu

Details
The second edition of the book was prepared using the LATEX package from Y & Y, Inc.
Macros and LATEX support were supplied by Techsetters, Inc. I used hardware donated
by Intel to Duke University running Windows NT donated by Microsoft. I also used
RedHat Linux 5.1 running on a (now old) Pentium 100. I tested all programs using
Codewarrior donated by Metrowerks, Visual C++ donated by Microsoft, and egcs C++
under Linux which is free from Cygnus Software. I used Emacs running under Windows
NT and the Unix-like shell for NT created by Cygnus; both were indispensable (I could
not survive without grep, for example). Screen images were captured using Snagit/32
and processed using SmartDraw Professional running under Windows NT. I also used
XV and Xfig running under Linux to create drawings that were ultimately massaged by
Techsetters using Adobe Photoshop. I printed preliminary versions of the manuscript
on a Tektronix Color Laser/Phaser 740 and used Adobe Distiller to create pdf files from
postscript.

June 7, 1999 10:10 owltex Sheet number 15 Page number xvmagentablack

xv

Acknowledgments

To paraphrase Newton, the work in this book is not mine alone; I have stood on the
shoulders of giants. Of course Newton paraphrased Robert Burton, who said, “A dwarf
standing on the shoulders of a giant may see farther than a giant himself.” The styles used
in several books serve as models for different portions of this text. In particular, Eric
Roberts’The Art and Science of C[Rob95] provided style guidelines for formatting;
the bookA Logical Approach to Discrete Math[GS93] by David Gries and Fred B.
Schneider motivated the biographies; books by Bjarne Stroustrup [Str94, Str97] and
Scott Meyers [Mey92, Mey96] were indispensable in delving into C++. The way I
think about programming was changed by [GHJ95] and other work from the patterns
community. I’ve borrowed ideas from almost all of the textbooks I’ve read in 21 years
of teaching, so I acknowledge them en masse.

Thanks to Duke University and the Computer Science Department for providing an
atmosphere in which teaching is rewarded and this book is possible.

The research that led to the inclusion of patterns and the apprentice style of learning
used in this book was supported by the National Science Foundation under grant CCR-
9702550. This second edition was written during a sabbatical year in Vancouver, Canada
where the salmon is great, the city is wonderful, and the rain isn’t nearly as bad as people
lead you to believe.

Finally, thanks to Laura for always understanding.

Owen Astrachan
Vancouver, Canada 1999

June 7, 1999 10:10 owltex Sheet number 16 Page number xvimagentablack

xvi

June 7, 1999 10:10 owltex Sheet number 17 Page number xviimagentablack

Contents

1 Computer Science and Programming 3
1.1 What Is Computer Science?. 3

1.1.1 The Tapestry of Computer Science. 4
1.2 Algorithms . 5

1.2.1 Arranging 13 Cards. 6
1.2.2 Arranging 100,000 exams. 7

1.3 Computer Science Themes and Concepts. 8
1.3.1 Theory, Language, Architecture. 8
1.3.2 Abstractions, Models, and Complexity. 9

1.4 Language, Architecture, and Programs. 12
1.4.1 High- and Low-level Languages. 12

1.5 Creating and Developing Programs. 15
1.6 Language and Program Design. 18

1.6.1 Off-the-Shelf Components. 19
1.6.2 Using Components. 20

1.7 Chapter Review. 20
1.8 Exercises . 21

I Foundations of C++ Programming 27

2 C++ Programs: Form and Function 29
2.1 Simple C++ Programs. 30

2.1.1 Syntax and Semantics. 31
2.2 How a Program Works. 35

2.2.1 Flow of Control. 36
2.3 What Can Be Output?. 37
2.4 Using Functions. 40
2.5 Functions with Parameters. 44

2.5.1 What Is a Parameter?. 44
2.5.2 An Example of Parameterization: Happy Birthday. 45
2.5.3 Passing Parameters. 48

2.6 Functions with Several Parameters. 51
2.7 Program Style. 60

2.7.1 Identifiers. 61
2.8 Chapter Review. 61
2.9 Exercises . 63

xvii

June 7, 1999 10:10 owltex Sheet number 18 Page number xviiimagentablack

xviii

3 Program Design and Implementation 67
3.1 The Input Phase of Computation. 68

3.1.1 The Input Stream,cin . 69
3.1.2 Variables . 69

3.2 Processing Numbers. 73
3.2.1 Numeric Data. 75
3.2.2 Arithmetic Operators. 77
3.2.3 Evaluating Expressions. 79
3.2.4 The typechar . 82

3.3 Case Study: Pizza Slices. 83
3.3.1 Pizza Statistics. 83

3.4 Classes and Types: An Introduction. 86
3.4.1 Member Functions. 88
3.4.2 Reading Programs. 89
3.4.3 Private and Public. 91

3.5 Compiling and Linking. 93
3.6 Chapter Review. 94
3.7 Exercises . 95

4 Control, Functions, and Classes 99
4.1 The Assignment Operator. 100
4.2 Choices and Conditional Execution. 103

4.2.1 Theif/else Statement. 105
4.3 Operators . 107

4.3.1 Relational Operators. 108
4.3.2 Logical Operators. 111
4.3.3 Short-Circuit Evaluation. 112
4.3.4 Arithmetic Assignment Operators. 113

4.4 Block Statements and Defensive Programming. 114
4.4.1 Defensive Programming Conventions. 116
4.4.2 Cascadedif /else Statements 119

4.5 Functions That Return Values. 124
4.5.1 The Math Library<cmath> . 127
4.5.2 Pre- and Post-conditions. 129
4.5.3 Function Return Types. 130

4.6 Class Member Functions. 138
4.6.1 string Member Functions. 138
4.6.2 Calling and Writing Functions. 141
4.6.3 TheDate class. 144

4.7 Using Boolean Operators: De Morgan’s Law. 145
4.8 Chapter Review. 147
4.9 Exercises . 149

June 7, 1999 10:10 owltex Sheet number 19 Page number xixmagentablack

xix

5 Iteration with Programs and Classes 155
5.1 Thewhile Loop . 155

5.1.1 Infinite Loops. 158
5.1.2 Loops and Mathematical Functions. 159
5.1.3 Computing Factorials. 160
5.1.4 Computing Prime Numbers. 164
5.1.5 Kinds of Loops. 168
5.1.6 Efficiency Considerations. 168
5.1.7 Exponentiation: A Case Study in Loop Development. 169
5.1.8 Numbers Written in English. 175
5.1.9 Fence Post Problems. 177

5.2 Alternative Looping Statements. 179
5.2.1 Thefor Loop . 180
5.2.2 The Operators++ and−− . 181
5.2.3 Thedo-while Loop . 182
5.2.4 Pseudo-Infinite Loops. 183
5.2.5 Choosing a Looping Statement. 185
5.2.6 Nested Loops. 185
5.2.7 Defining Constants. 190

5.3 Variable Scope. 191
5.4 Using Classes. 193

5.4.1 TheDate Class . 193
5.4.2 TheDice Class . 197
5.4.3 Testing theDice Class. 200

5.5 Chapter Review. 204
5.6 Exercises . 205

II Program and Class Construction
Extending the Foundation 213

6 Classes, Iterators, and Patterns 215
6.1 Classes: From Use to Implementation. 215

6.1.1 Class Documentation: The Interface (.h File) 215
6.1.2 Comments in.h Files . 216
6.1.3 Class Documentation: the Implementation or.cppFile 218
6.1.4 Member Function Implementation. 221
6.1.5 Scope of Private Variables. 222

6.2 Program Design with Functions. 224
6.2.1 Evaluating Classes and Code: Coupling and Cohesion. 226
6.2.2 Toward a Class-based Quiz Program. 227
6.2.3 Reference parameters. 228
6.2.4 Pass by Value and Pass by Reference. 231
6.2.5 const Reference Parameters. 233

6.3 Reading Words: Stream Iteration. 236
6.3.1 Recommended Problem-solving and Programming Steps. 237

June 7, 1999 10:10 owltex Sheet number 20 Page number xxmagentablack

xx

6.3.2 A Pseudocode Solution. 237
6.3.3 Solving a Related Problem. 240
6.3.4 The Final Program: Counting Words. 242
6.3.5 Streams Associated with Files. 245
6.3.6 Type Casting. 247
6.3.7 A Word-Reading Class Usingifstream 249

6.4 Finding Extreme Values. 251
6.4.1 Largest/Smallest Values. 253
6.4.2 Initialization: Another Fence Post Problem. 254
6.4.3 Word Frequencies. 256
6.4.4 Using theCTimer class . 258

6.5 Case Study: Iteration and String Sets. 261
6.5.1 Iterators and thestrutils.hLibrary 263
6.5.2 The Typeofstream . 263
6.5.3 Sets and Word Counting. 265

6.6 Chapter Review. 268
6.7 Exercises . 269

7 Class Interfaces, Design, and Implementation 279
7.1 Designing Classes: From Requirements to Implementation. 279

7.1.1 Requirements. 280
7.1.2 Nouns as Classes. 280
7.1.3 Verbs as Member Functions (Methods). 281
7.1.4 Finding Verbs Using Scenarios. 281
7.1.5 Assigning Responsibilities. 283
7.1.6 Implementing and Testing Classes. 284
7.1.7 Implementing the ClassQuiz . 287
7.1.8 Implementing the ClassQuestion 289
7.1.9 Sidebar: Convertingint anddouble Values tostrings 291

7.2 A Conforming Interface: a newQuestion Class. 302
7.2.1 Using the NewQuestion Class 302
7.2.2 Creating a Program. 303
7.2.3 The Preprocessor. 304
7.2.4 The Compiler. 306
7.2.5 The Linker . 307
7.2.6 A NewQuestion Class . 308

7.3 Random Walks . 311
7.3.1 One-Dimensional Random Walks. 312
7.3.2 Selection with theswitch Statement. 314
7.3.3 A RandomWalk Class. 316
7.3.4 A Two-Dimensional Walk Class. 323
7.3.5 The Common Interface inRandomWalk andRandomWalk2D . . 329

7.4 structs as Data Aggregates. 331
7.4.1 structs for Storing Points. 333
7.4.2 Operators forstruct s . 335

7.5 Chapter Review. 336

June 7, 1999 10:10 owltex Sheet number 21 Page number xximagentablack

xxi

7.6 Exercises . 337

8 Arrays, Data, and Random Access 341
8.1 Arrays and Vectors as Counters. 342

8.1.1 An Introduction to the Classtvector 345
8.1.2 Counting withtvectors . 346

8.2 Defining and Using tvectors. 349
8.2.1 tvector Definition . 349
8.2.2 tvector Initialization . 350
8.2.3 tvector Parameters . 350
8.2.4 A tvector Case Study: Shuffling CD Tracks. 354

8.3 Collections and Lists Usingtvectors 359
8.3.1 Size and Capacity. 360
8.3.2 Usingpush_back , resize , andreserve 360
8.3.3 Vector Idioms: Insertion, Deletion, and Searching. 365
8.3.4 Insertion into a Sorted Vector. 368
8.3.5 Deleting an Element Usingpop_back 370
8.3.6 Searching a Vector. 371
8.3.7 Binary Search. 376
8.3.8 Comparing Sequential and Binary Search. 377

8.4 Built-in Arrays . 382
8.4.1 Defining an Array. 382
8.4.2 Initializing an Array . 383
8.4.3 Arrays as Parameters. 384

8.5 Chapter Review. 388
8.6 Exercises . 390

III Design, Use, and Analysis
Extending the Foundation 397

9 Strings, Streams, and Operators 399
9.1 Characters: Building Blocks for Strings. 400

9.1.1 The Typechar as an Abstraction. 400
9.1.2 The Library<cctype> . 403
9.1.3 Strings aschar Sequences. 405

9.2 Streams and Files as Lines and Characters. 408
9.2.1 Input Usinggetline() . 409
9.2.2 Parsing Line-Oriented Data Usingistringstream 413
9.2.3 Output Usingostringstream 415
9.2.4 Strings, Streams, and Characters. 416

9.3 Case Study: Removing Comments with State Machines. 419
9.3.1 Counting Words . 419
9.3.2 Problem Specification: What Is a Comment?. 421
9.3.3 A State Machine Approach to I/O. 421
9.3.4 Enumerated Types. 426

9.4 Case Study: Overloaded Operators and theClockTime Class 428

June 7, 1999 10:10 owltex Sheet number 22 Page number xxiimagentablack

xxii

9.4.1 Throw-Away Code vs. Class Design. 430
9.4.2 Implementing theClockTime Class 431
9.4.3 Class or Data Invariants. 434
9.4.4 Overloaded Operators. 435
9.4.5 Friend Classes. 435
9.4.6 Overloadedoperator << . 436
9.4.7 Overloaded Relational Operators. 437
9.4.8 Overloadedoperator + and+= 437
9.4.9 Testing theClockTime Class. 438
9.4.10The Final Program. 440

9.5 Chapter Review. 442
9.6 Exercises . 443

10 Recursion, Lists, and Matrices 451
10.1Recursive Functions. 451

10.1.1Similar and Simpler Functions. 451
10.1.2General Rules for Recursion. 456
10.1.3Infinite Recursion. 458

10.2Recursion and Directories. 460
10.2.1Classes for Traversing Directories. 461
10.2.2Recursion and Directory Traversal. 462
10.2.3Properties of Recursive Functions. 468

10.3Comparing Recursion and Iteration. 469
10.3.1The Factorial Function. 469
10.3.2Fibonacci Numbers. 473
10.3.3Permutation Generation. 476

10.4Scope and Lifetime. 480
10.4.1Global Variables. 481
10.4.2Hidden Identifiers. 483
10.4.3Static Definitions. 485
10.4.4Static or Class Variables and Functions. 486

10.5Case Study: Lists and the ClassClist 488
10.5.1What Is aCList Object? . 489
10.5.2Tail-ing Down a list. 491
10.5.3Cons-ing Up a List. 493
10.5.4Append, Reverse, and Auxiliary Functions. 495
10.5.5Polynomials Implemented with Lists. 501
10.5.6CList and Sparse, Sequential Structures. 502

10.6The classtmatrix . 506
10.6.1A Simpletmatrix Program . 506
10.6.2Case Study: Finding Blobs. 508

10.7Chapter Review. 517
10.8Exercises . 518

June 7, 1999 10:10 owltex Sheet number 23 Page number xxiiimagentablack

xxiii

11 Sorting, Templates, and Generic Programming 527
11.1Sorting an Array. 527

11.1.1Selection Sort. 528
11.1.2Insertion Sort. 532

11.2Function Templates. 537
11.2.1Printing atvector with a Function Template. 538
11.2.2Function Templates and Iterators. 541
11.2.3Function Templates, Reuse, and Code Bloat. 545

11.3Function Objects . 545
11.3.1The Function ObjectComparer 546
11.3.2Predicate Function Objects. 551

11.4Analyzing Sorts. 555
11.4.1O Notation . 558
11.4.2Worst Case and Average Case. 558
11.4.3Analyzing Insertion Sort. 559

11.5Quicksort . 561
11.5.1The Partition/Pivot Function. 563
11.5.2Analysis of Quicksort. 566

11.6Chapter Review. 569
11.7Exercises . 570

12 Dynamic Data, Lists, and Class Templates 573
12.1Pointers as Indirect References. 573

12.1.1What is a Pointer?. 573
12.1.2Heap Objects. 577
12.1.3Sharing Objects. 580
12.1.4Reference Variables. 583
12.1.5Pointers for Sharing. 584
12.1.6Interdependencies, Class Declarations, and Header Files. 585
12.1.7Delete and Destructors. 591

12.2Linked Lists. 597
12.2.1Creating Nodes with Linked Lists. 600
12.2.2Iterating over a Linked List. 601
12.2.3Adding a Last Node to a Linked List. 602
12.2.4Deleting Nodes in a Linked List. 602
12.2.5Splicing Nodes into a Linked List. 604
12.2.6Doubly and Circularly Linked Lists, Header Nodes. 608

12.3A Templated Class for Sets. 612
12.3.1Sets of Strings With Linked Lists. 613
12.3.2Searching, Clearing, Helper Functions. 614
12.3.3Iterators and Friend Functions. 616
12.3.4Interactive Testing. 618
12.3.5Deep Copy, Assignment, and Destruction. 622
12.3.6A Templated Version ofLinkStringSet 627

12.4Chapter Review. 634
12.5Exercises . 636

June 7, 1999 10:10 owltex Sheet number 24 Page number xxivmagentablack

xxiv

13 Inheritance for Object-Oriented Design 643
13.1Essential Aspects of Inheritance. 643

13.1.1The Inheritance Hierarchy for Streams. 644
13.1.2An Inheritance Hierarchy: Math Quiz Questions. 646
13.1.3Implementing Inheritance. 649
13.1.4Public Inheritance. 651
13.1.5Virtual Functions. 652
13.1.6Protected Data Members. 656

13.2Using an Abstract Base Class. 657
13.2.1Abstract Classes and Pure Virtual Functions. 659
13.2.2When Is a Methodvirtual ? . 663

13.3Advanced Case Study: Gates, Circuits, and Design Patterns. 670
13.3.1An Introduction to Gates and Circuits. 670
13.3.2Wires, Gates, and Probes. 672
13.3.3Composite Gates and Connectors. 674
13.3.4Implementation of theWire andGate Classes. 682
13.3.5Gates and Wires: Observers and Observables. 684
13.3.6Encapsulating Construction inWireFactory 686
13.3.7Refactoring: Creating aBinaryGate Class 688
13.3.8Interactive Circuit Building. 692
13.3.9SimpleMap : Mapping Names to Gates. 697

13.4Chapter Review. 698
13.5Exercises . 699

A How to: Use Basic C++, Syntax and Operators 707
A.1 Syntax . 707

A.1.1 The Functionmain . 707
A.1.2 Built-in and Other Types. 707
A.1.3 Variable Definition and Assignment. 708
A.1.4 C++ Keywords . 710
A.1.5 Control Flow . 710

A.2 Functions and Classes. 713
A.2.1 Defining and Declaring Functions and Classes. 713
A.2.2 Importing Classes and Functions:#include 715
A.2.3 Namespaces. 715
A.2.4 Operators. 717
A.2.5 Characters. 718
A.2.6 Command-line Parameters. 718

B How to: Format Output and Use Streams 721
B.1 Formatting Output. 721

B.1.1 General and Floating-Point Formatting. 721
B.1.2 Manipulators . 722
B.1.3 Stream Functions. 728

B.2 Random Access Files. 729
B.3 I/O Redirection . 732

June 7, 1999 10:10 owltex Sheet number 25 Page number xxvmagentablack

xxv

C How to: Use the Classstring 733
C.1 The Classstring . 733

C.1.1 Basic Operations. 733
C.1.2 Conversion to/from C-style Strings. 734

C.2 String Member Functions. 734
C.2.1 Adding Characters or Strings. 734
C.2.2 Using Substrings. 735
C.2.3 Finding (Sub)strings and Characters. 737

D How to: Understand and Useconst 739
D.1 Whyconst ? . 739

D.1.1 Literal Arguments . 740
D.2 const Member Functions. 740

D.2.1 Overloading onconst . 742
D.3 Mutable Data . 743
D.4 Pointers andconst . 745
D.5 Summary . 746

E How to: Overload Operators 747
E.1 Overloading Overview . 747
E.2 Arithmetic Operators. 747

E.2.1 Binary Operators. 748
E.2.2 Arithmetic Assignment Operators. 750

E.3 Relational Operators. 752
E.4 I/O Operators . 755

E.4.1 The Functiontostring() . 756
E.5 Constructors and Conversions. 757

F How to: Understand and Use Standard Libraries 759
F.1 Functions . 759

F.1.1 The Library<cmath> . 759
F.1.2 The Library<cctype> . 760

F.2 Constants and Limits. 760
F.2.1 Limits in<climits> . 761
F.2.2 Double Limits in<cfloat> . 762
F.2.3 Limits in<limits> . 763
F.2.4 ASCII Values. 765

G How to: Understand and Use Tapestry Classes 767
G.1 A Library of Useful Classes. 767

G.1.1 Summary of Classes and Functions. 767
G.1.2 Implementations of Tapestry Classes. 768

G.2 Header Files for Tapestry Classes. 769
G.2.1 Prompting Functions inprompt.h 769
G.2.2 The ClassDate . 771
G.2.3 The ClassDice . 773
G.2.4 The ClassRandGen . 774

June 7, 1999 10:10 owltex Sheet number 26 Page number xxvimagentablack

xxvi

G.2.5 The ClassCTimer . 775
G.2.6 The ClassWordStreamIterator 775
G.2.7 The ClassStringSet . 777
G.2.8 The String Functions instrutils.h 778
G.2.9 The Math Helper Functions inmathutils.h 778
G.2.10The structPoint . 779
G.2.11The Classes indirectory.h 780
G.2.12The ClassCList . 783
G.2.13The ClassPoly . 786
G.2.14The Sorting Functions insortall.h 787
G.2.15Header Files from Circuit Simulation. 789
G.2.16The Map ClassSimpleMap . 794

H How to: Use the Graphics Classes incanvas.h 797
H.1 The Graphics Library: TOOGL 1.0. 797
H.2 Using theCanvas Class . 798

H.2.1Canvas Basics. 798
H.2.2 Drawing, Styles, and Colors. 798
H.2.3 Drawing Shapes and Text. 800

H.3 Using theAnimatedCanvas Class. 803
H.3.1 TheShape Hierarchy . 803
H.3.2 Properties ofShape Objects. 804
H.3.3 Using Shapes:addShape andclone 805
H.3.4 TheCompositeShape Class 807
H.3.5 Processing Mouse and Key Events. 809
H.3.6 Animations withBouncer andMover 812
H.3.7 Canvas Iterator. 815
H.3.8 Specifying Color with ClassCanvasColor 817
H.3.9 The ClassKey in key.h . 818

I How to: Cope with C++ Environments 819
I.1 Coping with Compilers. 819

I.1.1 Keeping Current . 820
I.2 Creating a C++ Program. 820

I.2.1 The Preprocessor. 820
I.2.2 The Compiler. 822
I.2.3 The Linker . 822

June 7, 1999 10:10 owltex Sheet number 27 Page number xxviimagentablack

List of Programs

Program 2.1: hello.cpp. 30
Program 2.2: hello2.cpp. 31
Program 2.3: drawhead.cpp. 40
Program 2.4: parts.cpp. 41
Program 2.5: bday.cpp. 46
Program 2.6: bday2.cpp. 47
Program 2.7: oldmac1.cpp. 52
Program 2.8: oldmac2.cpp. 55
Program 2.9: order.cpp. 58
Program 2.10: order2.cpp. 60
Program 3.1: macinput.cpp. 68
Program 3.2: fahrcels.cpp. 74
Program 3.3: daysecs.cpp. 75
Program 3.4: express.cpp. 80
Program 3.5: pizza.cpp. 83
Program 3.6: gfly.cpp. 86
Program 3.7: gballoonx.h. 89
Program 3.8: gfly2.cpp. 98
Program 4.1: change.cpp. 101
Program 4.2: change2.cpp. 104
Program 4.3: broccoli.cpp. 106
Program 4.4: noindent.cpp. 116
Program 4.5: monthdays.cpp. 119
Program 4.6: usemath.cpp. 125
Program 4.7: pizza2.cpp. 127
Program 4.8: isleap.cpp. 131
Program 4.9: isleap2.cpp. 132
Program 4.10: numtoeng.cpp. 133
Program 4.11: strdemo.cpp. 138
Program 4.12: strfind.cpp. 140
Program 4.13: datedemo.cpp. 144
Program 5.1: revstring.cpp. 157
Program 5.2: fact.cpp. 160
Program 5.3: bigfact.cpp. 162
Program 5.4: primes.cpp. 165
Program 5.5: digits.cpp. 175
Program 5.6: threeloops.cpp. 177
Program 5.7: digitloops.cpp. 180
Program 5.8: windchill.cpp. 186
Program 5.9: multiply.cpp. 188

xxvii

June 7, 1999 10:10 owltex Sheet number 28 Page number xxviiimagentablack

xxviii

Program 5.10: usedate.cpp. 194
Program 5.11: roll.cpp. 197
Program 5.12: tryroll.cpp. 199
Program 5.13: testdice.cpp. 200
Program 6.1: dice.cpp. 219
Program 6.2: simpquiz.cpp. 224
Program 6.3: simpquiz2.cpp. 228
Program 6.4: pbyvalue.cpp. 231
Program 6.5: constref.cpp. 233
Program 6.6: sentinel.cpp. 240
Program 6.7: countw.cpp. 244
Program 6.8: countw2.cpp. 245
Program 6.9: mindata.cpp. 252
Program 6.10: mindata2.cpp. 254
Program 6.11: maxword.cpp. 256
Program 6.12: usetimer.cpp. 259
Program 6.13: maxword2time.cpp. 260
Program 6.14: setdemo.cpp. 262
Program 6.15: setdemo2.cpp. 264
Program 6.16: maxword3.cpp. 265
Program 6.17: listcount.cpp. 276
Program 7.1: studentstub.cpp. 285
Program 7.2: mainstub.cpp. 285
Program 7.3: quizstub.cpp. 288
Program 7.4: question.h. 290
Program 7.5: numtostring.cpp. 292
Program 7.6: mathquest.h. 294
Program 7.7: mathquest.cpp. 296
Program 7.8: quiz.cpp. 297
Program 7.9: capquest.cpp. 309
Program 7.10: frogwalk.cpp. 313
Program 7.11: walk.h. 317
Program 7.12: frogwalk2.cpp. 318
Program 7.13: walk.cpp. 321
Program 7.14: brownian.cpp. 324
Program 7.15: twodwalk.cpp. 329
Program 7.16: usepoint.cpp. 333
Program 8.1: dieroll.cpp. 342
Program 8.2: dieroll2.cpp. 346
Program 8.3: letters.cpp. 350
Program 8.4: shuffle.cpp. 356
Program 8.5: growdemo.cpp. 362
Program 8.6: stocks.cpp. 365
Program 8.7: timesearch.cpp. 378
Program 8.8: fixlist.cpp. 385
Program 9.1: charlist.cpp. 401

June 7, 1999 10:10 owltex Sheet number 29 Page number xxixmagentablack

xxix

Program 9.2: spreader.cpp. 405
Program 9.3: filelines.cpp. 410
Program 9.4: readnums.cpp. 413
Program 9.5: filelines2.cpp. 417
Program 9.6: wc.cpp. 419
Program 9.7: decomment.cpp. 422
Program 9.8: enumdemo.cpp. 427
Program 9.9: clockt.h. 432
Program 9.10: useclock.cpp. 439
Program 9.11: cdsum.cpp. 440
Program 10.1: digits2.cpp. 452
Program 10.2: digits3.cpp. 454
Program 10.3: recdepth.cpp. 459
Program 10.4: files.cpp. 461
Program 10.5: subdir.cpp. 463
Program 10.6: facttest.cpp. 470
Program 10.7: fibtest.cpp. 474
Program 10.8: usepermuter.cpp. 479
Program 10.9: recfib.cpp. 481
Program 10.10: scope.cpp. 484
Program 10.11: recfib2.cpp. 485
Program 10.12: staticdemo.cpp. 487
Program 10.13: listdemo.cpp. 489
Program 10.14: listsize.cpp. 491
Program 10.15: readlist.cpp. 493
Program 10.16: listappend.cpp. 495
Program 10.17: listreverse.cpp. 498
Program 10.18: polydemo.cpp. 502
Program 10.19: polymult.cpp. 503
Program 10.20: polycount.cpp. 505
Program 10.21: matdemo.cpp. 506
Program 10.22: bitmapdemo.cpp. 508
Program 10.23: blobs.cpp. 511
Program 10.24: nqueenpartial.cpp. 523
Program 11.1: selectsort1.cpp. 529
Program 11.2: selectsort2.cpp. 530
Program 11.3: insertsort.cpp. 533
Program 11.4: timequadsorts.cpp. 534
Program 11.5: sortwlen.cpp. 538
Program 11.6: countiter.cpp. 541
Program 11.7: uniqueiter.cpp. 543
Program 11.8: strlensort.cpp. 547
Program 11.9: sortstocks.cpp. 549
Program 11.10: dirvecfun.cpp. 552
Program 11.11: checkselect.cpp. 557
Program 11.12: checkinsert.cpp. 560

June 7, 1999 10:10 owltex Sheet number 30 Page number xxxmagentablack

xxx

Program 12.1: pointerdemo.cpp. 574
Program 12.2: sharetoy.cpp. 580
Program 12.3: walkdesign.cpp. 585
Program 12.4: frogwalk3.cpp. 588
Program 12.5: strlink.cpp. 598
Program 12.6: orderedlist.cpp. 605
Program 12.7: listremove.cpp. 608
Program 12.8: linkstringsetiterator.h. 617
Program 12.9: testlinkset.cpp. 618
Program 12.10: linksetdemo.cpp. 622
Program 12.11: linkset.h. 628
Program 12.12: linkset.cpp. 631
Program 12.13: wordgame.h. 639
Program 12.14: wordgame.cpp. 640
Program 13.1: streaminherit.cpp. 644
Program 13.2: inheritquiz.cpp. 646
Program 13.3: mathquestface.h. 650
Program 13.4: mathquestface.cpp. 653
Program 13.5: questface.h. 659
Program 13.6: whatsthequizmain.cpp. 660
Program 13.7: whatstheface.h. 662
Program 13.8: inheritdemo.cpp. 664
Program 13.9: gatetester.cpp. 671
Program 13.10: gatewiredemo.cpp. 673
Program 13.11: xorgate.cpp. 675
Program 13.12: xordemo.cpp. 677
Program 13.13: gwinteraction.cpp. 683
Program 13.14: simplemapdemo.cpp. 697
Program 13.15: singleton.h. 703
Program A.1: namespacedemo.cpp. 715
Program A.2: mainargs.cpp. 719
Program B.1: formatdemo.cpp. 723
Program B.2: streamflags.cpp. 726
Program B.3: formatparams.cpp. 727
Program B.4: binaryfiles.cpp. 730
Program C.1: stringdemo.cpp. 736
Program E.1: datecomps.cpp. 753
Program F.1: oldlimits.cpp. 761
Program F.2: limits.cpp. 763
Program G.1: prompt.h. 769
Program G.2: date.h. 771
Program G.3: dice.h. 773
Program G.4: randgen.h. 774
Program G.5: ctimer.h. 775
Program G.6: worditer.h. 775
Program G.7: stringset.h. 777

June 7, 1999 10:10 owltex Sheet number 31 Page number xxximagentablack

xxxi

Program G.8: strutils.h. 778
Program G.9: mathutils.h. 778
Program G.10: point.h. 779
Program G.11: directory.h. 780
Program G.12: clist.h . 783
Program G.13: poly.h. 786
Program G.14: sortall.h. 787
Program G.15: wires.h. 789
Program G.16: gates.h. 791
Program G.17: simplemap.h. 794
Program H.1: circles.cpp. 799
Program H.2: drawshapes.cpp. 800
Program H.3: grid.cpp. 802
Program H.4: abcshape.h. 805
Program H.5: bouncedemo.cpp. 806
Program H.6: bouncefish.cpp. 808
Program H.7: circlefun.cpp. 809
Program H.8: sketchpad.cpp. 810
Program H.9: fishforth.cpp. 814
Program H.10: molebouncer.cpp. 815

June 7, 1999 10:10 owltex Sheet number 32 Page number 1magentablack

1

(first empty page)

June 7, 1999 10:10 owltex Sheet number 33 Page number 2magentablack

2

(second empty page)

June 7, 1999 10:10 owltex Sheet number 34 Page number 823magentablack

Bibliography

[AA85] Donald J. Albers and G.L. Alexanderson.Mathematical People. Birkhäuser,
1985.

[ACM87] ACM. Turing Award Lectures: The First Twenty Years 1966–1985. ACM
Press, 1987.

[AS96] Harold Abelson and Gerald Jay Sussman.Structure and Interpretation of
Computer Programs. 2nd. ed. MIT Press and McGraw-Hill, 1996.

[Asp90] William Aspray.Computing Before Computers. Iowa State University Press,
1990.

[Aus98] Matthew H. AusternGeneric Programming and the STL.Addison-Wesley,
1998.

[Ben86] Jon Bentley.Programming Pearls. Addison-Wesley, 1986.

[Ben88] Jon Bentley.More Programming Pearls. Addison-Wesley, 1988.

[Ble90] Guy E. Blelloch.Vector Models for Data-Parallel Computing. MIT Press,
1990.

[Boo91] Grady Booch.Object-Oriented Design with Applications. Benjamin Cum-
mings, 1991.

[Boo94] Grady Booch.Object-Oriented Design and Analysis with Applications. 2nd.
ed. Benjamin Cummings, 1994.

[BRE71] I. Barrodale, F.D. Roberts, and B.L. Ehle.Elementary Computer Applications
in Science Engineering and Business. John Wiley & Sons Inc., 1971.

[Coo87] Doug Cooper.Condensed Pascal. W.W. Norton, 1987.

[Dij82] Edsger W. Dijkstra.Selected Writings on Computing: A Personal Perspec-
tive. Springer-Verlag, 1982.

[DR90] Nachum Dershowitz and Edward M. Reingold. “Calendrical Calculations.”
Software-Practice and Experience20, (September 1990) pp. 899–928.

[(ed91] Allen B. Tucker (ed.).Computing Curricula 1991 Report of the ACM/IEEE-
CS Joint Curriculum Task Force. ACM Press, 1991.

[EL94] Susan Epstein and Joanne Luciano, eds.Grace Hopper Celebration of
Women in Computing. Computing Research Association, 1994. Hopper-
Book@cra.org.

823

June 7, 1999 10:10 owltex Sheet number 35 Page number 824magentablack

824

[Emm93] Michele Emmer, ed.The Visual Mind: Art and Mathematics. MIT Press,
1993.

[G9̈5] Denise W. Gürer. “Pioneering women in Computer Science.”Communica-
tions of the ACM38, (January 1995) pp 45–54.

[Gar95] Simson Garfinkel.PGP: Pretty Good Privacy. O’Reilly & Associates, 1995.

[GHJ95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.Design
Patterns: Elements of Reusable Object-Oriented ProgrammingAddison-
Wesley, 1995

[Gol93] Herman H. Goldstine.The Computer from Pascal to von Neumann. Princeton
University Press, 1993.

[Gri74] David Gries. “On Structured Programming—A Reply to Smoliar.”Commu-
nications of the ACM17, 11 (1974), pp 655–657.

[GS93] David Gries and Fred B. Schneider.A Logical Approach to Discrete Math.
Springer-Verlag, 1993.

[Har92] David Harel.Algorithmics, The Spirit of Computing2nd. ed. Addison-Wesley,
1992.

[Hoa89] C.A.R. Hoare.Essays in Computing Science. ed. C.B. Jones. Prentice-Hall,
1989.

[Hod83] Andrew Hodges.Alan Turing: The Enigma. Simon & Schuster, 1983.

[Hor92] John Horgan. Claude E. Shannon.IEEE Spectrum, April 1992.

[JW89] William Strunk Jr. and E.B. White.The Elements of Style. 3rd. ed. MacMillan
Publishing Co., 1989.

[Knu97] Donald E. Knuth.The Art of Computer Programming, vol. 1, Fundamental
Algorithms. 3rd ed. Addison-Wesley, 1997.

[Knu98a] Donald E. Knuth.The Art of Computer Programming, vol. 2, Seminumerical
Algorithms. 3rd. ed. Addison-Wesley, 1998.

[Knu98b] Donald E. Knuth.The Art of Computer Programming, vol. 3, Sorting and
Searching. 3rd ed. Addison-Wesley, 1998.

[KR78] Brian W. Kernighan and Dennis Ritchie.The C Programming Language.
Prentice-Hall, 1978.

[KR96] Samuel N. Kamin and Edward M. Reingold.Programming with class: A
C++ Introduction to Computer Science. McGraw-Hill, 1996.

[Mac92] Norman Macrae.John von Neumann. Pantheon Books, 1992.

June 7, 1999 10:10 owltex Sheet number 36 Page number 825magentablack

825

[McC79] Pamela McCorduck.Machines Who Think. W.H. Freeman and Company,
1979.

[McC93] Steve McConnell.Code Complete. Microsoft Press, 1993.

[MGRS91] Albert R. Meyer, John V. Gutag, Ronald L. Rivest, and Peter Szolovits, eds.
Research Directions in Computer Science: An MIT Perspective. MIT Press,
1991.

[Neu95] Peter G. Neumann.Computer Related Risks. Addison-Wesley, 1995.

[Pat96] Richard E. Pattis.Get A-Life: Advice for the Beginning Object-Oriented
Programmer. Turing TarPit Press, 2000.

[Per87] Alan Perlis. The synthesis of algorithmic systems. InACM Turing Award
Lectures: The First Twenty Years. ACM Press, 1987.

[PL90] Przemyslaw Prusinkiewicz and Aristid Lindenmayer.TheAlgorithmic Beauty
of Plants. Springer-Verlag, 1990.

[RDC93] Edward M. Reingold, Nachum Dershowitz, and Stewart M. Clamen. ”Calen-
drical Calculations, II: Three Historical Calendars.”Software-Practice and
Experience, 23, (April 1993), pp. 383–404.

[Rie96] Arthur Riel.Object-Oriented Design Heuristics. Addison-Wesley, 1996.

[Rob95] Eric S. Roberts. “Loop Exits and Structured Programming: Reopening the
Debate.” InPapers of the Twenty-Sixth SIGCSE Technical Symposium on
Computer Science Education, ACM Press, March 1995. SIGCSE Bulletin V.
27 N 1, pp. 268–272.

[Rob95] Eric S. Roberts.The Art and Science of C. Addison-Wesley, 1995.

[Sla87] Robert Slater.Portraits in Silicon. MIT Press, 1987.

[Str87] Bjarne Stroustrup.The C++ Programming Language. Addison-Wesley,
1987.

[Str94] Bjarne Stroustrup.The Design and Evolution of C++. Addison-Wesley, 1994.

[Str97] Bjarne Stroustrup.The C++ Programming Language. 3rd. ed. Addison-
Wesley, 1997.

[Mey92] Scott Meyers.Effective C++. Addison-Wesley, 1992.

[Mey96] Scott Meyers.More Effective C++. Addison-Wesley, 1996.

[Wei94] Mark Allen Weiss.Data Structures andAlgorithmAnalysis in C++. Benjamin
Cummings, 1994.

[Wil56] M.V. Wilkes. Automatic Digital Computers. John Wiley & Sons, Inc., 1956.

June 7, 1999 10:10 owltex Sheet number 37 Page number 826magentablack

826

[Wil87] Maurice V. Wilkes. Computers then and now. InACM Turing Award Lectures:
The First Twenty Years, ACM Press, 1987, pp. 197–205.

[Wil95] Maurice V. Wilkes.Computing Perspectives. Morgan Kaufmann, 1995.

[Wir87] Niklaus Wirth. From Programming Language Design to Compiler Construc-
tion. In ACM Turing Award Lectures: The First Twenty Years. ACM Press,
1987.

June 7, 1999 10:10 owltex Sheet number 22 Page number 3magentablack

1Computer Science and
Programming

The computer is no better than its program.
Elting Elmore Morison

Men, Machines and Modern Times

Science and technology, and the various forms of art, all unite humanity in a single and
interconnected system.

Zhores Medvedev The Medvedev Papers

I want to reach that state of condensation of sensations which constitutes a picture.
Henri Matisse

Notes d’un Peintre

In this chapter we introduce you to computer science. Ideally, we would begin with a
simple definition that could be expanded and refined throughout the book. Unfortunately,
computer science, like other disciplines, has no simple definition. For example, we might
say that biology is the study of life. But that doesn’t explain much about the content
of such subdisciplines as animal behavior, immunology, or genetics—all of which are
part of biology. Nor does it explain much about the contributions that these disciplines
make to biology in general. Similarly, is English the study of grammar and spelling, the
reading of Shakespeare’s plays, or the writing of poems and stories? In many cases it
is easier to consider the subfields within an area of study than it is to define the area of
study. So it is with computer science.

1.1 What Is Computer Science?
In some respects, computer science is a new discipline; it has grown and evolved along
with the growth of computing technology and the cheaper, faster, and more accessible
processing power of modern-day computers. As recently as 1970, many colleges and
universities did not even have departments of computer science. But computer science
has benefited from work done in such older disciplines as mathematics, psychology,
electrical engineering, physics, and linguistics. Computer science inherits characteristics
from all these fields in ways that we’ll touch on in this book, but the thread that links
these and the many subdisciplines of computer science is computer programming.

Some people prefer the term used in many European languages,informatics, over
what is calledcomputer sciencein the United States. Computer science is more the
study of managing and processing information than it is the study of computers. Com-
puter science is more than programming, but programming is at the core of information
processing and computer science.

3

June 7, 1999 10:10 owltex Sheet number 23 Page number 4magentablack

4 Chapter 1 Computer Science and Programming

This book will guide you through the study of the design, building, and analysis of
computer programs. Although you won’t become an expert by working through this
book, you will lay a foundation on which expertise can be built. Wherever possible,
the programming examples will solve problems that are difficult to solve without a
computer: a program might find the smallest of 10,000 numbers, rather than the smallest
of 2 numbers. Longer examples are taken from various core areas of computer science.
As this is a book about the design and analysis of computer programs, it must be used
in conjunction with a computer. Reading alone cannot convey the same understanding
that using, reading, and writing programs can.

1.1.1 TheTapestry of Computer Science

This chapter introduces computer science using a tapestry metaphor. A tapestry has
much in common with computer science. A tapestry has many intricate scenes that
form a whole. Similarly, computer science is a broad discipline with many intricate
subdisciplines. In studying a tapestry, we can step back and view the work as a whole,
move closer to concentrate on some particularly alluring or colorful region, and even
study the quality of the fabric itself. We’ll similarly explore computer science—studying
some things in detail, but stepping back to view the whole when appropriate. We’ll
view programs as tapestries too. You’ll study programs written by others, add to these
programs to make them more useful, and write your own programs. You’ll see that
creating and developing programs is not only useful but is immensely satisfying, and
often entertaining as well.

Several unifying threads run through a tapestry, and the various scenes and sections
originate from and build on these threads. Likewise in computer science, we find basic
themes and concepts on which the field is built and that we use to write programs and
solve problems. In this chapter we introduce the themes of computer science, which are
like the scenes in a tapestry, and the concepts, which are like the unifying threads.

Contextureis a word meaning both “an arrangement of interconnected parts” and
“the act of weaving (assembling) parts into a whole.” It can apply to tapestries and to
computer programming. This book uses a contextural approach in which programming
is the vehicle for learning about computer science. Although it is possible to study
computer science without programming, it would be like studying food and cooking
without eating, which would be neither as enjoyable nor as satisfying.

Computer science isnot just programming. Too often this is the impression left after
an initial exposure to the field. I want you to learn something of what a well-read and
well-rounded computer scientist knows. You should have an understanding of what has
been done, what might be done, and what cannot be done by programming a computer.
After a brief preview of what is ahead, we’ll get to it.

June 7, 1999 10:10 owltex Sheet number 24 Page number 5magentablack

1.2 Algorithms 5

Alan Turing (1913–1954)

Alan Turing was one of the founders of computer science, studying it before there
were computers! To honor his work, the highest achievement in the field of com-
puter science—and the equivalent in stature to a Nobel prize—is the Turing award,

given by the Association for Computing Ma-
chinery (the ACM).

In 1937, Turing published the paperOn
Computable Numbers, with an Application
to the Entscheidungsproblem. In this paper
he invented an abstract machine, now known
as aTuring Machine,that is (theoretically)
capable of doing any calculation that today’s
supercomputers can. He used this abstract
machine to show that there are certain prob-
lems in mathematics whose proofs cannot
be found. This also shows that there are
certain problems that cannot be solved with
any computer. In particular, a program can-
not be written that will determine whether

an arbitrary program will eventually stop. This is called thehalting problem.
During World War II, Turing was instrumental in breaking a German coding

machine called theEnigma. He was also very involved with the design of the first
computers in England and the United States. During this time, Turing practiced
one of his loves—long-distance running. A newspaper account said of his second-
place finish (by 1 foot) in a 3-mile race in a time of 15:51: “Antithesis of the popular
notion of a scientist is tall, modest, 34-year-old bachelor Alan M. Turing.…Turing
is the club’s star distance runner…[and] is also credited with the original idea for
the Automatic Computing Engine, popularly known as the Electronic Brain.”

Turing was also fond of playing “running-chess,” in which each player alter-
nated moves with a run around Turing’s garden. Turing was gay and, unfortunately,
the 1940s and 50s were not a welcome time for homosexuals. He was found guilty
of committing “acts of gross indecency” in 1952 and sentenced to a regimen of
hormones as a “cure.” More than a year after finishing this “therapy,” and with no
notice, Turing committed suicide in 1954.

For a full account of Turing’s life see[Hod83].

1.2 Algorithms

To develop an initial understanding of the themes and concepts that make up the computer
science tapestry, we’ll work through an example. Consider two similar tasks of arranging
objects into some predetermined order:

June 7, 1999 10:10 owltex Sheet number 25 Page number 6magentablack

6 Chapter 1 Computer Science and Programming

Arranging Cards

Arrange cards into four groups by suit: spades, hearts, clubs, diamonds

Sort each group. To sort a group:

For each rank (2, 3, 4, …, 10, J, Q, K, A) put the 2 first, followed
by the 3, the 4, …, followed by the 10, J, Q, K, A (if any rank is
missing, skip it)

Figure 1.1 Arranging cards in order.

1. A hand of cards (arrange by rank and suit)

2. 100,000 exams (arrange by six-digit student ID number)

Card players often do the first task because it makes playing much simpler than if
the cards in their hands are arranged in a random order. The second task is part of
the administration of the Advanced Placement exams given each year to high school
students. Many people are hired to sort the exam booklets by student ID number before
the scores are entered into a computer. In both cases people are doing the arranging. The
differences in the scale of the tasks and the techniques used to solve them will illuminate
the study of computer science and problem solving.

1.2.1 Arranging 13 Cards

A hand of cards might look like this:
10

10

5

5

Q

Q

7

7

9

9

A

A

8

8

3

3

7

7

K

K

8

8

Q

Q

J

J

Most people arrange cards in order by suits (spades, hearts, diamonds, and clubs), and
within suit by rank (2, …, 10, J, Q, K, A) with little thought. In fact, many people perform
a slightly different sequence of steps in arranging different hands of cards, modifying
their basic technique depending on the order in which the cards are dealt. However,
if you are asked to describe the process of arranging a hand of cards to someone who
has never seen cards before, the task becomes difficult. The careful description of such
processes is one of the fundamental parts of computer science. The descriptions are
calledalgorithms and are the focus of much study in computer science and in this book.

The algorithm for sorting cards shown in Figure 1.1 is both correct and concise, two
traits to strive for in writing algorithms. The instructions to sort a group are applicable to
all groups, not just to the spades or to the diamonds. Instructions that apply in more than
one situation are much more versatile than instructions that apply in a single situation.

Algorithms are often compared to recipes used in cooking: they are step-by-step
plans used in some process (arranging cards or baking bread) to arrive at some end (a

June 7, 1999 10:10 owltex Sheet number 26 Page number 7magentablack

1.2 Algorithms 7

sorted hand of cards or a loaf of bread). Although this analogy is apt, cooking often
allows for a larger margin of error than do algorithms that are to be implemented on a
computer. Phrases like “beat until smooth,” “sauté until tender,” and “season to taste”
are interpreted differently by cooks. A more appropriate analogy may be seen with
the instructions that are used to knit a sweater or make a shirt. In such tasks, precise
instructions are given and patterns must be followed or else a sweater with a front larger
than the back or a shirt with mismatched buttons and buttonholes may result.

You can easily determine that the hand below is sorted correctly, in part because
there are so few cards in a hand and because grouping cards by suit makes it easier to see
if the cards are sorted. Verifying that the algorithm is correct in general is much more
difficult than verifying that one hand of cards is sorted.

10

10

5

5

Q

Q

7

7

9

9

A

A

8

8

3

3

7

7

K

K

8

8

Q

Q

J

J

For example, suppose that an algorithm correctly sorts 1,000 hands of cards. Does
this guarantee that the algorithm will sort all hands? No, it’s possible that the next hand
might not be sorted even though the first 1,000 hands were. This points out an important
difference between verifying an algorithm and testing an algorithm. Averifiedalgorithm
has been proved to work in all situations. Atestedalgorithm has been rigorously tried
with many examples to establish confidence that it works in all situations.

1.2.2 Arranging 100,000 exams

Arranging 100,000 exams by ID number is a much more cumbersome task than arranging
13 cards. Imagine being confronted with 100,000 exams to sort. Where would you
begin? This task is more time-consuming and more prone to error than arranging cards.
Although you probably don’t need a precise description of the card-arranging algorithm
to sort cards correctly, you’ll need to think carefully about developing an algorithm to sort
100,000 exams using 40 people as assistants. Utilizing these “computational assistants”
requires communication and organization beyond what is needed to arrange 13 cards in
one person’s hand. A sample of 32 student ID numbers is shown here:

672029 662497 118183 452603 637238 249262 617834 396939
483595 613046 361999 231519 695368 689831 346006 539184
712077 816735 540778 975985 950610 846581 931662 625487
278827 821759 131232 952606 547825 385646 880295 816645

These represent a small fraction of the number of exam booklets that must be arranged.
Consider the algorithmic description in Figure 1.2. If this algorithm is implemented
correctly, it will result in 32 numbers arranged from smallest to largest. If we had a
computer to assist with the task, this might be an acceptable algorithm. (We’ll see later
that there are more efficient methods for use on a computer but that this is a method that
works and is simple to understand.) We might be tempted to use it with 32 exams, but
with 100,000 exams it would be extremely time-consuming and would make inefficient
use of the resources at our disposal since using 40 people to find the smallest exam
number is a literal waste of time.

June 7, 1999 10:10 owltex Sheet number 27 Page number 8magentablack

8 Chapter 1 Computer Science and Programming

Sorting Exams

Repeat the following until all 32 numbers (exams) have been arranged

scan the list of numbers (exams) looking for the smallest exam

move the smallest number (exam) to another pile of exams that are maintained and
arranged from smallest to largest

Figure 1.2 Arranging exams in order.

1.3 Computer ScienceThemes and Concepts
The previous sorting example provides a context for the broad set of themes and concepts
that comprise computer science.

1.3.1 Theory, Language,Architecture

Three areas mentioned in [Ble90] as forming the core of computer science serve nicely as
the essential themes, linking the various scenes of the computer science tapestry together.
These themes are shown in Figure 1.3. Although we can develop algorithms for both
sorting tasks, it would be useful to know if there are better algorithms or if there is a
“best” algorithm in the sense that it can be proven to be the most efficient. Determining
whether an algorithm is “better” than another may not be relevant for arranging cards
because a nonoptimal algorithm will probably still work quickly. However, a “good”
algorithm is very relevant when arranging 100,000 exams. Developing algorithms and
evaluating them is the part of computer science known astheory.

Language

Architecture

Theory

Figure 1.3 Essential computer science themes.

June 7, 1999 10:10 owltex Sheet number 28 Page number 9magentablack

1.3 Computer Science Themes and Concepts 9

Efficiency
and

complexity

Conceptual
and formal

models

Levels
of
abstraction

Figure 1.4 Recurring concepts

If the algorithms are to be implemented on a computer or used by people (who are in
some sense “computational engines”), there must be alanguagein which the algorithms
are expressed. We have noted that cooking recipes, while similar to algorithms, often
leave room for ambiguity. Although English (or other natural languages) may at some
point become a viable language in which to “instruct” computers, specialized computer
languages are needed now. Many programming languages exist, and often the choice
of language has a large impact on how well a program is written and on how fast it
is developed. Languages are necessary to implement algorithms on specific kinds of
computers.

Although both these arranging tasks are similar, an algorithm for one may be inap-
propriate for the other. Viewing a person as a computational resource (or processor), we
see that the card-arranging task is done using one processor while the exam-arranging
task is done using several processors. Just as some people can sort cards more quickly
than others, some computer processors are faster and work differently than other proces-
sors. The termarchitecture is used to describe how a computer is put together just as it
is used to describe how a building is put together. One active research area in computer
science involves developing algorithms and architectures for multiprocessor computing
systems.

1.3.2 Abstractions, Models, and Complexity

In this section we continue our contextural approach, whereby we weave the essential
themes into the fabric that is computer science and the scenes that make up its tapestry. In
addition to the themes of theory, language, and architecture, we’ll often refer to several
of the recurring concepts presented in [(ed91]. These form part of the foundation on
which computer science is built; they are shown in Figure 1.4.

Both sorting tasks involve arranging things, yet the complexity of the second task
makes it imperative that an efficient algorithm be used if the goal is to be achieved within a
reasonable time frame. Bothefficiencyandcomplexityare parts of the computer science

June 7, 1999 10:10 owltex Sheet number 29 Page number 10magentablack

10 Chapter 1 Computer Science and Programming

tapestry we are studying. In programming and computer science, these terms concern
how difficult a problem is and the computational resources, such as time and memory,
that a problem requires.

We have avoided many of the details inherent in these examples that might be of
concern as rough ideas evolve into detailed algorithms. If 40 people are sorting exams
we might be concerned, for example, with how many are left-handed. This might
affect the arrangement of the exams as they are physically moved about during the
sorting process. Some playing cards are embellished with beautiful designs; it might
be necessary to explain to someone who has never played cards that these designs are
irrelevant in the arrangement process. In general these levels of detail are examples of
levels of abstraction(Figure 1.4). In one sense this entire chapter mirrors the fact that
we are viewing the computer science tapestry at a very high level of abstraction, with
few details. Each subsequent chapter of this book involves a study of some aspect of the
tapestry at a level of greater detail.

Finally, both these tasks involve numbers. We all have an idea of what a number is,
although the concept of number may be different to a mathematician and to an accountant.
In computer science conceptual ideas must often be formalized to be well understood.
For example, telling someone who is playing hide-and-go-seek to start counting from
1 and to stop when they reach the “last number” is an interesting way to teach the
concept of infinity. The finite memory of computers, however, imposes a limit on the
largest number that can be represented. This difference betweenconceptual and formal
modelsis a concept that will recur and that completes the three concepts in Figure 1.4,
forming common threads of the computer science tapestry.

1.1 TheNew Hacker’s Dictionarydefinesbogo-sortas described here.Pause to Reflect

Bogo-sort: Repeatedly throw a hand of cards in the air, picking them up
at random, and stopping the process when examining the hand reveals the
cards are in order.

Using this “algorithm,” what is the minimum number of “throws” that yields a
sorted hand? What is the danger of using this algorithm?

1.2 In the algorithm for sorting cards, nothing is stated about forming a hand from
each of the separate suits. Does something need to be stated? Is too much left
as “understood by the player” so that someone unfamiliar with cards couldn’t use
the algorithm?

1.3 Write a concise description of the method or algorithm you use to sort a hand of
cards.

1.4 Suppose that the 32 student ID numbers listed in the text are sorted. Is it a simple
matter to verify that the numbers are in the correct order? Consider the same
question for 100,000 numbers.

June 7, 1999 10:10 owltex Sheet number 30 Page number 11magentablack

1.3 Computer Science Themes and Concepts 11

Charles Antony (Tony)Richard Hoare (b. 1934)

Perhaps best known for his invention of the sorting algorithm he modestly named
Quicksort, Hoare has made profound contributions to many branches of computer

science, especially in programming and pro-
gramming languages. Hoare received the
ACM Turing award in 1980. In his award ad-
dress he had this to say about learning from
failure: “I have learned more from my fail-
ures than can ever be revealed in the cold
print of a scientific article and now I would
like you to learn from them, too.

Besides, failures are much more fun to
hear about afterwards; they are not so funny
at the time.” In a collection of essays [Hoa89],
Hoare describes the programmer of the cur-
rent era as part apprentice and part wizard;
he urges that computer science education
should focus on both theoretical foundations
and practical applications. In his last essay
of that collection he states “I salute the brav-
ery of those who accept the challenge of be-

ing the first to try out new ideas; and I also respect the caution of those who prefer
to stick with ideas which they know and understand and trust.”

I think Hoare may not like C++; it is too big, too full of features, and it doesn’t
have a formal foundation. However, according to his web page, he set himself
the following task for his 1993–1994 sabbatical year: to become acquainted with
Visual BasicTM. Of course as other goals for that year he listed:

To complete a work on unification of theories of programming and to start
new work on a range of scientific theories of computational phenomena.

In describing computer science as, in part, an engineering discipline, Hoare
states:

…the major factor in the wider propagation of professional methods is
education, an education which conveys a broad and deep understanding of
theoretical principles as well as their practical application, an education
such as can be offered by our universities and polytechnics.

For more information, see [Hoa89].

June 7, 1999 10:10 owltex Sheet number 31 Page number 12magentablack

12 Chapter 1 Computer Science and Programming

1.4 Language,Architecture, and Programs
Language is necessary for expressing algorithms. For computers, a precise programming
language is necessary. In this section we briefly touch on the process by which an
algorithm is transformed from an idea into a working computer program. This process
is the same regardless of the kind of computer being used.

The final computer program differs from machine to machine in the same manner
that the same idea is expressed differently in German than it is in English. Consider the
German wordGeländesprungdefined:

Geländesprung: a jump made in skiing from a crouching position with the use
of both poles.

An idea whose expression requires many English words can be expressed in a single
German word. Different computers can offer the same economy of expression; what
one computer might do in a single instruction can require several instructions (and a
corresponding increase in time to execute the instructions) on another computer. For
example, so-calledsupercomputerscan add 100 numbers with a single instruction. On
ordinary computers, one instruction can add only two numbers.

1.4.1 High- and Low-level Languages

High thoughts must have high language.
Aristophanes

Frogs

How do computers work? We don’t need to know this to use computers just as we don’t
need to know how internal combustion engines work to drive a car. A little knowledge,
however, can help to demystify what a computer is doing when it executes a program. A
computer can be viewed from many levels, from the transistors that make up its circuits
to the programs that are used to design the circuits.

At the lowest level, computers respond to electric signals at an extremely fast rate.
Computers react to whether electricity is flowing or not; the computer merely responds
to switches that are in one of two states: on or off. This method of using two states
involves what is termed thebinary number system,or thebase 2 system.This system
is based on counting using only the digits 0 and 1. The base 10 system, with which you
are most familiar, uses the digits 0 through 9.

There are hundreds of different kinds of computers. You may have used Apple
Macintosh computers, which are built using a computer chip called thePower-PC, or
another kind of computer based on the IntelPentiumchip. Pictures of these different
chips are shown at the end of the chapter in Figure 1.9 and 1.11. These chips are the
foundation on which a computer is built. The chip determines how fast the computer
runs and what kinds of software can be used with the computer. Since computers are
constructed from different components and have different underlying architectures, they
may respond differently to the same sequence of zeros and ones. Just aschat means
“to converse informally” in English and means “a small domesticated feline (cat)” in

June 7, 1999 10:10 owltex Sheet number 32 Page number 13magentablack

1.4 Language,Architecture, and Programs 13

French, so might00010100111010instruct one computer to add two numbers and another
computer to print the letterq.

Rather than instruct computers at this level of zeros and ones, languages have been
developed that allow ideas to be expressed at a higher level—in a way more easily
understood by people. In addition to being more easily understood, these high-level
languages can be translated into particular sequences of zeros and ones for particular
computers. Just as translators can translate English into both Japanese and Swahili, so can
translating computer programs translate a high-level language into a low-level language
for a particular computer. The concept of higher level programming languages was a
breakthrough. The first computers were “programmed” literally by flipping switches by
hand or physically rewiring the computer to create different on/off states corresponding
to a program. The use of higher level languages made programming easier (although it is
still an intellectually challenging task) and helped to make computer use more prevalent.

The computer language used in this book is called C++.1 This language has its roots
in the C programming language, which was developed in the 1970s. The language C
is a high-level language2 that allows low-level concepts to be expressed more readily
than some other high-level languages. For example, in C it is easy to write a program to
change a single bit (a 0 or a 1) in the computer’s memory. This is hard, if not impossible,
to do in other high-level languages, such as Pascal.

We’re not studying C++ because it permits one bit to be changed. We’re studying
C++ because with it several programming styles are possible. In particular, it can be
used with a style of programming calledobject-oriented programming, often abbreviated
as OOP. We will use OOP throughout this book, but it will be an aid to our study of
programming and computer science rather than the principal focus. We’ll explore OOP
briefly at the end of this chapter.

The intricacies of C++ are such that mastering the entire language, as well as the
concepts of object-oriented programming, is a task too daunting and difficult for begin-
ning programmers. In this book we present a significant subset of C++ and use it to write
programs that permit the study of essential areas of computer science. At the same time
the power of C++ is exploited where possible to allow you to create more complicated
programs than would be feasible using other languages. Don’t be disheartened that you
won’t learn absolutely all of C++ in this book—you’ll be building a foundation on which
subsequent study can add. The few parts of the language that aren’t covered are mostly
“short-cuts” that can be replaced using features of the language that are in the book.

A Concrete Example. To illustrate the difference between high- and low-level languages,
we’ll study how a C++ program is translated into a low-level language. The low-level
language of 0’s and 1’s that a computer understands is calledmachine language. Be-
cause different computers have different machine languages, a program is needed to
translate the high-level C++ language into machine language. Acompiler is a program
that does this translation. Often the compiling process involves an intermediate step
wherein the code is translated intoassembly language.

1This is pronounced as “see plus plus.”
2Although some computer scientists might take exception to this statement, C is clearly a much higher-
level language than machine or assembly language.

June 7, 1999 10:10 owltex Sheet number 33 Page number 14magentablack

14 Chapter 1 Computer Science and Programming

main: main:
save %sp,-128,%sp pushl %ebp
mov 7,%o0 movl %esp,%ebp
st %o0,[%fp-20] subl $12,%esp
mov 12,%o0 movl $7,-4(%ebp)
st %o0,[%fp-24] movl $12,-8(%ebp)
ld [%fp-20],%o0 movl -4(%ebp),%eax
ld [%fp-24],%o1 imull -8(%ebp),%eax
call .umul,0 movl %eax,-12(%ebp)
nop xorl %eax,%eax
st %o0,[%fp-28] jmp .L1
mov 0,%i0 .align 4
b .LL1 xorl %eax,%eax
nop jmp .L1
mov 0,%i0 .align 4
b .LL1 .L1:
nop leave

.LL1: ret
ret
restore

Figure 1.5 Assembly code using g++ (Sparc on left, Pentium on right).

To keep the example simple, we’ll use a program that stores two numbers in memory,
then multiplies the numbers storing the product in a different memory location. The
program follows.

int main()
{

int x,y,z;
x = 7; y = 12;
z = x*y;
return 0;

}

We will not discuss the C++ instructions here; we use the program only to illustrate the
differences between high- and low-level languages.

The world is full of C++ compilers. Compilers exist for various kinds of computers,
sizes of programs, and amounts of money. The code in this book has been tested using
four different compilers. Some of these compilers cost hundreds of dollars, some are
less expensive, and one is free.

The assembly code generated by the same compiler running on two different ma-
chines is shown in Figure 1.5. The compiler used is g++ running on two different
machines: a Sun Sparcstation and a Pentium-based computer.3

There is one column of assembly code for each machine. Note that although the programs
are of roughly the same length, there are few similarities in the assembly instructions.

3The characteristics of these machines are not important, but the same compiler runs on both machines,
which facilitates a comparison.

June 7, 1999 10:10 owltex Sheet number 34 Page number 15magentablack

1.5 Creating and Developing Programs 15

Among the instructions areld, call, andnop for the Sun assembly andpushl, subl, and
xorl for the Pentium. The important point of Figure 1.5 is that you donot need to worry
about assembly code to write programs in C++ or in any other high-level language. It is
comforting to know that we can ignore most of the low-level details in writing programs
and studying computer science and, perhaps, enticing to know that the details are there
for those who are interested.

1.5 Creating and Developing Programs
How is a computer program created? Usually a problem arises whose solution requires
computation. An algorithm for the solution is developed into a running program in
several steps. The steps that lead to the program’s execution on a computer are also
important. We’ll look at developing a program for the problem of multiplying two
numbers as shown in Figure 1.6. The process of developing an idea into an algorithm
that is eventually realized as a working computer program is illustrated in Figure 1.7.

From Problem to Algorithm. Consider the steps labeled 1 and 2 in Figure 1.7. The
problem of multiplying two specific numbers (1285 and 57) has been generalized to the
problem of multiplying two arbitrary numbers (Y andZ). The two views of the problem,
one concrete and one general, represent two levels of abstraction. A solution to the
general problem will be useful for any two numbers, not just for 1285 and 57. If you
can develop a general solution that is useful in many situations, it is usually worth it.
Sometimes, however, a solution to a specific problem is needed and solving a general
version would take too long or be too difficult.

To write a program for solving this general problem, we must develop an algorithm
for multiplication. Consider multiplying rational numbers (fractions), integers, real
numbers, and complex numbers as illustrated in Figure 1.6.

You may not be familiar with each of these types of numbers, but each uses a different
method for multiplication. If we’re going to write a program to multiply, we’ll need to
determine whattype of number is being used. The general form ofX × Y can be used
to express multiplication regardless of which type of number is multiplied. One of the
advantages of C++ is that this conceptual similarity in notation is formalized in code:
the same symbol,* , can be used to multiply many types of numbers.

In addition to the type of number, considerations in the development of the algorithm
might include the size of the numbers being multiplied (an efficient algorithm would

(3 + 5i) * (2 - 7i)3.14 * 6.0231,285 * 573/4 * 8/9

ComplexRealIntegerRational

73,245 18.91222 41 - 11i2/3

Figure 1.6 Multiplying different types of numbers.

June 7, 1999 10:10 owltex Sheet number 35 Page number 16magentablack

16 Chapter 1 Computer Science and Programming

// pre: post:

7

8

int operator * (int x, int y)

1

2

5

010001100101001000011110010101

6

1,285 Y

call

mov 0xd, %o3

3

4

x Z

}

8

 x 57

{

73,245

mov 0xd,%o2

set L8,%o1

ld [%fp+-0x8],%o0

73,245

Figure 1.7 The steps of transition from problem to program.

be more important if the numbers were hundreds of digits long as opposed to three
digits long), how many times numbers will be multiplied, and whether the result of
multiplying the numbers can exceed the memory constraints of the computer. Although
it’s impossible for numbers to get “too big” conceptually, the inherent finiteness of a
computer’s memory requires that a formal model of computation take this into account.

From Algorithm to Program. In step 3 we translate the algorithm into the high-level
language C++. The nameoperator *has been given to the C++ instructions that perform

June 7, 1999 10:10 owltex Sheet number 36 Page number 17magentablack

1.5 Creating and Developing Programs 17

the multiplication. Translating the algorithm into code requires a knowledge of the
programming language’s syntax—the symbols and characters used in the language—as
well as the meaning, or semantics, of these characters.

Once the algorithm is represented in a high-level language, a program must be entered
into a computer. Step 4 consists of more than merely typing characters at a keyboard.
Often the realization of the algorithm as a computer program has errors that become
apparent as the program is tested. Testing can indicate that errors exist; removing the
errors is another problem. Errors are often euphemistically calledbugs.4 This makes
the process of removing errorsdebugging. Testing and debugging can uncover errors
in the original algorithm in addition to errors in the C++ representation of the algorithm.

As you become more experienced at programming you can employ techniques called
defensive programming: attempting to ensure that your programs are robust and error-
free as part of the design process rather than relying on testing and debugging exclusively.
Many computer scientists are currently developing methods that will permit programs to
be proved correct in the same manner that mathematical theorems are proved. Although
we will not use such formal methods in our study, we introduce some of the techniques.

From High-level Program to Low-level Program. In step 5, the high-level C++ program
is translated into a lower-level language calledassembly language. The name is derived
from the notion of assembling the individual low-level instructions available on a par-
ticular computer into a form understandable by people. Although some programming
is still done directly in assembly, the process of translation from high-level to low-level
has been refined enough that programming at this level is often unnecessary.

Step 6 shows the translation of assembly language tomachine language, the lan-
guage of zeros and ones that a particular computer understands. Specific assembly
language and machine language instructions differ according to the kind of computer
being used (as shown in Figure 1.5), as opposed to high-level languages like C++, which
are the same on various computers. The process of translation illustrated by steps 5 and
6 is accomplished by a computer program called acompiler and the process is called
compiling. A compiler translates code written in a high-level language into machine
language. This translation process often includes an intermediate step in which the code
is translated into assembly language.

Executing Machine Language. At the lowest level, the zeros and ones of machine lan-
guage code cause switches to be turned on and off in the computer. These switches are
extremely small and can be switched on and off quite rapidly. Technological advances
have enabled transistors, which function as switches, to become increasingly smaller
and faster. Switches are often represented by the diagrams in step 7.

The execution of a program is separate and different from the compilation of the
program. Compiling a C++ program yields a low-level program, whereas executing a

4The derivation of the wordbug is open to debate. Thomas Edison was reported to have discovered a
“bug” in his phonograph in 1889. A literal example is the moth trapped in one of the first computers,
the Harvard Mark II. The moth was placed into the system’s logbook with the annotation “First actual
case of bug being found” and is now on display in the Naval Museum in Dahlgren, Virginia.

June 7, 1999 10:10 owltex Sheet number 37 Page number 18magentablack

18 Chapter 1 Computer Science and Programming

machine language program results in the computer performing the tasks represented by
the compiled machine code.

Coming Full Circle: Displaying the Results. Most current computers, and certainly the
computers you will be using as you study computer science with this book, have a screen
to display what happens when a program is run. Whether the program is a word processor
or a C++ program for multiplying numbers, output is generally displayed on the screen.
Note that the screens on the computers in Figure 1.7 display the answer to the original
problem: 1285× 57 = 73,245.

1.6 Language and Program Design
One of the “eternal truths” of computer science and the computer industry is

Software is harder than hardware.

This statement means that new computers (hardware) are developed at a faster pace and
more easily than new programs (software). There is certainly some truth to this, although
new programming languages and new design methods have been developed in an attempt
to alleviate this disparity. Many people believe that object-oriented programming, or
OOP, will be of great assistance in making software easier to develop. OOP allows
pieces of code to be reused in other contexts more easily.

Rover

Figure 1.8 OOP: birdhouses and skyscrapers.

June 7, 1999 10:10 owltex Sheet number 38 Page number 19magentablack

1.6 Language and Program Design 19

To try to understand what OOP is about, I use an analogy (suggested in [McC93])
that comes from construction (see Figure 1.8). Suppose you decide to build a birdhouse;
you can probably nail some boards together in a couple of hours and provide a useful
dwelling for your favorite flyers. You may not put much thought into the design of
the house, although if you don’t you may waste some wood. (A carpenter’s adage is
“measure twice, cut once.”) Next suppose you’re designing a doghouse for your favorite
pet. You might take more care; you’re probably more concerned with whether Rover gets
wet than whether your neighborhood bluejay is inconvenienced by rain. You may buy
a kit—a precut set of materials and plans for constructing the doghouse. Nevertheless,
this is probably a day-long project,if you’re used to using saws and hammers.

What about building a house? If you’ve been involved with house building, you
know that it can take a long time, requiring contractors, plumbers, electricians, and
usually a lot of headaches. However, it is certainly possible to build a house yourself.
Most of the pieces of a house come prebuilt. For houses that don’t use prebuilt pieces
and instead require custom manufacturing, the price of construction can be very high.
Finally, consider building a skyscraper such as the Empire State Building. Such a building
requires careful planning and is much more complex than a typical family dwelling. Yet
hundreds of such tall buildings are designed and built each year.

Computer scientists disagree about what OOP is and whether it is appropriate for
use in an introductory course. By using a carefully chosen subset of C++, it is certainly
possible to develop a mastery of basic programming concepts as well as an understanding
and appreciation of OOP.

1.6.1 Off-the-Shelf Components

Using off-the-shelf components is one of the reasons that constructing large buildings
is possible. The phraseoff-the-shelfis used to mean a component that is manufactured
in large quantity and that can be used in a variety of situations. Nails are no longer
handcrafted by blacksmiths, and even houses can be purchased in a kit form. These
components are often inexpensive but serve as well (or better) than custom-built com-
ponents. The same is true of building computers. One of the reasons that computers get
less expensive every year is that the pieces that make up a computer get cheaper as more
are produced—this is sometimes calledeconomy of scale.Viewed differently, the key
is not to do all the work yourself but to use what others provide.

Of course, off-the-shelf components don’t always work. A roof of a birdhouse is
different from the roof of the house you live in even though both share some common
characteristics. It would be very useful to be able to order a standard roof, but then to
be able to customize it easily to fulfill your specific needs.

In this book you will be using others’ code in the writing of your own code, and you
will be reusing the code you write for yet other programs. Code reuse is increasingly
important, partly because of the graphical user interfaces (window systems) that are
popular on computers. These interfaces are time-consuming to program but are very
similar from program to program, so the potential for code reuse is great.

One of the goals of object-oriented programming is to provideobjects to make
code development easier. Objects are like off-the-shelf software components. You can

June 7, 1999 10:10 owltex Sheet number 39 Page number 20magentablack

20 Chapter 1 Computer Science and Programming

imagine that using such objects might be much simpler than designing them yourself.
Building a house from a kit is much simpler than designing the kit itself. The same
is true of programming and program design—it’s simpler to use software components
supplied by others than to write everything yourself. In this book, however, OOP will
be used in our study of programming and the examination of computer science rather
than becoming the principal focus of study.

1.6.2 Using Components

As an example of how software components might be useful, consider digital clocks,
the display on a CD player, a car’s odometer, and a counter for web-page hits. All of
these devices require the display of numerals that are manipulated in some fashion. The
numerals displayed are different according to how the device is used:

Clocks display time; the numerals represent hours, minutes, seconds.

CD players display information on how many tracks are available on a CD (some
also display time).

Web-page counters display information about how many times the page has been
accessed.

Odometers display mileage as recorded by a car’s wheels.

It should be possible for the computer programs controlling these displays to share
(reuse) the code that displays numerals, differing only in how it is determined which
numerals should be displayed and, perhaps, where the numerals are displayed.

Object-oriented programming involves reusable components. In C++ the wordclass
refers to a family of components sharing common characteristics. A class allowsop-
erations that are used to manipulate theobjects that are components of the class. For
example, the classfour-door sedandescribes many makes and models of car. A specific
four-door sedan, the one in my driveway, is an object of the generalized “four-door sedan
class.” All objects in this class share the common characteristic of having four doors and
being sedans. They share other characteristics too, such as having a steering wheel, an
engine, and four wheels. These characteristics are shared by all cars, not just four-door
sedans. Operations allowed by the classfour-door sedaninclude being driven, storing
luggage, and consuming fuel.

As another example, the display of a numeral might be a different class than the value
being displayed. A numeral display class might support operations such as assigning a
value to be displayed and actually “drawing” the numeral. Other classes, such as a clock
class or a timer class, could supply the values to be displayed.

1.7 Chapter Review

This chapter provides an introduction to the field of computer science and places pro-
gramming properly within the field. In subsequent chapters you’ll begin the process

June 7, 1999 10:10 owltex Sheet number 40 Page number 21magentablack

1.8 Exercises 21

of augmenting and constructing programs. The important concepts introduced in this
chapter are outlined here.

Computer science—is more than the study of computers. It includes many sub-
fields that are linked by the study of programming. Key parts of computer science
include theory, language, and architecture.

Algorithm—is a plan for solving a problem. It’s related to a set of instructions to
accomplish a task, such as knitting a sweater, but we’ll use it to refer to a plan for
accomplishing a task, such as sorting a hand of cards (and often a computer will
be involved).

Theory—refers to underlying mathematical principles on which computer science
is built. For example, being able to compare different algorithms to determine
which is most efficient relies on theoretical tools.

Architecture—refers to how a computer is designed and put together. Computers
have different architectures: some computers rely on using several processors at
one time rather than just one.

Language—refers to computer programming languages, which come in many
forms and flavors. Both high- and low-level languages are used in writing pro-
grams, but we’ll concentrate on the high-level language C++.

Efficiency and complexity—refer to how difficult a problem is to solve using a
computer and how various algorithms compare in solving problems (e.g., in how
fast they run).

Conceptual and formal models—refer to different ways of thinking. Programs
can be thought of as instructions for a computer, but a mathematical notion of
programming is possible too.

Levels of abstraction—refer to different ways of observing. An idea can be turned
into an algorithm, which is implemented as a C++ program, which is executed as
a machine-language program. The same idea is viewed at many different levels
and has particular characteristics depending on the level.

Compiler—is a computer program that translates a high-level language such as
C++ into a low-level language that can be executed on a computer.

Bug—is a mistake in a program. Finding such mistakes is called debugging.

Object-oriented programming—is a method of programming that, in a nutshell,
relies on the use of off-the-shelf software components.

Class—is a family of objects sharing common characteristics. The integers are a
class of numbers; four-door sedans are a class of cars.

1.8 Exercises
1.1 The process of looking up a word in a dictionary is difficult to describe in a precise

manner. Write an algorithm that can be used to find thepagein a dictionary on which
a given word occurs (if the word is in the dictionary). You may assume that each page
of the dictionary has guide words indicating the first and last words on the page, but

June 7, 1999 10:10 owltex Sheet number 41 Page number 22magentablack

22 Chapter 1 Computer Science and Programming

you should assume that there are no thumb indices on the pages (so you cannot turn
immediately to a specific letter section).

1.2 Suppose that you have 10 loads of laundry, one washer, and one dryer. Washing a load
takes 25 minutes, drying a load takes 25 minutes, and folding the clothes in a load takes
10 minutes, for a total of 1 hour per load (assuming that the time to transfer a load is
built into the timings given.) All the laundry can be done in 10 hours using the method
of completing one load before starting the next one. Devise a method for doing all 10
loads in less than 10 hours by making better use of the resources. Carefully describe
the method and how long it takes to do the laundry using the method.

1.3 Suppose that student ID numbers consist of two digits. The exams are sorted in a large
room. Consider the following description of a sorting algorithm:

Make 100 “in-boxes” labeled 00 to 99.
Divide the exams among the people participating in the sort.
Have each person put an exam in the correct box according to ID number.
Collect the exams from the boxes in order (00–99).

This method will work correctly. Try to modify the method to work with four-digit ID
numbers and six-digit ID numbers. In making the modification, assume you have only
100 boxes. (Hint: Consider examining only two digits at a time.)

1.4 The steps labeled 1–7 in Figure 1.7 illustrate the design, development, realization,
and implementation of a computer program to multiply two numbers. Consider the
following problem:

Develop a recipe for a chocolate cake with chocolate icing that tastes delicious
and makes you swoon.

Develop analogs or parallels to the steps 1–7 for developing such a recipe. Write a
detailed description of the process you might go through to develop a recipe—not what
the recipe is.

1.5 Assume that a young friend of yours knows how to multiply any two one-digit numbers
(i.e., knows the times tables). Write an explanation (algorithm) of how to multiply an
n-digit number by a one-digit number. Can you extend this algorithm into one that
can be used to multiply two many-digit numbers (such as 1285 and 57, as shown in
Figure 1.7)?

1.6 There are many different high-level programming languages. Common languages in-
clude Pascal, FORTRAN, Scheme, BASIC, and COBOL. Can you think of a reason for
why there are many languages as opposed to a single language? Why is more than one
language in use today?

1.7 (Suggested by a description inComputer Architecture,by Blaauw and Brooks.) Con-
sider clocks and watches as examples of different “architectures” used for telling time.
For clocks and watches that have hands and dials, write an outline of an algorithm that
can be used to tell time. How is the architecture of a wristwatch (with hands) similar to
that of a grandfather clock? How is it different? What features of the face of a watch
are essential for telling time? In particular, are numbers needed on the face of a watch
to tell time? Make a list of different watch faces and try to distill the essential features

June 7, 1999 10:10 owltex Sheet number 42 Page number 23magentablack

1.8 Exercises 23

of a watch face into a few descriptive sentences.
Consider the inner workings of watches: list at least three different methods used to
“run” a watch. How are different levels of abstraction illustrated by the concept of a
watch?
How is a digital watch different from a watch with hands? How is it similar?

1.8 C++ (and other high-level language) programs are written in a language that is a com-
promise between natural languages such as English and the language of zeros and ones,
which is “spoken” by computers. Consider musical compositions written for different
instruments or groups of musicians. Is music written in a high-level language or a low-
level language? Are there different languages for expressing musical compositions as
there are different natural languages and different computer languages? Why?

1.9 Suppose that you are playing in a large field with several friends and one of you discovers
that a house key has been lost. Write an algorithm for finding the key that is designed
to find it as quickly as possible. Write another algorithm designed to take a long time
to find the key. Can you reason about whether your algorithms are the best possible or
worst possible algorithms for this particular task?
How is this task related to how you look for a key when you have misplaced it inside
your house?

Figure 1.9 A Pentium chip.

June 7, 1999 10:10 owltex Sheet number 43 Page number 24magentablack

24 Chapter 1 Computer Science and Programming

1.10The program used to generate the assembler output in Figure 1.5 is used in Fig 1.10
on two different computers; the assembler code below on the right is generated on a
Macintosh G3 computer, the code on the left on a Pentium computer running Windows
NT. Both machines use the same compiler: Metrowerks Codewarrior. A Pentium chip
is shown in Figure 1.9 and a G3 chip is shown in Figure 1.11.
What is similar in these two versions of assembly language and what is different? Can
you find instructions that would be common to all the different assembly codes? Why
do you think different compilers generate different code for the same program?

_main ".main"(1)
push ebp
mov ebp,esp stw r31,-4(SP)
sub esp,16 stw r30,-8(SP)
mov dword ptr [ebp-12],7 li r31,7
mov dword ptr [ebp-8],12 li r30,12
mov edx,dword ptr [ebp-12] mullw r0,r31,r30
imul edx,dword ptr [ebp-8] stw r0,-16(SP)
mov dword ptr [ebp-4],edx li r3,0
mov eax,0 lwz r31,-4(SP)
leave lwz r30,-8(SP)
ret near blr

Figure 1.10 Windows NT code on the left, Macintosh G3 code on the right

Figure 1.11 A PowerPC chip.

June 7, 1999 10:10 owltex Sheet number 44 Page number 25magentablack

1.8 Exercises 25

1.11 The cards that were used in the context of sorting in this chapter (ace, king, queen, etc.)
provide a good example of an object. If a card is one object, and a hand and deck are
other objects composed of card objects, list a few operations that might be useful in
manipulating cards, hands, and decks.

1.12Vending machines are objects composed of several different objects. Pick a specific
kind of vending machine and list several objects that are used to “make up” the vending
machine (e.g., buttons used to specify items to be bought). For each object, and for the
vending machine as a whole, list several operations that might be useful in reasoning
about or manipulating the objects.
Are there some characteristics that all vending machines have in common? Are there
classes of vending machines, each of which differs fundamentally from other kinds of
vending machines?

June 7, 1999 10:10 owltex Sheet number 18 Page number 27magentablack

1
Foundations of

C++ Programming

27

June 7, 1999 10:10 owltex Sheet number 19 Page number 28magentablack

June 7, 1999 10:10 owltex Sheet number 20 Page number 29magentablack

2C++ Programs: Form and
Function

Scientists build to learn; engineers learn to build.
Fred Brooks

tem·plate (têm´plît) n. A pattern, …used as a guide in making something accurately …
The American Heritage Dictionary

Art is the imposing of a pattern on experience, and our aesthetic
enjoyment in recognition of the pattern.

Dialogues of Alfred North Whitehead (June 10, 1943)

It is a bad plan that admits of no modification.
Publius Syrus, Maxim 469

To learn to write programs, you must write programs and you must read programs.
Although this statement may not seem profound, it is a lesson that is often left unpracticed
and, subsequently, unmastered. In thinking about the concepts presented in this chapter,
and in practicing them in the context of writing C++ programs, you should keep the
following three things in mind.

1. Programming has elements of both art and science. Just as designing a build-
ing requires both a sense of aesthetics and a knowledge of structural engineering,
designing a program requires an understanding of programming aesthetics, knowl-
edge of computer science, and practice in software engineering.

2. Use the programs provided as templates when designing and constructing programs
of your own—use what’s provided along with your own ingenuity. When some
concept is unclear, stop to work on it and think about it before continuing. This
work will involve experimenting with the programs provided. Experimenting with
a program means reading, executing, testing, and modifying the program. When
you experiment with a program, you can try to find its weak points and its strengths.

3. Practice.

This book is predicated on the belief that you learn best by doing new things and by
studying things similar to the new things. This technique applies to learning carpentry,
learning to play a musical instrument, or learning to program a computer. Not everyone
can win a Grammy award and not everyone can win the Turing award,1 but becoming
adept programmers and practitioners of computer science is well within your grasp.

1The former is awarded for musical excellence, the latter for excellence in computer science.

29

June 7, 1999 10:10 owltex Sheet number 21 Page number 30magentablack

30 Chapter 2 C++ Programs: Form and Function

Ultimately programs are a means of expressing algorithms in a form that computers
execute. Before studying complicated and large programs, it’s necessary to begin with
the basics of what a program is, how programs are executed, and what C++ programs can
do. However, understanding a programcompletelyrequires a great deal of experience
and knowledge about C++. We’ll use some simple programs to illustrate basic concepts.
Try to focus on the big picture of programming; don’t get bogged down by every detail.
The details will eventually become clearer, and you’ll master them by studying many
programming examples.

2.1 Simple C++ Programs

In this section we introduce simple C++ programs to demonstrate how to use the C++
language. These programs produceoutput; they cause characters to be displayed on
a computer screen. The first C++ program ishello.cpp,Program 2.1. This program is
based on the first program in the book [KR78], written by the inventors of C; and it is
the first program in [Str97], written by the inventor of C++. It doesn’t convey the power
of C++, but it’s a tradition for C and C++ programmers to begin with this program.

All programs have names, in this casehello, and suffixes, in this case.cpp. In this
book all programs have the suffix.cpp, which is one convention (other suffixes used
include.ccand.cxx). If this program is compiled and executed, it generates the material
shown in the box labeled “output.”

Program 2.1 hello.cpp

#include <iostream>

using namespace std;

//traditional first program

// author: Owen Astrachan, 2/27/99

int main()

{

cout << "Hello world" << endl;

return 0;

} hello.cpp

O U T P U T

prompt> hello
Hello world

June 7, 1999 10:10 owltex Sheet number 22 Page number 31magentablack

2.1 Simple C++ Programs 31

Program 2.2,hello2.cpp,produces output identical to that of Program 2.1. We’ll
look at why one of these versions might be preferable as we examine the structure of
C++ programs. In general, given a specific programming task there are many, many
different programs that will perform the task.

Program 2.2 hello2.cpp

#include <iostream>

using namespace std;

// traditional first program with user defined function

// author: Owen Astrachan, 02/27/99

void Hello()

{

cout << "Hello world" << endl;

}

int main()

{

Hello();

return 0;

} hello2.cpp

2.1.1 Syntax and Semantics

Programs are run by computers, not by humans. There is often much less room for error
when writing programs than when writing English. In particular, you’ll need to be aware
of certain rules that govern the use of C++. These rules fall into two broad categories:
rules of syntax and rules of semantics.

What are syntax and semantics? In English and other natural languages, syntax is
the manner in which words are used to construct sentences and semantics is the meaning
of the sentences. We’ll see that similar definitions apply to syntax and semantics in
C++ programs. Before reviewing rules for C++ programs, we’ll look at some rules that
govern the use and construction of English words and sentences:

Rules of spelling:
i beforee except afterc or when sounding likea as in. . . neighborandweigh.

Rules of grammar:
“with noneuse the singular verb when the word means ‘no one’. . . a plural verb
is commonly used whennonesuggests more than one thing or person—‘None are
so fallible as those who are sure they’re right’ ” [JW89].

Rules of style:
“Avoid the use of qualifiers.Rather, very, little, pretty—these are the leeches that
infest the pond of prose, sucking the blood of words” [JW89].

June 7, 1999 10:10 owltex Sheet number 23 Page number 32magentablack

32 Chapter 2 C++ Programs: Form and Function

Similar rules exist in C++. One difference between English and C++ is that the
meaning, orsemantics,of a poorly constructed English sentence can be understood
although the syntax is incorrect:

Its inconceivable that someone can study a language and not know whether or
not a kind of sentence—the ungainly ones, the misspelled ones, those that are
unclear—are capable of understanding.

This sentence has at least four errors in spelling, grammar, and style; its meaning,
however, is still discernible.

In general, programming languages demand more precision than do natural languages
such as English. A missing semicolon might make an English sentence fall into the run-
on category. A missing semicolon in a C++ program can stop the program from working
at all.

Dennis Ritchie (b. 1941)

Dennis Ritchie developed the C programming language and codeveloped the UNIX
operating system. For his work with UNIX, he shared the 1983 Turing award

with the codeveloper, Ken Thompson. In
his Turing address, Ritchie writes of what
computer science is.

Computer science research is different
from these [physics, chemistry, mathemat-
ics] more traditional disciplines. Philo-
sophically it differs from the physical sci-
ences because it seeks not to discover, ex-
plain, or exploit the natural world, but in-
stead to study the properties of machines
of human creation. In this it is analogous
to mathematics, and indeed the “science”
part of computer science is, for the most
part, mathematical in spirit. But an in-
evitable aspect of computer science is the

creation of computer programs: objects that, though intangible, are subject to
commercial exchange.

Ritchie completed his doctoral dissertation in applied mathematics but didn’t
earn his doctorate because “I was so bored, I never turned it in.” In citing the work
that led to the Turing award, the selection committee mentions this:

The success of the UNIX system stems from its tasteful selection of a few key
ideas and their elegant implementation. The model of the UNIX system has
led a generation of software designers to new ways of thinking about
programming.

For more information see [Sla87, ACM87].

June 7, 1999 10:10 owltex Sheet number 24 Page number 33magentablack

2.1 Simple C++ Programs 33

<return type>
function name (parameter list)
{

 ...

}

int main()
{

 ...

}

#include <iostream>

// author: Owen Astrachan, 02/22/99
// traditional first program

#include statement(s)

 C++ statement 0;
 C++ statement 1;

 C++ statement (n-1) ;

 C++ statement (n-1);

 C++ statement 1;
 C++ statement 0;

using namespace std;

void Hello()

 cout << "Hello World" << endl;

{

}

int main()
{
 Hello();

}

 return 0;

2

3

4

1

Figure 2.1 Format of a C++ program.

We’ll illustrate the important syntactic details of a C++ program by studyinghello.cpp
andhello2.cpp,Progs. 2.1 and 2.2. We’ll then extend these into a typical and general
program framework. Four rules for C++ program syntax and style will also be listed.
A useful tool for checking the syntax of programs is the C++ compiler, which indicates
whether a program has the correct form—that is, whether the program statements are
“worded correctly.” You shouldnot worry about memorizing the syntactic details of
C++ (e.g., where semicolons go). The details of the small subset of C++ covered in this
chapter will become second nature as you read and write programs.

All the C++ programs we’ll study in this book have the format shown in Figure 2.1
and explained below. Although this format will be used, the spacing of each line in a
program does not affect whether a program works. The amount ofwhite spaceand the
blank lines between functions help make programs easier for humans to read but do not
affect how a program works.White spacerefers to the space, tab, and return keys.

1. Programs begin with the appropriate#include statements.2 Each include state-
ment provides access, via aheader file to a library of useful functions. We
normally think of a library as a place from which we can borrow books. A pro-
gramming library consists of off-the-shelf programming tools that programmers
can borrow. These tools are used by programmers to make the task of writing
programs easier.
In most C++ programs it is necessary to import information from such libraries
into the program. In particular, information for output (and input) is stored in
the iostream library, accessible by including the header file<iostream> , as
shown in Figure 2.1. If a program has no output (or input), it isn’t necessary to
include<iostream> .

2The# sign is read as either “sharp” or “pound”; I usually say “pound-include” when reading to myself
or talking with others.

June 7, 1999 10:10 owltex Sheet number 25 Page number 34magentablack

34 Chapter 2 C++ Programs: Form and Function

All programs that use standard C++ libraries should haveusing namespace
std; after the#include statements. Namespaces3 are explained in Sec-
tion A.2.3 of Howto A.

2. All programs should include comments describing the purpose of the program.
As programs get more complex, the comments become more intricate. For the
simple programs studied in this chapter, the comments are brief. The compiler
ignores comments; programmers put comments in programs for human readers.
C++ comments extend from a double slash,// , to the end of the line. Another
style of commenting permits multiline comments—any text between/* and*/
is treated as a comment. It’s important to remember that people read programs, so
writing comments should be considered mandatory although programs will work
without them.

3. Zero, one, or moreprogrammer-defined functions follow the#include state-
ments and comments. Program 2.2,hello2.cpp,has two programmer-defined func-
tions, namedHello andmain . Program 2.1,hello.cpp,has one programmer-
defined function, namedmain . In general, a function is a way of grouping C++
statements together so that they can be referred to by a single name. The function
is an abstraction used in place of the statements. As shown in Figure 2.1, each
programmer-defined function consists of the function’sreturn type, the function’s
name, the function’sparameter list, and the statements that make up the func-
tion’s body. For the functionHello the return type isvoid , the name of the
function isHello , and there is an empty parameter list. There is only one C++
statement inHello .
The return type of the functionmain is int . In C++, anint represents an
integer; we’ll discuss this in detail later. The name of the function ismain and it
too has an empty parameter list. There are two statements in the function body;
the second statement isreturn 0 . We’ll also discuss the return statement in
some detail later. The last statement in the functionmain of each program you
write should bereturn 0 .

4. Every C++ program must have exactly one function namedmain. The statements
in main are executed first when a program is run. Some C++ compilers will
generate a warning if the statementreturn 0 is not included as the last statement
in main (such statements are explained in the next chapter). It’s important to spell
main with lowercase letters. A function namedMain is different frommain
because names are case-sensitive in C++. Finally, the return type ofmain should
be specified asint for reasons we’ll explore in Chapter 4.4

Since program execution begins withmain , it is a good idea to start reading a
program beginning withmain when you are trying to understand what the program
does and how it works.

3Compilers that support the C++ standard requireusing namespace std; but older compilers
don’t support namespaces. Howto A explains this in more detail.
4Some books use a return type ofvoid for main . According to the C++ standard, this is not legal; the
return typemustbe int .

June 7, 1999 10:10 owltex Sheet number 26 Page number 35magentablack

2.2 How a Program Works 35

2.1 Find four errors in the ungainly sentence given above (and reproduced below)Pause to Reflect

whose semantics (meaning) is understandable despite the errors.

Its inconceivable that someone can study a language and not know whether
or not a kind of sentence—the ungainly ones, the misspelled ones, those that
are unclear—are capable of understanding.

Are humans better “processors” than computers because of the ability to compre-
hend “faulty” phrases? Explain your answer.

2.2 Find two syntax errors and one semantic error in the sentence “There is three
things wrong with this sentence.”

2.3 Given the four rules for C++ programs, what is the smallest legal C++ program?
(Hint: it doesn’t produce any output, so it doesn’t need a#include statement.)

2.4 No rules are given about using separate lines for C++ functions and statements.
If main from Program 2.2 is changed as follows, is the program legal C++?

int main () { Hello(); return 0;}

2.2 How a Program Works
Computer programs execute sequences of statements often producing some form of
output. Statements are executed whether the program is written in a high- or low-
level language. Determining what statements to include in a program is part of the art
and science of programming. Developing algorithms and classes, and the relationship
between classes, is also part of this art and science.

When you execute a program, either by typing the name of the program at a prompt
or using a mouse to click on “run” in a menu, the execution starts in the functionmain .
When the program is running it uses the processor of the computer; when the program is
finished it returns control of the processor to the operating system. The explicitreturn
0 statement inmain makes it clear that control is returning to the operating system.

The output of Program 2.1,hello.cpp,results from the execution of the statement
beginningcout << followed by other characters, followed by other symbols. This
statement is in the body of the functionmain . The characters between the double
quotation marks appear on the screen exactly as they appear between the quotes in the
statement. (Notice that the quotes do not appear on the screen.) If the statement

cout << "Hello world" << endl;

is changed to

cout << "Goodbye cruel planet" << endl;

then execution of the programhello.cppresults in the output that follows:

June 7, 1999 10:10 owltex Sheet number 27 Page number 36magentablack

36 Chapter 2 C++ Programs: Form and Function

O U T P U T

Goodbye cruel planet

2.2.1 Flow of Control

In every C++ program, execution begins with the first statement in the functionmain .
After this statement is executed, each statement inmain is executed in turn. When
the last statement has been executed, the program is done. Several uses of<< can
be combined into a single statement as shown inhello.cpp,Program 2.1. Note that
endl indicates that an end-of-line is to be output (hence “end ell”). For example, if the
statement

cout << "Hello world" << endl;

is changed to

cout << "Goodbye" << endl << "cruel planet" << endl;

then execution of the programhello.cppresults in the output shown below, where the
first endl forces a new line of output.

O U T P U T

Goodbye
cruel planet

This modified output could be generated by using two separate output statements:

cout << "Goodbye" << endl;
cout << "cruel planet" << endl;

Since each statement is executed one after the other, the output generated will be the
same as that shown above.

In C++, statements are terminated by a semicolon. This means that a single statement
can extend over several lines since the semicolon is used to determine when the statement
ends.

cout << "Goodbye" << endl
<< "cruel planet" << endl;

Just as run-on sentences in English can obscure the meaning, long statements in C++ can
be hard to read. However, the output statement above that uses two lines isn’t really too
long; some programmers prefer it to the two statement version since it is easy to read.

June 7, 1999 10:10 owltex Sheet number 28 Page number 37magentablack

2.3 What Can Be Output? 37

Function Calls. If a statement invokes, orcalls, a function—such as when the statement
Hello(); in main invokes the functionHello in Program 2.2—then each of the
statements in the called function is executed. For example, while the statements in the
functionHello are executing, the statements inmain are suspended, waiting for the
statements inHello to finish. When all the statements in a function have executed,
control returns to the statement after the call to the function. In Program 2.2 this is the
statementreturn 0 after the function callHello() . When the last statement in a
program has executed, control returns frommain to the computer just as control returns
from Hello to main when the last statement inHello is executed. If thereturn
0 statement inmain is missing, control will still return to the computer.

In the case of Program 2.2, three statements are executed:

1. The callHello(); in the functionmain .

2. The statementcout << "Hello World" << endl; in Hello .

3. The statementreturn 0; in main .

The execution of the second statement above results in the appearance of 11 “visible”
characters on the computer’s screen (note that a space is a character just as the letterH
is a character).

Output Streams. To display output, thestandard output stream cout is used. This
stream is accessible in a program via the included library<iostream> . If this header
file is not included, a program cannot make reference to the streamcout . You can
think of an output stream as a stream of objects in the same way that a brook or a river
is a stream of water. Placing objects on the output stream causes them to appear on
the screen eventually just as placing a toy boat on a stream of water causes it to flow
downstream. Objects are placed on the output stream using<<, theinsertion operator,
so named since it is used to insert values onto an output stream. Sometimes this operator
is read as “put-to.” The wordcout is pronounced “see-out.”

2.3 What Can Be Output?
Computers were originally developed to be number crunchers, machines used for solving
large systems of equations. Not surprisingly, numbers still play a large part in program-
ming and computer science. The output streamcout can be used for the output of
numbers and words. In Program 2.1 characters appeared on the screen as a result of
executing a statement that uses the standard output streamcout . Sequences of char-
acters appearing between quotes are calledstring literals. Characters include letters
a–z (and uppercase versions), numbers, symbols such as !+$%&*, and many other non-
visible “characters,” such as the backspace key, the return key, and in general any key
that can be typed from a computer keyboard. String literals cannot change during a
program’s execution. The number 3.14159 is anumeric literal (it approximates the
numberπ). In addition to string literals, it is possible to output numeric literals and
arithmetic expressions.

June 7, 1999 10:10 owltex Sheet number 29 Page number 38magentablack

38 Chapter 2 C++ Programs: Form and Function

For example, if the statement

cout << "Hello world" << endl;

is changed to

cout << "Goodbye" << endl << "cruel planet #" < < 1 + 2 << endl;

then execution of the programhello.cppresults in the output shown below.

O U T P U T

Goodbye
cruel planet #3

The arithmetic expression 1+ 2 is evaluated and 3, the result of the evaluation, is
placed on the output stream. To be more precise, each of the chunks that follow a<<
are evaluated and cause the output stream to be modified in some way. The string literal
"Goodbye" evaluates to itself and is placed on the output stream as seven characters.
The arithmetic expression 1+2 evaluates to 3, and the character 3 is placed on the output
stream. Eachendl begins a new line on the output stream.5

The C++ compiler ensures that arithmetic expressions are evaluated correctly and,
with the help of the stream library, ensures that the appropriate characters are placed on
the output stream.

Changing the output statement inhello.cppto the statement here:

cout << "The radius of planet #" << 1+2
<< " is " << 6378.38 << " km," << endl
<< "which is " << 6378.38 * 0.62137 << " miles" << endl;

results in the output shown below. The symbol* is used to multiply two values, and the
number 0.62137 is the number of miles in 1 kilometer.

O U T P U T

The radius of planet #3 is 6378.38 km
which is 3963.33 miles.

The capability of the output stream to handle strings, numbers, and other objects we will
encounter later makes it very versatile.

5An endl also flushes the output buffer. Some programmers think it is bad programming to flush the
output buffer just to begin a new line of output. The escape sequence\n can be used to start a new line.

June 7, 1999 10:10 owltex Sheet number 30 Page number 39magentablack

2.3 What Can Be Output? 39

2.5 Suppose that the body of the functionHello is as shown here:Pause to Reflect

cout << "P I = " << 3.14159 << endl;

What appears on the screen? Would the output of

cout << "PI = 3.14159" << endl;

be the same or different?

2.6 We’ve noted that more than one statement may appear in a function body:

void Hello()
{

cout << "P I = " << 3.14159 << endl;
cout << "e = " << 2.71828 << endl;
cout << "PI* e = " << 3.14159 * 2.71828 << endl;

}

What appears on the screen if the functionHello above is executed?

2.7 If the thirdcout << statement in the previous problem is changed to

cout << "PI*e = 3.14159 * 2.71828" << endl;

what appears on the screen? Note that this statement puts a single string literal
onto the output stream (followed by anendl). Why is this output different from
the output in the previous question?

2.8 What does the computer display when the statement

cout << " 1 + 2 = 5" << endl;

is executed? Can a computer generate output that is incorrect?

2.9 What modifications need to be made to the output statement in Program 2.1 (the
hello.cppprogram) to generate the following output:

I think I think, therefore I think I am

June 7, 1999 10:10 owltex Sheet number 31 Page number 40 magentablack

40 Chapter 2 C++ Programs: Form and Function

2.10 All statements in C++ are terminated by a semicolon. Is the programmer-defined
function

void Hello()
{

cout << "Hello World" << endl;
}

a statement? Why? Is the function callHello() in main a statement?

2.11 If the body of the functionmain of Program 2.2 is changed as shown in the
following, what appears on the screen?

cout << "I rode the scrambler at the amusement park"
<< endl; Hello();

2.4 Using Functions
The flow of control inhello.cpp,Program 2.1, is different fromhello2.cpp,Program 2.2.
The use of the functionHello in hello2.cppdoesn’t make the program better or more
powerful; it just increases the number of statements that are executed: a function call as
well as an output statement. In this section we’ll explore programs that use functions in
more powerful ways. I saypowerfulin that the resulting programs are easier to modify
and are useful in more applications than when functions are not used. Using functions
can make programs longer and appear to be more complicated, but sometimes more
complicated programs are preferred because they are more general and are easier to
modify and maintain. Using functions to group statements together is part of managing
the complex task of programming.

We’ll now investigate Program 2.3 (drawhead.cpp) in which severalcout << state-
ments are used in the programmer-defined functionHead. In drawhead.cppthe body of
the main function consists of a call of the programmer-defined functionHead and the
statementreturn 0 .

For the moment we will assume that all programmer-defined functions are con-
structed similarly to the manner in which the functionmain is constructed except that
the wordvoid is used before each function. This is precisely how the syntactic proper-
ties of functions were given in Section 2.1.1. The wordvoid will be replaced with other
words in later examples of programmer-defined functions; for example, we’ve seen that
int is used with the functionmain .

Program 2.3 drawhead.cpp

#include <iostream>
using namespace std;

// print a head, use of functions

June 7, 1999 10:10 owltex Sheet number 32 Page number 41 magentablack

2.4 Using Functions 41

void Head()
{

cout << " |||||||||||||||| " << endl;
cout << " | | " << endl;
cout << " | o o | " << endl;
cout << " _| |_ " << endl;
cout << "|_ _|" << endl;
cout << " | |______| | " << endl;
cout << " | | " << endl;

}

int main()
{

Head();
return 0;

} drawhead.cpp

O U T P U T

prompt> drawhead
||||||||||||||||
| |
| o o |

| |
|_ _|

| |______| |
| |

At this point the usefulness of functions may not be apparent in the programs we’ve
presented. In the programparts.cppthat appears as Program 2.4, many functions are
used. If this program is run, the output is the same as the output generated when
drawhead.cpp,Program 2.3, is run.

Program 2.4 parts.cpp

#include <iostream>
using namespace std;

// procedures used to print different heads

void PartedHair()
// prints a "parted hair" scalp
{

cout << " |||||||///////// " << endl;

June 7, 1999 10:10 owltex Sheet number 33 Page number 42magentablack

42 Chapter 2 C++ Programs: Form and Function

}

void Hair()
// prints a "straight-up" or "frightened" scalp
{

cout << " |||||||||||||||| " << endl;
}

void Sides()
// prints sides of a head – other functions should use distance
// between sides of head here as guide in creating head parts (e.g., eyes)
{

cout << " | | " << endl;
}

void Eyes()
// prints eyes of a head (corresponding to distance in Sides)
{

cout << " | o o | " << endl;
}

void Ears()
// prints ears (corresponding to distance in Sides)
{

cout << " _| |_ " << endl;
cout << "|_ _|" << endl;

}

void Smile()
// prints smile (corresponding to distance in Sides)
{

cout << " | |______| | " << endl;
}

int main()
{

Hair();
Sides();
Eyes();
Ears();
Smile();
Sides();
return 0;

} parts.cpp

The usefulness of functions should become more apparent when the body ofmain
is modified to generate new “heads.” This program is longer than the previous programs
and may be harder for you to understand. You should begin reading the program starting
with the functionmain . Starting withmain you can then move to reading the functions
called frommain , and the functions that these functions call, and so on. If each call of
the functionSides in the body ofmain is replaced with two calls toSides , then the
new body ofmain and the output generated by the body are as shown here (as shown,
Sides is called to add space between the eyes and the ears.)

June 7, 1999 10:10 owltex Sheet number 34 Page number 43magentablack

2.4 Using Functions 43

int main()
{

Hair();
Sides(); Sides();
Eyes();
Sides();
Ears();
Smile();
Sides(); Sides();
return 0;

}

O U T P U T

||||||||||||||||
| |
| |
| o o |

| |
|_ _|

| |______| |
| |
| |

Although parts.cpp,Program 2.4, is more complicated thandrawhead.cpp, Pro-
gram 2.3, it is easier to modify. Creating heads with different hairstyles or adding a nose
is easier whenparts.cppis used, because it is clear where the changes should be made
because of the names of the functions. It’s also possible not only to have more than one
hairstyle appear in the same program, but to change what is displayed. For example,
adding a nose can be done using a functionNose:

void Nose()
// draw a mustached nose
{

cout << " | O | " << endl;
cout << " | ||||| | " << endl;

}

On the other hand, the original program clearly showed what the printed head looks like;
it’s not necessary to run the program to see this. As you gain experience as a programmer,
your judgment as to when to use functions will get better.

June 7, 1999 10:10 owltex Sheet number 35 Page number 44magentablack

44 Chapter 2 C++ Programs: Form and Function

2.12 If you replace the call to the functionHair by a call to the functionPartedHair ,Pause to Reflect

what kind of picture is output? How can one of the hair functions be modified to
generate a flat head with no hair on it? What picture results if the callHair() is
replaced bySmile() ?

2.13 Design a new function namedBald that gives the drawn head the appearance of
baldness (perhaps a few tufts of hair on the side are appropriate).

2.14 Modify the functionSmile so that the face either frowns or shows no emotion.
Change the name of the function appropriately.

2.15 What functions should be changed to produce the head shown below? Modify the
program to draw such a head.

|||||||/////////
| |
| ___ ___ |
|---|o|--|o|---|
| --- --- |

| |
| _ _|

| |______| |
| |

2.5 Functions with Parameters
Program 2.4,parts.cpp,showed that the use of programmer-defined functions enabled
the program to be more versatile than the programdrawhead.cpp.Nevertheless, the
program had to be re-edited and recompiled to produce new “heads.” In this section and
the next chapter, you will learn design methods that allow programs to be useful in more
contexts.

2.5.1 What Is a Parameter?

In all the programs studied so far, the insertion operator<< has been more useful than
any programmer-defined function. The insertion operator is versatile because it can be
used to writeany messageto the screen. Any sequence of characters between quotes
(recall that such a sequence is termed a string literal) and any arithmetic expression can
be inserted onto an output stream using the<< operator.

cout << "Hello world" << endl;

cout << "Goodbye cruel planet" << endl;

cout << " |||||||///////// " << endl;

cout << "The square of 10 is " << 10*10 << endl;

June 7, 1999 10:10 owltex Sheet number 36 Page number 45magentablack

2.5 Functions with Parameters 45

The<< operator can be used to output various things just as the addition operator+ can
be used to add them. It’s possible to write programmer-defined functions that have this
same kind of versatility. You’ve probably used a calculator with a square root button:√

. When you find the square root of a number using this button, you’re invoking the
square root function with anargument. In the mathematical expression

√
101, the 101

is the argument of the square root function. Functions that take arguments are called
parameterized functions. The parameters serve as a means of controlling what the
functions do—setting a different parameter results in a different outcome just as

√
101

has a different value than
√

157. The wordsparameterandargumentare synonyms in
this context.

To see how parameters are useful in making functions more general, consider an
(admittedly somewhat loose) analogy to a CD player. It is conceivable that one might
put a CD of Gershwin’sRhapsody in Bluein such a machine and then glue the machine
shut. From that point on, the machine becomes a “Gershwin player” rather than a CD
player. One can also purchase a “weather box,” which is a radio permanently tuned to
a weather information service. Although interesting for determining whether to carry
an umbrella, the weather box is less general-purpose than a normal (tunable) radio in
the same way that the Gershwin player is less versatile than a normal CD player. In the
same sense, the<< operator is more versatile than theHead function in Program 2.3,
which always draws the same head.

Functions with parameters are more versatile than functions without parameters
although there are times when both kinds of function are useful. Functions that receive
parameters must receive the correct kind of parameter or they will not execute properly
(often such functions will not compile). Continuing with the CD analogy, suppose that
you turn on a CD player with no CD in it. Obviously nothing will be played. Similarly,
if it were possible to put a cassette tape into a CD player without damaging the player,
the CD player would not be able to play the cassette. Finally, if a 2.5-inch mini-CD is
forced into a normal CD player, still nothing is played. The point of this example is that
the “parameterized” CD player must be used properly—the appropriate “parameter” (a
CD, not a cassette or mini-CD) must be used if the player is to function as intended.

2.5.2 An Example of Parameterization: Happy Birthday

Suppose you are faced with the unenviable task of writing a program that displays the
song “Happy Birthday” to a set of quintuplets named Grace, Alan, John, Ada, and
Blaise.6 In designing the program, we employ a concept callediterative enhancement,
whereby a rough draft of the program is repeatedly refined until the desired program is
finished.

A naive, first attempt with this problem might consist of 24cout << statements; that
is, 5 “verses”× 4 lines per verse+ 4 blank lines (note that there is one blank line between
each verse so that there is one less blank line than there are verses). Such a program
would yield the desired output—but even without much programming experience this
solution should be unappealing to you. Indeed, the effort required to generate a new

6Coincidentally, these are the first names of five pioneers in computer science: Grace Hopper, Alan
Turing, John von Neumann, Ada Lovelace, and Blaise Pascal.

June 7, 1999 10:10 owltex Sheet number 37 Page number 46 magentablack

46 Chapter 2 C++ Programs: Form and Function

verse in such a program is the same as the effort required to generate a verse in the
original program. Nevertheless, such a program has at least one important merit: it is
easy to make work. Even though “cut-and-paste” techniques are available in most text
editors, it is very likely that you will introduce typos using this approach.

We want to develop a program that mirrors the way people sing “Happy Birthday.”
You don’t think of a special songBirthdayLaurato sing to a friend Laura andBirthday-
Davefor a friend Dave. You use one song and fill in (with a parameter!) the name of
the person who has the birthday.

O U T P U T

Happy birthday to you
Happy birthday to you
Happy birthday dear
Happy birthday to you

Happy birthday to you
Happy birthday to you
Happy birthday dear
Happy birthday to you

Happy birthday to you
Happy birthday to you
Happy birthday dear
Happy birthday to you

Happy birthday to you
Happy birthday to you
Happy birthday dear
Happy birthday to you

Happy birthday to you
Happy birthday to you
Happy birthday dear
Happy birthday to you

Program 2.5 bday.cpp

#include <iostream>
using namespace std;

// first attempt at birthday singing

June 7, 1999 10:10 owltex Sheet number 38 Page number 47 magentablack

2.5 Functions with Parameters 47

void Sing()
{

cout << "Happy birthday to you" << endl;
cout << "Happy birthday to you" << endl;
cout << "Happy birthday dear " << endl;
cout << "Happy birthday to you" << endl;
cout << endl;

}

int main()
{

Sing(); Sing(); Sing(); Sing(); Sing();
return 0;

} bday.cpp

We need to print five copies of the song. We will design a function namedSing
whose purpose is to generate the birthday song for each of the quintuplets. Initially we
will leave the name of the quintuplet out of the function so that five songs are printed,
but no names appear in the songs. Once this program works, we’ll use parameters to add
a name to each song. This technique of writing a preliminary version, then modifying
it to lead to a better version, is one that is employed throughout the book. It is the heart
of the concept of iterative enhancement.

The first pass at a solution isbday.cpp,Program 2.5. Execution of this program
yields a sequence of printed verses close to the desired output, but the name of each
person whose birthday is being celebrated is missing. One possibility is to use five
different functions (SingGrace , SingAlan , etc.), one function for each verse, but
this isn’t really any better than just using 24cout statements. We need to parameterize
the functionSing so that it is versatile enough to provide a song for each quintuplet.
This is done in Program 2.6, which generates exactly the output required. Note that the
statement

cout << "Happy birthday dear " << endl;

from Program 2.5 has been replaced with

cout << "Happy birthday dear " << person << endl;

Program 2.6 bday2.cpp

#include <iostream>
using namespace std;

#include <string>

// working birthday program

void Sing(string person)
{

cout << "Happy birthday to you" << endl;
cout << "Happy birthday to you" << endl;

June 7, 1999 10:10 owltex Sheet number 39 Page number 48magentablack

48 Chapter 2 C++ Programs: Form and Function

cout << "Happy birthday dear " << person << endl;
cout << "Happy birthday to you" << endl;
cout << endl;

}

int main()
{

Sing("Grace");
Sing("Alan");
Sing("John");
Sing("Ada");
Sing("Blaise");
return 0;

} bday2.cpp

This statement can be spread over several lines without affecting its behavior.

cout << "Happy birthday dear "
<< person
<< endl;

Because only oneendl is used in the output statement, only one line of output is written.

2.5.3 Passing Parameters

When the function callSing("Grace") in main is executed, the string literal"Grace"
is the argumentpassedto thestring parameterperson.This is diagrammed by the
solid arrow in Figure 2.2. When the statement

cout << "Happy birthday dear " << person << endl"

inSing is executed, the parameterperson is replaced by its value, as indicated by
the dashed arrow in Figure 2.2. In this case the value is the string literal"Grace" .
Sinceperson is not between quotes, it is not a string literal. As shown in Figure 2.2,
the parameterperson is represented by a box. When the functionSing is called, the
value that is passed to the parameter is stored in this box. Then each statement in the
function is executed sequentially. After the last statement,cout << endl , executes,
control returns from the functionSing to the statement that follows the function call
Sing("Grace") . This means that the statementSing("Alan") is executed next.
This call passes the argument"Alan" , which is stored in the box associated with the
parameterperson .

If you review the format of a C++ function given in Figure 2.1, you’ll see that each
function has a parameter list. In a parameter list, each parameter must include the name
of the parameter and thetype of the parameter. In the definition ofSing the parameter
is given the nameperson. The parameter has the typestring . Recall that a string
is any sequence of characters and that string literals occur between double quotes. All
parameters must have an indication as to their structure—that is, what type of thing the
parameter is. A parameter’s type determines what kinds of things can be done with the
parameter in a C++ program.

June 7, 1999 10:10 owltex Sheet number 40 Page number 49magentablack

2.5 Functions with Parameters 49

{

 cout << "Happy birthday to you" << endl;

 cout << "Happy birthday to you" << endl;

 cout << endl;

}

int main()

{

 Sing("Grace");

 Sing("Alan");

 ...

}

 cout << "Happy birthday to you" << endl;

 cout << "Happy birthday dear " << person << endl;

"Grace"

void Sing(string person)

Figure 2.2 Parameter passing.

The typestring is not a built-in type in standard C++ but is made accessible by
using the appropriate#include directive:

#include<string>

at the top of the program. Some older compilers do not support the standard string type.
Information is given in howto C abouttstring , an implementation of strings that can
be used with older compilers. Include directives are necessary to provide information to
the compiler about different types, objects, and classes used in a program, such as output
streams and strings. Standard include files found in all C++ programming environments
are indicated using angle brackets, as in#include <iostream> . Include files that
are supplied by the user rather than by the system are indicated using double quotes, as
in #include "tstring.h" .7

There is a vocabulary associated with all programming languages. Mastering this
vocabulary is part of mastering programming and computer science. To be precise about
explanations involving parameterized functions, I will use the wordparameter to refer
to usage within a function and in the function header (e.g.,person). I will use the
word argument to refer to what is passed to the function (e.g.,“Grace” in the call
Sing("Grace") .) Another method for differentiating between these two is to call
the argument anactual parameterand to use the termformal parameter to refer to the

7The C++ standard uses header files that do not have a .h suffix, such as, iostream rather than iostream.h.
We use the .h suffix for header files associated with code supplied with this book.

June 7, 1999 10:10 owltex Sheet number 41 Page number 50magentablack

50 Chapter 2 C++ Programs: Form and Function

parameter in the function header. Here we use the adjectiveformal because the form (or
type — as instring) of the parameter is given in the function header.

We must distinguish between the occurrence ofpersonin the statementcout << ...
and the occurrence of the string literal"Happy birthday dear " . Sinceperson
does not appear in quotes, the value of the parameterpersonis printed. If the statement
cout << "person" was used rather thancout << person , the use of quotes
would cause the string literalpersonto appear on the screen.

Happy birthday to you
Happy birthday to you
Happy birthday dear person
Happy birthday to you

The use of the parameter’s name causes the value of the parameter to appear on the
screen. The value of the parameter is different for each call of the functionSing. The
parameter is avariable capable of representing values in different contexts just as the
variablex can represent different values in the equationy = 5 · x + 3.

2.16 In the following sequence of program statements, is the string literal"Me" anPause to Reflect

argument or a parameter? Is it an actual parameter?

cout << " A Verse for My Ego" << endl;
Sing("Me");

2.17 What happens with your compiler if the statementSing("Grace") is changed
to Sing(Grace) ? Why?

2.18 What modifications should be made to Program 2.6 to generate a song for a person
namedBjarne?

2.19 What modifications should be made to Program 2.6 so that each song emphasizes
the personalized line by ending it with three exclamation points?

Happy birthday dear Bjarne !!!

2.20 What happens if the name of the formal parameterpersonis changed tocelebrant
in the functionSing ? Does it need to be changed everywhere it appears?

2.21 What call of functionSing would generate a verse with the line shown here?

Happy birthday dear Mr. President

2.22 What is the purpose of the final statementcout << endl; in functionSing
in the birthday programs?

2.23 What is a minimal change to the Happy Birthday program that will cause each
verse (about one person) to be printed three times before the next verse is printed
three times (rather than once each) for a total of 15 verses? What is a minimal
change that will cause all five verses (for all five people) to be printed, then all five
printed again, and then all five printed again for a different ordering of 15 verses?

June 7, 1999 10:10 owltex Sheet number 42 Page number 51magentablack

2.6 Functions with Several Parameters 51

2.24 It is possible to write the Happy Birthday program so that the body of the function
Sing consists of a single statement. What is that statement? Can you make one
statement as readable as several?

Ada Lovelace (1816–1853)

Ada Lovelace, daughter of the poet Lord Byron, had a significant impact in publi-
cizing the work of Charles Babbage. Babbage’s designs for two computers, the Dif-

ference Engine and the An-
alytical Engine,came more
than a century before the first
electronic computers were
built but anticipated many
of the features of modern
computers.

Lovelace was tutored by
the British mathematician Au-
gustus De Morgan. She is
characterized as“an attrac-
tive and charming flirt, an
accomplished musician, and
a passionate believer in phys-
ical exercise. She combined
these last two interests by
practicing her violin as she
marched around the family
billiard table for exercise.”
[McC79] Lovelace translated
an account of Babbage’s work
into English. Her transla-
tion, and the accompanying

notes, are credited with making Babbage’s work accessible. Of Babbage’s com-
puter she wrote, “It would weave algebraic patterns the way the Jacquard loom
weaved patterns in textiles.”

Lovelace was instrumental in popularizing Babbage’s work, but she was not one
of the first programmers as is sometimes said. The programming language Ada is
named for Ada Lovelace. For more information see [McC79, Gol93, Asp90].

2.6 Functions with Several Parameters
In this section we will investigate functions with more than one parameter. As a simple
example, we’ll use the children’s songOld MacDonald,partially reproduced below. We

June 7, 1999 10:10 owltex Sheet number 43 Page number 52 magentablack

52 Chapter 2 C++ Programs: Form and Function

would like to write a C++ program to generate this output.

O U T P U T

Old MacDonald had a farm, Ee-igh, Ee-igh, oh!
And on his farm he had a cow, Ee-igh, Ee-igh, oh!
With a moo moo here
And a moo moo there
Here a moo, there a moo, everywhere a moo moo
Old MacDonald had a farm, Ee-igh, Ee-igh, oh!

Old MacDonald had a farm, Ee-igh, Ee-igh, oh!
And on his farm he had a pig, Ee-igh, Ee-igh, oh!
With a oink oink here
And a oink oink there
Here a oink, there a oink, everywhere a oink oink
Old MacDonald had a farm, Ee-igh, Ee-igh, oh!

As always, we will strive to design a general program, useful in writing about, for
example, ducks quacking, hens clucking, or horses neighing. In designing the program
we first look for similarities and differences in the verses to determine what parts of the
verses should be parameterized. We’ll ignore for now the ungrammatical construct ofa
oink. The only differences in the two verses are the name of the animal, cow and pig,
and the noise the animal makes, moo and oink, respectively. Accordingly, we design
two functions: one to “sing” about an animal and another to “sing” about the animal’s
sounds, in Program 2.7,oldmac1.cpp.

This program produces the desired output but is cumbersome in many respects. To
generate a new verse (e.g., about a quacking duck) we must write a new function and
call it. In contrast, in the happy-birthday-generating program (Program 2.6), a new verse
could be constructed by a new call rather than by writing a new function and calling it.
Also notice that the flow of control in Program 2.7 is more complex than in Program 2.6.
We’ll look carefully at what happens when the function callPig() in main is executed.

Program 2.7 oldmac1.cpp

#include <iostream>
#include <string>
using namespace std;

// working version of old macdonald, single parameter procedures

void EiEio()
{

cout << "Ee-igh, Ee-igh, oh!" << endl;

June 7, 1999 10:10 owltex Sheet number 44 Page number 53magentablack

2.6 Functions with Several Parameters 53

}

void Refrain()
{

cout << "Old MacDonald had a farm, ";
EiEio();

}

void HadA(string animal)
{

cout << "And on his farm he ha d a " << animal << ", ";
EiEio();

}

void WithA(string noise)
// the principal part of a verse
{

cout << "Wit h a " << noise < < " " << noise << " here" << endl;
cout << "An d a " << noise < < " " << noise << " there" << endl;

cout << "Her e a " << noise << ", "
<< "ther e a " << noise << ", "
<< " everywher e a " << noise < < " " << noise << endl;

}

void Pig()
{

Refrain();
HadA("pig");
WithA("oink");
Refrain();

}

void Cow()
{

Refrain();
HadA("cow");
WithA("moo");
Refrain();

}

int main()
{

Cow();
cout << endl;
Pig();
return 0;

} oldmac1.cpp

There are four statements in the body of the functionPig . The first statement,
the function callRefrain() , results in two lines being printed (note thatRefrain
calls the functionEiEiO). WhenRefrain finishes executing, control returns to the
statement following the function callRefrain() ; this is the second statement inPig ,
the function callHadA("pig") . The argument"pig" is passed to the (formal)

June 7, 1999 10:10 owltex Sheet number 45 Page number 54magentablack

54 Chapter 2 C++ Programs: Form and Function

{

 cout << "and on his farm he had a " << animal << ", ";

 EiEiO();

}

{

 ...

}

void Pig()

{

 Refrain();

 HadA("pig");

 WithA("oink");

 Refrain();

}

"pig"

"oink"

 cout << "With a " << noise << " " << noise << " here" << endl;

void WithA(string noise)

void HadA(string animal)

Figure 2.3 Passing arguments in Old MacDonald.

parameteranimal and then statements in the functionHadA are executed. When
the functionHadA finishes, control returns to the third statement inPig , the function
call WithA("oink") . As shown in Figure 2.3 this results in passing the argument
"oink" , which is stored as the value of the parameternoise . After all statements in
the body ofWithA have executed, the flow of control continues with the final statement
in the body of the functionPig , another function callRefrain() . After this call
finishes executing,Pig has finished and the flow of control continues with the statement
following the call ofPig() in the main function. This is the statementreturn 0 and
the program finishes execution.

This program works, but it needs to be redesigned to be used more easily. This re-
design process is another stage in program development. Often a programmer redesigns
a working program to make it “better” in some way. In extreme cases a program that
works is thrown out because it can be easier to redesign the program from scratch (using
ideas learned during the original design) rather than trying to modify a program. Often
writing the first program is necessary to get the good ideas used in subsequent programs.

In this case we want to dispense with the need to construct a new function rather
than just a function call. To do this we will combine the functionality of the functions

June 7, 1999 10:10 owltex Sheet number 46 Page number 55 magentablack

2.6 Functions with Several Parameters 55

HadA andWithA into a new functionVerse . When writing a program, you should
look for similarities in code segments. The bodies of the functions inPig andCowhave
the same pattern:

Refrain()
call to HadA(...)
call to WithA(...)
Refrain()

Incorporating this pattern into the functionVerse , rather than repeating the pattern
elsewhere in the program, yields a more versatile program. In general, a programmer-
defined function can have any number of parameters, but once written this number is
fixed. The final version of this program, Program 2.8, is shorter and more versatile
than the first version, Program 2.7 By looking for a way to combine the functionality of
functionsHadA andWithA , we modified a program and generated a better one. Often
as versatility goes up so does length. When the length of a program decreases as its
versatility increases, we’re on the right track.

Program 2.8 oldmac2.cpp

#include <iostream>
#include <string>
using namespace std;

// working version of old macdonald, functions with more than one parameter

void EiEio()
{

cout << "Ee-igh, Ee-igh, oh!" << endl;
}

void Refrain()
{

cout << "Old MacDonald had a farm, ";
EiEio();

}

void HadA(string animal)
{

cout << "And on his farm he ha d a " << animal << ", ";
EiEio();

}

void WithA(string noise)
// the principal part of a verse
{

cout << "Wit h a " << noise < < " " << noise << " here" << endl;
cout << "An d a " << noise < < " " << noise << " there" << endl;

cout << "Her e a " << noise << ", "

June 7, 1999 10:10 owltex Sheet number 47 Page number 56magentablack

56 Chapter 2 C++ Programs: Form and Function

void

{

 Refrain()

 Had(animal);

 WithA(noise);

 Refrain();

}

int main()

{

 Verse("pig","oink");

 ...

}

"pig" "oink"

Verse(string animal, string noise)

Figure 2.4 Passing multiple arguments.

<< "ther e a " << noise << ", "

<< " everywher e a " << noise < < " " << noise << endl;

}

void Verse(string animal, string noise)

{

Refrain();

HadA(animal);

WithA(noise);

Refrain();

}

int main()

{

Verse("pig","oink");

cout << endl;

Verse("cow","moo");

return 0;

} oldmac2.cpp

I will sometimes use the wordelegantas a desirable program trait. Program 2.8 is
elegant compared to Program 2.7 because it is easily modified to generate new verses.

Note that it is the order in which arguments are passed to a function that determines
their use, not the actual values of the arguments or the names of the parameters. This is
diagrammed in Figure 2.4.

In particular, the names of the parameters have nothing to do with their purpose. If
animal is replaced everywhere it occurs in Program 2.8 withvegetable,the program will
produce exactly the same output. Furthermore, it is the order of the parameters in the

June 7, 1999 10:10 owltex Sheet number 48 Page number 57magentablack

2.6 Functions with Several Parameters 57

function header and the corresponding order of the arguments in the function call that
determines what the output is. In particular, the function call

Verse("cluck","hen");

would generate a verse with the lines shown below since the value of the parameter
animalwill be the string literal"cluck" .

O U T P U T

And on his farm he had a cluck, Ee-igh, Ee-igh, oh!
With a hen hen here
And a hen hen there
Here a hen, there a hen, everywhere a hen hen

The importance of theorder of the arguments and parametersand the lack of im-
portance of the names of parameters often leads to confusion. Although the use of such
parameter names asparam1andparam2(or, even worse,x andy) might at first glance
seem to be a method of avoiding such confusion, the use of parameter names that corre-
spond roughly to their purpose is far more useful as the programs and functions we study
get more complex. In general, parameters should be named according to the purpose
just as functions are named. Guidelines for using lowercase and uppercase characters
are provided at the end of this chapter.

2.25 Write a function for use in Program 2.7 that produces output for a gobbling turkey.Pause to Reflect

The function should be invoked by the callTurkey , which appears in the body
of the functionmain .

2.26 Is it useful to have a separate functionEiEiO ?

2.27 How would the same effect of the functionTurkey be achieved in Program 2.8?

2.28 If the order of the parameters of the functionVerse is reversed so that the header
is

void Verse(string noise, string animal)

but no changes are made in the body ofVerse , then what changes (if any) must
be made in the calls toVerse so that the output does not change?

2.29 What happens if the statementVerse("pig","cluck"); is included in the
functionmain ?

2.30 The statementVerse("lamb"); will not compile. Why?

June 7, 1999 10:10 owltex Sheet number 49 Page number 58magentablack

58 Chapter 2 C++ Programs: Form and Function

2.31 What happens if you include the statementVerse("owl",2) in the function
main ? What happens if you include the statementVerse("owl",2+2) ?

You must be careful organizing programs that use functions. Although we have notStumbling Block

discussed the order in which functions appear in a program, the order is important to
a degree. Program 2.9 is designed to print a two-line message. As written, it will not
compile.

Program 2.9 order.cpp

#include <iostream>

#include <string>

using namespace std;

// order of procedures is important

void Hi (string name)

{

cout << "Hi " << name << endl;

Greetings();

}

void Greetings()

{

cout << "Things are happening inside this computer" << endl;

}

int main()

{

Hi("Fred");

return 0;

} order.cpp

When this program is compiled using the g++ compiler, the compilation fails with
the following error messages.

order.cpp: In function ‘void Hi (class string)’:
order.cpp:10: warning: implicit declaration of function

‘Greetings’
undefined reference to ’Greetings’
collect2: ld returned 1 exit status

With the Turbo C++ compiler the compilation fails, with the following error message.

Error order.cpp 8:
Function ’Greetings’ should have a prototype

June 7, 1999 10:10 owltex Sheet number 50 Page number 59magentablack

2.6 Functions with Several Parameters 59

O U T P U T

Hi Fred
Things are happening inside this computer

(intended output, but the program doesn’t run)

These messages are generated because the functionGreetings is called from the
functionHi but occurs physically afterHi in Program 2.9. In general, functions must
appear (be defined) in a program before they are called.

This requirement that functions appear before they’re called is too restrictive. Fortu-
nately, there is an alternative to placing an entire function before it’s called. It’s possible
to put information about the function before it’s called rather than the function itself.
This information is called thesignatureof a function, often referred to as the function’s
prototype. Rather than requiring that an entire function appear before it is called, only
the prototype need appear. The prototype indicates the order

Syntax: function prototype

return type
function name(type param-name, type param-name, …);

and type of the function’s
parameters as well as the
function’s return type. All
the functions we have stud-
ied so far have avoid re-
turn type, but we’ll see in

the next chapter that functions (such as square root) can returndouble values,int
values,string values, and so on. The return type, the function name, and the type and
order of each parameter together constitute the prototype. The names of the parameters
are not part of the prototype, but I always include the parameter names because names
are useful in thinking and talking about functions.

For example, The prototype for the functionHi is

void Hi (string name);

The prototype of theVerse function in Program 2.8 is different:

void Verse (string animal, string noise);

Just as arguments and parameters must match, so must a function call match the function’s
prototype. In the call toGreetings made fromHi , the compiler doesn’t know the
prototype forGreetings . If a function header appears physically before any call of
the function, then a prototype is not needed. However, in larger programs it can be
necessary to include prototypes for functions at the beginning of a program. In either
case the compiler sees a function header or prototype before a function call so that the
matching of arguments to parameters can be checked by the compiler.

The functionmain has a return type ofint and the default return type in C++
is int . Thus the error messages generated by the g++ compiler warn of an “implicit
declaration” of the functionGreetings , meaning that the default return of an integer is

June 7, 1999 10:10 owltex Sheet number 51 Page number 60magentablack

60 Chapter 2 C++ Programs: Form and Function

assumed. Since there is no functionGreetings with such a return type, the “undefined
reference” message is generated.

The error message generated by the Turbo C++ compiler is more informative and
indicates that a prototype is missing. Program 2.10 has function prototypes. Note that
the prototype for functionHi is not necessary since the function appears before it is
called. Some programmers include prototypes for all functions, regardless of whether
the prototypes are necessary. In this book we use prototypes when necessary but won’t
include them otherwise.

Program 2.10 order2.cpp

#include <iostream>
#include <string>
using namespace std;

// illustrates function prototypes

void Hi(string);
void Greetings();

void Hi (string name)
{

cout << "Hi " << name << endl;
Greetings();

}

void Greetings()
{

cout << "Things are happening inside this computer" << endl;
}

int main()
{

Hi("Fred");
return 0;

} order2.cpp

2.7 Program Style
The style of indentation used in the programs in this chapter is used in all programs in the
book. In particular, each statement within a function or program body is indented four
spaces. As programs get more complex in subsequent chapters, the use of a consistent
indentation scheme will become more important in ensuring ease of understanding. I
recommend that you use the indentation scheme displayed in the programs here. If you
adopt a different scheme you must use it consistently.

Indentation is necessary for human readers of the programs you write. The C++
compiler is quite capable of compiling programs that have no indentation, have multiple

June 7, 1999 10:10 owltex Sheet number 52 Page number 61magentablack

2.8 Chapter Review 61

statements per line (instead of one statement per line as we have seen so far), and that
have function names likeHe553323xlo3 .

2.7.1 Identifiers

The names of functions, parameters, and variables areidentifiers—a means of referral
both for program designers and for the compiler. Examples of identifiers includeHello,
person,andSing.Just as good indentation can make a program easier to read, I recom-
mend the use of identifiers that indicate to some degree the purpose of the item being
labeled by the identifier. As noted above, the use ofanimal is much more informative
thanparam1in conveying the purpose of the parameter to which the label applies. In C++
an identifier consists of any sequence of letters, numbers, and the underscore character
(_). Identifiers may not begin with a number. And identifiers arecase-sensitive(lower-
and uppercase letters): the identifierverseis different from the identifierVerse. Al-
though some compilers limit the number of characters in an identifier, the C++ standard
specifies that identifiers can be arbitrarily long.

Traditionally, C programmers use the underscore character as a way of making
identifiers easier to read. Rather than the identifierpartedhair , one would use
parted_hair . Some recent studies indicate that using upper- and lowercase letters to
differentiate the parts of an identifier can make them easier to read. In this book I adopt
the convention that all programmer-defined functions and types8 begin with an upper-
case letter. Uppercase letters are also used to separate subwords in an identifier, such as,
PartedHair rather thanparted_hair . Parameters (and later variables) begin with
lowercase letters although uppercase letters may be used to delimit subwords in identi-
fiers. For example, a parameter for a large power of ten might belargeTenPower .
Note that the identifier begins with a lowercase letter, which signifies that it is a parame-
ter or a variable. You may decide thatlarge_ten_power is more readable. As long
as you adopt a consistent naming convention, you shouldn’t feel bound by conventions
I employ in the code here.

In many C++ implementations identifiers containing a double underscore (__) are
used in the libraries that supply code (such as<iostream>), and therefore identifiers
in your programs must avoid double underscores. In addition, differentiating between
single and double underscores: (_ and__) is difficult.

Finally, some words have special meanings in C++ and cannot be used as identifiers.
We will encounter most of thesekeywords,or reservedwords, as we study C++. A list
of keywords is provided in Table 2.1.

2.8 Chapter Review
In this chapter we studied the form of C++ programs, how a program executes, and
how functions can make programs easier to modify and use. We studied programs that
displayed songs having repetitive verses so that an efficient use of functions would reduce

8The typestring used in this chapter is not built into C++ but is supplied as a standard type. In C++,
however, it’s possible to use programmer-defined types just like built-in types.

June 7, 1999 10:10 owltex Sheet number 53 Page number 62magentablack

62 Chapter 2 C++ Programs: Form and Function

Table 2.1 C++ keywords

asm default for private struct unsigned
auto delete friend protected switch using
bool do goto public template virtual
break double if register this void
case dynamic_cast inline reinterpret_cast throw volatile
catch else int return true wchar_t
char enum long short try while
class explicit mutable signed typedef
const extern namespace sizeof typeid
const_cast false new static typename
continue float operator static_cast union

our programming efforts. At the same time, the verses had sufficient variation to make the
use of parameters necessary in order to develop clean and elegant programs—programs
that appeal to your emerging sense of programming style.

C++ programs have a specific form:

#include statements to access libraries
comments about the program
programmer-defined functions
one function namedmain

Libraries make “off-the-shelf” programming components accessible to program-
mers. System library names are enclosed between< and>, as in<iostream> .
Libraries that are part of this book and nonsystem libraries are enclosed in double
quotation marks, as in"tstring.h" .

Output is generated using the insertion operator,<<, and the standard output
stream,cout . These are accessible by including the proper header file<iostream> .

Strings are sequences of characters. The typestring is not a built-in type but is
accessible via the header file<string> .

Functions group related statements together so that the statements can be executed
together, by calling the function.

Parameters facilitate passing information between functions. The value passed is
anargument.The “box” that stores the value in the function is aparameter.

Iterative enhancement is a design process by which a program is developed in
stages. Each stage is both an enhancement and a refinement of a working program.

In designing programs, look for patterns of repeated code that can be combined
into a parameterized function to avoid code duplication, as we did inVerse of
Program 2.8.

Prototypes are function signatures that convey to the compiler information that is
used to determine if a function call is correctly formed.

June 7, 1999 10:10 owltex Sheet number 54 Page number 63magentablack

2.9 Exercises 63

Identifiers are names of functions, variables, and parameters. Identifiers should
indicate the purpose of what they name. Your programs will be more readable if
you are consistent in capitalization and underscores in identifiers.

2.9 Exercises

2.1 Add a functionNeck to parts.cpp, Program 2.4 to generate output similar to that shown
below.

O U T P U T

||||||||||||||||
| o o |

| |
|_ _|

| |
| |______| |
|_____ _____|

| |

2.2 Modify the appropriate functions in Program 2.4 to display the head shown below.

O U T P U T

||||||||||||||||
| __ __ |
| ! ! __ ! ! |
| !o !/ \!o ! |
| !__! !__! |
| |
| ///|\\\ |

\ /
\ o /

________/

2.3 Write a program whose output is the text ofhello.cpp, Program 2.1. Note that the output
is a program!

June 7, 1999 10:10 owltex Sheet number 55 Page number 64magentablack

64 Chapter 2 C++ Programs: Form and Function

O U T P U T

#include <iostream>
using namespace std;

int main()
{

cout << "Hello world" << endl;
return 0;

}

To display the character" you’ll need to use anescape sequence.An escape sequence is
a backslash\ followed by one character. The two-character escape sequence represents
a single character; the escape sequence\" is used to print one quotation mark. The
statement

cout << "\"Hello\" " << endl;

can be used to print the characters"Hello" on the screen, including the quotation
marks! Be sure to comment your program-writing program appropriately.

2.4 A popular song performed by KC and the Sunshine Band repeats many verses using the
words “That’s the way Uh-huh Uh-huh I like it Uh-huh Uh-huh,” as shown below.

O U T P U T
That’s the way
Uh-huh Uh-huh
I like it
Uh-huh Uh-huh

That’s the way
Uh-huh Uh-huh
I like it
Uh-huh Uh-huh

Write a program that generates four choruses of the song.

2.5 Write a program that generates the verses of a children’s song shown below. Don’t
worry about the ungrammatical qualities inherent in the use of “goes” and “go” in your
first attempt at writing the program. You should include a function with two parameters
capable of generating any of the verses when the appropriate arguments are passed.
Strive to make your program “elegant.”

June 7, 1999 10:10 owltex Sheet number 56 Page number 65magentablack

2.9 Exercises 65

O U T P U T
The wheel on the bus goes round round round
round round round
round round round
The wheel on the bus goes round round round
All through the town

The wipers on the bus goes swish swish swish
swish swish swish
swish swish swish
The wipers on the bus goes swish swish swish
All through the town

The horn on the bus goes beep beep beep
beep beep beep
beep beep beep
The horn on the bus goes beep beep beep
All through the town

The money on the bus goes clink clink clink
clink clink clink
clink clink clink
The money on the bus goes clink clink clink
All through the town

Is it possible to generate a verse of the song based on the lines

The driver on the bus goes move on back
move on back
move on back

with small modifications? How many parameters would theVerse function of such a
song have?

2.6 Consider the song about an old woman with an insatiable appetite, one version of which
is partially reproduced in the following.

June 7, 1999 10:10 owltex Sheet number 57 Page number 66magentablack

66 Chapter 2 C++ Programs: Form and Function

O U T P U T
There was an old lady who swallowed a fly
I don’t know why she swallowed a fly
Perhaps she’ll die.

There was an old lady who swallowed a spider
That wiggled and jiggled and tiggled inside her
She swallowed the spider to catch the fly
I don’t know why she swallowed a fly
Perhaps she’ll die.

There was an old lady who swallowed a bird
How absurd to swallow a bird
She swallowed the bird to catch the spider
That wiggled and jiggled and tiggled inside her
She swallowed the spider to catch the fly
I don’t know why she swallowed a fly
Perhaps she’ll die.

This song may be difficult to generate via a program using just the predefined output
streamcout , the operator<<, and programmer-defined parameterized functions. Write
such a program or sketch its solution and indicate why it might be difficult to write a
program for which it is easy to add new animals while maintaining program elegance.
You might think about adding a verse about a cat (imagine that!) that swallows the bird.

2.7 In a song made famous by Bill Haley and the Comets, the chorus is

One, two, three o’clock, four o’clock rock
Five, six, seven o’clock, eight o’clock rock
Nine, ten, eleven o’clock, twelve o’clock rock
We’re going to rock around the clock tonight

Rather than using words to represent time, you are to use numbers and write a program
that will print the chorus above but with the line

1, 2, 3 o’clock, 4 o’clock rock

as the first line of the chorus. Your program should be useful in creating a chorus that
could be used with military time; i.e., another chorus might end thus:

21, 22, 23 o’clock, 24 o’clock rock
We’re going to rock around the clock tonight

You should use the arithmetic operator+ where appropriate and strive to make your
program as succinct as possible, calling functions with different parameters rather than
writing similar statements.

June 7, 1999 10:10 owltex Sheet number 17 Page number 67magentablack

3Program Design and
Implementation

GIGO—Garbage In, Garbage Out
Common computer aphorism

GIGO—Garbage In, Gospel Out
New Hacker’s Dictionary

Civilization advances by extending the number of important operations which we can perform
without thinking about them.
Alfred North Whitehead

An Introduction to Mathematics

The memory of all that— No, no! They can’t take that away from me.
Ira Gershwin

They Can’t Take That Away from Me

The song-writing and head-drawing programs in Chapter 2 generated the same output
for all executions unless the programs were modified and recompiled. These programs
do not respond to a user of the program atrun time, meaning while the programs are
running or executing. The solutions to many programming problems require input from
program users during execution. Therefore, we must be able to write programs that
process input during execution. A typical framework for many computer programs is
one that divides a program’s execution into three stages.

1. Input—information is provided to the program.

2. Process—the information is processed.

3. Output—the program displays the results of processing the input.

This input/process/output (IPO)model of programming is used in the simple programs
we’ll study in this chapter as well as in million-line programs that forecast the weather
and predict stock market fluctuations. Breaking a program into parts, implementing
the parts separately, and then combining the parts into a working program is a good
method for developing programs. This is often calleddivide and conquer; the program
is divided into pieces, each piece is implemented, or “conquered,” and the final program
results from combining the conquered pieces. We’ll employ divide and conquer together
with iterative enhancement when designing classes and programs.

67

June 7, 1999 10:10 owltex Sheet number 18 Page number 68magentablack

68 Chapter 3 Program Design and Implementation

3.1 The Input Phase of Computation

In this chapter we’ll discuss how the user can input values that are used in a program.
These input values can be strings like the name of an animal or the noise the animal
makes, as we’ll see in Program 3.1,macinput.cpp. The input values can also be numbers
like the price and diameter of a pizza as we’ll see in Program 3.5,pizza.cpp.

Two runs of a modified version of Program 2.8,oldmac2.cppare in the following
output box. Input entered by the user (you) is shown in a bold-italic font. The computing
environment displaysprompt> as a cue to the user to enter a command—in this case,
the name of a program. Prompts may be different in other computing environments.
You may be using a programming environment in which the program is run using a
menu-driven system rather than a command-line prompt, but we’ll use the prompt to
show the name of the program generating the output.

O U T P U T

prompt> macinput

Enter the name of an animal: cow
Enter noise that a cow makes: moo

Old MacDonald had a farm, Ee-igh, ee-igh, oh!
And on his farm he had a cow, Ee-igh, ee-igh, oh!
With a moo moo here
And a moo moo there
Here a moo, there a moo, everywhere a moo moo
Old MacDonald had a farm, Ee-igh, ee-igh, oh!

prompt> macinput

Enter the name of an animal: hen
Enter noise that a cow makes: cluck

Old MacDonald had a farm, Ee-igh, ee-igh, oh!
And on his farm he had a hen, Ee-igh, ee-igh, oh!
With a cluck cluck here
And a cluck cluck there
Here a cluck, there a cluck, everywhere a cluck cluck
Old MacDonald had a farm, Ee-igh, ee-igh, oh!

Each run of the program produces different output according to the words you enter. If the
functionmain in Program 2.8 is modified as shown in the code segment in Program 3.1,
the modified program generates the runs shown above.

June 7, 1999 10:10 owltex Sheet number 19 Page number 69magentablack

3.1 The Input Phase of Computation 69

Program 3.1 macinput.cpp

// see program oldmac2.cpp for function Verse and #includes

int main()
{

string animal;
string noise;

cout << "Enter the name of an animal: ";
cin >> animal;

cout << "Enter noise tha t a " << animal << " makes: ";
cin >> noise;

cout << endl;
Verse(animal,noise);
return 0;

}
macinput.cpp

3.1.1 The Input Stream, cin

We’ll investigate each statement inmain of Program 3.1 When you run the program,
you enter information and the program reacts to that information by printing a verse of
Old MacDonald’s Farm that corresponds to what you enter. In C++, information you
enter comes from the input streamcin (pronounced “cee-in”). Just as the output stream,
cout , generates output, the input stream accepts input values used in a program. In the
run of Program 3.1, the output statement

cout << "Enter the name of an animal: "

is not followed by anendl . As a result, your input appears on the same line as the
words that prompt you to enter an animal’s name.

When you enter input, it is taken from the input stream using theextraction oper-
ator,>> (sometimes read as “takes-from”). When the input is taken, it must be stored
someplace. Programvariables, in this caseanimal andnoise, are used as a place
for storing values.

3.1.2 Variables

The following statements from Program 3.1definetwostring variables, namedanimal
andnoise.

string animal;
string noise;

June 7, 1999 10:10 owltex Sheet number 20 Page number 70magentablack

70 Chapter 3 Program Design and Implementation

int main()

string animal;

string noise;

cout << "Enter noise that a "<< animal <<" makes ";

cout << "Enter the name of an animal ";

cin >> noise;

cin >> animal;

cout << endl;

Verse (animal,noise);

return 0;

}

"COW"

"MOO"

int main()

string animal;

string noise;

cout << "Enter noise that a "<< animal <<" makes ";

cout << "Enter the name of an animal ";

cin >> noise;

cin >> animal;

cout << endl;

Verse (animal,noise);

return 0;

}

"COW"

"MOO"

1

2

3

Figure 3.1 Using variables andstreams for input.

These variables are represented in Figure 3.1 as boxes that store the variable values
in computer memory. The value stored in a variable can be used just as the values
stored in a function’s formal parameters can be used within the function (see Figure 2.3).
Parameters and variables are similar; each has a name such asanimal or noise and
an associated storage location. Parameters are given initial values, orinitialized, by
calling a function and passing an argument. Variables are often initialized by accepting
input from the user.

Variables in a C++ program must bedefinedbefore they can be used. Sometimes
the termsallocateandcreateare used instead ofdefine.Sometimes the wordobject is
used instead ofvariable. You should think ofvariable

Syntax: variable definition

type name; OR
type name1, name2,…, namek;

andobjectas synonyms. Just as
all formal parameters have a type
or class, all variables in C++ have
a type or class that determines
what kinds of operations can be
performed with the variable. The

variableanimal has the type or classstring . In this book we’ll define each variable
in a separate statement as was done in Program 3.1. It’s possible to define more than
one variable in a single statement. For example, the following statement defines two
string variables.

string animal,noise;

In the run of Program 3.1 diagrammed in Figure 3.1, values taken from the input
stream are stored in a variable’s memory location. The variableanimal gets a value in
the statement labeled 1; the variablenoise gets a value in the statement labeled 2. The
value ofanimal is used to prompt the user; this is shown by the dashed arrow. The
arrow labeled 3 shows the values of both variables used as arguments to the function

June 7, 1999 10:10 owltex Sheet number 21 Page number 71magentablack

3.1 The Input Phase of Computation 71

Memory
location

cow

animal memory location/variable
Name of

Value of variable (type string)

Figure 3.2 Variables as named memory locations.

Verse . In the interactive C++ environments used in the study of this book, the user must
almost always press the return (enter) key before an input statement completes execution
and stores the entered value inanimal . This allows the user to make corrections (using
arrow keys or a mouse, for example) before the final value is stored in memory.

An often-used metaphor associates a variable with a mailbox. Mailboxes usually
have names associated with them (either 206 Main Street, or the Smith residence) and
offer a place in which things can be stored. Perhaps a more appropriate metaphor
associates variables with dorm rooms.1 For example, a room in a fraternity or sorority
house (say,9ϒ or 111) can be occupied by any member of the fraternity or sorority
butnot by members of other residential groups.2 The occupant of the room may change
just as the value of a variable may change, but the type of the occupant remains the same,
just as a variable’s type remains fixed once it is defined. Thus we think of variables as
named memory storage locations capable of storing a specific type of object. In the
foregoing example the name of one storage location isanimal and the type of object
that can be stored in it is astring ; for example, the valuecow can be stored as shown
in Figure 3.2.

In C++, variables can be defined anywhere, but they must be defined before they’re
used. Some programmers prefer to define all variables immediately after a left brace,{.
Others define variables just before they’re first used. (We’ll have occasion to use both
styles of definition.) When all variables are defined at the beginning of a function, it
is easy to find a variable when reading code. Thus when one variable is used in many
places, this style makes it easier to find the definition than searching for the variable’s
first use. Another version of the code in Program 3.1 is shown in the following block of
code with an alternate style of variable definition:

int main()
{

cout << "Enter the name of an animal ";
string animal;
cin >> animal;

cout << "Enter noise tha t a " << animal << " makes ";
string noise;

1This was suggested by Deganit Armon.
2The room could certainly not be occupied by independents or members of the opposite sex except in
the case of co-ed living groups.

June 7, 1999 10:10 owltex Sheet number 22 Page number 72magentablack

72 Chapter 3 Program Design and Implementation

cin >> noise;

cout << endl;
Verse(animal,noise);
return 0;

}

Before the statementcin >> animal in Program 3.1 is executed, the contents of
the memory location associated with the variableanimal are undefined. You can think
of an undefined value as garbage. Displaying an undefined value probably won’t cause
any trouble, but it might not make any sense. In more complex programs, accessing an
undefined value can cause a program to crash.

ProgramTip 3.1: When a variable is defined give it a value. Every variable
must be given a value before being used for the first time in an expression or an output
statement, or as an argument in a function call.

One way of doing this is to define variables just before they’re used for the first time;
that way you won’t define lots of variables at the beginning of a function and then use
one before it has been given a value. Alternatively, you can define all variables at the
beginning of a function and program carefully.

3.1 If you run Program 3.1,macinput.cpp, and enterbaahfor the name of the animalPause to Reflect

andsheepfor the noise, what is the output? What happens if you enterdog for
the name of the animal andbow wowfor the noise (you probably need to run the
program to find the answer)? What ifbow-wowis entered for the noise?

3.2 Why is there noendl in the statement prompting for the name of an animal and
why is there a space after the ell inanimal ?

cout << "Enter the name of an animal ";

3.3 Write a functionmainfor Program 2.5 (the Happy Birthday program) that prompts
the user for the name of a person for whom the song will be “sung.”

3.4 Add statements to the birthday program as modified in the previous exercise to
prompt the user for how old she is, and print a message about the age after the
song is printed.

3.5 What happens if the statementcin >> noise; is removed from Program 3.1
and the program is run?

June 7, 1999 10:10 owltex Sheet number 23 Page number 73magentablack

3.2 Processing Numbers 73

John Kemeny (1926–1992)

John Kemeny, with Thomas Kurtz, invented the programming language BA-
SIC (Beginner’s All-purpose Symbolic Instruction Code). The language was
designed to be simple to use but as powerful as FORTRAN, one of the lan-

guages with which it competed when first
developed in 1964. BASIC went on to be-
come the world’s most popular program-
ming language.

Kemeny was a research assistant to Al-
bert Einstein before taking a job at Dart-
mouth College. At Dartmouth he was an
early visionary in bringing computers to
everyone. Kemeny and Kurtz developed
the Dartmouth Time Sharing System, which
allowed hundreds of users to use the same
computer “simultaneously.” Kemeny was
an inspiring teacher. While serving as pres-
ident of Dartmouth College he still taught
at least one math course each year. With a
cigarette in a holder and a distinct, but very

understandable, Hungarian accent, Kemeny was a model of clarity and organiza-
tion in the classroom.

In a book published in 1959, Kemeny wrote the following, comparing computer
calculations with the human brain. It’s interesting that his words are still relevant
more than 35 years later.

When we inspect one of the present mechanical brains we are overwhelmed
by its size and its apparent complexity. But this is a somewhat misleading
first impression. None of these machines compare with the human brain in
complexity or in efficiency. It is true that we cannot match the speed or
reliability of the computer in multiplying two ten-digit numbers, but, after
all, that is its primary purpose, not ours. There are many tasks that we carry
out as a matter of course that we would have no idea how to mechanize.

For more information see [Sla87, AA85]

3.2 Processing Numbers
All the examples we’ve studied so far have used strings. Although many programs ma-
nipulate strings and text, numbers are used extensively in computing and programming.
In this section we’ll discuss how to use numbers for input, processing, and output. As
we’ll see, the syntax for the input and output of numbers is the same as for strings,
but processing numbers requires a new set of symbols based on those you learned for

June 7, 1999 10:10 owltex Sheet number 24 Page number 74magentablack

74 Chapter 3 Program Design and Implementation

ordinary math.
We’ll start with a simple example, but we’ll build towards the programming knowl-

edge we need to write a program that will help us determine what size pizza is the best
bargain. Just as printing “Hello World” is often used as a first program, programs that
convert temperature from Fahrenheit to Celsius are commonly used to illustrate the use
of numeric literals and variables in C++ programs3. Program 3.2 shows how this is done.
The program shows two different types of numeric values and how these values are used
in doing arithmetic in C++ programs.

Program 3.2 fahrcels.cpp

#include <iostream>
using namespace std;

// illustrates i/o of ints and doubles
// illustrates arithmetic operations

int main()
{

int ifahr;
double dfahr;

cout << "enter a Fahrenheit temperature ";
cin >> ifahr;
cout << ifahr < < " = "

<< (ifahr − 32) ∗ 5/9
<< " Celsius" << endl;

cout << "enter another temperature ";
cin >> dfahr;
cout << dfahr < < " = "

<< (dfahr − 32.0) ∗ 5/9
<< " Celsius" << endl;

return 0;
} fahrcels.cpp

O U T P U T

prompt> fahrcels
enter a Fahrenheit temperature 40
40 = 4 Celsius
enter another temperature 40
40 = 4.44444 Celsius

3Note, however, that using a computer program to convert a single temperature is probably overkill.
This program is used to study the typesint anddouble rather than for its intrinsic worth.

June 7, 1999 10:10 owltex Sheet number 25 Page number 75 magentablack

3.2 Processing Numbers 75

Two variables are defined in Program 3.2,ifahr anddfahr . The type ofifahr
is int which represents an integer in C++, what we think of mathematically as a value
from the set of numbers{. . .−3, −2, −1, 0, 1, 2, 3 . . .}. The type ofdfahr is double
which represents in C++ what is called afloating-point number in computer science and
a real numberin mathematics. Floating-point numbers have a decimal point; examples
include

√
17, 3.14159, and 2.0. In Program 3.2 the input streamcin extracts an integer

value entered by the user with the statementcin >> ifahr and stores the entered
value in the variableifahr . A floating-point number entered by the user is extracted
and stored in the variabledfahr by the statementcin >> dfahr . Except for the
name of the variable, both these statements are identical in form to the statements in
Program 3.1 that accepted strings entered by the user. When writing programs using
numbers, the typedouble should be used for all variables and calculations that might
have decimal points4. The typeint should be used whenever integers, or numbers
without decimal points, are appropriate.

3.2.1 Numeric Data

Although there is no largest integer in mathematics, the finite memory of a computer
limits the largest and smallestint values in C++. On computers using 16-bit compilers,
the values of anint can range from−32,768 to 32,767. When more modern 32-bit
compilers are used, the typical range ofint values is−2,147,483,648 to 2,147,483,647.
You shouldn’t try to remember these numbers, you should remember that there are limits.
The smaller range ofint values is really too small to do many calculations. For example,
the number of seconds in a day is 86,400, far exceeding the value that can be stored in
anint using C++ on most 16-bit compilers. To alleviate this problem the typelong int
should be used instead ofint . The variableifahr could be defined to use this modified
long int type aslong int ifahr . The typelong int is usually abbreviated
simply aslong . This makeslong secs; a definition for a variablesecs .

Program 3.3 shows the limitations of the typeint . The first run after the program
listing is generated using a 32-bit compiler. The same run on a computer using a 16-bit
compiler generates a much different set of results, as shown.

Program 3.3 daysecs.cpp

#include <iostream>
using namespace std;

// converts days to seconds
// illustrates integer overflow

int main()
{

int days;

4The typefloat can also be used for floating-point numbers. We will not use this type, since most
standard mathematical functions usedouble values. Using the typefloat will almost certainly lead
to errors in any serious mathematical calculations.

June 7, 1999 10:10 owltex Sheet number 26 Page number 76magentablack

76 Chapter 3 Program Design and Implementation

cout << "how many days: ";

cin >> days;

cout << days << " days = "

<< days ∗24∗60∗60

<< " seconds" << endl;

return 0;

} daysecs.cpp

O U T P U T

prompt> daysecs
how many days: 31
31 days = 2678400 seconds
prompt> daysecs
how many days: 365
365 days = 31536000 seconds
prompt> daysecs
how many days: 13870
13870 days = 1198368000 seconds

O U T P U T

run using a 16-bit compiler
prompt> daysecs
how many days: 31
31 days = -8576 seconds
prompt> daysecs
how many days: 365
365 days = 13184 seconds
prompt> daysecs
how many days: 13870
13870 days = -23296 seconds

If the definitionint days is changed tolong days , then the runs will be the same
on both kinds of computers.

June 7, 1999 10:10 owltex Sheet number 27 Page number 77magentablack

3.2 Processing Numbers 77

ProgramTip 3.2: Use long (long int) rather than int if you are using
a 16-bit compiler. This will help ensure that the output of any program you write
using integer arithmetic is correct.

It’s also possible to use the typedouble instead of eitherint or long int .
In mathematics, real numbers can have an infinite number of digits after a decimal
point. For example, 1/3 = 0.333333. . . and

√
2 = 1.41421356237. . . , where there is

no pattern to the digits in the square root of two. Data represented usingdouble values
are approximations since it’s not possible to have an infinite number of digits. When
the definition ofdays is changed todouble days the program generates the same
results with 16- or 32-bit compilers.

O U T P U T

prompt> daysecs
how many days: 31
31 days = 2.6784e+06 seconds
prompt> daysecs
how many days: 365
365 days = 3.1536e+07 seconds
prompt> daysecs
how many days: 13870
13870 days = 1.19837e+09 seconds

The output in this run is shown usingexponent,or scientific,notation. The expres-
sion 2.6784e+06 is equivalent to 2,678,400. Thee+06 means “multiply by 106.”
The same run results if the definitionint days is used, but the output statement is
changed as shown below.

cout << days*24.0*60*60 << " seconds" << endl;

We’ll explore why this is the case in the next section. In Howto B you can see examples
that show how to format numeric output so that, for example, the number of digits after
the decimal place can be specified in your programs.

3.2.2 Arithmetic Operators

Although the output statements infahrcels.cpp, Program 3.2, are the same except for
the name of the variable storing the Fahrenheit temperature, the actual values output
by the statements are different. This is because arithmetic performed usingint values
behaves differently than arithmetic performed usingdouble values. Anoperator, such
as+, is used to perform some kind of computation. Operators combineoperandsas in
15+ 3; the operands are 15 and 3. Anexpressionis a sentence composed of operands

June 7, 1999 10:10 owltex Sheet number 28 Page number 78magentablack

78 Chapter 3 Program Design and Implementation

Table 3.1 The Arithmetic Operators

Symbol Meaning Example

* multiplication 3*5*x
/ division 5.2/1.5
% mod/remainder 7 % 2
+ addition 12 + x
- subtraction 35 - y

and operators, as in(X − 32) ∗ 5/9. In this expression,X , 32, 5, and 9 are operands.
The symbols- , *, and / are operators.

To understand why different output is generated by the following two expressions
when the same value is entered for bothifahr anddfahr , we’ll need to explore how
arithmetic expressions are evaluated and how evaluation depends on the types of the
operands.

(ifahr - 32) * 5/9 (dfahr - 32.0) * 5/9

The division operator/ yields results that depend on the types of its operands. For
example, what is7/2 ? In mathematics the answer is 3.5, but in C++ the answer is 3.
This is because division of two integer quantities (in this case, the literals 7 and 2) is
defined to yield an integer. The value of7.0/2 is 3.5 because division ofdouble
values yields adouble . When an operator has more than one use, the operator is
overloaded. In this case the division operator is overloaded since it works differently
with double values than withint values.

The arithmetic operators available in C++ are shown in Table 3.1. Most should
be familiar to you from your study of mathematics except, perhaps, for the modulus
operator,%. The modulus operator%yields the remainder when one integer is divided
by another. For example, executing the statement

cout << "47 divides 1347 " << 1347/47 << " times, "
<< "with remainder " << 1347 % 47 << endl;

would generate the following output because 1347= 28∗ 47+ 31.

O U T P U T

47 divides 1347 28 times, with remainder 31

In general the result ofp % q(read this as “p mod q”) for two integers should be a
valuer with the property thatp = x*q + r wherex = p/q. The%operator is often
used to determine if one integer divides another—that is, divides with no remainder, as
in 4/2 or 27/9. If x % y = 0, there is a remainder of zero whenx is divided byy ,

June 7, 1999 10:10 owltex Sheet number 29 Page number 79magentablack

3.2 Processing Numbers 79

47 1347

28

1316

31

1347/47

1347 % 47

Figure 3.3 Using the modulus operator.

indicating thaty evenly dividesx . The following examples illustrate several uses of the
modulus operator. A calculation showing the modulus operator and how it relates to
remainders is diagrammed in Figure 3.3.

25 % 5 = 0 13 % 2 = 1 4 % 3 = 1
25 % 6 = 1 13 % 3 = 1 4 % 4 = 0
48 % 8 = 0 13 % 4 = 1 4 % 5 = 4
48 % 9 = 3 13 % 5 = 3 5 % 4 = 1

If either p or q is negative, however, the value calculated may be different on different
systems.

Program Tip 3.3: Avoid negative values when using the %operator, or
check the documentation of the programming environment you use. In
theory, the result of a modulus operator should be positive since it is a remainder. In
practice the result is usually negative and not the result you expect when writing code.
The C++ standard requires thata = ((a/b) * b) + (a % b) .

3.2.3 Evaluating Expressions

The following rules are used for evaluating arithmetic expressions in C++ (these are
standard rules of arithmetic as well):

1. Evaluate all parenthesized expressions first, with nested expressions evaluated
“inside-out.”

2. Evaluate expressions according tooperator precedence: evaluate* , / , and%
before+ and- .

3. Evaluate operators with the same precedence left to right—this is called left-to-
right associativity.

We’ll use these rules to evaluate the expression(ifahr - 32) * 5/9 whenifahr
has the value 40 (as in the output of Program 3.2). Tables showing precedence rules and
associativity of all C++ operators are given in Howto A, see Table A.4.

June 7, 1999 10:10 owltex Sheet number 30 Page number 80 magentablack

80 Chapter 3 Program Design and Implementation

(40 - 32) * 5/9 (40.0 - 32.0) * 5/9

8 * 5/9

40/9

4

8.0 * 5/9

40.0/9

4.44444

Figure 3.4 Evaluating arithmetic expressions.

Evaluate(ifahr - 32) first; this is 40− 32, which is 8. (This is rule 1 above:
evaluate parenthesized expressions first).

The expression is now8 * 5/9 and * and / have equal precedence so are
evaluated left to right (rule 3 above). This yields 40/9, which is 4.

In the last step above 40/9 evaluates to 4. This is because in integer division any fractional
part is truncated, or removed. Thus although 40/9 = 4.444. . . mathematically, the
fractional part.444. . . is truncated, leaving 4.

At this point it may be slightly mysterious why Program 3.2 prints 4.44444 when
the expression(dfahr - 32.0) * 5/9 is evaluated. The subexpression(dfahr
- 32.0) evaluates to the real number 8.0 rather than the integer 8. The expression
(dfahr - 32) would evaluate to 8.0 as well because subtracting anint from a
double results in adouble value. Similarly, the expression8.0 * 5/9 evaluates
to 40.0/9, which is 4.44444, because when/ is used withdouble values or a mixed
combination ofdouble andint values, the result is a double. The evaluation of both
expressions from Program 3.2 is diagrammed in Figure 3.4.

This means that if the firstcout << statement in Program 3.2 is modified so that
the 5 is replaced by 5.0, as in(ifahr - 32) * 5.0/9 , then the expression will
evaluate to 4.44444 when 40 is entered as the value ofifahr because 5.0 is adouble
whereas 5 is anint .

Program 3.4 express.cpp

#include <iostream>
using namespace std;

// illustrates problems with evaluating
// arithmetic expressions

int main()
{

double dfahr;

June 7, 1999 10:10 owltex Sheet number 31 Page number 81magentablack

3.2 Processing Numbers 81

cout << "enter a Fahrenheit temperature ";
cin >> dfahr;
cout << dfahr < < " = "

<< 5/9 ∗ (dfahr − 32.0)
<< " Celsius" << endl;

return 0;
} express.cpp

O U T P U T

prompt> express
enter a Fahrenheit temperature 40.0
40.0 = 0 Celsius
prompt> express
enter a Fahrenheit temperature 37.33
37.3 3 = 0 Celsius

Often arithmetic is done by specialized circuitry built to add, multiply, and do other
arithmetic operations. The circuitry forint operations is different from the circuitry
for double operations, reflecting the different methods used for multiplying integers
and reals. When numbers of different types are combined in an arithmetic operation,
one circuit must be used. Thus when8.0 * 5 is evaluated, the 5 isconverted to a
double (and the double circuitry would be used). Sometimes the wordpromoted is
used instead ofconverted.

Pitfalls with evaluating expressions. Because arithmetic operators are overloaded andStumbling Block

because we’re not used to thinking of arithmetic as performed by computers, some
expressions yield results that don’t meet our expectations. Referring to Program 3.4, we
see that in the run ofexpress.cppthe answer is 0, because the value of the expression
5/9 is 0 since integer division is used. It might be a better idea to use 5.0 and 9.0 since
the resulting expression should usedouble operators. If an arithmetic expression looks
correct to you but it yields results that are not correct, be sure that you’ve used parentheses
properly, that you’ve takendouble andint operators into account, and that you have
accounted for operator precedence.

3.6 If the output expressions in Program 3.2 are changed so that subexpressions arePause to Reflect

enclosed in parentheses as shown, why do both statements print zero?

(ifahr - 32) * (5/9)

3.7 What is printed if parentheses are not used in either of the expressions in Pro-
gram 3.2?

ifahr - 32 * 5/9

June 7, 1999 10:10 owltex Sheet number 32 Page number 82magentablack

82 Chapter 3 Program Design and Implementation

3.8 If the expression usingifahr is changed as shown what will the output be if the
user enters 40? Why?

(ifahr - 32.0) * 5/9

3.9 What modifications are needed to change Program 3.2 so that it converts degrees
Celsius to Fahrenheit rather than vice versa?

3.10 If daysecs.cpp, Program 3.3, is used with the definitionlong day , but the out-
put is changed tocout << 24*60*60*days << endl , then the program
behavior with a 16-bit compiler changes as shown here. The output is incorrect.
Explain why the change in the output statement makes a difference.

O U T P U T

prompt> daysecs

how many days: 31

31 days = 646784 seconds

prompt> daysecs

how many days: 365

365 days = 7615360 seconds

3.11 The quadratic formula, which gives the roots of a quadratic equation, is

−b ± √
b2 − 4ac

2a

The roots of 2x2 − 8x + 6 should be 3 and 1, wherea = 2, b = −8, c = 6, and√
b2 − 4ac = 4. Explain why the statements below print 12 and 4 instead of 3

and 1.

cout << (8 + 4)/2*2 << endl;
cout << (8 - 4)/2*2 << endl;

3.2.4 The type char

The individual letters used to construct C++string values are called characters; the
typechar is used to represent characters. The typechar is actually an integral type,
in many wayschar values act likeint values. This means it’s possible to addchar
values, though we’ll avoid using characters as though they were integers. We’ll use

June 7, 1999 10:10 owltex Sheet number 33 Page number 83 magentablack

3.3 Case Study: Pizza Slices 83

char s almost exclusively as a way to buildstring values, and we’ll study how to do
this in later chapters.

A char does print differently than an integer, otherwise it can be used like an integer.
Single quotes (apostrophes) are used to indicatechar values, e.g.,’a’ , ’!’ , and’Z’
are all valid C++ characters.

3.3 Case Study: Pizza Slices
In this section we’ll look at one program in some detail. The program uses the types
int anddouble in calculating several statistics about different sizes of pizza. The
program might be used, for example, to determine whether a 10-inch pizza selling for
$10.95 is a better buy than a 14-inch pizza selling for $14.95.

3.3.1 Pizza Statistics

Pizzas can be ordered in several sizes. Some pizza parlors cut all pizzas into eight slices,
whereas others get more slices out of larger pizza pies. In many situations it would be
useful to know what size pie offers the best deal in terms of cost per slice or cost per
square inch of pizza. Program 3.5,pizza.cpp, provides a first attempt at a program for
determining information about pizza prices.

Program 3.5 pizza.cpp

#include <iostream>
using namespace std;

// find the price of one slice of pizza
// and the price per square inch

void SlicePrice(int radius, double price)
// compute pizza statistics
{

// assume all pizzas have 8 slices

cout << "sq in/slice = ";
cout << 3.14159 ∗radius ∗radius/8 << endl;

cout << "one slice: $" << price/8 << endl;
cout << "$" << price/(3.14159 ∗radius ∗radius);
cout << " per sq. inch" << endl;

}

int main()
{

int radius;
double price;
cout << "enter radius of pizza ";
cin >> radius;

June 7, 1999 10:10 owltex Sheet number 34 Page number 84magentablack

84 Chapter 3 Program Design and Implementation

cout << "enter price of pizza ";
cin >> price;

SlicePrice(radius,price);

return 0;
}

pizza.cpp

O U T P U T

prompt> pizza
enter radius of pizza 8
enter price of pizza 9.95
sq in/slice = 25.1327
one slice: $1.24375
$0.0494873 per sq. inch

prompt> pizza
enter radius of pizza 10
enter price of pizza 11.95
sq in/slice = 39.2699
one slice: $1.49375
$0.0380381 per sq. inch

The functionSlicePrice is used for both the processing and the output steps
of computation inpizza.cpp. The input steps take place inmain . Numbers entered
by the user are stored in the variablesradius and price defined inmain . The
values of these variables are sent asarguments to SlicePrice for processing. This
is diagrammed in Figure 3.5.

If the order of the arguments in the callSlicePrice(radius,price) is changed
to SlicePrice(price,radius) , the compiler issues a warning:

pizza.cpp: In function ‘int main()’:
pizza.cpp:30: warning: ‘double’ used for argument 1 of

‘SlicePrice(int, double)’

It’s not generally possible to pass adouble value to anint parameter without losing
part of the value, so the compiler issues a warning. For example, passing an argument
of 11.95 to the parameterradius results in a value of 11 for the parameter because
double values are truncated when stored as integers. This is callednarrowing . Until
we discuss how to convert values of one type to another type, you should be sure that
the type of an argument matches the type of the corresponding formal parameter. Since

June 7, 1999 10:10 owltex Sheet number 35 Page number 85magentablack

3.3 Case Study: Pizza Slices 85

void SlicePrice(int radius, double price)

{

 ...

 ...

 cout << "$" < 3.14159*radius*radius/price

 ...

}

int main()

{

 int radius;

 double price;

 ...

 SlicePrice(radius,price);

}

8

11.95

8 11.95

Figure 3.5 Passing arguments.

different types may use different amounts of storage and may have different internal
representations in the computer, it is a good idea to ensure that types match properly.

Program Tip 3.4: Pay attention to compiler warnings. When the compiler
issues a warning, interpret the warning as an indication that your program is not correct.
Although the program may still compile and execute, the warning indicates that something
isn’t proper with your program.

The area of a circle is given by the formulaπ × r2, wherer is the radius of the circle.
In SlicePrice the formula determines the number of square inches in a slice and
the price per square inch; the parentheses used to compute the price per square inch are
necessary.

cout << "$" << price/(3.14159*radius*radius)

If parentheses are not used, the rules for evaluating expressions lead to a value of $380.381
per square inch for a 10-inch pizza costing $11.95. The value ofprice/3.14159 is
multiplied by 10 twice—the operators/ and* have equal precedence and are evaluated
from left to right. In the exercises you’ll modify this program so that a user can enter the
number of slices as well as other information. Such changes make the program useful
in more settings.

June 7, 1999 10:10 owltex Sheet number 36 Page number 86magentablack

86 Chapter 3 Program Design and Implementation

3.4 Classes andTypes: An Introduction

The typesint anddouble are built-in types in C++, whereasstring is a class. In
object-oriented programming terminology, user-defined types are often calledclasses.
Although some people make a distinction between the termstypeandclass,we’ll treat
them as synonyms. The termclassis apt as indicated by the definition below from the
American Heritage Dictionary:

class1. A set, collection, group, or configuration containing members having or
thought to have at least one attribute in common

All variables of type, or class,string share certain attributes that determine how
they can be used in C++ programs. As we’ve seen in several examples, the typesint and
double represent numbers with different attributes. In the discussion that follows, I’ll
sometimes use the wordobject instead of the wordvariable. You should think of these
as synonyms. The use of classes in object-oriented programming gives programmers the
ability to write programs using off-the-shelf components. In this section we’ll examine
a programmer-defined class that simulates a computer-guided hot-air balloon as shown
in Program 3.6; the graphical output is shown as Figure 3.6.

Program 3.6 gfly.cpp

#include <iostream>

using namespace std;

#include "gballoon.h"

// auto-pilot guided balloon ascends, cruises, descends

int main()

{

Balloon b(MAROON);

int rise; // how high to fly (meters)

int duration; // how long to cruise (seconds)

cout << "Welcome to the windbag emporium." << endl;

cout << "You'll rise up, cruise a while, then descend." << endl;

cout << "How high (in meters) do you want to rise: ";

cin >> rise;

cout << "How long (in seconds) do you want to cruise: ";

cin >> duration;

b.Ascend(rise); // ascend to specified height

b.Cruise(duration); // cruise for specified time-steps

b.Descend(0); // come to earth

WaitForReturn(); // pause to see graphics window

return 0;

} gfly.cpp

June 7, 1999 10:10 owltex Sheet number 37 Page number 87magentablack

3.4 Classes and Types: An Introduction 87

Figure 3.6 Screendumps from a run of gfly.cpp; rise to 100 m., cruise for 200 secs.

You won’t know all the details of how the simulated balloon works, but you’ll still
be able to write a program that guides the balloon. This is also part of object-oriented
programming: using classes without knowing exactly how the classes are implemented,
that is, without knowing about the code used “behind the scenes.” Just as many people
drive cars without understanding exactly what a spark plug does or what a carburetor is,
programmers can use classes without knowing the details of how the classes are written.

A fundamental property of a class is that its behavior is defined by the functions
by which objects of the class are manipulated. Knowing about these functions should
be enough to write programs using the objects; intimate knowledge of how the class
is implemented is not necessary. This should make sense since you’ve worked with
double variables without knowledge of howdouble numbers are stored in a computer.

In gfly.cpp, an object (variable)b of type, or class,Balloon is defined and used to
simulate a hot-air balloon rising, cruising for a specified duration, and then descending
to earth. Running this program causes both agraphics window and aconsole window
to appear on your screen. The console window is the window we’ve been using in all
our programs so far. It is the window in which output is displayed and in which you

June 7, 1999 10:10 owltex Sheet number 38 Page number 88magentablack

88 Chapter 3 Program Design and Implementation

enter input when running a program. The graphics window shows the balloons actually
moving across part of the computer screen. The run below shows part of the text output
that appears in the console window. Snapshots of the graphics window at the beginning,
middle (before the balloon descends), and end of the run are shown in Figure 3.6.

Clearly there is something going on behind the scenes since the statements in Pro-
gram 3.6 do not appear to be able to generate the output shown. In subsequent chapters
we’ll study how theBalloon class works; at this point we’ll concentrate on under-
standing the three function calls in Program 3.6.

O U T P U T

Part of a run, the balloon rises and travels for seven seconds
prompt> gfly
Welcome to the windbag emporium.
You’ll rise up, cruise a while, then descend.
How high (in meters) do you want to rise: 100
How long (in seconds) do you want to cruise: 200

balloon #0 at (0, 0) **** rising to 50 meters
balloon #0 at (0, 0) burn
balloon #0 at (0, 10) burn
balloon #0 at (0, 20) burn
balloon #0 at (0, 30) burn
balloon #0 at (0, 40) burn

balloon #0 at (0, 50) ***** Cruise at 50 m. for 100 secs.
balloon #0 at (0, 50) wind-shear -1
balloon #0 at (1, 49)
balloon #0 at (2, 49)
balloon #0 at (3, 49) wind-shear -4
balloon #0 at (4, 45) wind-shear -1 too low! burn
balloon #0 at (5, 54) wind-shear -3
balloon #0 at (6, 51)
balloon #0 at (7, 51)

3.4.1 Member Functions

We have studied several programs with user-defined functions. Inmacinput.cpp, Pro-
gram 3.1, the functionVerse has twostring parameters. Inpizza.cpp, Program 3.5,
the functionSlicePrice has oneint parameter and onedouble parameter. In
Program 3.6,gfly.cpp, three function calls are made:Ascend, Cruise, andDescend. To-
gether, these functions define the behavior of aBalloon object. You can’t affect a

June 7, 1999 10:10 owltex Sheet number 39 Page number 89 magentablack

3.4 Classes and Types: An Introduction 89

balloon or change how it behaves except by using these three functions to access the
balloon. These functions are applied to the objectb as indicated by the “dot” syntax as
in

b.Ascend(rise);

which is read as “b dot ascend rise.” These functions are referred to asmember functions
in C++. In other object-oriented languages, functions that are used to manipulate objects
of a given class are often calledmethods. In this example, the objectb invokes its
member functionAscend with rise as the argument.

Note that definitions of these functions donot appear in the text of Program 3.6
before they are called. The prototypes for these functions are made accessible by the
statement

#include "gballoon.h"

which causes the information in theheader filegballoon.hto be included in Program 3.6.
The header file is an interface to the classBalloon . Sometimes aninterface diagram
is used to summarize how a class is accessed. The diagram shown in Figure 3.7 is
modeled after diagrams used by Grady Booch [Boo91]. Detailed information on the
Balloon class and all other classes that are provided for use with this book is found in
Howto G.

Each member function5 is shown in an oval, and the name of the class is shown in a
rectangle. Details about the member function prototypes as well as partial specification
for what the functions do are found in the header file. The interface diagram serves as a
reminder of what the names of the member functions are.

3.4.2 Reading Programs

One skill you should begin to learn is how to read a program and the supporting docu-
mentation for the program. Rich Pattis, the author ofKarel the Robot, argues that you
should read a program carefully, not like a book but like a contract you desperately want
to break. The idea is that you must pay close attention to the “fine print” and not just
read for plot or characterization. Sometimes such minute perusal is essential, but it is
often possible to gain a general understanding without such scrutiny.

The header filegballoon.his partially shown in Program 3.7. The private section of
the code is not shown here, but is available if you look at the header file with the code
that comes with this book.

Program 3.7 gballoonx.h

#ifndef _GBALLOON_H
#define _GBALLOON_H

5We will not use the functionsGetAltitude andGetLocation now but will return to them in a
later chapter.

June 7, 1999 10:10 owltex Sheet number 40 Page number 90 magentablack

90 Chapter 3 Program Design and Implementation

Ascend

Rise

Cruise

Balloon

gballoon.h

Member functions

Header file

Class name

GetLocation

GetAltitude

Figure 3.7 Interface diagram for Balloon class

// class for balloon manipulation using simulated auto pilot
// (based on an idea of Dave Reed) graphics version 3/22/99
//
// Ascend: rise to specified height in a sequence of burns
// Each burn raises the altitude by 10 meters
//
// Cruise: cruise for specified time-steps/seconds
// Random wind-shear can cause balloon to rise and fall,
// but vents and burns keep ballon within 5 m. of start altitude
//
// Descend: descend to specified height in sequence of vents
// Each vent drops the balloon 10 m. or to ground if < 10 m.
//
// int GetAltitude: returns altitude (in meters) (y-coord)
// int GetLocation: returns how many time steps/secs elapsed (x-coord)

#include "canvas.h"
#include "utils.h"

class Balloon
{

public:
Balloon(); // use default color (gold)
Balloon(color c); // balloon of specified color

void Ascend (int height); // ascend so altitude >= parameter
void Descend (int height); // descend so altitude <= parameter
void Cruise (int steps); // cruise for parameter time-steps
int GetAltitude() const; // returns height above ground (y-coord)
int GetLocation() const; // returns # time-steps (x-coord)

private:

June 7, 1999 10:10 owltex Sheet number 41 Page number 91magentablack

3.4 Classes and Types: An Introduction 91

void Burn();
void Vent();
int myAltitude;
int mySteps; // ... see gballoon.h for details

};
#endif gballoonx.h

There are three important details of this header file.

1. Comments provide users and readers of the header file with an explanation of what
the member functions do.

2. Member functions are declared in thepublic section of a class definition and may
be called by a user of the class as is shown in Program 3.6. We’ll discuss the
special member functionsBalloon later. The other functions, also shown in the
interface diagram in Figure 3.7, each have prototypes showing they take oneint
parameter except forGetAltitude andGetLocation .

3. Functions and data in theprivate section arenot accessible to a user of the class.
As a programmer using the class, you may glance at the private section, but the
compiler will prevent your program from accessing what’s in the private section.
Definitions in the private section are part of the class’s implementation,not part
of the class’s interface. As a user, orclient, of the class, your only concern should
be with the interface, or public section.

3.4.3 Private and Public

The declaration of the classBalloon in Program 3.7 shows that the parts of the class are
divided into two sections: the private and the public sections. The public section is how
an object of a class appears to the world, how the object behaves. Objects are manipulated
in programs like Program 3.6,gfly.cpp,by calling the object’s public member functions.
Private member functions6 exist only to help implement the public functions. Imagine
a company that publishes a list of its company phone numbers. For security reasons,
some numbers are accessible only by those calling from within the company building.
An outsider can get a copy of the company phonebook and see the inaccessible phone
numbers, but the company switchboard will allow only calls from within the building to
go through to the inaccessible numbers.

In general, the designation of what should be private and what should be public is
a difficult task. At this point, the key concept is that you access a class is via its public
functions. Some consider it a drawback of C++ that information in the private section
can be seen and read, but many languages suffer from the same problem. To make things
simple, you should think of the private section as invisible until you begin to design your
own classes.

There are often variables in the private section. These variables, such asmyAltitude ,
define an object’sstate—the information that determines the object’s characteristics. In

6Prototypes for private member functions likeBurn andAdjustAltitude are visible in the full
listing of gballoon.h, but are not shown in the partial listing ofgballoonx.hin Program 3.7.

June 7, 1999 10:10 owltex Sheet number 42 Page number 92magentablack

92 Chapter 3 Program Design and Implementation

the case of aBalloon object, the altitude of the balloon, represented by theint vari-
ablemyAltitude , is part of this state. Knowledge of the private section isn’t necessary
to understand how to useBalloon objects.

Donald Knuth (b. 1938)

Donald Knuth is perhaps the best-known computer scientist and is certainly the
foremost scholar of the field. His interests are wide-ranging, from organ play-

ing to word games to typography.
His first publication was forMAD
magazine, and his most famous is
the three-volume setThe Art of
Computer Programming.

In 1974 Knuth won the Turing
award for “major contributions to
the analysis of algorithms and the
design of programming languages.”
In his Turing award address he says:
The chief goal of my work as edu-
cator and author is to help people
learn how to write beautiful pro-
grams. My feeling is that when
we prepare a program, it can be
like composing poetry or music;
as Andrei Ershov has said, pro-
gramming can give us both intel-
lectual and emotional satisfaction,
because it is a real achievement
to master complexity and to estab-
lish a system of consistent rules.

In discussing what makes a program “good,” Knuth says:

In the first place, it’s especially good to have a program that works
correctly. Secondly it is often good to have a program that won’t be hard to
change, when the time for adaptation arises. Both of these goals are
achieved when the program is easily readable and understandable to a
person who knows the appropriate language.

Of computer programming Knuth says:

We have seen that computer programming is an art, because it applies
accumulated knowledge to the world, because it requires skill and
ingenuity, and especially because it produces objects of beauty.

For more information see [Sla87, AA85, ACM87].

June 7, 1999 10:10 owltex Sheet number 43 Page number 93magentablack

3.5 Compiling and Linking 93

executable program

client program

class implementation

COMPILE

object code

object code

LINK

gfly

int main()
{
 Balloon b;

 b.Ascend(30);
 return 0;
}

#include "gballoon.h"
gfly.cpp

void Balloon::Ascend(int height)
{
 cout << endl;
 cout << "***** (Height = ";
 cout << myAltitude << ")";

...

gballoon.cpp
#include "gballoon.h" balloon.o

110101110101010101011
110111100001...

01010100111010101011
01010110101...

gfly.o

Figure 3.8 Compiling and linking.

The public section describes the interface to an object, that is, what a client or user
needs to know to manipulate the object. In a car, the brake pedal is the interface to the
braking system. Pressing the pedal causes the car to stop, regardless of whether antilock
brakes, disc brakes, or drum brakes are used. In general, the public interface provides
“buttons” and “levers” that a user can push and pull to manipulate the object as well as
dials that can be used to read information about the object state.

All header files we’ll use in this book will have statements similar to the#ifndef
_BALLOON_Hstatement and others that begin with the # sign, as shown inballoon.h.
For the moment we’ll ignore the purpose of these statements; they’re necessary but are
not important to the discussion at this point. Theifndef statement makes it impossible
to include the same header file more than once in the same program. We’ll see why this
is important when programs get more complex.

3.5 Compiling and Linking
In Chapter 1 we discussed the differences betweensource code,written in a high-level
language like C++, and machine code, written in a low-level language specific to one
kind of computer. The compiler translates the source code into machine code. Another
step is almost always necessary in making an executable program. Code from libraries
needs to belinked together with the machine code to form an executable program. For
example, when the header file<iostream> is used, the code that implements input
and output streams must be linked. When the header file"balloon.h" is used, the
code that implements the balloon class must be linked. This process of compiling and
linking is illustrated in Figure 3.8.

The compiler translates source code into machine, orobject, code. The wordobject

June 7, 1999 10:10 owltex Sheet number 44 Page number 94magentablack

94 Chapter 3 Program Design and Implementation

here has nothing to do with object-oriented programming; think of it as a synonym
for machine code.In some environments object code has a.o extension; in other
environments it has a.obj extension. The different object files are linked together to
form an executable program. Sometimes you may not be aware that linking is taking
place. But when you develop more complex programs, you’ll encounter errors in the
linking stage. For example, if you try to compilegfly.cpp,Program 3.6, youmustlink-in
the code that implements the balloon class. The implementation of the class is declared
in gballoon.hand is found in the fileballoon.cpp. The corresponding object code,
as translated by the compiler, is inballoon.o. It’s often convenient to group several
object files together in a codelibrary. The library can be automatically linked into your
programs so that you don’t need to take steps to do this yourself.

3.12 Some pizza parlors cut larger pies into more pieces than small pies: a small piePause to Reflect

might have 8 pieces, a medium pie 10 pieces, and a large pie 12 pieces. Modify the
functionSlicePrice so that the number of slices is a parameter. The function
should have three parameters instead of two. How would the functionmain in
Program 3.5 change to accommodate the newSlicePrice ?

3.13 In pizza.cpp,what changes are necessary to allow the user to enter the diameter
of a pizza instead of the radius?

3.14 Based on the descriptions of the member functions given in the header fileballoonx.h
(Program 3.7), why is different output generated when Program 3.6 is run with
the same input values? (Run the program and see if the results are similar to those
shown above.)

3.15 What would the functionmain look like of a program that defines aBalloon
object, causes the balloon to ascend to 40 meters, cruises for 10 time-steps, ascends
to 80 meters, cruises for 20 time-steps, then descends to earth?

3.16 What do you think happens if the following two statements are the only statements
in a modified version of Program 3.6?

b.Ascend(50);
b.Ascend(30);

What would happen if these statements are reversed (first ascend to 30 meters,
then to 50)?

3.6 Chapter Review
In this chapter we studied the input/process/output model of computation and how input
is performed in C++ programs. We also studied numeric types and operations and a
user-defined class,Balloon . The importance of reading programs and documentation
in order to be able to modify and write programs was stressed.

June 7, 1999 10:10 owltex Sheet number 45 Page number 95magentablack

3.7 Exercises 95

Input is accomplished in C++ using the extraction operator,>>, and the standard
input stream,cin . These are accessible by including<iostream> .

Variables are memory locations with a name, a value, and a type. Variables must
be defined before being used in C++. Variables can be defined anywhere in a
program in C++, but we’ll define most variables at the beginning of the function
in which they’re used.

Numeric data represent different kinds of numbers in C++. We’ll use two types
for numeric data:int for integers anddouble for floating-point numbers (real
numbers, in mathematics). If you’re using a microcomputer, you should use the
type long (long int) instead ofint for quantities over 5,000.

Operators are used to form arithmetic expressions. The standard math operators in
C++ are+ - * / % . In order to write correct arithmetic expressions you must
understand operator precedence rules and the rules of expression evaluation.

Conversion takes place when anint value is converted to a correspondingdouble
value when arithmetic is done using both types together.

The typechar represents characters, characters are used to construct strings. In
C++ characters are indicated by single quotes, e.g.,’y’ and’Y’ .

Classes are types, but are defined by a programmer rather than being built into the
language likeint anddouble . The interface to a class is accessible by including
the right header file.

Member functions manipulate or operate on objects. Only member functions
defined in the public section of a class definition can be used in a client program.

A class is divided into two sections, the private section and the public section.
Programs that use the class access the class by the public member functions.

Executable programs are created by compiling source code into object code and
linking different object files together. Sometimes object files are stored together
in a code library.

3.7 Exercises
3.1 Write a program that prompts the user for a first name and a last name and that prints a

greeting for that person. For example:

O U T P U T

enter first name Owen
enter last name Astrachan
Hello Owen, you have an interesting last name: Astrachan.

3.2 Write a program that prompts the user for a quantity expressed in British thermal units
(BTU) and that converts it to Joules. The relationship between these two units of

June 7, 1999 10:10 owltex Sheet number 46 Page number 96magentablack

96 Chapter 3 Program Design and Implementation

measure is given by: 1 BTU = 1054.8 Joules.

3.3 Write a program that prompts the user for a quantity expressed in knots and that converts
it to miles per hour. The relationship needed is that 1 knot= 101.269 ft/min (and that
5,280 ft= 1 mile).

3.4 Write a program using the operators/ and %that prompts the user for a number of
seconds and then determines how many hours, minutes, and seconds this represents.
For example, 20,000 seconds represents 5 hours, 33 minutes, and 20 seconds.

3.5 Write a program that prints three verses of the classic song “One hundred bottles of
on the wall” as shown here.

O U T P U T
56 bottles of cola on the wall
56 bottles of cola
If one of those bottles should happen to fall
55 bottles of cola on the wall

The function’sprototype is

void BottleVerse(string beverage, int howMany)

The first parameter,beverage , is a string representing the kind of beverage for which
a song will be printed. The second parameter,howMany, is not a string but is a
C++ integer. The advantage of using anint rather than astring is that arithmetic
operations can be performed onint s. For example, given the functionBottleVerse
shown below, the function callBottleVerse("cola",56) would generate the
abbreviated verse shown here.

void BottleVerse(string beverage, int howMany)
{

cout << howMany << " bottles of "
<< beverage << ", ";

cout << "one fell, " << howMany - 1
<< " exist" << endl;

}

O U T P U T

56 bottles of cola, one fell, 55 exist

Note how thestring parameter is used to indicate the specific kind of beverage for
which a verse is to be printed. Theint parameter is used to specify how many bottles

June 7, 1999 10:10 owltex Sheet number 47 Page number 97magentablack

3.7 Exercises 97

Figure 3.9 Screendumps from a run of gfly2.cpp.

are “in use.” Note that becauseint parameters support arithmetic operations, the
expressionhowMany - 1 is always 1 less than the just-printed number of bottles. In
the program you write, three verses should be printed. The number of bottles in the
first verse can be any integer. Each subsequent verse should use 1 bottle less than the
previous verse. The user should be prompted for the kind of beverage used in the song.

3.6 Write a program that calculates pizza statistics, but takes both the number of slices into
account and the thickness of the pizza. The user should be prompted for both quantities.

3.7 Write a program that can be used as a simplistic trip planner. Prompt the user for the
number of car passengers, the length of the trip in miles, the capacity of the fuel tank in
gallons, the price of gas, and the miles per gallon that the car gets. The program should
calculate the number of tanks of gas needed, the total price of the gas needed, and the
price per passenger if the cost is split evenly.

3.8 Write a program that uses a variable of typeBalloon that performs the following
sequence of actions:

1. Prompt the user for an initial altitude and a number of time steps.
2. Cause the balloon to ascend to the specified altitude, then cruise for the specified

time steps.
3. Cause the balloon to descend to half the altitude it initially ascended to, then

cruise again for the specified time steps.
4. Cause the balloon to descend to earth (height= 0).

3.9 The programgfly2.cppis shown on the next page as Program 3.8. Several different
balloons are used in the same program. A screendump is shown in Figure 3.9. Modify
the program so the user is prompted for how high the first balloon should rise. The

June 7, 1999 10:10 owltex Sheet number 48 Page number 98magentablack

98 Chapter 3 Program Design and Implementation

other two balloons should rise to heights two and three times as high, respectively. The
user should be prompted for how far the balloons cruise. The balloons should cruise for
one-third this distance, then the functionWaitForReturn should be called so that
the user can see the balloons paused in flight. Repeat this last step twice so that the
balloons all fly for the specified time, but in three stages.

Program 3.8 gfly2.cpp

#include <iostream>
using namespace std;
#include "gballoon.h"

// illustrates graphical balloon class
// auto-pilot guided balloon ascends, cruises, descends

int main()
{

Balloon b1(MAROON);
Balloon b2(RED);
Balloon b3(BLUE);

WaitForReturn();

b1.Ascend(50); b1.Cruise(100);
b2.Ascend(100); b2.Cruise(160);
b3.Ascend(150); b3.Cruise(220);

WaitForReturn();

b1.Descend(20); b1.Cruise(100);
b2.Descend(20); b2.Cruise(100);
b3.Descend(20); b3.Cruise(100);

WaitForReturn();
return 0;

} gfly2.cpp

June 7, 1999 10:10 owltex Sheet number 17 Page number 99magentablack

4Control, Functions, and
Classes

If A equals success, then the formula isA = X + Y + Z.
X is work. Y is play. Z is keep your mouth shut.

Albert Einstein
quoted in SIGACT News, Vol. 25, No. 1, March 1994

Your “if” is the only peacemaker; much virtue in “if.”
William Shakespeare

As You Like It, V, iv

Leave all else to the gods.
Horace

Odes, Book I, Ode ix

In the programs studied in Chapter 3, statements executed one after the other to produce
output. This was true both when all statements were inmain or when control was
transferred frommain to another function, as it was inSlicePrice in pizza.cpp,
Program 3.5. However, code behind the scenes ingfly.cpp,Program 3.6, executed
differently in response to the user’s input and to a simulated wind-shear effect. Many
programs require nonsequential control. For example, transactions made at automatic
teller machines (ATMs) process an identification number and present you with a screen
of choices. The program controlling the ATM executes different code depending on
your choice—for example, either to deposit money or to get cash. This type of control is
calledselection:a different code segment is selected and executed based on interaction
with the user or on the value of a program variable.

Another type of program control isrepetition: the same sequence of C++ statements
is repeated, usually with different values for some of the variables in the statements. For
example, to print a yearly calendar your program could call aPrintMonth function
twelve times:

PrintMonth("January", 31);
//...
PrintMonth("November",30);
PrintMonth("December",31);

Here the name of the month and the number of days in the month are arguments passed
to PrintMonth . Alternatively, you could construct thePrintMonth function to
determine the name of the month as well as the number of days in the month given the
year and the number of the month. This could be done for the year 2000 by repeatedly
executing the following statement and assigning values of 1, 2, . . . , 12 tomonth :

PrintMonth(month, 2000);

99

June 7, 1999 10:10 owltex Sheet number 18 Page number 100magentablack

100 Chapter 4 Control, Functions, and Classes

In this chapter we’ll study methods for controlling how the statements in a program
are executed and how this control is used in constructing functions and classes. To do
this we’ll expand our study of arithmetic operators, introduced in the last chapter, to
include operators for other kinds of data. We’ll also study C++ statements that alter the
flow of control within a program. Finally, we’ll see how functions and classes can be
used as a foundation on which we’ll continue to build as we study how programs are
used to solve problems. At the end of the chapter you’ll be able to write the function
PrintMonth but you’ll also see a class that encapsulates the function so you don’t
have to write it.

4.1 The Assignment Operator
In the next three sections we’ll use a program that makes change using U.S. coins to
study relational and assignment statements and conditional execution. We’ll use the
same program as the basis for what could be a talking cash register.

A run ofchange.cpp,Program 4.1, shows how change is made using quarters, dimes,
nickels, and pennies. The program shows how values can be stored in variables using the
assignment operator,=. In previous programs the user entered values for variables, but
values can also be stored using the assignment operator. The code below assigns values
for the circumference and area of a circle according to the radius’ value, then prints the
values.1

double radius, area, circumference;
cout << "enter radius: ";
cin >> radius;
area = 3.14159*radius*radius;
circumference = 3.14159*2*radius;
cout << "are a = " << area

<< " circumferenc e = " << circumference << endl;

The assignment operator in Program 4.1 has two purposes, it assigns the number of
each type of coin needed to the appropriate variable (e.g.,quarters anddimes) and
it resets the value of the variableamount so that change will be correctly calculated.

Syntax: assignment operator =

variable= expression

The assignment operator= stores
values in variables. The expres-
sion on the right-hand side of the
= is evaluated, and this value is
stored in the memory location as-
sociated with the variable named

on the left-hand side of the=. The use of the equal sign to assign values to vari-
ables can cause confusion, especially if you say “equals” when you read an expression
like quarters = amount/25 . Operationally, the value on the right is stored in
quarters , and it would be better to writequarters ← amount / 25 . The as-
signment statement can be read as“The memory location of the variable quarters is

1The formula for the area of a circle isπr2, the formula for circumference is 2πr wherer is the radius.

June 7, 1999 10:10 owltex Sheet number 19 Page number 101magentablack

4.1 The Assignment Operator 101

assigned the value of amount/25,”but that is cumbersome (at best). If you can bring
yourself to say “gets” for=, you’ll find it easier to distinguish between= and== (the
boolean equality operator). Verbalizing the process by saying “Quarters gets amount
divided by twenty-five” will help you understand what’s happening when assignment
statements are executed.

Program 4.1 change.cpp

#include <iostream>

using namespace std;

// make change in U.S. coins

// Owen Astrachan, 03/17/99

int main()

{

int amount;

int quarters, dimes, nickels, pennies;

// input phase of program

cout << "make change in coins for what amount: ";

cin >> amount;

// calculate number of quarters, dimes, nickels, pennies

quarters = amount/25;

amount = amount − quarters ∗25;

dimes = amount/10;

amount = amount − dimes ∗10;

nickels = amount/5;

amount = amount − nickels ∗5;

pennies = amount;

// output phase of program

cout << "# quarters =\t" << quarters << endl;

cout << "# dimes =\t" << dimes << endl;

cout << "# nickels =\t" << nickels << endl;

cout << "# pennies =\t" << pennies << endl;

return 0;

} change.cpp

June 7, 1999 10:10 owltex Sheet number 20 Page number 102magentablack

102 Chapter 4 Control, Functions, and Classes

int amount;

87

Before execution

amount = amount - quarters*25;

int quarters;

After execution

int amount;

3

12

87 - 3*25

Figure 4.1 Updating a variable via assignment.

O U T P U T

prompt> change
make change in coins for what amount: 87
quarters = 3
dimes = 1
nickels = 0
pennies = 2
prompt> change
make change in coins for what amount: 42
quarters = 1
dimes = 1
nickels = 1
pennies = 2

The statementamount = amount - quarters*25 updates the value of the
variableamount . The right-hand side of the statement is evaluated first. The value
of this expression,amount - quarters*25 , is stored in the variable on the left-
hand side of the assignment statement—that is, the variableamount . This process is
diagrammed in Fig. 4.1 whenamount is 87.

A sequence of assignments can be chained together in one statement:

x = y = z = 13;

This statement assigns the value 13 to the variablesx , y , and z . The statement is
interpreted asx = (y = (z = 13)) . The value of the expression(z = 13) is
13, the value assigned toz . This value is assigned toy , and the result of the assignment
to y is 13. This result of the expression(y = 13) is then assigned tox . Parentheses
aren’t needed in the statementx = y = z = 13 , because the assignment operator=
is right-associative: in the absence of parentheses the rightmost= is evaluated first.

June 7, 1999 10:10 owltex Sheet number 21 Page number 103magentablack

4.2 Choices and Conditional Execution 103

Table 4.1 Escape sequences in C++

escape sequence name ASCII

\n newline NL (LF)
\t horizontal tab HT
\v vertical tab VT
\b backspace BS
\r carriage return CR
\f form feed FF
\a alert (bell) BEL
\\ backslash \
\? question mark ?
\’ single quote (apostrophe) ’
\" double quote "

In contrast, the subtraction operator isleft-associative,so the expression8 - 3 - 2
is equal to 3, because it is evaluated as(8 - 3) - 2 rather than8 - (3 - 2) :
here the leftmost subtraction is evaluated first. Most operators are left-associative; the
associativity of all C++ operators is shown in Table A.4 in Howto A.

Escape Sequences. The output ofchange.cppis aligned using a tab character’ \t’ .
The tab character prints one tab position, ensuring that the amounts of each kind of coin
line up. The backslash andt to print the tab character are an example of anescape
sequence.Common escape sequences are given in Table 4.1. The table is repeated as
Table A.5 in Howto A. Each escape sequence prints a single character. For example,
the following statement prints the four-character string" \’" .

cout << "\"\\\’\"" << endl;

4.2 Choices and Conditional Execution

I shall set forth from somewhere, I shall make the reckless choice
Robert Frost

The Sound of the Trees

In this section we’ll alter Program 4.1 so that it only prints the coins used in giv-
ing change. We’ll also move the output part of the program to a separate function.
By parameterizing the output and using a function, we make it simpler to incorporate
modifications to the original program.

June 7, 1999 10:10 owltex Sheet number 22 Page number 104 magentablack

104 Chapter 4 Control, Functions, and Classes

Program Tip 4.1: Avoid duplicating the same code in several places in
the same program. Programs will be modified. If you need to make the same
change in more than one place in your code it is very likely that you will leave some
changes out, or make the changes inconsistently. In many programs more time is spent in
program maintenancethan inprogram development. Often, moving duplicated code
to a function and calling the function several times helps avoid code duplication.

Program 4.2 change2.cpp

#include <iostream>
#include <string>
using namespace std;

// make change in U.S. coins
// Owen Astrachan, 03/17/99

void Output(string coin, int amount)
{

if (amount > 0)
{ cout << "# " << coin << " =\t" << amount << endl;
}

}

int main()
{

int amount;
int quarters, dimes, nickels, pennies;

// input phase of program

cout << "make change in coins for what amount: ";
cin >> amount;

// calculate number of quarters, dimes, nickels, pennies

quarters = amount/25;
amount = amount − quarters ∗25;

dimes = amount/10;
amount = amount − dimes ∗10;

nickels = amount/5;
amount = amount − nickels ∗5;

pennies = amount;

// output phase of program

Output("quarters",quarters);
Output("dimes",dimes);

June 7, 1999 10:10 owltex Sheet number 23 Page number 105magentablack

4.2 Choices and Conditional Execution 105

Output("nickels",nickels);
Output("pennies",pennies);

return 0;
} change2.cpp

O U T P U T

prompt> change2
make change in coins for what amount: 87
quarters = 3
dimes = 1
pennies = 2

In the functionOutput anif statement is used forconditional execution—that is,if
makes the execution depend on the value ofamount . In the C++ statement

if (amount > 0)
{ cout << "# " << coin << " =\t" << amount << endl;
}

thetest expression(amount > 0) controls thecout << statement so that output
appears only if the value of theint variableamount is greater than zero.

4.2.1 The if/else Statement

An if statement contains a test expression and abody: a group of statements within
curly braces{ and}. These statements are executedonly when the test expression, also
called acondition or aguard, is true. The testmust

Syntax: if statement

if (test expression)
{

statement list;
}

be enclosed by parentheses. In
the next section we’ll explore op-
erators that can be used in tests,
including<, <=, >, and>=. The
body of theif statement can con-
tain any number of statements.
The curly braces that are used to
delimit the body of theif state-

ment aren’t needed when there’s only one statement in the body, but we’ll always use
them as part of adefensive programmingstrategy designed to ward off bugs before
they appear.

June 7, 1999 10:10 owltex Sheet number 24 Page number 106magentablack

106 Chapter 4 Control, Functions, and Classes

Program 4.3 shows that anif statement can have anelse part, which also controls,
or guards, a body of statements within curly braces{ and} that is executed when the test
expression is false. Any kind of statement can appear

Syntax: if/else statement

if (test expression)
{

statement list;
}
else
{

statement list;
}

in the body of anif/else state-
ment, including otherif/else
statements. We’ll discuss format-
ting conventions for writing such
code after we explore the other
kinds of operators that can be used
in the test expressions that are
part of if statements. You may
find yourself writing code with
anempty if orelse body: one
with no statements. This can al-
ways be avoided by changing the

test used with theif using rules of logic we’ll discuss in Section 4.7.
In Program 4.3, if the value ofresponse is something other than"yes" , then the

cout << statements associated with theif section are not executed, and the statements
in theelse section of the program are executed instead. In particular, if the user enters
"yeah" or "yup" , then the program takes the same action as when the user enters
"no" . Furthermore, the answer"Yes" is also treated like the answer"no" rather than
"yes" , because a capital letter is different from the equivalent lower-case letter. As we
saw in Program 4.1,change.cpp,the rules of C++ donot require anelse section for
everyif .

Program 4.3 broccoli.cpp

#include <iostream>
#include <string>
using namespace std;

// illustrates use of if-else statement

int main()
{

string response;
cout << "Do you like broccoli [yes/no]> ";
cin >> response;
if ("yes" == response)
{ cout << "Green vegetables are good for you" << endl;

cout << "Broccoli is good in stir-fry as well" << endl;
}
else
{ cout << "De gustibus non disputandum" << endl;

cout << "(There is no accounting for taste)" << endl;
}
return 0;

} broccoli.cpp

June 7, 1999 10:10 owltex Sheet number 25 Page number 107magentablack

4.3 Operators 107

O U T P U T

prompt> broccoli
Do you like broccoli [yes/no]> yes
Green vegetables are good for you
Broccoli is good in stir-fry as well

prompt> broccoli
Do you like broccoli [yes/no]> no
De gustibus non disputandum
(There is no accounting for taste)

Theelse section in Program 4.3 could be removed, leaving the following:

int main()
{

string response;
cout << "Do you like broccoli [yes/no]> ";
cin >> response;
if ("yes" == response)
{ cout << "Green vegetables are good for you" << endl;

cout << "Broccoli is good in stir-fry as well" << endl;
}
return 0;

}

In this modified program, if the user enters any string other than"yes" , nothing is
printed.

ProgramTip 4.2: Use an if statement to guard a sequence of statements
and an if/else statement to choose between two sequences. The if
statement solves the problem of guarding the sequence of statements in the body of
the if so that these statements are executed only when a certain condition holds. The
if/else statement solves the problem of choosing between two different sequences.
Later in the chapter we’ll see how to choose between more than two sequences using
cascadedif/else statements.

4.3 Operators
We’ve seen arithmetic operators such as+, * , %, the assignment operator=, and the<
operator used inif /else statements. In this section we’ll study the other operators
available in C++. You’ll use all these operators in constructing C++ programs.

June 7, 1999 10:10 owltex Sheet number 26 Page number 108magentablack

108 Chapter 4 Control, Functions, and Classes

Table 4.2 The relational operators

symbol meaning example

== equal to if ("yes" == response)
> greater than if (salary > 30000)
< less than if (0 < salary)
! = not equal to if ("yes" != response)
>= greater than or equal to≥ if (salary >= 10000)
<= less than or equal to≤ if (20000 <= salary)

4.3.1 Relational Operators

Comparisons are odious.
John Fortescue

De Laudibus Legum Angliae, 1471

The expressions that form the test of anif statement are built from different operators.
In this section we’ll study therelational operators, which are used to determine the
relationships between different values. Relational operators are listed in Table 4.2.

The parenthesized expression that serves as the test of anif statement can use any
of the relational operators shown in Table 4.2. The parenthesized expressions evaluate to
true or false and are calledbooleanexpressions, after the mathematician George Boole.
Boolean expressions have one of two values:true or false. In C++ programs, any
nonzero value is considered “true,” and zero-valued expressions are considered “false.”
The C++ typebool is used for variables and expressions with one of two values:trueand
false. Althoughbool was first approved as part of C++ in 1994, some older compilers
do not support it.2 We’ll use true andfalse as values rather than zero and one, but
remember that zero is the value used for false in C++ .

The relational operators< and> behave as you might expect when used withint
anddouble values. In the following statement the variablesalary can be anint
or adouble . In either case the phrase about minimum wage is printed if the value of
salary is less than 10.0.

2If you’re using a compiler that doesn’t supportbool as a built-in type, you can use the header
file bool.h supplied with the code from this book via#include"bool.h" to get access to a
programmer-defined version of typebool .

June 7, 1999 10:10 owltex Sheet number 27 Page number 109magentablack

4.3 Operators 109

if (salary < 10.0)
{ cout << "you make below minimum wage" << endl;
}

Whenstring values are compared, the behavior of the inequality operators< and>
is based on a dictionary order, sometimes calledlexicographical order:

string word;
cout << "enter a word: ";
cin >> word;
if (word < "middle")
{ cout << word << " comes before middle" << endl;
}

In the foregoing code fragment, entering the word"apple" generates the following
output.

O U T P U T

apple comes before middle

Entering the word"zebra" would cause the test(word < "middle") to evalu-
ate to false, so nothing is printed. The comparison of strings is based on the order in which
the strings would appear in a dictionary, so that"A" comes before"Z" . Sometimes
the behavior of string comparisons is unexpected. Entering"Zebra" , for example,
generates this output:

O U T P U T

Zebra comes before middle

This happens because capital letters come before lower-case letters in the ordering
of characters used on most computers.3

To see how relational operators are evaluated, consider the output of these statements:

cout << (13 < 5) << endl;
cout << (5 + 1 < 6 * 2) << endl;

3We’ll explore the ASCII character set, which is used to determine this ordering, in Chapter 9.

June 7, 1999 10:10 owltex Sheet number 28 Page number 110magentablack

110 Chapter 4 Control, Functions, and Classes

O U T P U T

0
1

The value of13 < 5 is false, which is zero; and the value of6 < 12 is true, which
is one. (In Howto B, a standard method for printing bool values astrue andfalse ,
rather than 1 and 0, is shown.) In the last output statement, the arithmetic operations are
executed first, because they have higher precedence than relational operators. You’ve
seen precedence used with arithmetic operators; for example, multiplication has higher
precedence than addition, so that 3+ 4× 2 = 11. You can use parentheses to bypass
the normal precedence rules. The expression(3+ 4)× 2 evaluates to 14 rather than 11.
A table showing the relative precedence of all C++ operators can be found in Table A.4
in Howto A.

Program Tip 4.3: When you write expressions in C++ programs, use
parentheses liberally. Trying to uncover precedence errors in a complex expres-
sion can be very frustrating. Looking for precedence errors is often the last place you’ll
look when trying to debug a program. As part of defensive programming, use parentheses
rather than relying exclusively on operator precedence.

Because execution of anif statement depends only on whether the test is true or
false (nonzero or zero), the following code is legal in C++ :

if (6 + 3 - 9)
{ cout << "great minds think alike" << endl;
}
else
{ cout << "fools seldom differ" << endl;
}

These statements cause the string “fools seldom differ” to be output, because the expres-
sion(6+ 3− 9) evaluates to 0, which is false in C++ . Although this code is legal, it is
not necessarily good code. It is often better to make the comparison explicit, as in

if (x != 0)
{ DoSomething();
}

rather than relying on the equivalence of “true” and any nonzero value:

if (x)
{ DoSomething();
}

June 7, 1999 10:10 owltex Sheet number 29 Page number 111magentablack

4.3 Operators 111

which is equivalent in effect, but not in clarity. There are situations, however, in which
the second style of programming is clearer. When such a situation arises, I’ll point it
out.

4.3.2 Logical Operators

As we will see (for example, inusemath.cpp,Program 4.6, it can be necessary to check
that a value you enter is in a certain range (e.g., not negative). Inchange.cpp,Program 4.1,
the program should check to ensure that the user’s input is valid (e.g., between 0 and
99). The following code implements this kind of check.

if (choice < 0)
{ cout << "illegal choice" << endl;
}
else if (choice > 99)
{ cout << "illegal choice" << endl;
}
else
{ // choice ok, continue
}

This code has the drawback of duplicating the code that’s executed when the user enters
an illegal choice. Suppose a future version of the program will require the user to reenter
the choice. Modifying this code fragment would require adding new code in two places,
making the likelihood of introducing an error larger. In addition, when code is duplicated,
it is often difficult to make the same modifications everywhere the code appears. Logical
operators allow boolean expressions to be combined, as follows:

if (choic e < 0 || choice > 99)
{ cout << "illegal choice" << endl;
}
else
{ // choice ok, continue
}

The test now reads, “If choice is less than zero or choice is greater than ninety-nine.”
The test is true (nonzero) when eitherchoice < 0 or choice > 99 . The operator
|| is the logical or operator. It evaluates to true when either or both of its boolean
arguments is true. Thelogical and operator&& operates on two boolean expressions
and returns true only when both are true.

The preceding test for valid input can be rewritten using logical and as follows:

if (0 <= choice && choice <= 99)
{ // choice ok, continue
}
else
{ cout << "illegal choice" << endl;
}

June 7, 1999 10:10 owltex Sheet number 30 Page number 112magentablack

112 Chapter 4 Control, Functions, and Classes

Table 4.3 Truth table for logical operators

A B A || B A && B !A
false false false false true
false true true false true
true false true false false
true true true true false

Be careful when translating English or mathematics into C++ code. The phrase
“choice is between 0 and 99” is often written in mathematics as 0≤ choice≤ 99. In
C++, relational operators are left-associative, so the followingif test, coded as it would
be in mathematics, will evaluate to true foreveryvalue ofchoice .

if (0 <= choice <= 99)
{ // choice ok, continue
}

Since the leftmost<= is evaluated first (the relational operators, like all binary operators,
are left associative), the test is equivalent to((0 <= choice) <= 99) and the
value of the expression(0 <= choice) is either false (0) or true (1), both of which
are less than or equal to 99, thus satisfying the second test.

There is also a unary operator! that works with boolean expressions. This is the
logical not operator. The value of!expression is false if the value ofexpression
is true, and true when the value ofexpression is false. The two expressions below
are equivalent.

x != y !(x == y)

Because! has a very high precedence, the parentheses in the expression on the right are
necessary (see Table A.4).

4.3.3 Short-Circuit Evaluation

The following statement is designed to print a message when a grade-point average is
higher than 90%:

if (scoreTotal/numScores > 0.90)
{ cout << "excellent! very good work" << endl;
}

This code segment might cause a program to exit abnormally4 if the value ofnumScores
is zero, because the result of division by zero is not defined. The abnormal exit can be
avoided by using anothernestedif statement (the approach required in languages such
as Pascal):

4The common phrase for such an occurrence isbomb,as in “The program bombed.” If you follow good
defensive programming practices, your programs should not bomb.

June 7, 1999 10:10 owltex Sheet number 31 Page number 113magentablack

4.3 Operators 113

if (numScores != 0)
{

if (scoreTotal/numScores > 0.90)
{ cout << "excellent! very good work" << endl;
}

}

However, in languages like C, C++, and Java another approach is possible:

if (numScores != 0 && scoreTotal/numScores > 0.90)
{ cout << "excellent! very good work" << endl;
}

The subexpressions in an expression formed by the logical operators&& and || are
evaluated from left to right. Furthermore, the evaluation automatically stops as soon as
the value of the entire test expression can be determined. In the present example, if the
expressionnumScores != 0 is false (so thatnumScores is equal to 0), the entire
expression must be false, because when&& is used to combine two boolean subexpres-
sions, both subexpressions must be true (nonzero) for the entire expression to be true (see
Table 4.3). WhennumScores == 0 , the expressionscoreTotal/numScores
> 0.90 will not be evaluated, avoiding the potential division by zero.

Similarly, when|| is used, the second subexpression will not be evaluated if the first
is true, because in this case the entire expression must be true—only one subexpression
needs to be true for an entire expression to be true with|| . For example, in the code

if (choic e < 1 || choice > 3)
{ cout << "illegal choice" << endl;
}

the expressionchoice > 3 is not evaluated whenchoice is 0. In this case,choice
< 1 is true, so the entire expression must be true.

The termshort-circuit evaluation describes this method of evaluating boolean ex-
pressions. The short circuit occurs when some subexpression is not evaluated because
the value of the entire expression is already determined. We’ll make extensive use of
short-circuit evaluation (also called “lazy evaluation”) in writing C++ programs.

4.3.4 Arithmetic Assignment Operators

C++ has several operators that serve as “contractions,” in the grammatical sense that
“I’ve” is a contraction of “I have.” These operators aren’t necessary, but they can
simplify and shorten code that changes the value of a variable. For example, several
statements inchange.cpp,Program 4.1, alter the value ofamount ; these statements are
similar to the following:

amount = amount - quarters*25;

This statement can be rewritten using the operator-= .

amount -= quarters*25;

June 7, 1999 10:10 owltex Sheet number 32 Page number 114magentablack

114 Chapter 4 Control, Functions, and Classes

Table 4.4 Arithmetic assignment operators.

symbol example equivalent
+= x += 1; x = x + 1;
*= doub *= 2; doub = doub * 2;
-= n -= 5; n = n - 5;
/= third /= 3; third = third / 3;
%= odd %= 2; odd = odd % 2;

Similarly, the statementnumber = number + 1 , which increments the value of
number by one, can be abbreviated using the+= operator: number += 1; . In
general, the statementvariable= variable+ expression; has exactly the same effect as
the statementvariable+= expression;

Using such assignment operators can make programs easier to read. Often a long
variable name appearing on both sides of an assignment operator= will cause a lengthy
expression to wrap to the next line and be difficult to read. The arithmetic assignment
operators summarized in Table 4.4 can alleviate this problem.

It’s not always possible to use an arithmetic assignment operator as a contraction
when a variable appears on both the left and right sides of an assignment statement. The
variable must occur as thefirst subexpression on the right side. For example, ifx has
the value zero or one, the statementx = 1 - x changes the value from one to zero
and vice versa. This statement cannot be abbreviated using the arithmetic assignment
operators.

4.4 Block Statements and Defensive
Programming

Following certain programming conventions can lead to programs that are more under-
standable (for you and other people reading your code) and more easily developed.

In this book we follow the convention of usingblock delimiters, { and}, for each
part of anif /else statement. This is shown inchange2.cpp,Program 4.2. It is possible
to write theif statement in Program 4.2 without block delimiters:

if (amount > 0)
cout << "# " << coin << " =\t" << amount << endl;

The test of theif statement controls the output statement so that it is executed only
whenamount is greater than zero.

As we’ve seen, it is useful to group several statements together so that all are ex-
ecuted precisely when the test of anif /else statement is true. To do this, ablock
(or compound) statement is used. A block statement is a sequence of one or more
statements enclosed by curly braces, as shown in Program 4.2. If no braces are used, a
program may compile and run, but its behavior might be other than expected. Consider
the following program fragment:

June 7, 1999 10:10 owltex Sheet number 33 Page number 115magentablack

4.4 Block Statements and Defensive Programming 115

int salary;
cout << "enter salary ";
cin >> salary;
if (salary > 30000)

cout << salary << " is a lot to earn " << endl;
cout << salary*0.55 << " is a lot of taxes << endl;

cout << "enter \# of hours worked ";
...

Two sample runs of this fragment follow:

O U T P U T

enter salary 31000
31000 is a lot to earn
17050.00 is a lot of taxes
enter # of hours worked
…
enter salary 15000
8250.00 is a lot of taxes
enter # of hours worked
…

Note that the indentation of the program fragment might suggest to someone readingStumbling Block

the program (but not to the compiler!) that the “lot of taxes” message should be printed
only when the salary is greater than 30,000. However, the taxation message isalways
printed. The compiler interprets the code fragment as though it were written this way:

int salary;
cout << "enter salary ";
cin >> salary;
if (salary > 30000)
{ cout << salary << " is a lot to earn " << endl;
}
cout << salary*0.55 << " is a lot of taxes " << endl;
cout << "enter # of hours worked ";

When 15000 is entered, the testsalary > 30000 evaluates to false, and the statement
about “a lot to earn” is not printed. The statement about a “lot of taxes”, however, is
printed, because it is not controlled by the test.

Indentation and spacing are ignored by the compiler, but they are important for people
reading and developing programs. For this reason, we will always employ braces{} and
a block statement when usingif /else statements, even if the block statement consists
of only a single statement.

June 7, 1999 10:10 owltex Sheet number 34 Page number 116magentablack

116 Chapter 4 Control, Functions, and Classes

4.4.1 Defensive Programming Conventions

This convention of always using braces is an example of adefensive programming
strategy: writing code to minimize the potential for causing errors. Suppose you decide
to add another statement to be controlled by the test of anif statement that is initially
written without curly braces. When the new statement is added, it will be necessary
to include the curly braces that delimit a block statement, but that is easy to forget to
do. Since the missing braces can cause a hard-to-detect error, we adopt the policy of
including them even when there is only a single statement controlled by the test.

ProgramTip 4.4: Adopt coding conventions that make it easier to modify
programs. You’ll rarely get a program right the first time. Once a program works
correctly, it’s very likely that you’ll need to make modifications so that the program works
in contexts unanticipated when first designed and written. More time is spent modifying
programs than writing them first, so strive to make modification as simple as possible.

Program 4.4 noindent.cpp

#include <iostream>

#include <string>

using namespace std;

int main() { string response; cout

<< "Do you like C++ programming [yes/no]> "; cin >> response;

if ("yes" == response) { cout <<

"It's more than an adventure, it can be a job"

<< endl; } else { cout

<< "Perhaps in time you will" << endl; } return 0;}
noindent.cpp

In this book the left curly brace{ always follows anif /else on the next line after
the line on which theif or else occurs. The right curly brace} is indented the same
level as theif /else to which it corresponds. Other indentation schemes are possible;
one common convention follows, this is calledK&R style after the originators of C,
Kernighan and Ritchie.

if ("yes" == response) {
cout << "Green vegetables are good for you" << endl;
cout << "Broccoli is good in stir-fry as well" << endl;

}

You can adopt either convention, but your boss (professor, instructor, etc.) may require
a certain style. If you’re consistent, the particular style isn’t that important, although it’s
often the cause of many arguments between supporters of different indenting styles.

June 7, 1999 10:10 owltex Sheet number 35 Page number 117magentablack

4.4 Block Statements and Defensive Programming 117

In this book we usually include the first statement between curly braces on the same
line as the first (left) brace. If you use this style of indenting, you will not press return
after you type the left curly brace{ . However, we sometimes do press return, which
usually makes programs easier to read because of the extra white space5.

To see that indentation makes a difference, note thatnoindent.cpp,Program 4.4,
compiles and executes without error but that no consistent indentation style is used.
Notice that the program is much harder for people to read, although the computer “reads”
it with no trouble.

Problems with = and ==. Typing= when you mean to type== can lead to hard-to-locateStumbling Block

bugs in a program. A coding convention outlined here can help to alleviate these bugs,
but you must keep the distinction between= and== in mind when writing code. Some
compilers are helpful in this regard and issue warnings about “potentially unintended
assignments.”

The following program fragment is intended to print a message depending on a
person’s age:

string age;
cout << "are you young or old [young/old]: ";
cin >> age;
if (age = "young")
{ cout << "not for long, time flies when you’re having fun";
}
else
{ cout << "hopefully you’re young at heart";
}

If the user entersold , the message beginning “not for long…” is printed. Can you see
why this is the case? The test of theif /else statement should be read as “if age gets
young.” The string literal"young" is assigned toage , and the result of the assignment
is nonzero (it is"young" , the value assigned toage). Because anything nonzero is
regarded as true, the statement within the scope of theif test is executed.

You can often prevent such errors by putting constants on the left of comparisons as
follows:

if ("young" == age)
// do something

If the assignment operator is used by mistake, as inif ("young" = age) , the
compiler will generate an error.6 It is much better to have the compiler generate an error
message than to have a program with a bug in it.

Putting constants on the left in tests is a good defensive programming style that can
help to trap potential bugs and eliminate them before they creep into your programs.

5In a book, space is more of a premium than it is on disk—hence the style of indenting that does not
use the return. You should make sure you follow the indenting style used by your boss, supervisor, or
programming role model.
6On one compiler the error message “error assignment to constant” is generated. On another, the less
clear message “sorry, not implemented: initialization of array from dissimilar array type” is generated.

June 7, 1999 10:10 owltex Sheet number 36 Page number 118magentablack

118 Chapter 4 Control, Functions, and Classes

4.4.2 Cascaded if /else Statements

Sometimes a sequence ofif /else statements is used to differentiate among several
possible values of a single expression. Such a sequence is calledcascaded.An example
is shown inmonthdays.cpp,Program 4.5.

Program 4.5 monthdays.cpp

#include <iostream>
#include <string>
using namespace std;

// illustrates cascaded if/else statements

int main()
{

string month;
int days = 31; // default value of 31 days/month

cout << "enter a month (lowercase letters): ";
cin >> month;

// 30 days hath september, april, june, and november

if ("september" == month)
{ days = 30;
}
else if ("april" == month)
{ days = 30;
}
else if ("june" == month)
{ days = 30;
}
else if ("november" == month)
{ days = 30;
}
else if ("february" == month)
{ days = 28;
}
cout << month << " has " << days << " days" << endl;

return 0;
} monthdays.cpp

It’s possible to write the code inmonthdays.cppusingnestedif /else statements as
follows. This results in code that is much more difficult to read than code using cascaded
if / else statements. Whenever a sequence ofif /else statements like this is used to
test the value of one variable repeatedly, we’ll use cascadedif /else statements. The
rule of using a block statement after anelse is not (strictly speaking) followed, but
the code is much easier to read. Because a block statement follows theif , we’re not
violating the spirit of our coding convention.

June 7, 1999 10:10 owltex Sheet number 37 Page number 119magentablack

4.4 Block Statements and Defensive Programming 119

if ("april" == month)
{ days = 30;
}
else
{

if ("june" == month)
{ days = 30;
}
else
{

if ("november" == month)
{ days = 30;
}
else
{

if ("february" == month)
{ days = 28;
}

}
}

}

O U T P U T

prompt> days4
enter a month (lowercase letters): january
january has 31 days
prompt> days4
enter a month (lowercase letters): april
april has 30 days
prompt> days4
enter a month (lowercase letters): April
April has 31 days

4.1 The statements alteringamount in change.cpp,Program 4.1, can be written usingPause to Reflect

the mod operator%. If amount = 38 , thenamount/25 == 1 , andamount
% 25 == 13, which is the same value as38 - 25*1 . Rewrite the program
using the mod operator. Try to use an arithmetic assignment operator.

4.2 Describe the output of Program 4.3 if the user enters the string"Yes" , the string
"yup" , or the string"none of your business" .

4.3 Why is days given a “default” value of 31 inmonthdays.cpp,Program 4.5?

June 7, 1999 10:10 owltex Sheet number 38 Page number 120magentablack

120 Chapter 4 Control, Functions, and Classes

4.4 How canmonthdays.cpp,Program 4.5, be modified to take leap years into account?

4.5 Modify broccoli.cpp,Program 4.3, to include anif statement in theelse clause
so that the “taste” lines are printed only if the user enters the string"no" . Thus
you might have lines such as

if ("yes" == response)
{
}
else if ("no" == response)
{
}

4.6 Using the previous modification, add a finalelse clause (with noif statement)
so that the output might be as follows:

O U T P U T

prompt> broccoli

Do you like broccoli [yes/no]> no

De gustibus non disputandum

(There is no accounting for good taste)

prompt> broccoli

Do you like broccoli [yes/no]> nope

Sorry, only responses of yes and no are recognized

4.7 Write a sequence ofif /else statements using> and, perhaps,< that prints a
message according to a grade between 0 and 100, entered by the user. For example,
high grades might get one message and low grades might get another message.

4.8 Explain why the output of the first statement below is 0, but the output of the
second is 45:

cout << (9 * 3 < 4 * 5) << endl;
cout << (9 * (3 < 4) * 5) << endl;

Why are the parentheses needed?

4.9 What is output by each of the following statements (why?)

cout << (9 * 5 < 45) << endl;
cout << (9*5 < 45 < 30) << endl;

June 7, 1999 10:10 owltex Sheet number 39 Page number 121magentablack

4.4 Block Statements and Defensive Programming 121

4.10 Write a code fragment in which astring variablegrade is assigned one of three
states:"High Pass" , "Pass" , and"Fail" according to whether an input
integer grade is between 80 and 100, between 60 and 80, or below 60, respectively.
It may be useful to write the fragment so that a message is printed and then modify
it so that astring variable is assigned a value.

The Dangling Else Problem. Using the block delimiters{ and} in all cases when writingStumbling Block

if /else statements can prevent errors that are very difficult to find because the inden-
tation, which conveys meaning to a reader of the program, is ignored by the compiler
when code is generated. Using block delimiters also helps in avoiding a problem that
results from a potential ambiguity in computer languages such as C++ that useif /else
statements (C and Pascal have the same ambiguity, for example).

The following code fragment attempts to differentiate odd numbers less than zero
from other numbers. The indentation of the code conveys this meaning, but the code
doesn’t execute as intended:

if (x % 2 == 1)
if (x < 0)

cout << " number is odd and less than zero" << endl;
else

cout << " number is even " << endl;

What happens if theint objectx has the value 13? The indentation seems to hint that
nothing will be printed. In fact, the string literal"number is even" will be printed
if this code segment is executed whenx is 13. The segment is read by the compiler as
though it is indented as follows:

if (x % 2 == 1)
if (x < 0)

cout << " number is odd and less than zero" << endl;
else

cout << " number is even " << endl;

The use of braces makes the intended use correspond to what happens. Nothing is printed
whenx has the value 13 in

if (x % 2 == 1)
{ if (x < 0)

cout << " number is odd and less than zero" << endl;
}
else
{ cout << " number is even " << endl;
}

As we have noted before, the indentation used in a program is to assist the human reader.
The computer doesn’t require a consistent or meaningful indentation scheme. Misleading
indentation can lead to hard-to-find bugs where the human sees what is intended rather
than what exists.

June 7, 1999 10:10 owltex Sheet number 40 Page number 122magentablack

122 Chapter 4 Control, Functions, and Classes

One rule to remember from this example is that anelse always corresponds to the
most recentif . Without this rule there is ambiguity as to whichif theelse belongs;
this is known as thedangling-elseproblem. Always employ curly braces{ and} when
using block statements withif /else statements (and later with looping constructs). If
braces are always used, there is no ambiguity, because the braces serve to delimit the
scope of anif test.

Claude Shannon (b. 1916)

Claude Shannon foundedinformation theory —a subfield of computer science
that is used today in developing methods for encrypting information. Encryption

is used to store data in a secure manner so
that the information can be read only by
designated people.

In his 1937 master’s thesis, Shannon
laid the foundation on which modern com-
puters are built by equating Boolean logic
with electronic switches. This work en-
abled hardware designers to design, build,
and test circuits that could perform logi-
cal as well as arithmetic operations. In an
interview in [Hor92], Shannon responds to
the comment that his thesis is “possibly the
most important master’s thesis in the cen-
tury” with “It just happened that no one
else was familiar with both those fields at
the same time.” He then adds a wonderful
non sequitur: “I’ve always loved that word
‘Boolean.’ ” Shannon is fond of juggling
and riding unicycles. Among his inven-
tions are a juggling “dummy” that looks

like W.C. Fields and a computer THROBAC: Thrifty Roman Numeral Backward
Computer.

Although much of Shannon’s work has led to significant advances in the
theory of communication, he says:

I’ve always pursued my interests without much regard for financial value or
the value to the world; I’ve spent lots of time on totally useless things.

Shannon’s favorite food is vanilla ice cream with chocolate sauce.
Shannon received the National Medal of Science in 1966. For more information

see [Sla87, Hor92].

June 7, 1999 10:10 owltex Sheet number 41 Page number 123magentablack

4.5 Functions That ReturnValues 123

}

}

 ...

 ...

double

{

double value;

cin >> value;

cout << ... << sqrt(value) << endl;

cout << ... << 10.7238 << endl;

cin >> value;

sqrt(double x) 115.0

115.0
Calling function sqrt(115.0)

Returning 10.7238 from sqrt(115.0)

}

 return root;

 // code to give root a value

 double root;

Figure 4.2 Evaluating the function call sqrt115.0

4.5 FunctionsThat ReturnValues

Civilization advances by extending the number
of important operations which we can perform without thinking about them.

Alfred North Whitehead
An Introduction to Mathematics

In Chapter 3 we studied programmer-defined functions, such asSlicePrice in
pizza.cpp,Program 3.5, whose prototype is

void SlicePrice(int radius, double price)

The return type ofSlicePrice is void . Many programs require functions that have
other return types. You’ve probably seen mathematical functions on hand-held calcula-
tors such as sin(x) or

√
x. These functions are different from the functionSlicePrice

in that they return a value. For example, when you use a calculator, you might enter the
number 115, then press the square-root key. This displays the value of

√
115 or 10.7238.

The number 115 is anargument to the square root function. The value returned by
the function is the number 10.7238. Program 4.6 is a C++ program that processes in-
formation in the same way: users enter a number, and the square root of the number is
displayed.

Control flow fromusemath.cppis shown in Fig. 4.2. The value 115, entered by the
user and stored in the variablevalue , is copied into a memory location associated with
the parameterx in the functionsqrt . The square root of 115 is calculated, and areturn
statement in the functionsqrt returns this square root, which is used in place of the
expressionsqrt(value) in the cout statement. As shown in Fig. 4.2, the value
10.7238 is displayed as a result.

June 7, 1999 10:10 owltex Sheet number 42 Page number 124magentablack

124 Chapter 4 Control, Functions, and Classes

The functionsqrt is accessible by including the header file<cmath> . Table 4.5
lists some of the functions accessible from this header file. A more complete table
of functions is given as Table F.1 in Howto F. In the sample output ofusemath.cpp,
Program 4.6, the square roots of floating-point numbers aren’t always exact. For example,√

100.001= 10.0000499998, but the value displayed is 10. Floating-point values cannot
always be exactly determined. Because of inherent limits in the way these values are
stored in the computer, the values are rounded off to the most precise values that can
be represented in the computer. The resultingroundoff error illustrates the theme of
conceptualandformal models introduced in Chapter 1. Conceptually, the square root of
100.001 can be calculated with as many decimal digits as we have time or inclination to
write down. In the formal model of floating-point numbers implemented on computers,
the precision of the calculation is limited.

Program 4.6 usemath.cpp

#include <iostream>

#include <cmath>

using namespace std;

// illustrates use of math function returning a value

int main()

{

double value;

cout << "enter a positive number ";

cin >> value;

cout << "square root of " << value < < " = " << sqrt(value) << endl;

return 0;

} usemath.cpp

O U T P U T

prompt> usemath
enter a positive number 115
square root of 115 = 10.7238
prompt> usemath
enter a positive number 100.001
square root of 100.001 = 10
prompt> usemath
enter a positive number -16
square root of -16 = nan

June 7, 1999 10:10 owltex Sheet number 43 Page number 125magentablack

4.5 Functions That ReturnValues 125

Table 4.5 Some functions in <cmath>

function name prototype returns

double fabs (double x) absolute value of x
double log (double x) natural log of x
double log10 (double x) base-ten log of x
double sin (double x) sine of x (x in radians)
double cos (double x) cosine of x (x in radians)
double tan (double x) tangent of x (x in radians)
double asin (double x) arc sine of x [−π/2, π/2]
double acos (double x) arc cosine of x [0, π]
double atan (double x) arc tangent of x [−π/2, π/2]
double pow (double x, xy

double y)
double sqrt (double x)

√
x, square root of x

double floor (double x) largest integer value≤ x
double ceil (double x) smallest integer value≥ x

Finally, although the program prompts for positive numbers, there is no check to
ensure that the user has entered a positive number. In the output shown, the symbol
nan stands for “not a number.”7 Not all compilers will display this value. In particular,
on some computers, trying to take the square root of a negative number may cause the
machine to lock up. It would be best to guard the callsqrt(value) using anif
statement such as the following one:

if (0 <= value)
{ cout << "square root of " << value < < " = "

<< sqrt(value) << endl;
}
else
{ cout << "nonpositive number " << value

<< " entered" << endl;
}

Alternatively, we couldcomposethe functionsqrt with the functionfabs , which
computes absolute values.

cout << "square root of " << value < < " = "
<< sqrt(fabs(value)) << endl;

The result returned by the functionfabs is used as an argument tosqrt . Since the
return type offabs is double (see Table 4.5), the argument ofsqrt has the right
type.

7Some compilers printNaN, others crash rather than printing an error value.

June 7, 1999 10:10 owltex Sheet number 44 Page number 126 magentablack

126 Chapter 4 Control, Functions, and Classes

4.5.1 The Math Library <cmath>

In C and C++ several mathematical functions are available by accessing a math library
using #include <cmath> .8 Prototypes for some of these functions are listed in
Table 4.5, and a complete list is given as Table F.1 in Howto F.

All of these functions returndouble values and havedouble parameters. Integer
values can be converted todouble s, so the expressionsqrt(125) is legal (and
evaluates to 11.18033). The functionpow is particularly useful, because there is no
built-in exponentiation operator in C++. For example, the statement

cout << pow(3,13) << endl}

outputs the value of 313: three to the thirteenth.
The functions declared in<cmath> are tools that can be used in any program. As

programmers, we’ll want to develop functions that can be used in the same way. On
occasion, we’ll develop functions that aren’t useful as general-purpose tools but make
the development of one program simpler. For example, inpizza.cpp,Program 3.5, the
price per square inch of pizza is calculated and printed by the functionSlicePrice .
If the value were returned by the function rather than printed, it could be used to de-
termine which of several pizzas was the best buy. This is shown inpizza2.cpp,Pro-
gram 4.7. Encapsulating the calculation of the price per square inch in a function,
as opposed to using the expressionsmallPrice/(3.14159 * smallRadius *
smallRadius) , avoids errors that might occur in copying or retyping the expression
for a large pizza. Using a function also makes it easier to include other sizes of pizza in
the same program. If it develops that we’ve made a mistake in calculating the price per
square inch, isolating the mistake in one function makes it easier to change than finding
all occurrences of the calculation and changing each one.

Program 4.7 pizza2.cpp

#include <iostream>
using namespace std;

// find the price per square inch of pizza
// to compare large and small sizes for the best value
//
// Owen Astrachan
// March 29, 1999
//

double Cost(double radius, double price)
// postcondition: returns the price per sq. inch
{

return price/(3.14159 ∗radius ∗radius);
}

8The namecmath is the C++ math library, but with many older compilers you will need to usemath.h
rather thancmath .

June 7, 1999 10:10 owltex Sheet number 45 Page number 127magentablack

4.5 Functions That ReturnValues 127

int main()
{

double smallRadius, largeRadius;
double smallPrice, largePrice;
double smallCost,largeCost;

// input phase of computation

cout << "enter radius and price of small pizza ";
cin >> smallRadius >> smallPrice;

cout << "enter radius and price of large pizza ";
cin >> largeRadius >> largePrice;

// process phase of computation

smallCost = Cost(smallRadius,smallPrice);
largeCost = Cost(largeRadius,largePrice);

// output phase of computation

cout << "cost of small pizz a = " << smallCost << " per sq.inch" << endl;
cout << "cost of large pizz a = " << largeCost << " per sq.inch" << endl;

if (smallCost < largeCost)
{ cout << "SMALL is the best value " << endl;
}
else
{ cout << "LARGE is the best value " << endl;
}

return 0;
}

pizza2.cpp

O U T P U T

prompt> pizza2
enter radius and price of small pizza 6 6.99
enter radius and price of large pizza 8 10.99
cost of small pizza = 0.0618052 per sq.inch
cost of large pizza = 0.0546598 per sq.inch
LARGE is the best value

From the user’s point of view, Program 3.5 and Program 4.7 exhibit similar, though
not identical, behavior. When two programs exhibit identical behavior, we describe this
sameness by saying that the programs are identical asblack boxes.We cannot see the

June 7, 1999 10:10 owltex Sheet number 46 Page number 128magentablack

128 Chapter 4 Control, Functions, and Classes

inside of a black box; the behavior of the box is discernible only by putting values into
the box (running the program) and noting what values come out (are printed by the
program). A black box specifies input and output, but not how the processing step takes
place. Theballoon class and the math functionsqrt are black boxes; we don’t know
how they are implemented, but we can use them in programs by understanding their
input and output behavior.

4.5.2 Pre- and Post-conditions

In the functionSlicePrice of pizza2.cpp,Program 4.7, a comment is given in the
form of apostcondition. A postcondition of a function is a statement that is true when the
function finishes executing. Each function in this book will include a postcondition that
describes what the function does. Some functions havepreconditions. A precondition
states what parameter values can be passed to the function. Together a function’s pre-
condition and postcondition provide a contract for programmers who call the function:
if the precondition is true the postcondition will be true. For example, a precondition of
the functionsqrt might be that the function’s parameter is non-negative.

Program Tip 4.5: When calling functions, read postconditions carefully.
When writing functions, provide postconditions. When possible, provide a
precondition as well as a postcondition since preconditions provide programmers with
information about what range of values can be passed to each parameter of a function.

In themain function ofpizza2.cpp,the extraction operator>> extracts two values
in a single statement. Just as the insertion operator<< can be used to put several items
on the output streamcout , the input streamcin continues to flow so that more than
one item can be extracted.

4.11 Write program fragments or complete programs that convert degrees Celsius toPause to Reflect

degrees Fahrenheit, British thermal units (Btu) to joules (J), and knots to miles per
hour. Note thatx degrees Celsius equals(9/5)x + 32 degrees Fahrenheit; thatx
J equals 9.48× 10−4(x)Btu; and that 1 knot= 101.269 ft/min (and that 5,280 ft
= 1 mile). At first do thiswithoutusing assignment statements, by incorporating
the appropriate expressions in output statements. Then define variables and use
assignment statements as appropriate. Finally, write functions for each of the
conversions.

4.12 Modify pizza2.cpp,Program 4.7, to use the functionpow to squareradius in
the functionCost .

4.13 If a negative argument to the functionsqrt causes an error, for what values ofx
does the following code fragment generate an error?

if (x >= 0 && sqrt(x) > 100)
cout << "big number" << endl;

June 7, 1999 10:10 owltex Sheet number 47 Page number 129magentablack

4.5 Functions That ReturnValues 129

4.14 Heron’s formula gives the area of a triangle in terms of the lengths of the sides of
the triangle:a, b, andc .

area= √
s · (s − a) · (s − b) · (s − c) (4.1)

wheres is the semiperimeter, or half the perimetera+b+ c of the triangle. Write
a functionTriangleArea that returns the area of a triangle. The sides of the
triangle should be parameters toTriangleArea .

4.15 The law of cosines gives the length of one side of a triangle,c, in terms of the
other sidesa andb and the angleC formed by the sidesa andb:

c2 = a2+ b2− 2 · a · b cos(C)

Write a functionSideLength that computes the length of one side of a triangle,
given the other two sides and the angle (in radians) between the sides as parameters
to SideLength .

4.16 The following code fragment allows a user to enter three integers:

int a,b,c;
cout << "enter three integers ";
cin >> a >> b >> c;

Add code that prints the average of the three values read. Does it make a difference
if the type is changed fromint to double ? Do you think that>> has the same
kind of associativity as=, the assignment operator?

4.5.3 Function ReturnTypes

The functionssqrt andSlicePrice used in previous examples both returneddouble
values. In this section we’ll see that other types can be returned.

Determining Leap Years. Leap years have an extra day (February 29) not present in
nonleap years. We use arithmetic and logical operators to determine whether a year is a
leap year. Although it’s common to think that leap years occur every four years, the rules
for determining leap years are somewhat more complicated, because the period of the
Earth’s rotation around the Sun is not exactly 365.25 days but approximately 365.2422
days.

If a year is evenly divisible by 400, then it is a leap year.

Otherwise, if a year is divisible by 100, then it isnot a leap year.

The only other leap years are evenly divisible by 4.9

9These rules correspond to a year length of 365.2425 days. In theNew York Timesof January 2, 1996
(page B7, out-of-town edition), a correction to the rules used here is given. The year 4000 isnot a leap
year, nor will any year that’s a multiple of 4000 be a leap year. Apparently this rule, corresponding to a
year length of 365.24225 days, will have to be modified too, but we probably don’t need to worry that
our program will be used beyond the year 4000.

June 7, 1999 10:10 owltex Sheet number 48 Page number 130 magentablack

130 Chapter 4 Control, Functions, and Classes

For example, 1992 is a leap year (it is divisible by 4), but 1900 is not a leap year (it is
divisible by 100), yet 2000 is a leap year, because, although it is divisible by 100, it is
also divisible by 400.

The boolean-valued functionIsLeapYear in Program 4.8 uses multiplereturn
statements to implement this logic.

Recall that in the expression(a % b) the modulus operator%evaluates to the
remainder whena is divided byb. Thus, 2000 % 400 == 0 , since there is no
remainder when 2000 is divided by 400.

The sequence of cascadedif statements inIsLeapYear tests the value of the
parameteryear to determine whether it is a leap year. Consider the first run shown,
whenyear has the value 1996. The first test,year % 400 == 0 , evaluates to false,
because 1996 is not divisible by 400. The second test evaluates to false, because 1996
is not divisible by 100. Since 1996= 4× 499, the third test,(yea r % 4 == 0) , is
true, so the valuetrue is returned from the functionIsLeapYear . This makes the
expressionIsLeapYear(1996) in main true, so the message is printed indicating
that 1996 is a leap year. You may be tempted to write

if (IsLeapYear(year) == true)

rather than using the form shown inisleap.cpp.This works, but thetrue is redundant,
because the functionIsLeapYear is boolean-valued: it is either true or false.

The comments for the functionIsLeapYear are given in the form of aprecondition
and a postcondition. For our purposes, a precondition is what must be satisfied for
the function to work as intended. The “as intended” part is what is specified in the
postcondition. These conditions are acontractfor the caller of the function to read: if the
precondition is satisfied, the postcondition will be satisfied. In the case ofIsLeapYear
the precondition states that the function works for any year greater than 0. The function
is not guaranteed to work for the year 0 or if a negative year such as−10 is used to
indicate the year 10B.C.

It is often possible to implement a function in many ways so that its postcondition
is satisfied. Program 4.9 shows an alternative method for writingIsLeapYear . Us-
ing a black-box test, this version is indistinguishable from theIsLeapYear used in
Program 4.8.

Program 4.8 isleap.cpp

#include <iostream>
using namespace std;

// illustrates user-defined function for determining leap years

bool IsLeapYear(int year)
// precondition: year > 0
// postcondition: returns true if year is a leap year, else returns false
{

if (year % 400 == 0) // divisible by 400
{ return true;
}

June 7, 1999 10:10 owltex Sheet number 49 Page number 131magentablack

4.5 Functions That ReturnValues 131

else if (year % 100 == 0) // divisible by 100
{ return false;
}
else if (yea r % 4 == 0) // divisible by 4
{ return true;
}
return false;

}

int main()
{

int year;
cout << "enter a year ";
cin >> year;
if (IsLeapYear(year))
{ cout << year << " has 366 days, it is a leap year" << endl;
}
else
{ cout << year << " has 365 days, it is NOT a leap year" << endl;
}
return 0;

} isleap.cpp

O U T P U T

prompt> isleap
enter a year 1996
1996 has 366 days, it is a leap year

prompt> isleap
enter a year 1900
1900 has 365 days, it is NOT a leap year

Program 4.9 isleap2.cpp

bool IsLeapYear(int year)
// precondition: year > 0
// postcondition: returns true if year is a leap year, else false
{

return (year % 400 == 0) || (year % 4 == 0 && year % 100 != 0);
} isleap2.cpp

A boolean value is returned fromIsLeapYear because the logical operators&&
and || return boolean values. For example, the expressionIsLeapYear(1974)
causes the following expression to be evaluated by substituting 1974 foryear :

June 7, 1999 10:10 owltex Sheet number 50 Page number 132 magentablack

132 Chapter 4 Control, Functions, and Classes

(1974 % 400 == 0) || (197 4 % 4 == 0 && 1974 % 100 != 0);

Since the logical operators are evaluated left to right to support short-circuit evaluation,
the subexpression1974 % 400 == 0 is evaluated first. This subexpression is false,
because1974 % 400 is 374. The rightmost parenthesized expression is then evaluated,
and its subexpression1974 % 4 == 0 is evaluated first. Since this subexpression is
false, the entire&&expression must be false (why?), and the expression1974 % 100
!= 0 is not evaluated. Since both subexpressions of|| are false, the entire expression
is false, andfalse is returned.

Boolean-valued functions such asIsLeapYear are often calledpredicates.Predi-
cate functions often begin with the prefixIs . For example, the functionIsEven might
be used to determine whether a number is even; the functionIsPrime might be used to
determine whether a number is prime (divisible by only 1 and itself, e.g., 3, 17); and the
functionIsPalindrome might be used to determine whether a word is a palindrome
(reads the same backward as forward, e.g., mom, racecar).

Program Tip 4.6: Follow conventions when writing programs. Conven-
tions make it easier for other people to read and use your programs and for you to read
them long after you write them. One common convention is using the prefixIs for
predicate/boolean-valued functions.

Converting Numbers to English. We’ll explore a program that converts some integers
to their English equivalent. For example, 57 is “fifty-seven” and 14 is “fourteen.”
Such a program might be the basis for a program that works as a talking cash register,
speaking the proper coins to give as change. With speech synthesis becoming cheaper on
computers, it’s fairly common to encounter a computer that “speaks.” The number you
hear after dialing directory assistance is often spoken by a computer. There are many
home finance programs that print checks; these programs employ a method of converting
numbers to English to print the checks. In addition to using arithmetic operators, the
program shows that functions can return strings as well as numeric and boolean types,
and it emphasizes the importance of pre- and postconditions.

Program 4.10 numtoeng.cpp

#include <iostream>
#include <string>
using namespace std;

// converts two digit numbers to English equivalent
// Owen Astrachan, 3/30/99

string DigitToString(int num)
// precondition: 0 <= num < 10
// postcondition: returns english equivalent, e.g., 1->one,...9->nine

June 7, 1999 10:10 owltex Sheet number 51 Page number 133 magentablack

4.5 Functions That Return Values 133

{
if (0 == num) return "zero";
else if (1 == num) return "one";
else if (2 == num) return "two";
else if (3 == num) return "three";
else if (4 == num) return "four";
else if (5 == num) return "five";
else if (6 == num) return "six";
else if (7 == num) return "seven";
else if (8 == num) return "eight";
else if (9 == num) return "nine";
else return "?";

}

string TensPrefix(int num)
// precondition: 10 <= num <= 99 and num % 10 == 0
// postcondition: returns ten, twenty, thirty, forty, etc.
// corresponding to num, e.g., 50->fifty
{

if (10 == num) return "ten";
else if (20 == num) return "twenty";
else if (30 == num) return "thirty";
else if (40 == num) return "forty";
else if (50 == num) return "fifty";
else if (60 == num) return "sixty";
else if (70 == num) return "seventy";
else if (80 == num) return "eighty";
else if (90 == num) return "ninety";
else return "?";

}

string TeensToString(int num)
// precondition: 11 <= num <= 19
// postcondition: returns eleven, twelve, thirteen, fourteen, etc.
// corresponding to num, e.g., 15 -> fifteen
{

if (11 == num) return "eleven";
else if (12 == num) return "twelve";
else if (13 == num) return "thirteen";
else if (14 == num) return "fourteen";
else if (15 == num) return "fifteen";
else if (16 == num) return "sixteen";
else if (17 == num) return "seventeen";
else if (18 == num) return "eighteen";
else if (19 == num) return "nineteen";
else return "?";

}

string NumToString(int num)
// precondition: 0 <= num <= 99
// postcondition: returns english equivalent, e.g., 1->one, 13->thirteen
{

if (0 <= num && num < 10)
{ return DigitToString(num);
}

June 7, 1999 10:10 owltex Sheet number 52 Page number 134magentablack

134 Chapter 4 Control, Functions, and Classes

else if (10 < num && num < 20)

{ return TeensToString(num);

}

else if (num % 10 == 0)

{ return TensPrefix(num);

}

else

{ // concatenate ten’s digit with one’s digit

return TensPrefix(10 ∗ (num/10)) + "-" + DigitToString(num % 10);

}

}

int main()

{

int number;

cout << "enter number between 0 and 99: ";

cin >> number;

cout << number < < " = " << NumToString(number) << endl;

return 0;

} numtoeng.cpp

O U T P U T

prompt> numtoeng
enter number between 0 and 99: 22
22 = twenty-two

prompt> numtoeng
enter number between 0 and 99: 17
17 = seventeen

prompt> numtoeng
enter number between 0 and 99: 103
103 = ?-three

The code in theDigitToString function does not adhere to the rule of using block
statements in everyif /else statement. In this case, using{} delimiters would make the
program unnecessarily long. It is unlikely that statements will be added (necessitating
the use of a block statement), and the form used here is clear.

June 7, 1999 10:10 owltex Sheet number 53 Page number 135magentablack

4.5 Functions That ReturnValues 135

Program Tip 4.7: White space usually makes a program easier to read
and clearer. Block statements used with if /else statements usually
make a program more robust and easier to change. However, there are
occasions when these rules are not followed. As you become a more practiced program-
mer, you’ll develop your own aesthetic sense of how to make programs more readable.

A new use of the operator+ is shown in functionNumToString . In the finalelse
statement, three strings are joined together using the+ operator:

return TensPrefix(10*(num/10))+ "-" + DigitToString(num%10);

When used withstring values, the+ operator joins orconcatenates(sometimes
“catenates”) thestring subexpressions into a newstring . For example, the value of
"apple" + "sauce" is a newstring , "applesauce" . This is another example
of operator overloading; the+ operator has different behavior forstring , double ,
andint values.

Robust Programs. In the sample runs shown, the final input of 103 does not result in
the display ofone hundred three . The value of 103 violates the precondition of
NumToString , so there is no guarantee that the postcondition will be satisfied.Robust
programs and functions do not bomb in this case, but either return some value that
indicates an error or print some kind of message telling the user that input values aren’t
valid. The problem occurs in this program because"?" is returned by the function call
TensPrefix(10 * (num/10)) . The value of the argument toTensPrefix is
10×(103/10)== 10×10== 100. This value violates the precondition ofTensPrefix .
If no finalelse were included to return a question mark, then nothing would be returned
from the functionTensPrefix when it was called with 103 as an argument. This
situation makes the concatenation of “nothing” with the hyphen and the value returned
by DigitToString(num % 10) problematic, and the program would terminate,
because there is nostring to join with the hyphen.

Many programs likenumtoeng.cppprompt for an input value within a range. A
function that ensures that input is in a specific range by reprompting would be very
useful. A library of three related functions is specified inprompt.h. We’ll study these
functions in the next chapter, and you can find information about them in Howto G. Here
is a modified version ofmain that usesPromptRange :

int main()
{

int number = PromptRange("enter a number",0,99);
cout << number < < " = " << NumToString(number) << endl;

return 0;
}

June 7, 1999 10:10 owltex Sheet number 54 Page number 136magentablack

136 Chapter 4 Control, Functions, and Classes

O U T P U T

prompt> numtoeng
enter number between 0 and 99: 103
enter a number between 0 and 99: 100
enter a number between 0 and 99: -1
enter a number between 0 and 99: 99
99 = ninety-nine

You don’t have enough programming tools to know how to writePromptRange
(you need loops, studied in the next chapter), but the specifications of each function
make it clear how the functions are called. You can treat the functions as black boxes,
just as you treat the square-root functionsqrt in <cmath> as a black box.

4.17 Write a functionDaysInMonth that returns the number of days in a monthPause to Reflect

encoded as an integer with 1= January, 2= February,…, 12= December. The
year is needed, because the number of days in February depends on whether the
year is a leap year. In writing the function, you can callIsLeapYear . The
specification for the function is

int DaysInMonth(int month,int year)
// pre: month coded as : 1 = january, ..., 12 = december
// post: returns # of days in month in year

4.18 Why are parentheses needed in the expressionTensPrefix(10*(num/10)) ?
For example, ifTensPrefix(10*num/10) is used, the program generates a
non-number when the user enters 22.

4.19 Write a predicate functionIsEven that evaluates to true if itsint parameter is
an even number. The function should work for positive and negative integers. Try
to write the function using only one statement:return expression.

4.20 Write a functionDayNamewhose header is

string DayName(int day)
// pre: 0 <= day <= 6
// post: returns string representing day, with
// 0 = "Sunday" , 1 = "Monday", ... , 6 = "Saturday"

so that the statementcout << DayName(3) << endl; printsWednesday .

4.21 Describe how to modify the functionNumToString in numtoeng.cpp,Pro-
gram 4.10, so that it works with three-digit numbers.

June 7, 1999 10:10 owltex Sheet number 55 Page number 137 magentablack

4.6 Class Member Functions 137

4.22 An Islamic yeary is a leap year if the remainder, when 11y + 14 is divided by
30, is less than 11. In particular, the 2nd, 5th, 7th, 10th, 13th, 16th, 18th, 21st,
24th, 26th, and 29th years of a 30-year cycle are leap years. Write a function
IsIslamicLeapYear that works with this definition of leap year.

4.23 In the Islamic calendar [DR90] there are also 12 months, which strictly alternate
between 30 days (odd-numbered months) and 29 days (even-numbered months),
except for the twelfth month,Dhu al-Hijjah,which in leap years has 30 days. Write
a functionDaysInIslamicMonth for the Islamic calendar that uses only three
if statements.

4.6 Class Member Functions
Section 3.4 discusses a class namedBalloon for simulating hot-air balloons. We’ve
used the classstring extensively in our examples, but we haven’t used all of the
functionality provided by strings themselves. Recall from Section 3.4 that functions
provided by a class are calledmember functions. In this section we’ll study three
string member functions, and many more are explained in Howto C. We’ll also have
a sneak preview at the classDate which is covered more extensively in the next chapter.
We’ll show just one example program using the class, but the program provides a glimpse
of the power that classes bring to programming.

4.6.1 string Member Functions

The functions we’ve studied so far, like those in<cmath> , are calledfree functions
because they do not belong to a class. Member functions are part of a class and are
invoked by applying a function to an object with the dot operator. Program 4.11 shows
thestring member functionslength andsubstr . The functionlength returns
the number of characters in a string, the functionsubstr returns asubstringof a string
given a starting position and a number of characters.

Program 4.11 strdemo.cpp

#include <iostream>
#include <string>
using namespace std;

// illustrates string member functions length() and substr()

int main()
{

string s;
cout << "enter string: ";
cin >> s;
int len = s.length();
cout << s << " has " << len << " characters" << endl;
cout << "first char is " << s.substr(0, 1) << endl;

June 7, 1999 10:10 owltex Sheet number 56 Page number 138magentablack

138 Chapter 4 Control, Functions, and Classes

cout << "last char is " << s.substr(s.length() −1, 1) << endl;
cout << endl << "all but first is " << s.substr(1,s.length()) << endl;
return 0;

} strdemo.cpp

O U T P U T

prompt> strdemo
enter string: theater
theater has 7 characters
first char is t
last char is r
all but first is heater
prompt> strdemo
enter string: slaughter
theater has 9 characters
first char is s
last char is r
all but first is laughter

The first position orindex of a character in a string is zero, so the last index in a string
of 11 characters is 10. The prototypes for these functions are given in Table 4.6.

Eachstring member function used in Program 4.11 is invoked using an object
and the dot operator. For example,s.length() returns the length ofs . When I read
code, I read this as “s dot length”, and think of the length function as applied to the object
s, returning the number of characters in s.

Table 4.6 Three string member functions

function prototype and description

int length()
postcondition: returns the number of characters in the string

string substr(int pos, int len)
precondition: 0 <= pos < length()
postcondition: returns substring oflen characters beginning at positionpos
(as many characters as possible if len too large, but error if pos is out of range)

int find(string s)
postcondition: returns first position/index at which string s begins
(returnsstring::npos if s does not occur)

June 7, 1999 10:10 owltex Sheet number 57 Page number 139magentablack

4.6 Class Member Functions 139

Program Tip 4.8: Ask not what you can do to an object, ask what an
object can do to itself. When you think about objects, you’ll begin to think about
what an object can tell you about itself rather than what you can tell an object to do.

In the last use ofsubstr in Program 4.11 more characters are requested than can
be supplied by the arguments in the calls.substr(1, s.length()) . Starting
at index 1, there are onlys.length()-1 characters ins . However, the function
substr “does the right thing” when asked for more characters than there are, and gives
as many as it can without generating an error. For a full description of this and other
string functions see Howto C. Although the string returned bysubstr is printed in
strdemo.cpp, the returned value could be stored in a string variable as follows:

string allbutfirst = s.substr(1,s.length());

The string Member Function find . The member functionfind returns the index
in a string at which another string occurs. For example,"plant" occurs at index three
in the string"supplant" , at index five in"transplant" , and does not occur in
"vegetable" . Program 4.12,strfind.cppshows howfind works. The return value
string::npos indicates that a substring does not occur. Your code should not depend
onstring::npos having any particular value10.

Program 4.12 strfind.cpp

#include <iostream>
#include <string>
using namespace std;

int main()
{

string target = "programming is a creative process";
string s;
cout << "target string: " << target << endl;
cout << "search for what substring: ";
cin >> s;
int index = target.find(s);
if (index != string::npos)
{ cout << "found at " << index << endl;
}
else
{ cout << "not found" << endl;
}
return 0;

} strfind.cpp

10Actually, the value ofstring::npos is the largest positive index, see Howto C.

June 7, 1999 10:10 owltex Sheet number 58 Page number 140magentablack

140 Chapter 4 Control, Functions, and Classes

O U T P U T

prompt> strfind
target string: programming is a creative process
search for what substring: pro
found at 0
prompt> strfind
target string: programming is a creative process
search for what substring: gram
found at 3
prompt> strfind
target string: programming is a creative process
search for what substring: create
not found

The double colon:: used instring::npos separates the value, in this case
npos , from the class in which the value occurs, in this casestring . The:: is called
thescope resolution operator, we’ll study it in more detail in the next chapter.

4.6.2 Calling and Writing Functions

When you first begin to use functions that return values, you may forget to process
the return value. All non-void functions return a value that should be used in a C++
expression (e.g., printed, stored in a variable, used in an arithmetic expression). The
following C++ statements show how three of the functions studied in this chapter (sqrt ,
NumToString , andIsLeap) are used in expressions so that the values returned by
the functions aren’t ignored.

double hypotenuse = sqrt{side1*side1 + side2*side2);
cout << NumToString(47) << endl;
bool millenniumLeaps = IsLeap(2000) || IsLeap(3000);

It doesn’t make sense, for example, to write the following statements in which the value
returned bysqrt is ignored.

double s1, s2;
cout << "enter sides: ";
cin >> s1 >> s2;
double root;
sqrt(s1*s1 + s2*s2);

The programmer may have meant to store the value returned by the function call tosqrt
in the variableroot , but the return value from the function call in the last statement is
ignored.

June 7, 1999 10:10 owltex Sheet number 59 Page number 141magentablack

4.6 Class Member Functions 141

Whenever you call a function, think carefully about the function’s prototype and its
postcondition. Be sure that if the function returns a value that you use the value.11

ProgramTip 4.9: Do not ignore the value returned by non-void functions.
Think carefully about each function call you make when writing programs and do

something with the return value that makes sense in the context of your program and that
is consistent with the type and value returned.

Write Lots of Functions. When do you write a function? You may be writing a program
like pizza2.cpp, Program 4.7, where the functionCost is used to calculate how much a
square inch of pizza costs. The function is reproduced here.

double Cost(double radius, double price)
// postcondition: returns the price per sq. inch
{

return price/(3.14159*radius*radius);
}

Is it worth writing another function calledCircleArea like this?

double CircleArea(double radius)
// postcondition: return area of circle with given radius
{

return radius*radius*3.14159;
}

In general, when should you write a function to encapsulate a calculation or sequence of
statements? There is no simple answer to this question, but there are a few guidelines.

Program Tip 4.10: Functions encapsulate abstractions and lead to code
that’s often easier to read and modify. Do not worry about so-called execution
time “overhead” in the time it takes a program to execute a function call. Make your
programs correct and modifiable before worrying about making them fast.

As an example, it’s often easier to write a complex boolean expression as a function
that might includeif/else statements, and then call the function, than to determine
what the correct boolean expression is. In the next section we’ll study a tool from logic
that helps in writing correct boolean expressions, but writing functions are useful when
you’re trying to develop appropriate loop tests. For example, if you need to determine

11Some functions return a value but are called because they cause some change in program state separate
from the value returned. Such functions are said to haveside-effectssince they cause an effect “on the
side,” or in addition to the value returned by the function. In some cases the returned value of a function
with side-effects is ignored.

June 7, 1999 10:10 owltex Sheet number 60 Page number 142magentablack

142 Chapter 4 Control, Functions, and Classes

if a one-character string represents a consonant, it’s probably easier to write a function
IsVowel and use that function to writeIsConsonant , or to use!IsVowel() when
you need to determine if a string is a consonant.

bool IsVowel(string s)
// pre: s is a one-character string
// post: returns true if s is a vowel, return false
{

if (s.length() != 1)
{ return false;
}
return s == "a" || s == "e" || s == "i" ||

s == "o" || s == "u";
}

The return Statement. In the functionIsVowel() there are tworeturn state-
ments and anif without anelse . When areturn statement executes, the function
being returned from immediately exits. InIsVowel() , if the string parameters has
more than one character, the function immediately returnsfalse . Since the function
exits, there is no need for anelse body, though some programmers prefer to use an
else . Some programmers prefer to have a singlereturn statement in every function.
To do this requires introducing a local variable and using anelse body as follows.

bool IsVowel(string s)
// pre: s is a one-character string
// post: returns true if s is a vowel, else return false
{

bool retval = false; // assume false
if (s.length() == 1)
{ retval = (s == "a" || s == "e" || s == "i" ||

s == "o" || s == "u");
}
return retval;

}

You should try to get comfortable with the assignment toretval inside theif state-
ment. It’s often easier to think of the assignment using this code.

if (s == "a"|| s == "e"|| s == "i"|| s == "o"|| s == "u")
{ retval = true;
}
else
{ retval = false;
}

This style of programming uses more code. It’s just as efficient, however, and it’s ok to
use it though the single assignment toretval is more terse and, to many, more elegant.

June 7, 1999 10:10 owltex Sheet number 61 Page number 143magentablack

4.6 Class Member Functions 143

4.6.3 The Date class

At the beginning of this chapter we discussed writing a functionPrintMonth that prints
a calendar for a month specified by a number and a year. As described, printing a calendar
for January of the year 2001 could be done with the callPrintMonth(1,2001) . You
could write this function with the tools we’ve studied in this chapter though it would
be cumbersome to make a complete calendar. However, using the classDate makes it
much simpler to write programs that involve dates and calendars than writing your own
functions likeIsLeap . In general, it’s easier to use classes that have been developed
and debugged than to develop your own code to do the same thing, though it’s not always
possible to find classes that serve your purposes.

We won’t discuss this class in detail until the next chapter, but you can see how
variables of typeDate are defined, and two of theDate member functions used in
Program 4.13. More information about the class is accessible in Howto G. To useDate
objects you’ll need to add#include"date.h" to your programs.

Program 4.13 datedemo.cpp

#include <iostream>

using namespace std;

#include "date.h"

// simple preview of using the class Date

int main()

{

int month, year;

cout << "enter month (1-12) and year ";

cin >> month >> year;

Date d(month, 1, year);

cout << "that day is " << d << ", it i s a " << d.DayName() << endl;

cout << "the month has " << d.DaysIn() << " days in it " << endl;

return 0;

} datedemo.cpp

After examining the program and the output on the next page, you should be think
about how you would use the classDate to solve the following problems, each can be
solved with just a few lines of code.

4.24 Determine if a year the user enters is a leap year.Pause to Reflect

4.25 Determine the day of the week of any date (month, day, year) the user enters.

4.26 Determine the day of the week your birthday falls on in the year 2002.

June 7, 1999 10:10 owltex Sheet number 62 Page number 144magentablack

144 Chapter 4 Control, Functions, and Classes

O U T P U T

prompt> datedemo
enter month (1-12) and year 9 1999
that day is September 1 1999, it is a Wednesday
the month has 30 days in it
prompt> datedemo
enter month (1-12) and year 2 2000
that day is February 1 2000, it is a Tuesday
the month has 29 days in it

4.7 Using Boolean Operators: De Morgan’s
Law

Many people new to the study of programming have trouble developing correct expres-
sions used for the guard of anif statement. For example, suppose you need to print an
error message if the value of anint variable is either 7 or 11.

if (value == 7 || value == 11)
{ cout << "**error** illegal value: " << value << endl;
}

The statement above prints an error message for the illegal values of 7 and 11 only and
not for other, presumably legal, values. On the other hand, suppose you need to print an
error message if the value is anything other than 7 or 11 (i.e., 7 and 11 are the only legal
values). What do you do then? Some beginning programmers recognize the similarity
between this and the previous problem and write code like the following.

if (value == 7 || value == 11)
{ // do nothing, value ok
}
else
{ cout << "**error** illegal value: " << value << endl;
}

This code works correctly, but the empty block guarded by theif statement is not the
best programming style. One simple way to avoid the empty block is to use the logical
negation operator. In the code below the operator! negates the expression that follows
so that an error message is printed when the value is anything other than 7 or 11.

if (! (value == 7 || value == 11))
{ cout << "**error** illegal value: " << value << endl;
}

June 7, 1999 10:10 owltex Sheet number 63 Page number 145magentablack

4.7 Using Boolean Operators: De Morgan’s Law 145

Table 4.7 De Morgan’s Laws for logical operators

expression logical equivalent by De Morgan’s law

! (a && b) (!a) || (!b)
! (a || b) (!a) && (!b)

Alternatively, we can use De Morgan’s law12 to find the logical negation, or opposite,
of an expression formed with the logical operators&& and || . De Morgan’s laws are
summarized in Table 4.7.

The negation of an&& expression is an|| expression, and vice versa. We can use
De Morgan’s law to develop an expression for printing an error message for any value
other than 7 or 11 by using the logical equivalent of the guard in theif statement above.

if ((value != 7 && (value != 11))
{ cout << "**error** illegal value: " << value << endl;
}

De Morgan’s law can be used to reason effectively about guards when you read code.
For example, if the code below prints an error message for illegal values, what are the
legal values?

if (s != "rock" && s != "paper" && s != "scissors")
{ cout << "** error** illegal value: " << s << endl;
}

By applying De Morgan’s law twice, we find the logical negation of the guard which
tells us the legal values (what would be an else block in the statement above.)

if (s == "rock" || s == "paper" || s == "scissors") //legal

This shows the legal values are “rock” or “paper” or “scissors” and all other strings
represent illegal values.

12Augustus De Morgan (1806–1871), first professor of mathematics at University College, London, as
well as teacher to Ada Lovelace (see Section 2.5.2.)

June 7, 1999 10:10 owltex Sheet number 64 Page number 146magentablack

146 Chapter 4 Control, Functions, and Classes

Richard Stallman (b. 1953)

Richard Stallman is hailed by many as “the world’s best programmer.” Before the
term hacker became a pejorative, he used it to describe himself as “someone

fascinated with how
things work, [who
would see a broken ma-
chine and try to fix it].”

Stallman believes
that software should
be free, that money
should be made by
adapting software and
explaining it, but not
by writing it. Of soft-
ware he says, “I’m go-
ing to make it free even
if I have to write it all

myself.” Stallman uses the analogy that for software he means “free as in free
speech, not as in free beer.” He is the founder of the GNU software project, which
creates and distributes free software tools. The GNUg++ compiler, used to de-
velop the code in this book, is widely regarded as one of the best compilers in the
world. The free operating systemGnu/Linux has become one of the most widely
used operating systems in the world. In 1990 Stallman received a MacArthur “ge-
nius” award of $240,000 for his dedication and work. He continues this work
today as part of the League for Programming Freedom, an organization that fights
against software patents (among other things). In an interview after receiving the
MacArthur award, Stallman had a few things to say about programming freedom:

I disapprove of the obsession with profit that tempts people to throw away
their ideas of good citizenship.…businesspeople design software and make
their profit by obstructing others’ understanding. I made a decision not to
do that. Everything I do, people are free to share. The only thing that makes
developing a program worthwhile is the good it does.

4.8 Chapter Review

In this chapter we discussed using and building functions. Changing the flow of control
within functions is important in constructing programs. Encapsulating information in
functions that return values is an important abstraction technique and a key concept in
building large programs.

The if/else statement can be used to alter the flow of control in a program.

June 7, 1999 10:10 owltex Sheet number 65 Page number 147magentablack

4.8 Chapter Review 147

You can write programs that respond differently to different inputs by usingif/else
statements. The test in anif statement uses relational operators to yield a boolean
value whose truth determines what statements are executed. In addition to relational
operators, logical (boolean), arithmetic, and assignment operators were discussed and
used in several different ways.

The following C++ and general programming features were covered in this chapter:

The if/else statement is used for conditional execution of code. Cascadedif
statements are formatted according to a convention that makes them more readable.

A function’s return type is the type of value returned by the function. For example,
the functionsqrt returns adouble . Functions can return values of any type.

The library whose interface is specified in<cmath> supplies many useful math-
ematical functions.

Boolean expressions and tests have values of true or false and are used as the tests
that guard the body of code inif/else statements. The typebool is a built-in
type in C++ with values oftrue andfalse .

A block (compound) statement is surrounded by{ and} delimiters and is used to
group several statements together.

Relational operators are used to compare values. For example,3 < 4 is a rela-
tional expression using the< operator. Relational operators include==, != , <, >,
<=, >=. Relational expressions have boolean values.

Logical operators are used to combine boolean expressions. The logical operators
are || , &&, ! . Both || and && (logical or and logical and, respectively) are
evaluated usingshort-circuit evaluation.

Boolean operators in C++ use short-circuit evaluation so that only as much of
an expression is evaluated from left-to-right as needed to determine whether the
expression is true (or false).

Defensive programming is a style of programming in which care is taken to prevent
errors from occurring rather than trying to clean up when they do occur.

Pre- and postconditions are a method of commenting functions; if the preconditions
are true when a function is called, the postconditions will be true when the function
has finished executing. These provide a kind of contractual arrangement between
a function and the caller of a function.

Severalmember functions of the string class can be used to determine the
length of a string and to find substrings of a given string. Non-member functions
are calledfree functions.
Functions encapsulate abstractions like when a leap year occurs and in calculating
a square root. Functions should be used with regularity in programs.

Classes encapsulate related functions together. The classstring encapsulates
functions related to manipulating strings and the classDate encapsulates functions
related to calendar dates.

De Morgan’s laws are useful in developing boolean expressions for use inif
statements, and in reasoning about complex boolean expressions.

June 7, 1999 10:10 owltex Sheet number 66 Page number 148magentablack

148 Chapter 4 Control, Functions, and Classes

4.9 Exercises

4.1 Write a program that prompts the user for a person’s first and last names (be careful;
more than onecin >> statement may be necessary). The program should print a
message that corresponds to the user’s names. The program should recognize at least
four different names. For example:

O U T P U T

enter your first name> Owen
enter your last name> Astrachan
Hi Owen, your last name is interesting.
enter your first name> Dave
enter your last name> Reed
Hi Dave, your last name rhymes with thneed.

4.2 Write a function whose specification is

string IntToRoman(int num)
// precondition: 0 <= num <= 10
// postcondition: returns Roman equivalent of num

so thatcout << IntToRoman(7) << endl; would cause"VII" to be printed.
Note the precondition. Write a program to test that the function works.

4.3 Write a function with prototypeint Min2(int,int) that returns the minimum
value of its parameters. Then use this function to write another function with prototype
int Min3(int,int,int) that returns the minimum of its three parameters.Min3
can be written with a single line:

int Min3(int x, int y, int z)
// post: returns minimum of x, y, and z
{

return Min2();
}

where the two-parameter function is called with appropriate actual parameters. Write a
test program to test both functions.
You can then rewrite the minimum functions, naming them bothMin . In C++, func-
tions can have the same name, if their parameters differ (this is another example of
overloading).

4.4 Write a program in which the user is prompted for a real number (of typedouble)
and a positive integer and that prints the double raised to the integer power. Use the
functionpow from <cmath> . For example:

June 7, 1999 10:10 owltex Sheet number 67 Page number 149magentablack

4.9 Exercises 149

O U T P U T

enter real number 3.5
enter positive power 5
3.5 raised to the powe r 5 = 525.218

4.5 Write a program that is similar tonumtoeng.cpp,Program 4.1, but that prints an English
equivalent for any number less than one million. If you know a language other than
English (e.g., French, Spanish, Arabic), use that language instead of English.

4.6 Use the functionsqrt from the math library13 to write a functionPrintRoots that
prints the roots of a quadratic equation whose coefficients are passed as parameters.

PrintRoots(1,-5,6);

might cause the following to be printed, but your output doesn’t have to look exactly
like this.

O U T P U T

roots of equation 1*xˆ2 - 5* x + 6 are 2.0 and 3.0

4.7 (from [Coo87]) The surface area of a person is given by the formula

7.184−3 × weight0.452× height0.725 (4.2)

where weight is in kilograms and height is in centimeters. Write a program that prompts
for height and weight and then prints the surface area of a person. Use the functionpow
from <cmath> to raise a number to a power.

4.8 Write a program using the classDate that prints the day of the week on which your
birthday occurs for the next seven years.

4.9 Write a program using ideas from the head-drawing programparts.cpp,Program 2.4,
that could be used as a kind of police sketch program. A sample run could look like the
following.

13On some systems you may need to link the math library to get access to the square root function.

June 7, 1999 10:10 owltex Sheet number 68 Page number 150magentablack

150 Chapter 4 Control, Functions, and Classes

O U T P U T

prompt> sketch
Choices of hair style follow

(1) parted
(2) brush cut
(3) balding

enter choice: 1
Choices of eye style follow

(1) beady-eyed
(2) wide-eyed
(3) wears glasses

enter choice: 3
Choices of mouth style follow

(1) smiling
(2) straightfaced
(3) surprised

enter choice: 3

||||||||////////
| |
| --- --- |
|---|o|--|o|---|
| --- --- |

| |
|_ _|

| o |
| |

4.10Write a function that allows the user to design different styles of T-shirts. You should
allow choices for the neck style, the sleeve style, and the phrase or logo printed on the
T-shirt. For example,

June 7, 1999 10:10 owltex Sheet number 69 Page number 151magentablack

4.9 Exercises 151

O U T P U T

prompt> teedesign
Choices of neck style follow

(1) turtle neck
(2) scoop neck (rounded)
(3) vee neck

enter choice: 1
Choices of sleeve style follow

(1) short
(2) sleeveless
(3) long

enter choice: 2
Choices of logo follow

(1) logo once
(2) logo three times
(3) logo slanted

enter choice: 3
+------+
| |

------- ------
/ \

/ \
-- --

| |
| |
| |

-- --
| F |
| O |
| O |
| |
| |

4.11 (from[KR96]) The wind chill temperature is given according to a somewhat complex
formula derived empirically. The formula converts a temperature (in degrees Fahren-
heit) and a wind speed to an equivalent temperature (eqt) as follows:

eqt=

temp if wind≤ 4
a − (b + c ×√wind− d × wind)× (a − temp)/e if temp≤ 45
1.6 ∗ temp− 55.0 otherwise

(4.3)

June 7, 1999 10:10 owltex Sheet number 70 Page number 152magentablack

152 Chapter 4 Control, Functions, and Classes

Wherea = 91.4, b = 10.45, c = 6.69, d = 0.447, e = 22.0. Write a program that
prompts for a wind speed and a temperature and prints the corresponding wind chill
temperature. Use a functionWindChill with the following prototype:

double WindChill(double temperature, double windSpeed)
// pre: temperature in degrees Fahrenheit
// post: returns wind-chill index/
// comparable temperature

4.12 (also from [KR96]) The U.S. CDC (Centers for Disease Control—this time, not Control
Data Corporation) determine obesity according to a “body mass index,” computed by

index= weight in kilograms

(height in meters)2
(4.4)

An index of 27.8 or greater for men or 27.3 or greater for nonpregnant women is
considered obese. Write a program that prompts for height, weight, and sex and that
determines whether the user is obese. Write a function that returns the body mass index
given the height and weight in inches and pounds, respectively. Note that one meter is
39.37 inches, one inch is 2.54 centimeters, one kilogram is 2.2 pounds, and one pound
is 454 grams.

4.13Write a program that converts a string to its Pig-Latin equivalent. To convert a string
to Pig-Latin use the following algorithm:

1. If the string begins with a vowel, add"way" to the string. For example, Pig-Latin
for “apple” is “appleway.”

2. Otherwise, find the first occurrence of a vowel, move all the characters before the
vowel to the end of the word, and add"ay" . For example, Pig-Latin for “strong”
is “ongstray” since the characters “str” occur before the first vowel.

Assume that vowels are a, e, i, o, and u. You’ll find it useful to write several functions to
help in converting a string to its Pig-Latin equivalent. You’ll need to use string member
functionssubstr , find , andlength . You’ll also need to concatenate strings using
+. Finally, to find the first vowel, you may find it useful to write a function that returns
the minimum of two values. You’ll need to be careful with the valuestring::npos
returned by the string member functionfind . Sample output for the program follows.

O U T P U T

prompt> pigify
enter string: strength
strength = engthstray
prompt> pigify
enter string: alpha
alpha = alphaway
prompt> pigify
enter string: frzzl
frzzl = frzzlay

June 7, 1999 10:10 owltex Sheet number 17 Page number 153magentablack

5Iteration with Programs
and Classes

“What IS the use of repeating all that stuff,”
the Mock Turtle interrupted, “if you don’t explain it as you go on?

It’s by far the most confusing thing I ever heard!”
Lewis Carroll

Alice’s Adventures in Wonderland

I shall never believe that God plays dice with the world.
Albert Einstein

Einstein, His Life and Times, Philipp Frank

Theif/else statement selects different code fragments depending on values calculated
at run time by the program. In this chapter we will study control statements calledloops,
which are used to execute code segments repeatedly. Repetition significantly extends
the kinds of programs we can write. We will also study several classes that extend the
domain of problems we can solve by writing programs.

To extend the range of problems and programs, we will use some basic design
guidelines that help in writing code, functions, and programs. As programs get larger
and more complicated, these design guidelines will help in managing the complexity
that comes with harder and larger problems.

In the first part of the chapter we’ll introduce a basic loop statement. We’ll use loops
to study applications in different areas of computer science. We’ll end the chapter with
a study of two classes used in this book that extend the kind of programs you can write.
Using loops and these classes will make it possible to write programs to print calendars
for any year, to simulate gambling games, and to solve complex mathematical equations.

5.1 The while Loop

banana problem: Not knowing where or when to bring a
production to a close. “I know how to spell ‘banana,’

but I don’t know when to stop.”
The New Hacker’s Dictionary

In the last chapter Program 4.10,numtoeng.cpp, printed English text for integers in
the range of 1–99. Converting this program to handle all C++ integer values would be
difficult without using loops. Loops are used to execute a group of statements repeatedly.
Repeated execution is often callediteration . The most basic statement in C++ for looping
is thewhile statement. It is similar syntactically to theif statement, but very different
semantically. Both statements have tests whose truth determines whether a block of

153

June 7, 1999 10:10 owltex Sheet number 18 Page number 154magentablack

154 Chapter 5 Iteration with Programs and Classes

next statement;

statement list;

test test

statement list;

next statement;

while (test)
{
 statement list;
}
next statement;

 statement list;

if (test)
{

}
next statement;

true

false

true

false

Figure 5.1 Flow control for if and while statements.

statements is executed. When the test of anif statement is true, the block of statements
that the test controls is executed once. In contrast, the block of statements controlled by
the test of awhile loop is executed repeatedly, as long as the test is true.

The control flow forif statements andwhile statements is shown in Fig. 5.1.
In a while loop, after execution of the last statement in theloop body (the block of
statements guarded by the test), the test expression is evaluated again. If it is true, the
statements in the loop body are executed again, and the process is repeated until the test
becomes false. The test of a loop must be false when

Syntax: while statement

while (test expression)
{

statement list;
}

the loop exits. The body of a
while loop is the group of state-
ments in the curly braces guarded
by the parenthesized test. The
test is evaluated once before all
the statements in the loop body
are executed,not once after each
statement. If the test is true,all

the statements in the body are executed. After the last statement in the body is executed,
the test is evaluated again. If the test evaluates to true, the statements in the loop body
are executed again, and this process of test/execute repeats until the test is false. (We
will learn methods for “breaking” out of loops later that invalidate this rule, but it is a
good rule to keep in mind when designing loops.)

When writing loops, remember that the loop test isnot reevaluated after each state-
ment in the loop body, only after the last statement. To ensure that loops do not execute
forever, it’s important that at least one statement in the loop changes the values that are
part of the test expression. As a simple example, Program 5.1 prints a string backwards.

June 7, 1999 10:10 owltex Sheet number 19 Page number 155magentablack

5.1 The while Loop 155

Program 5.1 revstring.cpp

#include <iostream>

#include <string>

using namespace std;

int main()

{

int k;

string s;

cout << "enter string: ";

cin >> s;

cout << s << " reversed is ";

k = s.length() − 1; // index of last character in s

while (k >= 0)

{ cout << s.substr(k,1);

k −= 1;

}

return 0;

} revstring.cpp

O U T P U T

prompt> revstring
enter string: desserts
desserts reversed is stressed
prompt> revstring
enter string: deliver
deliver reversed is reviled

In Program 5.1 the value of the indexing variablek changes each time the loop
executes. Sincek is used in the loop guard, andk decreases each time the loop executes,
you can reason informally that the loop will terminate: the loop executes exactly as
many times as there are characters in the strings . Developing loop tests/guards can
be difficult, and we’ll study techniques that will help you develop loops that execute
correctly. In general there are three conceptual parts in developing a loop test.

1. The initialization of variables/expressions that are part of the loop, in particular
of the loop guard. Inrevstring.cppthe initialization is the following statement.

k = s.length() - 1; // index of last character in s

June 7, 1999 10:10 owltex Sheet number 20 Page number 156magentablack

156 Chapter 5 Iteration with Programs and Classes

2. The loop guard or test which is a boolean expression whose truth determines if the
loop body executes. This isk >= 0 in revstring.cpp.

3. Theupdateof variables/expressions. The update must have the potential to make
the loop test false. Usually this means changing the value of a variable used in the
test. Inrevstring.cppthe following statement is the update.

k -= 1;

For the string"flow" , the initial value ofk is 3. The loop body executes fork
having the values 3, 2, 1, and 0. Whenk is zero, the letter ’f’ is printed, andk is
decremented to have the value−1. The loop guard is tested and is false, so the loop exits
whenk has the value−1.

5.1.1 Infinite Loops

You must be careful when writing loops, because it is possible for a loop to execute
forever—a so-calledinfinite loop. As a simple example, consider the loop

while (6 != 4)
{ cout << "this will be printed many times" << endl;
}

which will execute forever (or until the user stops the program), because 6 is not equal to
4, and the truth of the loop test is unchanged by any of the statements in the loop body.
On many systems, typing Ctrl-Cwill stop an infinite loop.

Usually infinite loops aren’t as easy to spot as the loop above. You may, for example,
forget to update a variable and thus create an infinite loop. For example, leaving out the
statementk -= 1 in revstring.cpp, Program 5.1 creates an infinite loop that prints the
last character of the string “forever”. The following loop is infinite for some values of
num.

int num;
cin >> num;
int start = 0;
while (start != num)
{ start += 2;
}

The values forstart are{0, 2, 4, . . .}. If num is an odd number, the loop is infinite. If
the purpose of the loop is to incrementstart until it “passes”num, then it would be
better to use the following loop test.

int num;
cin >> num;
int start = 0;
while (start <= num)
{ start += 2;
}

June 7, 1999 10:10 owltex Sheet number 21 Page number 157magentablack

5.1 The while Loop 157

5.1 Write a loop to print the numbers from 1 up to a value entered by the user, onePause to Reflect

number per line. Modify the loop to print the numbers from the user-entered value
down to 1.

5.2 Complete the following loop so that it prints all powers of two less than 30,000,
starting with1 2 4 8 16 …You can do this by adding a single*= statement
to the loop.

num = 1;
while (num < 30000)
{ cout << num << endl;

}

5.3 How can you determine quickly that the following loop is an infinite loop (and
will execute “forever”) whenevernum is less than 100?

cout << "enter number ";
cin >> num;
while (num < 100)
{ product = product * num;

answer = answer + 1;
}

5.4 Write a loop that allows the user to enter a string, and that prints the first vowel
that occurs in the string. Assume a boolean-valued functionIsVowel exists that
takes a string as a parameter and returns true if the string is vowel, otherwise
returns false.

5.5 Write the function with the following specification.

string revstring(string s)
// pre: returns reverse of s, that is, "stab" for "bats"

Assumingrevstring works, write a boolean-valued functionIsPalindrome
that returns true if a string is apalindrome, (i.e., is the same forwards as backwards
like "mom" and"racecar").

5.1.2 Loops and Mathematical Functions

The first computers were used almost exclusively as “number crunchers”—machines that
solved numerical problems and equations. The very word “computer” formerly meant
a person employed to perform such extensive calculations. For that reason, one of the
first machines to do the job had the name ENIAC, forElectronicNumericalI ntegrator
And Computer. This special-purpose computer eventually evolved into a more general
machine called UNIVAC, forUniversalAutomaticComputer.

June 7, 1999 10:10 owltex Sheet number 22 Page number 158 magentablack

158 Chapter 5 Iteration with Programs and Classes

Today the machines we now call “computers” are much more general-purpose, and
many people find it difficult to imagine writing without using a word processor, movies
without digital special effects, and banking without automatic tellers. All these applica-
tions require computers used in ways that at least on the surface don’t involve numerical
computations. Nevertheless, all information stored in today’s computers is represented
at some level by a number (even words are “converted” to 0’s and 1’s when stored in
a computer’s memory).Numerical analysisis a branch of computer science in which
mathematical methods for solving many kinds of equations using computers are designed
and developed. Although we won’t delve deeply into this branch of computer science,
we’ll use some simple mathematical examples to study some broader concepts.

We’ll investigate three mathematical functions: one to calculate thefactorial of an
integer, one to determine whether an integer isprime, and one to doexponentiation
or raising a number to a power. These functions provide simple examples of loops and
loop development, reinforce the concept of programmer-defined functions, and introduce
functions to which we will return later.

5.1.3 Computing Factorials

The factorial function, usually denoted mathematically asf (x) = x!, is used in statistics,
probability, and an area of computer science and mathematics calledcombinatorics.One
definition of the function is

n! = 1 × 2 × · · · × (n − 1) × n (5.1)

so that 6! = 1 × 2 × 3 × 4 × 5 × 6 = 720. As a special case, by definition 0! = 1.
Program 5.2 implements and tests a function for computing factorials.

Program 5.2 fact.cpp

#include <iostream>
#include "prompt.h"
using namespace std;

// illustrates loop and integer overflow

long Factorial(int num);

int main()
{

int highValue = PromptRange("enter max value for factorial",1,30);
int current = 0; // compute factorial of this value

while (current <= highValue)
{ cout << current << " ! = " << Factorial(current) << endl;

current += 1;
}
return 0;

}

June 7, 1999 10:10 owltex Sheet number 23 Page number 159magentablack

5.1 The while Loop 159

long Factorial(int num)

// precondition: num >= 0

// postcondition returns num!

{

long product = 1;

int count = 0;

while (count < num) // invariant: product == count!

{ count += 1;

product ∗= count;

}

return product;

} fact.cpp

In the functionFactorial the variableproduct accumulates the result with
the statementproduct *= count; this result is returned when the loop finishes
executing. The values of the variablesproduct andcount change each time that the
loop test is evaluated in computing 6!, as shown in Fig. 5.2.

O U T P U T

prompt> fact
enter max value for factorial between 1 and 30: 17
0! = 1
1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3628800
11! = 39916800
12! = 479001600
13! = 1932053504
14! = 1278945280
15! = 2004310016
16! = 2004189184
17! = -288522240

Each time that the loop test is evaluated, the value of the variableproduct is always
equal to(count)! (that’scount factorial), as shown. Since 0! = 1 (by definition),
this is true the first time the loop test is evaluated as well as after each iteration of the

June 7, 1999 10:10 owltex Sheet number 24 Page number 160 magentablack

160 Chapter 5 Iteration with Programs and Classes

Product

Count 0 1 2 3 4 5

1 1

6

1202462 720

Figure 5.2 Relationship between variables product and count in fact.cpp.

loop body. A statement that is true each time a loop test is evaluated is called aloop
invariant —the truth of the statement does not vary or change. Loop invariants can
help us reason about the correctness of programs that use loops. Sinceproduct ==
count! is an invariant, andproduct is returned, we can reason that theFactorial
function calculates the correct value ifcount == num . Since the loop test is false
when the loop exits, and the logical negation ofcount < num is count >= num
we’re almost there. Sincecount is incremented by one, it cannot go pastnumwithout
being equal tonumfirst. Thus the loop test’s negation, in conjunction with the invariant,
help us reason about the correctness of the loop.

Conceptually, the functionFactorial in Program 5.2 will always return the correct
value. However, in practice the correct value may not be returned, as is evident from
the foregoing run of the program. Note that 16! < 15!; that 17! is a negative number;
and that although 13! = 13× 12!, the value for 13! ends in a four while 12! ends in a
zero. None of these results represents mathematical truth. Because integers stored in a
computer have a largest value, it is possible for seemingly bizarre results to occur when
this largest value is exceeded. Keep in mind that the limitation on integer values is one
of many ways that a computer program can function exactly as it should (although not,
perhaps, as intended), but produce unanticipated and often inexplicable results. I used
long as the return type ofFactorial and as the type ofproduct to ensure that the
function returns “correct” results through twelve factorial even on 16-bit machines.

Using the classBigInt instead ofint or long allows calculations with arbitrarily
large integers.1 Details of the classBigInt can be found in Howto G, but you can
program with them as though they were integers, that is use arithmetic operators, print
them, and read them. Program 5.3,bigfact.cpp, shows how simple it is to useBigInt
(you must use#include"bigint.h" when programming withBigInt values.)

Program 5.3 bigfact.cpp

#include <iostream>
#include "prompt.h"
#include "bigint.h"
using namespace std;

1The integers aren’t really arbitrarily large, they’re limited by the memory in the computer. In practice
BigInt values are as big as you want; your programs will most likely run out of time in making
calculations with them before running out of memory.

June 7, 1999 10:10 owltex Sheet number 25 Page number 161magentablack

5.1 The while Loop 161

// illustrates loop and integer overflow

BigInt Factorial(int num);

int main()
{

int highValue = PromptRange("enter max value for factorial",1,50);
int current = 0; // compute factorial of this value

while (current <= highValue)
{ cout << current << " ! = " << Factorial(current) << endl;

current += 1;
}
return 0;

}

BigInt Factorial(int num)
// precondition: num >= 0
// postcondition returns num!
{

BigInt product = 1;
int count = 0;

while (count < num) // invariant: product == count!
{ count += 1;

product ∗= count;
}
return product;

} bigfact.cpp

O U T P U T

prompt> bigfact
enter max value for factorial between 1 and 50: 18

output of 0! to 11! is not shown here

12! = 479001600
13! = 6227020800
14! = 87178291200
15! = 1307674368000
16! = 20922789888000
17! = 355687428096000
18! = 6402373705728000

Unlike the results generated by Program 5.2,fact.cpp, the factorial calculations from
bigfact.cppare correct.

June 7, 1999 10:10 owltex Sheet number 26 Page number 162magentablack

162 Chapter 5 Iteration with Programs and Classes

Cryptography and Computer Science

Before the 1970s, encryption techniques were largely based on sharing a private
key that was used to encrypt messages. Both the sender and the receiver needed to
have the private key. This was a potential security leak: how is the key transmitted
from one person to another? In old movies couriers transported keys in briefcases
strapped to their wrists. Apparently this method was used in real life as well.

In the mid-1970s several people developedpublic-key cryptography. The
essence of these methods is that there are two keys: one private and one pub-
lic. Everyone in the world has access to the public key and can use it to encrypt
messages. Only the receiver of the message has the private key, and this key is
required to decrypt the message. The keys are numbers and are calculated by
choosing two large prime numbers, multiplying them together, and then doing a
few other mathematical operations. The August 1977 “Mathematical Games” sec-
tion of the magazineScientific Americanexplained this method of cryptography
and had a challenge from the inventors of the method: Decrypt a message based
on factoring the number called RSA-129 (it has 129 digits and is named for the
inventors of the encryption method: Rivest, Shamir, and Adleman):

114,381,625,757,888,867,669,235,779,976,146,
612,010,218,296,721,242,362,562,561,842,935,
706,935,245,733,897,830,597,123,563,958,705,
058,989,075,147,599,290,026,879,543,541

The column claimed that it would take 40 quadrillion years to decrypt the message
and offered $100.00 to the first person to do it. In 1994, more than 1600 com-
puters around the world were put to work for eight months using new factoring
methods to factor RSA-129. Coordinated by Arjen Lenstra, the computers used
"wasted cycles"—time that the computers would have been otherwise idle—to fac-
tor RSA-129. The number was successfully factored, and the message from the
Scientific Americanarticle decrypted. The message wasTHE MAGIC WORDS
ARE SQUEAMISH OSSIFRAGE.

For an illuminating account of the method and history of public-key cryptog-
raphy, and of a public-domain program called PGP that can be used for encrypt-
ing/decrypting, see [Gar95].

5.1.4 Computing Prime Numbers

Prime numbers used to be the domain of pure mathematicians specializing in number
theory. Today, they play an increasingly important role in computer science applica-
tions. Currentencryption techniques, used to encode data so that information cannot be
read (electronically or visually), are largely based on efficient methods for determining
whether a number is prime. Data encryption is a big business, with many ethical and

June 7, 1999 10:10 owltex Sheet number 27 Page number 163 magentablack

5.1 The while Loop 163

privacy considerations. In addition, writing programs to determine whether numbers are
prime is part of the rites of passage one traditionally undergoes in studying programming.

By definition, a number is prime if its only divisors are 1 and the number itself. For
example, 5, 7, 53, and 97 are prime, but 91 is not prime, since it is divisible by 7 (and
13). The only even prime number is 2. By convention, 1 is not considered prime.

It seems that we’ll need to check divisors of a numberN to see whether the number is
prime. We could naïvely check all numbers from 1 toN as potential divisors, checking
the remainder each time. This method can be improved by checking only potential
divisors less than the square root of a number. For example, to determine whether 119
is prime, we check divisors up to 11 (because 112 = 121> 119). Any number greater
than 11 that divides 119 must have a corresponding factor less than 11, since factors
come in pairs. Thus 7 and 17 are both factors of 119, but only one factor is needed to
show that 119 is not prime (and the second factor is easily obtained by dividing by the
first).

We need to be careful. We don’t want to check that 1 is a divisor, since it divides
every number evenly. We can also avoid testing even numbers as potential divisors,
since 2 is the only even number that’s prime. The approach used in the boolean-valued
functionIsPrime shown in Program 5.4 tests numbers less than or equal to 2 explicitly,
avoids testing even numbers other than 2, then uses a loop to check all potential divisors
less than the square root ofn, the parameter ofIsPrime .

Program 5.4 primes.cpp

#include <iostream>
#include <cmath> // for sqrt
using namespace std;

// program to check for primeness
// Owen Astrachan, 4/1/99

bool IsPrime(int n); // determines if n is prime

int main()
{

int k,low,high;
int numPrimes = 0;
cout << "low number> ";
cin >> low;

cout << "high number> ";
cin >> high;

cout << "primes between " << low << " and " << high << endl;
cout << "———————————–" << endl;

k = low;
while (k <= high)
{ if (IsPrime(k))

{ cout << k << endl;

June 7, 1999 10:10 owltex Sheet number 28 Page number 164magentablack

164 Chapter 5 Iteration with Programs and Classes

numPrimes += 1;

}

k += 1;

}

cout << "—————–" << endl;

cout << numPrimes << " primes found between " << low

<< " and " << high << endl;

return 0;

}

bool IsPrime(int n)

// precondition: n >= 0

// postcondition: returns true if n is prime, else returns false

// returns false if precondition is violated

{

if (n < 2) // 1 and 0 aren’t prime

{ return false; // treat negative #’s as not prime

}

else if (2 == n) // 2 is only even prime number

{ return true;

}

else if (n % 2 == 0) // even, can’t be prime

{ return false;

}

else // number is odd

{ int limit = int(sqrt(n) + 1); // largest divisor to check

int divisor = 3; // initialize to smallest divisor

// invariant: n has no divisors in range [2..divisor)

while (divisor <= limit)

{ if (n % divisor == 0) // n is divisible, not prime

{ return false;

}

divisor += 2; // check next odd number

}

return true; // number must be prime

}

} primes.cpp

Eachreturn statement inIsPrime exits the function. Flow of control continues
with the statement that follows the call ofIsPrime . In particular, thereturn state-
ment in the while loop permits a kind of premature loop exit. As soon as a divisor is
found, the function exits and returnsfalse . If control reaches thereturn statement
after the while loop, the loop test must be false; that is,divisor > limit . In this
casen is prime.

June 7, 1999 10:10 owltex Sheet number 29 Page number 165magentablack

5.1 The while Loop 165

O U T P U T

prompt> primes
low number> 100000
high number> 100100
primes between 100000 and 100100

100003
100019
100043
100049
100057
100069

6 primes found between 100000 and 100100

Program Tip 5.1: When a return statement is executed, flow of con-
trol immediately leaves the function in which the return is located and
continues with the statement that follows the function call. No other
statements within the function are executed. One school of thought says that
each function should have exactly onereturn statement. This is always possible, but
it often requires the introduction of extra variables or more complicated code. You will
find that judicious use of multiplereturn s within one function can make the function
simpler to write and easier to reason about.

On some computers the assignmentint limit = sqrt(n) + 1 may cause a
warning:

primes.cpp: In function ‘bool IsPrime(int)’:
primes.cpp:53: warning: initialization to ‘int’ from ‘double’

The value returned bysqrt is a double . Assigning adouble to an int is not
always possible, because the largestdouble value may be greater than the largestint
value. Even though a program compiles, compiler warnings should not be ignored; they
are often an indication that you have misused the language. In this case, you can avert
the warning by explicitly converting thedouble value to anint . This is shown in
primes.cppin the statement assigning a value tolimit :

int limit = int(sqrt(n) + 1); // largest divisor to check

Using the typeint like a function call explicitly converts the valuesqrt(n) + 1 into
an integer. This is called atype cast. The cast prevents the warning, because you, the

June 7, 1999 10:10 owltex Sheet number 30 Page number 166magentablack

166 Chapter 5 Iteration with Programs and Classes

programmer, explicitly converted one type to another. We’ll study casts in more detail
in Section 6.3.6.2

The valuesqrt(n) + 1 is used instead ofsqrt(n) because of the limited pre-
cision of floating-point numbers. For example, the square root of 49 might be calculated
as 6.9999 rather than 7.0. In this case, the assignmentint limit = sqrt(49)
stores the value 6 inlimit , because thedouble is truncated when it’s assigned to an
int . Adding 1 avoids this kind of problem.

5.1.5 Kinds of Loops

The loop inmain of primes.cppiterates exactlyhigh-low+1 times, so iflow is 10
and high is 20, the loop executes 11 times, fork having values 10, 11, . . . , 19, 20.
When the value of a simple arithmetic expression likehigh-low+1 gives the number
of loop iterations (and the value can be calculated before the loop executes the first time),
the loop is called adefinite loop. When the update of the expression used in the loop
test is an increment by one, such ask += 1 or a decrement by one, such ask -= 1
in Program 5.1,revstring.cpp, the definite loop is often called acounting loop.

In contrast, the loop in the functionIsPrime of primes.cpp, is not a definite loop.
Although the maximum number of iterations can be calculated in advance3 the loop exits
as soon as a divisor is found. The early exit means that no simple expression determines
the number of loop iterations. However, in some sense the loop is a kind of counting
loop since the value ofdivisor is incremented by two for each iteration.

5.1.6 Efficiency Considerations

How important is it to check divisors up to
√

n rather thann in determining whether
a number is prime? People often suggest usingn/2 rather thann. Is this better than√

n? These questions are important in determining the efficiency orcomplexity of the
algorithm used inIsPrime , but they don’t affect the correctness of the algorithm.
Consider that

√
50,000= 223.6, but that 50,000/2 = 25,000. This difference means

that usingn/2 as the limit inIsPrime could result in approximately 12,388 more
numbers being checked as potential divisors in determining that 49,999 is prime (it is).
The extra number of divisors is 12,388 rather than 24,776 because only odd numbers
are checked as potential divisors in the loop. I timed two versions of Program 5.4: one
that usedlimit = sqrt(n) + 1 and one that usedlimit = n/2 + 1 . It took
1.44 seconds to determine that there are 5,133 primes between 1 and 50,000 when the
square root limit was used, but 45.78 seconds when the limit based on half ofn was
used. Interestingly, even checking only divisors less than the square root of a number
is much too slow for the encryption algorithms that are based on using large prime
numbers. These encryption algorithms use pairs of large prime numbers, so they need
to determine whether 200-digit numbers are prime. The square root of such a number
has 100 digits. Testing 10100 numbers as potential divisors would require more time

2As we’ll see in Section 6.3.6, the latest C++ standard has a casting operatorstatic_cast , whose
use is preferred to the style of cast we’ve shown here. Not all compilers supportstatic_cast .
3The maximum number of iterations is roughly

√
n/2.

June 7, 1999 10:10 owltex Sheet number 31 Page number 167magentablack

5.1 The while Loop 167

than the universe has been in existence. What makes the encryption algorithms feasible?
Computer scientists and mathematicians developed efficient methods for determining
whether a number is prime. These methods don’t actually factor a number; they just
yield a yes or no answer to the question “Is this number prime?” However, no one
has developed an efficient algorithm for factoring numbers. The keys to the encryption
methods used are (1) efficiently determining that a number is prime, and (2) difficulty
in factoring the product of the two primes.

5.1.7 Exponentiation: A Case Study in Loop Development

We’ll use the mathematical operation of raising a number to a power, called exponen-
tiation, as an illustration of algorithm efficiency and of using invariants to develop a
loop.

Today’s businesses and governments rely increasingly on electronic messages and
transactions. With powerful computers to assist in electronic spying, many worry that no
message is safe from being stolen and deciphered. However, computer scientists have
developed methods of data encryption that result in messages that are provably difficult
to decrypt or decode.

These techniques of data encryption require that large prime numbers (approximately
150 digits) be manipulated by raising these numbers to large powers4. Data encryption is
used to prevent people from “spying” on electronic information. For example, someone
sending an electronic message from an office in Europe to an office in Canada might
be worried that the message will be intercepted by electronic eavesdroppers. Instead
of being sent asplain text (i.e., understandable by anyone), the message might be
encrypted so that it cannot be intercepted and understood.

Efficient methods for computingxn, the operation ofexponentiation,are essential
when bothx and n are large. In C++, the exponentiation operation is not a built-in
operator, as addition, subtraction, multiplication, division, and some others are (e.g., the
% operator for remainder). The library of routines specified in the header file<cmath>
does include an exponentiation routine calledpow (see Table F.1), but it is useful for us
to examine ways of implementing a function to perform exponentiation. Not only will
doing so illuminate concepts of programming and C++; it is sometimes necessary to
implement such a function when the one provided in the math library won’t work, such
as in raising aBigInt value to a power.

Exponentiation can be defined in at least three ways. The first method is the one you
may be accustomed to.

an = a × a × · · · × a︸ ︷︷ ︸
n times

(5.2)

An equivalentinductive or recursive definition follows.

an =
{ 1 if n = 0

a × a(n−1) otherwise
(5.3)

4This is part of howRSAencryption works; the powers are computed modulo another numbermso that
the result is constrained to be between 0 andm − 1.

June 7, 1999 10:10 owltex Sheet number 32 Page number 168magentablack

168 Chapter 5 Iteration with Programs and Classes

Table 5.1 Calculating 316 Efficiently. The Answer column cannot be filled in until the Depends
On column is filled in from the bottom to the top. xi indicates a value to fill in.

Power Depends On Answer

316 = (38)2 (x4)
2 43, 046, 721

x4 = 38 = (34)2 (x3)
2 6, 561

x3 = 34 = (32)2 (x2)
2 81

x2 = 32 = (31)2 (x1)
2 9

x1 = 31 none 3

Finally, it’s possible to take advantage of properties of exponents such as 38 = 34 × 34

to define exponentiation.

an =
{ 1 if n = 0

an/2 × an/2 if n is even
a × an/2 × an/2 if n is odd (note thatn/2 truncates to an integer)

(5.4)

This last definition has the advantage that it may lead to fewer multiplications than the
first two definitions when we develop a program to translate the definitions into code. For
example, given the task of computing 316, you might break the problem down as shown
in Table. 5.1, where 316 is calculated by computing 38 and squaring the result. In turn, 38

is calculated by computing 34 and squaring it. This process of breaking down a number
continues until the simple case of 31 = 3 is reached. Note that only four multiplications
are required—one for squaring each of the numbers: 3, 9, 81, 6561. This is many fewer
multiplications than the 16 required by the naïve method used in the first definition of
exponentiation above.

Definition 5.2 leads to the following relatively simple counting loop in the function
Power for raising a number to an integer power.

double Power(double base,int expo)
// precondition: expo >= 0
// postcondition: returns baseˆexpo (base to the power expo)
{

double result = 1.0;
while (expo > 0)
{ result *= base;

expo -= 1;
}
return result;

}

The loop iterates exactlyexpo times so that calculatingxn requiresn multiplications and
n subtractions. We want to develop a similar function, one that is black-box equivalent
to Power , but that uses fewer multiplications as with definition 5.4. We’ll use a loop
guard similar to the one above, but we’ll use a loop invariant to help explain the loop and
reason about its correctness. The invariant will also help you remember how to develop

June 7, 1999 10:10 owltex Sheet number 33 Page number 169magentablack

5.1 The while Loop 169

the code on your own. We’ll start with the following code that accumulates the final
answer in the variableresult .

double Power(double base, int expo)
// precondition: expo >= 0
// postcondition: returns baseˆexpo (base to the power expo)
{

double result = 1.0;
// invariant: result * (baseˆexpo) == answer
while (expo > 0)
{
}
return result;

}

Recall that a loop invariant is true each time the loop test is evaluated. In particular, it is
true the first time the test is evaluated. The invariant is expressed as a comment:

result× baseexpo= answer (5.5)

Since the initial value ofresult is 1.0, the invariant is true the first time the loop test
is evaluated. Sinceexpo is used in the loop test, the value ofexpo must change as the
loop iterates. For the invariant to remain true, the values of eitherresult or base
must change as well. When the loop terminates, we’ll want the value ofexpo to be
zero. Since the invariant is true, this will guarantee that the correct answer is returned
sincex0 = 1 for all x.

When the exponent is even, definition 5.4 dictates dividing the exponent by 2, that
is taking advantage of the property that 320 = 310 × 310. If the exponent is divided in
half then eitherresult or base (or both) must change to establish the truth of the
invariant. We’ll use the following properties of even exponents.

ab = ab/2 × ab/2 = (a × a)b/2 (5.6)

Using this property, when we divideexpo by 2 we’ll squarebase so that the value of
the expression in the invariant shown in Equation 5.5 remains the same.

result× baseexpo= result× (base× base)expo/2 (5.7)

This relationship leads to the following loop (the function header isn’t duplicated).

double result = 1.0;
// invariant: result * (baseˆexpo) == answer
while (expo > 0)
{ if (exp o % 2 == 0) // exponent is even

{ expo /= 2;
base *= base; // (a*a)ˆ(b/2) == aˆb

}
else // must handle this case

}
return result;

June 7, 1999 10:10 owltex Sheet number 34 Page number 170magentablack

170 Chapter 5 Iteration with Programs and Classes

The loop is almost done, but we must still deal with odd exponents. Definition 5.4 for
odd exponents is similar to the case for even exponents, but an additional factor ofbase
is involved, that is:

result× baseexpo= (result× base) × baseexpo/2 × baseexpo/2 (5.8)

The part of this expression involving expo/2 is identical to the expression used for even
exponents. To incorporate the additional factor ofbase we’ll multiply result by
base . This re-establishes the invariant.

double result = 1.0;
// invariant: result * (baseˆexpo) == answer
while (expo > 0)
{ if (exp o % 2 == 0) // exponent is even

{ expo /= 2;
base *= base; // (a*a)ˆ(b/2) == aˆb

}
else
{ expo /= 2;

result *= base;
base *= base;

}
}
return result;

Before we look at the code one final time, we’ll review how the invariant helps reason
about the correctness of the program.

1. The invariant is true each time the loop test is evaluated. In particular, it must be
true the first and last times the test is evaluated.

2. When the loop finishes, the loop test must be false. We can use this, in conjunction
with the truth of the invariant, to reason about a loop’s correctness.

In the loop fromPower , the value ofexpo will be zero when the loop exits. We can
infer this because since the loop test is false, we know thatexpo <= 0 . But expo can
never be negative since it is only changed when it is divided by two. Since the invariant
is true, and the value ofexpo is zero, we have the following:

result× baseexpo= result× base0 = result= final answer (5.9)

Sinceresult is returned, we have “proved” that the function correctly satisfies its post-
condition. Of course this is an informal proof, but hopefully it is effective in convincing
you about the loop and the function.

Before you decide you’re “done” in writing a function, class, or program, you should
review the code. In the functionPower the same statements appear in both theif and
theelse block. You should alwaysfactor out duplicated code by moving it before or
after theif/else statement as appropriate. Here, we can factor out two statements,

June 7, 1999 10:10 owltex Sheet number 35 Page number 171magentablack

5.1 The while Loop 171

and leave anif without anelse . To do this, we negated the original test used in the
if so that now the code tests for odd exponents.

double Power(double base, int expo)
// precondition: expo >= 0
// postcondition: returns baseˆexpo (base to the power expo)
{

double result = 1.0;
// invariant: result * (baseˆexpo) = answer
while (expo > 0)
{ if (exp o % 2 != 0) // exponent is odd

{ result *= base;
}
expo /= 2; // 4/2 == 2, 5/2 == 2
base *= base; // (a*a)ˆ(b/2) == aˆb

}
return result;

}

Program Tip 5.2: Invariants are useful in developing and documenting
loops. You should try to include an invariant in every loop you write. At first this will
seem difficult or useless. But what’s obvious to you today won’t be obvious to someone
else, or to you tomorrow, so document, document, document your code.

Program Tip 5.3: Factor out common code. Don’t be satisfied when your
function or program works. Be sure that your code is easy to understand, is not uselessly
redundant, and that code duplication is minimized.

5.6 Assume that the factorial of a negative number is defined to be the factorial of thePause to Reflect

corresponding absolute value so that, for example,(−5)! = 5! = 120. Modify
the functionFactorial in Program 5.2 so that the correct value is returned for
any value ofnum. Be sure to change the comments.

5.7 What value is returned by the callFactorial(-7) in the programfact.cpp,
Program 5.2?

5.8 Write a function to calculatex!! wherex!! = (x!)!. For example, 3!! = 6! = 720.

5.9 Generalizing the previous exercise, write a function with two parameters to cal-
culatex(!)n, wherex(!)n = x !! . . .!︸ ︷︷ ︸

n times

. UseBigInt s for the calculations.

June 7, 1999 10:10 owltex Sheet number 36 Page number 172magentablack

172 Chapter 5 Iteration with Programs and Classes

5.10 Here is another version ofFactorial ; this version is changed only slightly
from that given in Program 5.2. Does this version pass a black-box test comparing
it with the original? What is a good invariant for the loop?

int Factorial(int num)
{

int product = 1;
int count = 1;

while (count <= num)
{ product *= count;

count += 1;
}
return product;

}

5.11 If the statementdivisor += 2 is changed todivisor += 1 , does the func-
tion IsPrime still work as intended?

5.12 What value is returned by the callIsPrime(1) ? Is this what should be returned?

5.13 It is possible to write a loop without a return from the middle of the loop in the
functionIsPrime . Thewhile loop can be replaced by the following:

while (divisor <= limit & & n % divisor != 0)
{ divisor += 2;
}

What statement is needed after the loop to ensure that the correct value is returned?

5.14 What values doesexpo have each time the loop test is evaluated in the final
version of the functionPower if the original value is 1,024? If the original value
is 1,000? (the last value is 0 in all cases).

5.15 Why is the invariant for the loop ofIsPrime in primes.cpp, Program 5.4 true
the first time the loop test is evaluated? Write an informal argument about the
correctness ofIsPrime using the invariant and the loop test together.

5.16 Before common code was factored out in the loop for calculating powers, the two
statements below were part of theelse clause.

result *= base;
base *= base;

Can the order of these statements be changed? Why?

5.17 Modify the functionPower to work with negative exponents, wherea−n = 1/an.

June 7, 1999 10:10 owltex Sheet number 37 Page number 173 magentablack

5.1 The while Loop 173

5.1.8 Numbers Written in English

As another example of a loop we’ll useDigitToString from numtoeng.cpp,Pro-
gram 4.10, to convert a number to an English equivalent string formed from the digits.
For example, 123 is represented by"one two three" , and 4017 is represented by
"four zero one seven" .

We’ll need a loop to do two things:

Extract one digit at a time from the number

Build up the string one word at a time

The modulus operator%makes it easy to determine the rightmost digit of any number.
It’s difficult to get the leftmost digit, because we don’t know how many digits are in the
number. To build the English equivalent, we’ll have to build astring by concatenating
each digit-string in the proper order. Each time a digit is peeled off the number, its
corresponding string is concatenated to the front of thestring being built.

Program 5.5 digits.cpp

#include <iostream>
#include <string>
using namespace std;

// illustrates loops, convert a number to a string of English digits
// i.e., 1346 -> one three four six
// Owen Astrachan, 6/8/95

string DigitToString(int num);
string StringOut(long int number);

int main()
{

long number;

cout << "enter an integer: ";
cin >> number;
cout << StringOut(number) << endl;

return 0;
}

string DigitToString(int num)
// precondition: 0 <= num < 10
// postcondition: returns english equivalent, e.g., 1->one,...9->nine
{

if (0 == num) return "zero";
else if (1 == num) return "one";
else if (2 == num) return "two";
else if (3 == num) return "three";
else if (4 == num) return "four";

June 7, 1999 10:10 owltex Sheet number 38 Page number 174magentablack

174 Chapter 5 Iteration with Programs and Classes

else if (5 == num) return "five";
else if (6 == num) return "six";
else if (7 == num) return "seven";
else if (8 == num) return "eight";
else if (9 == num) return "nine";
else return "?";

}

string StringOut(long number)
// precondition : 0 < number
// postcondition: returns string formed from digits written in English
// e.g., 123 -> "one two three"
{

strin g s = "";
int digit;
while (number != 0)
{ digit = number % 10;

s = DigitToString(digit) + " " + s;
number /= 10;

}
return s;

} digits.cpp

O U T P U T

prompt> digits
enter an integer: 9299338
nine two nine nine three three eight
prompt> digits
enter an integer: 401706
four zero one seven zero six
prompt> digits
enter an integer: -139
? ? ?
prompt> digits
enter an integer: 18005551212
eight two five six eight two zero two eight
prompt> digits
enter an integer: 8005551212
? ? ? ? ? ? ? ? zero

The first time the loop test is evaluated,s represents the empty string"" : astring
with no characters. The value ofdigit is undefined because no value has been assigned
to digit . Since a space is always added after the digit string added to the front of
string s , there is a space at the end ofs . This space won’t be “visible” ifs is
printed, unless another string is printed immediately afters . The space will be included

June 7, 1999 10:10 owltex Sheet number 39 Page number 175magentablack

5.1 The while Loop 175

in calculating the length ofs , soStringOut(111).length() == 12 , since the
string is"one one one " .

5.1.9 Fence Post Problems

The extra space after the last English digit of thestring made byStringOut in
Program 5.5,digits.cpp, is undesirable. Spaces should occur between each two digits
rather than after each digit. A similar problem occurs with the following loop, intended
to print the numbers 1 through 10 separated by commas:1,2,3,4,5,6,7,8,9,10 .
The loop doesn’t work properly:

int num = 1;
while (num <= 10)
{ cout << num << ",";

num += 1;
}
cout << endl;

The loop prints1,2,3,4,5,6,7,8,9,10, instead (note the trailing comma). The
problem here is that the number of numbers is one more than the number of commas, just
as the number of digits is one more than the number of spaces in the functionStringOut.

This kind of problem is often called afence postproblem, because a fence (see
picture below) has one more fence post than fence crosspieces. In our example, the
numbers are the posts and the commas are the crosspieces.

The correct number of posts and crosspieces cannot be printed in a loop that outputs
both fences and crosspieces, because the loop generates the same number of each. There
are three alternatives: print the first fence post (number) before the loop; print the last
post (number) after the loop; or guard the printing of the crosspiece inside the loop. The
three approaches are coded as follows:

Program 5.6 threeloops.cpp

int n = 1; int n = 1; int n = 1;
cout << n; while (n < 10) while (n <= 10)
n += 1; { cout << n << ","; { cout << n;
while (n <= 10) n += 1; if (n < 10)
{ cout << "," << n; } cout << ",";

n += 1; cout << n << endl; n += 1;
} }
cout << endl; cout << endl; threeloops.cpp

In the solution on the left, the comma is printed before each number is printed in the
loop. This requires an increment before the loop or a different initialization ofn.

Printing the comma after each number requires printing the final number after the
loop. This is shown in the code in the middle where the loop test is modified to use<
instead of<=.

June 7, 1999 10:10 owltex Sheet number 40 Page number 176magentablack

176 Chapter 5 Iteration with Programs and Classes

Both solutions share the problem of code duplication. In the code segment at the top
left, n is incremented by one in two places. In the segment at the top right, there are two
cout << n statements. Code duplication often causes maintenance problems, since
changes must be made identically in more than one place. The solution on the right
avoids the code duplication but mimics the loop test inside the loop, which is a slightly
different kind of code duplication. Each of these solutions is an acceptable way to solve
fence post problems.

5.18 Write code that permits the user to enter the number of fence posts in a fence andPause to Reflect

that then “draws” a fence as shown in the following sample output:

O U T P U T

enter number of fence posts: 8

|---|---|---|---|---|---|---|

|---|---|---|---|---|---|---|

5.19 Alter the code in the functionStringOutin Program 5.5,digits.cpp,so that spaces
occur between each digit as opposed to after each digit.

5.20 Modify StringOut to generate a string that’s backwards, for example,"three
two one" for the number 123.

5.21 Write a function that returns the number of characters in anint , accounting for
a minus sign for negative numbers. For example,NumDigits(1234) returns
4, andNumDigits(-1234) returns 5.

5.22 Write a loop that prints the numbers 1 through 100 with each group of 10 numbers
starting on a new line. There should be a space between each of the numbers on
a line:

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
...
91 92 93 94 95 96 97 98 99 100

You may find it useful to use the statement

if (num % 10 == 0)
{ cout << endl;
}

in the loop body.

June 7, 1999 10:10 owltex Sheet number 41 Page number 177magentablack

5.2 Alternative Looping Statements 177

5.23 Write a loop using the operator/= that calculates how many times a number
can be divided in half before 0 is reached. For example, 2 can be divided twice
(attaining 1 then 0), 3 can be divided twice, 511 can be divided 9 times, and 512
can be divided 10 times. Use this loop to write a functionIntegerLog that has
two parameters,number andn, and returns how many timesnumber can be
divided byn.

5.2 Alternative Looping Statements

Writing loops can be difficult. It’s not always easy to determine what the loop test should
be, what statements belong in the loop body, and how variables should be initialized and
updated before, in, and after a loop. Loops tend to have four sections:

Initialization: This step occurs prior to the loop. Variables that need to be initial-
ized are given values prior to the first time the loop test is evaluated.

Loop test: The test determines whether the loop body will be executed. When the
loop test is false, the loop body is not executed. If the loop test is always true, an
infinite loop results, unless the loop is exited with areturn statement, as used
in IsPrime in primes.cpp, Program 5.4.

Loop body: The statements that are executed each time the loop test evaluates to
true.

Update: The statements that affect values in the loop test. These statements ensure
that the loop will eventually terminate. Values of variables in the loop test will be
changed by the update statements.

These sections are diagrammed in Fig. 5.3 for the two loops inprimes.cpp, Program 5.4

int limit = sqrt(n) + 1;

int divisor = 3;

while (divisor <= limit)

{

 if (n % divisor == 0)

 {

 return false;

 }

 divisor += 2;

}

k = low;

while (k <= high)

{

 if (IsPrime(k))

 {

 cout << k << endl;

 numPrimes += 1;

 }

 k += 1;

}

Test

Initialization

Update

Body

Figure 5.3 The four sections of a loop.

June 7, 1999 10:10 owltex Sheet number 42 Page number 178magentablack

178 Chapter 5 Iteration with Programs and Classes

5.2.1 The for Loop

These loops are often written using an alternative looping construct to thewhile loop.
Thefor loop is just a kind of shorthand, orsyntactic sugar,5 that can be used instead of
a while loop. Anything written with one loop can be written with the other and vice
versa.

The for loop offers some economy in terms of lines of code when compared with
its while loop equivalent. Theinitialization statement is executed only once, before
the evaluation of the test for the first time. Thetest expressionis evaluated; if it is true,
the loop body executes. After the last statement in the

Syntax: for loop

for (initialization; test expression; update)
{

statement list;
}

loop body is executed, theup-
datestatement executes. The test
is then evaluated again, and the
process continues (without initial-
ization) until the test is false. Since
all the information in afor loop
appears at the beginning of the
loop, it is often easier to under-

stand than the correspondingwhile loop. The update statement should change values
used in the test expression so that the loop makes progress toward termination.

Here is thewhile loop from main in primes.cpp, Program 5.4, with the corre-
spondingfor loop:

k = low; for(k=low; k <= high; k += 1)
while (k <= high) { if (IsPrime(k))
{ if (IsPrime(k)) { cout << k << endl;

{ cout << k << endl; numPrimes += 1;
numPrimes += 1; }

} }
k += 1;

}

The parentheses following thefor loop enclose three separate parts of a loop: initial-
ization, test, and update. These parts are separated by semicolons as shown. Block
statement delimiters enclose the body of thefor loop just as they enclose the body of
thewhile loop.

I adhere to a style of programming in whichfor loops are used only when a bound
on the number of iterations can be simply calculated. Such loops are sometimes called
definite loops. Typically, these loops are counting loops—loops that execute a sequence
of statements a fixed number of times, as shown in the example above fromprimes.cpp.
Many C++ programmers usefor loops exclusively; the economy of code makes pro-
gramsappearshorter. Choosing the style of loop to use should not be a major decision
point in developing a program. Sticking with the style adopted in this book is one way
of ensuring that little time is spent on deciding what kind of loop to use. As an example
of when I choosenot to use afor loop, awhile loop fromdigits.cpp,Program 5.5, is
shown in Program 5.7 on the left with the correspondingfor loop on the right:

5The termsyntactic sugaris used for constructs that don’t have a new meaning but are more aesthetically
pleasing in some way. Often this means “easier for a human reader to understand.”

June 7, 1999 10:10 owltex Sheet number 43 Page number 179magentablack

5.2 Alternative Looping Statements 179

Program 5.7 digitloops.cpp

while (number != 0) for(; number != 0; number /= 10)
{ digit = number % 10; { s = DigitToString (digit) + " " + s;

s = DigitToString(digit) + " " + s; }
number /= 10;

} digitloops.cpp

This isnot a counting loop. The number of times the loop body is executed depends
on how many timesnumber can be divided by ten.6 This example shows that the
initialization part of afor loop can be omitted. The other parts of afor loop can be
omitted too, but omitting the test part results in an infinite loop.

5.2.2 The Operators ++ and −−
Counting loops often require statements such ask += 1 . Because incrementing by one
is such a common operation, C++ includes an operator that can be used to increment by
one in place of += 1. The statement

k++;

can be used in place ofk += 1 . Similarly, the statementk-- can be used in place of
k -= 1 to decrement a value by one. The operator++ is thepostincrementoperator,
and the operator-- is thepostdecrementoperator. In all the code in this book, the
expressionx++ is used only as shorthand forx += 1 . Similarly, x-- is used only as
shorthand forx -= 1 . If you read other books on C++, you may find these operators
used as parts of other expressions. For example, the statementx = z + y++ is legal
in C++. This statement storesz + y in x , and then increments the value ofy by one.
Don’t try to use the operator this way—it will invariably get you into trouble. Instead,
use++ and-- only as abbreviations as already described. When used in this way, the
statements below on the left affectx the same way: its value is incremented by one.
Similarly, the statements on the right decrementx by one.

x += 1; x -= 1;
x++; x--;
++x; --x;

I don’t use thepreincrement operator ++x or thepredecrement operator--x in this
book. When used in expressions likex = z + ++y , the value ofy is incremented
first, then the value ofz + y is stored inx . Since I don’t use++ and-- except as
abbreviations for+= 1 and -= 1 , I use only the postincrement and postdecrement
operators.

An example of a countingfor loop using the postincrement operator follows; this
is thewhile loop frommain of primes.cpp,Program 5.4:

6Although this number of iterations can be calculated using logarithms, this isn’t done in this loop.

June 7, 1999 10:10 owltex Sheet number 44 Page number 180magentablack

180 Chapter 5 Iteration with Programs and Classes

for(k = low; k <= high; k++)
{ if (IsPrime(k))

{ cout << k << endl;
numPrimes++;

}
}

5.24 The functionFactorial in fact.cppProgram 5.2, uses awhile loop to calculatePause to Reflect

the factorial of a number. Rewrite the function so that afor loop is used instead.

5.25 Write awhile loop equivalent to the followingfor loop:

double total = 0.0;
double val;
for(val = 1.0; val < 10000; val *= 1.5)
{ total += val;
}

5.26 Write a for loop equivalent of the followingwhile loop:

int k = 1;
int sum = 0;
while (k <= num)
{ sum += k;

k += 2;
}

5.27 What is printed by the followingfor loop?

int k;
for(k=1024; k >= 0 ;k/=2)
{ cout << k << endl;
}

5.2.3 The do-while Loop

Many programs prompt for an input value within a range. For example, Program 4.10,
numtoeng.cpp,prompts for anint between 0 and 100. ThePromptRange functions
declared in"prompt.h" ensure that input is within a range specified by the program-
mer. Think for a moment about how to write a loop that continually reprompts if input is
not within a specific range. Since you must enter a value before any test can determine
whether the value is valid, using awhile loop leads to a fence post problem. Instead, a
do-while loop can be used. Thedo-while loop works similarly to awhile loop, but
the loop test occurs at the end of the loop rather than at the beginning. This means that
the body of ado-while loop is executed at least once. In contrast, awhile loop does
not iterate at all if the loop test is false the first time it is evaluated. Here is the body of
one of thePromptRange functions (fromprompt.cpp):

June 7, 1999 10:10 owltex Sheet number 45 Page number 181magentablack

5.2 Alternative Looping Statements 181

int PromptRange(string prompt,int low, int high)
// pre: low <= high
// post: returns a value between low and high (inclusive)
{

int value;
do
{ cout << prompt << " between ";

cout << low << " and " << high << ": ";
cin >> value;

} while (value < low || high < value);

return value;
}

Note that the output statements for the prompt are executed prior to the input statement.
If the value entered is not valid, the loop continues to execute until a valid value is
entered.

5.2.4 Pseudo-Infinite Loops

Because of errors in design, loops sometimes execute forever. It’s fairly common to
forget to increment a counter when writing awhile loop. This is a good reason to use
a for loop—it’s harder to forget the update statement in afor loop.

Sometimes, however, it’s useful to write seemingly infinite loops with an exit condi-
tion from within the loop body. We’ll use this style of loop with an exit only in situations
that would cause code to be duplicated otherwise. Consider the following loop, which
sums user-entered values until the user enters zero:

int sum = 0;
int number;
cin >> number;
while (number != 0)
{ sum += number;

cin >> number;
}
cout << "tota l = " << sum << endl;

To evaluate the testwhile (number != 0) , the variablenumber is given a value
before the test is evaluated for the first time as well as each time the loop body is
executed. Reading an initial value so that the loop test can be evaluated the first time
is calledpriming the loop. A word is read again within the loop body before the next
evaluation. Eric Roberts, author ofThe Art and Science of C,calls these “loop-and-a-
half” loops [Rob95]. Studies show that loop-and-a-half7 loops are easier for students to
write as infinite loops with an exit.

7It would be nice to say that four out of five programmers surveyed preferwhile (true) with
break loops. Studies do indicate that students find it easier to write code using this kind of loop than
using a primedwhile loop.

June 7, 1999 10:10 owltex Sheet number 46 Page number 182magentablack

182 Chapter 5 Iteration with Programs and Classes

The following loop avoids duplicating the code that extracts a value fornumber
from cin :

while (true) // until break from within loop
{ cin >> number;

if (number == 0)
{ break; // OUT OF LOOP
}
sum += number;

}
cout << "tota l = " << sum << endl;

Since the loop test is always true, the loop appears to be an infinite loop. There is no way
for the test to become false. Thebreak statement in the loop causes an abrupt change
in the flow of control. When executed, abreak causes execution to break out of the
innermost loop in which thebreak occurs. In the example here, execution continues
with the output statementcout << "total = ..." when thebreak is executed.
As an alternative towhile(true) , the loop testfor(;;) is a special C++ idiom
that also means “execute forever.” I don’t use this style of infinite loop since its purpose
doesn’t seem as clear as thewhile(true) loop.

It is easy to carry this style of writing loops to extremes and write only infinite loops
with break statements. You should try to write loops with explicit loop tests and use
while(true) loops only for loop-and-a-half problems.

ProgramTip 5.4: The break statement causes termination of the inner-
most loop in which it occurs. Control passes to the next statement after
the innermost loop. Use the break statement judiciously in situations
where code would be duplicated otherwise. As we’ll see in later chapters, loop
tests often provide meaningful clues when it becomes necessary to reason about how a
loop works and whether or when the loop terminates. A test oftrue doesn’t provide
many clues. However, used properly, infinite loops avoid code duplication and thus lead
to programs that are easier to maintain.

Some programmers find it easier to understand the logic of the following loop than that
of the loop used inPromptRange shown previously:

while (true)
{ cout << prompt << " between ";

cout << low << " and " << high << ": ";
cin >> value;
if (low <= value && value <= high) return value;

}

Thereturn statement exits the function (and the loop) when the user-entered value is
within the specified range. Sometimes it’s easier to develop the logic for loop termination,

June 7, 1999 10:10 owltex Sheet number 47 Page number 183magentablack

5.2 Alternative Looping Statements 183

as shown above, than for loop continuation, as shown in the functionPromptRange . De
Morgan’s law from Section 4.7 can help in converting logical expressions for continuation
into expressions for termination since one is typically the logical negation of the other.

5.2.5 Choosing a Looping Statement

Thewhile loop is the kind of loop to use in most situations. For writing definite loops,
a for loop may be appropriate. For writing loops that must iterate once, ado-while
loop may be appropriate. Given that there are three different kinds of loops, it’s natural
to wonder whether there are rules that can make the “correct” choice of what kind of loop
to apply easier to determine. Since any loop can be made to do the work of any other by
using appropriate statements, we won’t worry too much about this kind of decision. In
summary, however, the following guidelines may prove helpful:

Thewhile loop is a general-purpose loop. The test is evaluated before the loop
body, so the loop body may never execute.

The for loop is best for definite loops—loops in which the number of iterations
is known before loop entry.

The do-while loop is appropriate for loops that must execute at least once,
because the test is evaluated after the loop body.

Infinite loops, with abreak (or return from function) statement, are often
useful alternatives, especially when loop priming is necessary or when it’s difficult
to develop the logic used in the loop test.

In all three types of loop the braces{} that surround the loop body are not required
by the compiler if the loop body is a single statement. However, the style guidelines for
code in this book require the bodies of loops andif /else statements to be enclosed in
braces, even if they consist of single comments.

5.2.6 Nested Loops

When one loop occurs in the body of another loop, the loops together are callednested
loops. In primes.cpp, Program 5.4, there is a “virtual nested loop,” because the loop in
the functionIsPrime is executed repeatedly by the call from the loop inmain .

An example adapted from [KR96] shows how nested loops can be used to print a
table of wind chill values. The effective temperature is significantly decreased when the
wind speed is high. For example, a 20 mile-per-hour wind on a 50-degree day reduces
the temperature to an equivalent wind chill index of 32 degrees. The desired output is
a table of wind speed and temperature, with the wind chill index temperature given as
follows:

June 7, 1999 10:10 owltex Sheet number 48 Page number 184 magentablack

184 Chapter 5 Iteration with Programs and Classes

O U T P U T

prompt> windchill
deg. F: 50 40 30 20 10 0 -10 -20 -30 -40

0 mph: 50 40 30 20 10 0 -10 -20 -30 -40
5 mph: 47 37 26 16 5 -4 -15 -25 -36 -47
10 mph: 40 28 15 3 -9 -21 -33 -46 -58 -70
15 mph: 35 22 8 -4 -18 -31 -45 -58 -72 -85
20 mph: 32 17 3 -10 -24 -39 -53 -67 -82 -96
25 mph: 29 14 0 -14 -29 -44 -59 -74 -89 -104
30 mph: 28 12 -2 -17 -33 -48 -63 -79 -94 -109
35 mph: 26 11 -4 -20 -35 -51 -67 -82 -98 -113
40 mph: 25 9 -5 -21 -37 -53 -69 -85 -101 -116
45 mph: 25 9 -6 -22 -38 -54 -70 -86 -102 -118
50 mph: 25 9 -7 -23 -39 -55 -71 -87 -103 -119

Because the table must be printed one row at a time, a first cut at the code is row-
oriented, with one row for each wind speed between 0 and 50 miles per hour:

for(windspeed=0; windspeed <= 50; windspeed += 5)
print a row of temperatures;

Printing a row also requires a loop, and this leads to the nested loops shown inwind-
chill.cpp, Program 5.8. Each wind chill temperature is printed by theinner loop, in
which temperature varies from 50 down to−40 degrees; the inner loop prints a complete
row of the table. The inner loop executes completely before one iteration of theouter
loop has finished.

Program 5.8 windchill.cpp

#include <iostream>
#include <iomanip> // for setw
#include <cmath> // for sqrt
using namespace std;

// Owen Astrachan
// nested loops to print wind-chill chart
//
// idea: Programming with Class by Kamin and Reingold, McGraw-Hill
// formula for wind-chill from
// UMAP Module 658, COMAP, Inc., Lexington, MA 1984, Bosch and Cobb

double WindChill(double temperature, double windSpeed);

int main()

June 7, 1999 10:10 owltex Sheet number 49 Page number 185magentablack

5.2 Alternative Looping Statements 185

{
const int WIDTH = 5;
const int MIN_TEMP = −40;
const int MAX_TEMP = 50;
const string LABEL = "deg. F: ";
int temp,wind;

// print column headings

cout << LABEL;
for(temp = MAX_TEMP; temp >= MIN_TEMP; temp −=10)
{ cout << setw(WIDTH) << temp;
}
cout << endl << endl;

// print table of wind chill temperatures

for(wind = 0; wind <= MAX_TEMP; wind += 5) // row heading
{ cout << wind << " mph:\t";

for (temp = MAX_TEMP; temp >= MIN_TEMP; temp −= 10) // print the row
{ cout << setw(WIDTH) << int(WindChill(temp,wind));
}
cout << endl;

}
return 0;

}

double WindChill(double temperature, double windSpeed)
// precondition: temperature in degrees Fahrenheit
// postcondition: returns wind-chill index/comparable temperature
{

if (windSpeed <= 4) // low wind, temperature unaltered
{ return temperature;
}
else if (windSpeed <= 45) // high wind
{ return

91.4 − (10.45 + 6.69 ∗sqrt(windSpeed) − 0.447 ∗ windSpeed) ∗
(91.4 − temperature)/22.0;

}
else
{ return (1.6 ∗ temperature − 55.0);
}

} windchill.cpp

Because the functionWindChill returns adouble value and there is no reason
to print several numbers after a decimal point in the table, the value returned by the
WindChill function is stored in anint variable. The value is converted to anint
using the expressionint(WindChill(temp,wind)) just as the value returned by
the functionsqrt was converted to anint in primes.cpp,Program 5.4. To make each
column of the table line up properly, a stream manipulatorsetw for the input stream
cout is used. The argument tosetw specifies afield width used to print the next value.
Printing a number like 27 in a field width of five requires three extra spaces in addition to

June 7, 1999 10:10 owltex Sheet number 50 Page number 186 magentablack

186 Chapter 5 Iteration with Programs and Classes

the two characters of27 to pad the output to five characters. If the output occupies three
spaces (e.g., the number 123 or the string"cat"), then two literal blanks’ ’ will
pad the output to five spaces. If the value being printed requires more than five spaces
(e.g., for the number 123456), the entire value is still printed. You don’t needsetw ; it’s
possible to print the right number of spaces by testing the value being printed as follows
and padding with spaces as shown below, but usingsetw is much simpler.

if (num < 10)
{ cout << " "; // two spaces
}
else if (num < 100)
{ cout << " "; // one space
}
cout << num;

Program output should be easy to read, but you should not concentrate on well-formatted
output when first implementing a program. Information onsetw and other functions
that help in formatting output is in Howto B.

Sometimes it is useful to use the value of the outer loop to control how many times
the inner loop iterates. This is shown inmultiply.cpp,Program 5.9, which prints the
lower half of a multiplication table (the upper half is the same, because multiplication
is commutative: 2× 5 = 5 × 2). Both loops are counting loops. The outer loop,
whose loop control variable isj , determines how many rows appear in the output. The
statementcout << endl is executed once each time the body of the outer loop is
executed. The number of iterations of the inner loop is determined by the value ofj .
As can be seen in the output, the number of entries in each row increases by 1 in each
successive row. Whenj is one, there is one number,1, in the first row. Whenj is three,
there are three numbers,3 6 9 , in the third row. Thewidth member function ensures
that three-digit numbers and two-digit numbers line up properly in columns.

Program 5.9 multiply.cpp

#include <iostream>
#include <iomanip> // for setw
#include "prompt.h"
using namespace std;

// simple illustration of nested loops

int main()
{

int j,k;
int limit = PromptRange("number for multiply table",2,15);

for(j=1; j <= limit; j++)
{ for(k=1; k <= j; k++)

{ cout << setw(3) << k ∗j << " ";
}

June 7, 1999 10:10 owltex Sheet number 51 Page number 187magentablack

5.2 Alternative Looping Statements 187

cout << endl;

}

return 0;

} multiply.cpp

O U T P U T

prompt> multiply
number for multiply table between 2 and 15: 5

1
2 4
3 6 9
4 8 12 16
5 10 15 20 25

prompt> multiply
number for multiply table between 2 and 15: 10

1
2 4
3 6 9
4 8 12 16
5 10 15 20 25
6 12 18 24 30 36
7 14 21 28 35 42 49
8 16 24 32 40 48 56 64
9 18 27 36 45 54 63 72 81

10 20 30 40 50 60 70 80 90 100

If a break statement is inserted as the last statement of the inner loop, immediately
following cout << setw(3) << k*j << " " , the output changes:

O U T P U T

prompt> multiply
number for multiply table between 2 and 15: 4
1
2
3
4

June 7, 1999 10:10 owltex Sheet number 52 Page number 188magentablack

188 Chapter 5 Iteration with Programs and Classes

Note that the outer loop isnot exited early. Thebreak statement causes the inner loop
(in which the loop control variable isk) to exit before the loop testk <= j becomes
false. This means that the inner loop executes exactly once.

You should think very carefully when you decide that nested loops are necessary,
especially if you’re usingwhile loops. Nested loops are often necessary when data are
printed or processed in a tabular format, but it is often possible to use a single loop with
an if statement in the loop body, and one loop is usually easier to code properly than
two nested loops are.

Program Tip 5.5: Coding is often easier if you move the inner loop of a
nested loop into a separate function, and then call the function. It’s often
easier to test a function than to test a loop, and keeping the inner loop in a separate function
helps in developing correct programs.

5.2.7 Defining Constants

In windchill.cpp, Program 5.8 severalconstant identifiers are defined.

const int WIDTH = 5;
const int MIN_TEMP = -40;
const int MAX_TEMP = 50;

The type modifierconst means thatMIN_TEMPis a constant. Because it is constant,
MIN_TEMPcannot be assigned a new value or changed in any way. For example, if the
line

MIN_TEMP = -80;

is added immediately after the definition ofMIN_TEMP, one compiler generates the
error message below.8

Error : not an lvalue
windchill.cpp line 19 MIN_TEMP = -80;

In general, it is good programming practice to use constants to represent values that do
not change during the execution of a program. Some examples of constant definitions
are the following:

const double PI = 3.14159265;
const double INCHES_PER_CM = 0.39370;
const int January = 1;
const string cpp = "C++";

8An lvalue is an object to which a value can be assigned; the “l” is for left, since assignment changes
the variable on the left.

June 7, 1999 10:10 owltex Sheet number 53 Page number 189magentablack

5.3 Variable Scope 189

Using named constants not only improves the readability of a program; it permits edit
changes in a program to be localized in one place. For example, if you need a more
precise value ofπ of 3.1415926535897, only one constant is changed (and the program
recompiled). Mnemonic names, or names that indicate

Syntax: const value

const type identifier= value;

the purpose they serve, also pro-
vide meaning and make it eas-
ier to read and understand code.
Using the constantJanuary in-
stead of 1 in a calendar-making

program can make the code much easier to follow. It is a common convention for con-
stant identifiers to consist of all capital letters and to use underscores to separate different
words.

Using constants also protects against inadvertent modification of a variable. The
compiler can be an important tool in developing code if you use language features like
const appropriately.

5.28 Write a loop that accepts input from the user until the number zero is entered.Pause to Reflect

The output should be the number of positive numbers entered and the number of
negative numbers entered.

5.29 There is a fence post problem inmultiply.cpp: a space is printed after every number
rather than between numbers. Modify the loop so that no space is printed after
the last number in a row (Hint: it’s possible to do this by modifying howsetw is
used).

5.30 Write nested loops to print (a) the pattern of stars on the left and (b) the pattern of
stars on the right. The number of rows should be entered by the user; there arek
stars in rowk.

* *
* * * *
* * * * * *
* * * * * * * *
* * * * * * * * * *

5.31 Write appropriate constant definitions to represent the number of feet in a mile
(5,280); the number of ounces in a pound (16); the mathematical constante
(2.71828); the number of grams in a pound (453.59); and the number foot-pounds
in an erg(1.356× 107).

5.3 Variable Scope
In Section 3.1.2 we discussed where variables are defined, and we showed that it is
possible to define variables anywhere, not just immediately following a curly brace{.
You need to be aware of how the location of a variable’s definition affects the use of
the variable. For example, the variablenumPrimes , defined inmain of primes.cpp,
Program 5.4, is not accessible from the functionIsPrime . A variable defined within a

June 7, 1999 10:10 owltex Sheet number 54 Page number 190magentablack

190 Chapter 5 Iteration with Programs and Classes

function islocal to the function and cannot be accessed from another function. Param-
eters provide a mechanism for passing values from one function to another.

Similarly, a variable defined between two curly braces{ } is accessible only within
the curly braces. To be more precise, a variable name can be used only from the point
at which it is defined to the first right curly brace}. For example, consider the following
fragment from the functionIsPrime . The variableslimit anddivisor are acces-
sible only within theelse block in which they are defined. The added comment after
the else block indicates that these variables cannot be accessed at that point.

else // number is odd
{

int limit = int(sqrt(n) + 1);
int divisor = 3; // smallest divisor

while (divisor <= limit)
{ if (n % divisor == 0) // n is divisible, not prime

{ return false;
}
divisor += 2; // check next odd number

}
return true; // number must be prime

}

// comment added: limit and divisor NOT defined here

The following code fragment shows a variablecount that can only be accessed in the
bottom “half” of a loop:

while(total <= limit)
{ // count NOT accessible here

int count = 0;

// count IS accessible here
}
// count NOT accessible here

The variablecount is accessible only from within the loop, and only from its definition
to the bottom of the loop. The part of a program in which a variable name is accessible
is called the variable name’sscope.

You should be careful when defining variables in loop bodies (orif /else blocks),
because these variables will not be accessible outside the loop body. In particular, be
careful offor loops written as follows:

for(int k=0 ; k < 10; k++)
{ // loop body
}

June 7, 1999 10:10 owltex Sheet number 55 Page number 191magentablack

5.4 Using Classes 191

The variablek is not, strictly speaking, defined within the curly braces that delimit
the body of the loop. Nevertheless, the scope ofk is local to the loop;k cannot be
accessed after the loop. Not all compilers support this kind of scoping withfor loops,
but according to the C++ standard the scoping should be supported. It is common to
need to access the value of a loop index variable (k in the example above) after the loop
has finished. In such a case, the loop index cannot be local to the loop.

5.4 Using Classes

In addition to built-in C++ types likeint anddouble , we’ve made extensive use of
the classstring in the programs we’ve studied so far. In Section 5.1.3 we showed
how theBigInt class was useful for representing integers without the limits on values
inherent in using theint type. In this section we extend our programming toolkit by
looking briefly at two classes: theDate for representing calendar dates and the class
Dice for simulating the kind of dice used in board games. We’ll look at these classes as
client programmers or users of the classes rather than implementers. In the next chapter
we’ll look more closely at how classes are implemented, but here we’re more interested
in extending the kinds of programs we can write by using classes, rather than studying
the classes themselves.

5.4.1 The Date Class

In general, manipulating and understanding dates and calendars is an integral part of
many software products. The so-calledyear 2000 problemhas cost companies billions
of dollars as they try to cope with software written when memory and disk space were
expensive; the software typically uses two digits to represent a year, that is 99 represents
1999. The year 2000 will cause problems with much of this software because, for
example, a credit card issued in 1998 that expires in two years might be stored in software
as expiring in the year 100 (two years after the year 98). Careless programming and
design can lead to serious problems with such products. In [Neu95] several potential
problems with software that manipulates dates and times are illustrated:

With COBOL (COmmon Business-Oriented Language), a programming language
used extensively in business and finance, most software allocates only two digits
for the year part of a date. This will undoubtedly cause problems in switching
from December 31, 1999, to January 1, 2000.

Early releases of the spreadsheet program Lotus 1-2-3 treated 2000 as a nonleap
year and 1900 as a leap year when, in fact, the opposite is the case. Later versions
of the software corrected the problem for the year 2000, but not for 1900, which
remains a leap year according to the software.

A Washington, D.C., hospital computer crashed on September 19, 1989, precisely
32,768 days after January 1, 1900. Note that 32,767 is the largest integer repre-
sentable by anint on typical microcomputers.

June 7, 1999 10:10 owltex Sheet number 56 Page number 192magentablack

192 Chapter 5 Iteration with Programs and Classes

We’ll examine a class that represents calendar dates for any month in any year after
October, 1752.9 Some of the tools for implementing a calendar date class have been
developed already in previous programs: determining the number of days in a month
and determining when a year is a leap year.

Rather than use these tools to develop code that calculates the day of the week, we’ll
use a classDate , accessible using the include file"date.h" . In making a calendar,
not all of the member functions of theDate class will be used. (Full details of the
class can be found in Howto G.) Instead, we’ll rely on a simple example program to
understand how to use some of the member functions of the classDate .

Program 5.10 usedate.cpp

#include <iostream>
#include "date.h"
using namespace std;

// show Date member functions

int main()
{

Date today;
Date birthDay(7,4,1776);
Date million(1000000L);
Date badDate(3,38,1999);
Date y2k(1,1,2000);

cout << "today \t: " << today << endl;
cout << "US bday \t: " << birthDay << endl;
cout << "million \t: " << million << endl;
cout << "bad date \t: " << badDate << endl << endl;

cout << y2k << " i s a " << y2k.DayName() << endl << endl;

Date one = million − 999999L;
Date birthDay2000(birthDay.Month(), birthDay.Day(), 2000);
today++;

cout << "day one \t: " << one << " o n a " << one.DayName() << endl;
cout << "bday2K \t: " << birthDay2000 << endl;
cout << "tomorrow \t: " << today << endl;

return 0;
} usedate.cpp

9The calendar used in the United States is theGregoriancalendar, which went into effect in 1582, but
not in the English-speaking world until 1752. Several countries did not adopt this calendar until the
1900s, but it is adopted almost universally today. In-depth and interesting information about calendars
can be found in [DR90, RDC93].

June 7, 1999 10:10 owltex Sheet number 57 Page number 193magentablack

5.4 Using Classes 193

In reading the output below it might help to know that I ran the program on March
15, 1999. Think about what appears on each line of the output and how theDate class
works.

O U T P U T

prompt> usedate
today : March 15 1999
US bday : July 4 1776
million : November 28 2738
bad date : March 1 1999

January 1 2000 is a Saturday

day one : Januar y 1 1 on a Monday
bday2K : July 4 2000
tomorrow : March 16 1999

Constructors and Initialization. The technical word that describes object initialization
and definition isconstruction. Construction initializes the state of an object. For
programmer-defined classes likeDate , a special member function, called aconstruc-
tor, performs this initialization. The first line of output fromusedate.cppwill differ
depending on the day the program is run. This is because the variabletoday , defined
using the parameterless ordefault constructor, constructs a variable with “today’s date”
according to the documentation indate.h,Program G.2. The variablebirthDay is
constructed using the three-parameter constructor. According to the documentation in
date.hthe parameters specify the month, day, and year of aDate object. The variable
million is constructed using the single-parameter constructor. The documentation in
date.hindicates that the value of the parameter specifies the absolute number of days
from January 1,A.D. 1; one million days from this date is November 28, 2738.10 Finally,
the variablebadDate is constructed with an invalid date in March; the invalid date is
converted to March 1 (as described in the beginning of the header file.) Invalid months
(i.e., outside the range 1–12) are converted to January.

Classes often have more than one constructor, especially when there is more than one
way to specify the value of an object. The compiler can determine which constructor to
use since the parameter lists are different.

10In the constant value 1000000L, the L is used to indicate that this is along int value. On 32-bit
machines the L isn’t necessary, but it is needed on 16-bit machines where the largestint value is
32,767.

June 7, 1999 10:10 owltex Sheet number 58 Page number 194magentablack

194 Chapter 5 Iteration with Programs and Classes

Other Date Member Functions. Based on the output ofusedate.cppyou may be able
to determine that theDate member functionDayName() returns the day of the week
on which a date occurs. You can check a calendar to see that New Year’s day in 2000
is a Saturday (which makes it convenient to celebrate on Friday night!) The functions
Month() andDay() return the number of the month (1. . . 12) and day, respectively,
for a given date. These returnint values, as you might have determined by the similarity
of the construction ofbirthDay2000 to birthDay .

It’s also possible to perform arithmetic withDate objects. The variableone is
constructed by subtracting a (long) integer value from theDate object million .
This yields another date, in the same way that the value oftoday - 1 is a Date
representing yesterday. The statementtoday++ changestoday to represent the next
day, or tomorrow. Of course it’s confusing that the value oftoday becomes tomorrow
after the statement executes.

You can compare dates using the relational operators, such as<, <=, and others. For
complete information, see the header file"date.h" and the exercises at the end of this
chapter.

5.32 How would you use aDate variable to determine on what day of the week youPause to Reflect

were born?

5.33 How would you use theDate class to determine how many days you’ve been
alive (hint: subtract twoDate objects)?

5.34 Using oneDate variable and the member functionDaysIn() (that returns the
number of days in the month, seedate.h) write the boolean-valued function
IsLeapYear as specified, inisleap.cpp,Program 4.8.

5.35 If the one-millionth day is November 28, 2738 (seeusedate.cpp), do we need
to worry that theDate class is not robust and might cause problems when the
absolute number of days since 1A.D. exceeds the largest value of along ?

5.36 In Canada and Europe dates are usually specified by giving the day first rather
than the month. In the United States, 4/8/2000 means April 8, 2000. The same
date means August 4, 2000 in Canada. Is it possible to write a program using the
Date class for dates in Canada? How?

5.37 Write a function that determines and returns the Date on which Thanksgiving
(a U.S. holiday) occurs in any year. Thanksgiving is the fourth Thursday in
November. Use the following header.

Date Thanksgiving(int year)
// post: returns the Date for Thanksgiving in year

5.38 Many people prefer Fridays to Mondays. Write a function that prints all the months
in a given year that have more Fridays than Mondays.

June 7, 1999 10:10 owltex Sheet number 59 Page number 195 magentablack

5.4 Using Classes 195

5.4.2 The Dice Class

In this section you’ll learn about a programmer-defined class, namedDice , that permits
the computer to simulate the kind of dice used in board games. The class simulates dice
with any number of sides, not just common six-sided dice. It’s even possible to have
one-sided dice and million-sided dice, both of which are easy to simulate but hard to
carve. Six- and twelve-sided dice are shown in the following figure.

The classDice is very general and permits simulation of anN-sided die for anyN.
These simulated dice, and the computer-generated random numbers on which they are

based, are part of an application area of computer science calledsimulation. Simulations
model real-world phenomena using a computer, which becomes a virtual laboratory
for experimenting with models of physical systems without the expense of building the
systems. Computer-based simulations are used to design planes, trains, and automobiles;
to predict the weather; and to build and design computers and programs. We’ll study
simulation in more detail in the later chapters, but we’ll use theDice 11 class to study
program and class construction.

To use theDice class in a program you must include"dice.h" just as you must
include"date.h" to use theDate class and<string> to use thestring class.
(The header file for theDice class is in Howto G.) Program 5.11 is a simple program
showing all theDice member functions.

Program 5.11 roll.cpp

#include <iostream>
using namespace std;
#include "dice.h"

// simple program illustrating use of Dice class
// roll two dice, print results, Owen Astrachan, 3/31/99

int main()
{

Dice cube(6); // six-sided die
Dice dodeca(12); // twelve-sided die

cout << "rolling " << cube.NumSides() << " sided die" << endl;
cout << cube.Roll() << endl;
cout << cube.Roll() << endl;
cout << "rolled " << cube.NumRolls() << " times" << endl;

11The worddice is the plural form of the worddie,but a class namedDie seems somewhat macabre.
Also, usingDice prevents professors from jokingly saying “Die Class” to their students.

June 7, 1999 10:10 owltex Sheet number 60 Page number 196magentablack

196 Chapter 5 Iteration with Programs and Classes

cout << "rolling " << dodeca.NumSides() << " sided die" << endl;

cout << dodeca.Roll() << endl;

cout << dodeca.Roll() << endl;

cout << dodeca.Roll() << endl;

cout << "rolled " << dodeca.NumRolls() << " times" << endl;

return 0;

} roll.cpp

O U T P U T

prompt> roll
rolling 6 sided die
5
3
rolled 2 times
rolling 12 sided die
8
1
12
rolled 3 times

prompt> roll
rolling 6 sided die
1
6
rolled 2 times
rolling 12 sided die
8
9
2
rolled 3 times

Dice Construction. When you define aDice object likecube or dodeca you must
specify the number of sides for the simulated Dice object. Unlike the classDate which
has a default (parameterless) constructor, theDice class does not; you must supply
the number of sides. Many people think it makes sense to have a default constructor
yield a six-sidedDice object, so thatDice x1,x2,x3; defines three six-sided dice.
However, when I designed theDice class I decided to require a parameter. You can,
of course, change the implementation of the class to permit a default constructor. We’ll
study how classes are implemented in the next chapter.

June 7, 1999 10:10 owltex Sheet number 61 Page number 197magentablack

5.4 Using Classes 197

In C++ a constructor is a member function with the same name as the class. Con-
structors are functions with no return type. Neithervoid , int , double , nor any other
type can be specified as the return type of a constructor. If aDice variable is defined
without providing arguments to the constructor as shown intryroll.cpp, Program 5.12,
an error message will be generated. Different compilers issue different error messages
and the messages are not always intuitive for beginning programmers. However, the
compilers always identify the line on which an error occurs.

Program 5.12 tryroll.cpp

#include <iostream>

using namespace std;

#include "dice.h"

int main()

{

Dice spinner;

cout << "# of side s = " << spinner.NumSides() << endl;

return 0;

} tryroll.cpp

The error message generated by the g++ compiler follows:

tryroll: In function ‘int main()’:
tryroll:7: no matching function for call to ‘Dice::Dice ()’
tryroll:7: in base initialization for class ‘Dice’

Note that the error messages indicate that the compiler tries to find a constructor with no
parameters,Dice::Dice() but cannot find one. We’ll discuss the:: operator later.
Using Metrowerks Codewarrior the error is less helpful:

Error : function call ’?0()’ does not match
’Dice::Dice(int)’
’Dice::Dice(const Dice &)’
tryroll.cpp line 7 Dice spinner;

Using Visual C++ the error indicates that nodefault constructor can be found:

Compiling...
tryroll.cpp
C:\tryroll.cpp(7) : error C2512: ’Dice’ : no appropriate

default constructor available
Error executing cl.exe.

A default constructor is one with no parameters, see the error message from the g++
compiler.

June 7, 1999 10:10 owltex Sheet number 62 Page number 198 magentablack

198 Chapter 5 Iteration with Programs and Classes

ProgramTip 5.6: When compilation errors occur at the point an object
is constructed in a program, look carefully at the constructors in the cor-
responding header file to see why the error occurs. You must try to find a
constructor whose parameters correspond to the the arguments passed when the object is
defined.

5.4.3 Testing the Dice Class

When a new class is designed and implemented, it must be tested. Testing usually
requires programs specifically designed for testing rather than for general use or for a
specific application. For theDice class we’d like to know whether the simulated dice
behave as we’d expect real dice to behave. Are the simulated dice truly random? Do the
simulated dice conform to the mathematical models that exist for random events such
as dice rolls? To test theDice class, we’ll use a program to see whether the theoretical
outcomes of rolling dice are matched by the empirical results of the test program.

We’ll use a programdicetest.cpp,designed to toss two six-sided dice and to determine
how many rolls are needed to obtain a specific sum. For example, we should expect that
fewer rolls of a pair of dice are required to obtain a sum of 7 than to obtain a sum of 2.
Furthermore, given that there is exactly one way to obtain a sum of 2 and one way to
obtain a sum of 12 (rolling two ones and two sixes, respectively), we should expect the
same number of simulated rolls to obtain either the sum of 2 or 12. The program will
simulate tossing two dice and record the number of rolls needed to obtain some target
between 2 and 12. We’ll repeat this experiment several times and output the average
number of rolls needed to obtain each sum. We wouldn’t be surprised, for example, if
a program needed only one roll to obtain a sum of twelve—tossing double sixes does
happen. We should be surprised, however, if the experiment of trying for a twelve
was repeated 1,000 times and the average number of rolls before rolling a twelve was
reported to be 1—this doesn’t match either our intuitive expectation or the mathematical
expectation of how many rolls it takes to obtain a twelve with two six-sided dice.

Program 5.13 testdice.cpp

#include <iostream>
using namespace std;
#include "prompt.h"
#include "dice.h"

// simulate rolling two dice to obtain all possible sums
// repeat the "experiment" specified number of times
// Owen Astrachan, 8/9/94, modified 6/9/95, 4/20/99

double RollTest(int target,int experiments);

int main()
{

June 7, 1999 10:10 owltex Sheet number 63 Page number 199magentablack

5.4 Using Classes 199

int numTimes; // for one trial
long totalRolls; // accumulate for all trials
int k;

numTimes = PromptRange("number of 'trials' ",100,20000);

totalRolls = 0;
for(k=2; k <= 12; k++)
{ cout << k << "\t" << RollTest(k,numTimes) << endl;
}

return 0;
}

double RollTest(int target, int trials)
// precondition: 2 <= target <= 12 , 0 < trials
// postcondition: returns average # of rolls needed to obtain target
// trying ’trials’ times
{

Dice d1(6);
Dice d2(6);

int total = 0;
int k;
for(k=0 ; k < trials; k++)
{ int numRolls = 1; //first time through loop is 1 roll

while (d1.Roll() + d2.Roll() != target)
{ numRolls += 1;
}
total += numRolls;

}
return double(total)/trials;

} testdice.cpp

O U T P U T

number of ’trials’ between 100 and 20000: 10000
2 35.9015
3 18.0322
4 11.9391
5 9.0508
6 7.1973
7 5.9474
8 7.2554
9 8.9598
10 12.0036
11 17.9579
12 36.9615

June 7, 1999 10:10 owltex Sheet number 64 Page number 200magentablack

200 Chapter 5 Iteration with Programs and Classes

The results obtained for trying to roll a two and a twelve are very close. Consulting
a book on discrete mathematics provides an answer that is correct theoretically12 and
might further validate these empirical results. The average returned by the function
RollTest() in Program 5.13 is converted to adouble value by casting:

return double(total)/trials;

Casting is needed because bothtotal andtrials are int values and the result of
dividing an int by an int value is anint . A long is used fortotalRolls in
main instead of anint because the total number of rolls over many trials will exceed
the largestint value on 16-bit computers.

5.39 Modify the loop intestdice.cpp, Program 5.13, so that the values of the dice rollsPause to Reflect

are printed for each simulated roll (run the program for only one trial). You’ll
need to define two integer variables to store the values of the dice rolls to print
them (this can be tricky).

5.40 Write a function that rolls twoN-sided dice and returns how many rolls are needed
before the dice show the same number—that is, until doubles are rolled. The
function should have one parameter: the number of sides on the dice.

5.41 Write a function that “flips a coin” (a two-sidedDice object)N times, whereN
is a parameter, and returns the number of times “heads” is flipped.

5.42 Write a function that rolls three six-sided dice and returns the number of rolls
needed before all three dice show the same number. De Morgan’s law may be
useful in developing a loop test.

5.43 Write code that picks a random month of the year, and a random day in that
month, then prints the date. TheDice objects you use should never cause an
error. This means that for February you’ll need either a 28-sided die or a 29-sided
die depending on whether it’s a leap year.

5.44 Write a loop to count how many times three six-sided dice must be rolled until the
values showing are all different. De Morgan’s law may be useful in developing a
loop test.

12Mathematically, the expected number of rolls to obtain either a two or a twelve is 36. This is a property
of independent, discrete random variables. The expected number of rolls to obtain a seven is 6.

June 7, 1999 10:10 owltex Sheet number 65 Page number 201magentablack

5.4 Using Classes 201

Grace Murray Hopper (1906–1992)

Grace Hopper was one of the first programmers of the Harvard Mark I, the first pro-
grammable computer built in the United States. In her words she was “the third pro-
grammer on the world’s first large-scale digital computer” [G9̈5]. This work was

done while she was
in the Navy in the
last years of World
War II. It was while
working on the
Mark II that Hop-
per was involved
with the first doc-
umented “bug”: the
famous moth in-
side one of the com-
puter’s relays that
led to the use of
the termdebugging.

She developed
the first compiler,
called A-0, while

working for Remington Rand in 1952. Until that time, many people believed that
computers were only good for “number crunching,” that computers were not ca-
pable of programming—which is what a compiler does: it produces a working
program from a higher-level language. After a period of retirement, Hopper re-
turned to naval duty in 1967, at the age of 60. She remained on active duty for
19 more years and was promoted to commodore in 1983 and to admiral in 1985.
She was a proponent of innovative thinking and kept a clock on her desk that ran
counterclockwise to show that things could be done differently. Although very
proud of her career in the Navy, Hopper had little tolerance for bureaucracies,
saying:

“It’s better to show that something can be done and apologize for not asking
permission, than to try to persuade the powers that be at the beginning.”

The Grace M. Hopper award for contributions to the field of computer science
is given each year by the ACM (Association for Computing Machinery) for work
done before the age of 30. In 1994 this award was given to Bjarne Stroustrup for
his work in inventing and developing the language C++.

For more information see [Sla87], from which some of this biography is taken.

June 7, 1999 10:10 owltex Sheet number 66 Page number 202magentablack

202 Chapter 5 Iteration with Programs and Classes

5.5 Chapter Review

In this chapter we discussed how classes are implemented. We also covered different
looping and selection statements. Guidelines were given to assist in determining what
kind of loop statement should be used and how loops are developed. The important
topics covered in this chapter are summarized here.

Interface (.h file) and implementation (.cpp files) provide an abstraction mech-
anism for writing and using C++ classes.

Constructors are member functions that are automatically called to construct and
initialize an object.

Member functions are used to access an object’s behavior or to get information
about the object’s state.

The for loop is an alternative looping construct used for definite loops (where
the number of iterations is known before the loop executes for the first time).

Thedo-while loop body is always executed once, in contrast to awhile loop
body, which may never be executed.

Infinite loops formed usingwhile(true) or for(;;) are often used with
break statements to avoid duplicated code and complex loop tests. However,
you should be judicious in usingbreak statements, because overreliance on them
can lead to code that is hard to understand logically.

A loop invariant is a statement that helps reason about and develop loops. A loop
invariant is true each time the loop test is evaluated, although its truth must often
be reestablished during the loop’s execution.

The built-in typesint anddouble represent a limited range of values in com-
puting, compared to the infinite range of values of integers and real numbers in
mathematics. You must be careful to take this limited range of values into account
when interpreting data and developing programs.

Often small differences in a program can have a drastic effect on program efficiency.
Determining whether a number is prime illustrates some considerations in making
a program efficient.

A return statement causes a function to stop, and control is returned to the
calling statement. It is possible and often convenient to usereturn to exit a
function early, much as abreak statement is used to exit infinite loops.

Fence post problems are typical in code that loops. A fence post problem is often
solved using a special case before the loop or after the loop.

The postincrement and postdecrement operators++ and-- are convenient short-
cuts for adding and subtracting one, respectively.

Variables modified withconst have values that do not change. Using such
constants can make programs more readable; for example, the constantAVOGADRO
or MOLEcarries more meaning than6.023e23 .

A variable is accessible only within its scope, usually delimited by curly braces:
{ and}. Private data variables in a class are global to all member functions of the

June 7, 1999 10:10 owltex Sheet number 67 Page number 203magentablack

5.6 Exercises 203

class.

Constructors are special member functions used to initialize an object. A default
constructor is one with no parameters. A class can have more than one constructor,
like theDate class or only one constructor, like theDice class.

Develop test programs when you design and implement classes. Testing should
be an integral part of the process of program and class design.

5.6 Exercises

5.1 Write a program modeled after the100 bottles of X on the wallsong (see the Exercises
in Chapter 3.) that will print as many verses of the song as the user specifies (both the
kind of beverage and the number of bottles should be specified by the user). Try to
make the program grammatical so that it doesn’t print

one bottles of sarsaparilla on the wall

note the incorrect plural of bottle).

5.2 Write a program that prints a totem pole of random heads. Prompt the user for the
number of heads; each head of the totem pole should be randomly drawn by using a
Dice variable to choose among different choices for hair, eyes, mouth, etc.

O U T P U T
prompt> totem
how many head: 2

|||||||/////////
| |
| |
| O O |
| |

| |
|_ _|

| -------- |
| |
||||||||||||||||
| |
| |
| . . |
| |

| |
|_ _|

| |______| |
| |

June 7, 1999 10:10 owltex Sheet number 68 Page number 204magentablack

204 Chapter 5 Iteration with Programs and Classes

5.3 Modify testdice.cpp,Program 5.13, so that it calculates the average number of rolls to
obtain all possible sums for twon-sided dice, wheren is a value entered by the user.
The number of “trials should also be entered by the user. Write functions that can be
used to minimize the amount of code that appears inmain . As an example, you might
consider a function with the following prototype:

double AverageRolls(int target, int trials, int numSides)
// pre: 2 <= target <= 2*numSides
// post: returns average # of rolls needed to obtain
// sum ’target’ rolling two dice with ’numSides’
// sides, repeating the experiment ’trials’ times

Can you modify this program easily to work for threen-sided dice rather than two?

5.4 Write a program that finds the greatest common divisor, or gcd, of two numbers. The
gcd of two numbersx andy is the largest number that evenly divides bothx andy. For
example, the gcd of 12 and 42 is 6, and the gcd of 14 and 74 is 2. Euclid developed
an algorithm for determining the gcd more than 2,000 years ago. You should use this
algorithm in calculating the greatest common divisor ofx andy:

assign r the valu e x % y
if r equals 0
then

STOP, gcd is y
else

assign x the value y
assign y the value r
repeat (back to top)

Write a function that returns the gcd of two numbers, and use the function to create a
table of gcds similar to the following table, where the range ofx andy are entered by
the user.

y
x | 1 2 3 4 5 6 7

---+-----------------------
11 | 1 1 1 1 1 1 1
12 | 1 2 3 4 1 6 1
13 | 1 1 1 1 1 1 1
14 | 1 2 1 2 1 2 7
15 | 1 1 3 1 5 3 1

5.5 Write a program to simulate tossing a coin (use a two-sided die). The program should
toss a coin 10,000 times (or some number of times specified by the user) and keep track
of the longest run of heads or tails that occurs in a sequence of simulated coin flips.
Thus, in the sequenceHTHTTTHHHHTthere is a sequence of 3 tails and a sequence of
4 heads.
To keep track of the runs, four variables—headRun , tailRun , maxHeads, and
maxTails —are defined and initialized to 0. These variables keep track of the length
of the current head run, the length of the current tail run, and the maximum runs of
heads and of tails, respectively. After the statementheads++ , the value ofheadRun

June 7, 1999 10:10 owltex Sheet number 69 Page number 205magentablack

5.6 Exercises 205

is incremented. After the statementtails++ the value oftailRun is incremented.
In addition, these variables must be reset to zero at the appropriate time and the values
of the max head run and max tail run variables set appropriately.

5.6 Write a program that computes alltwin primes between two values entered by the user.
Twin primes are numbers that differ by two and are both primes, such as 1019 and 1021.

5.7 Write a function with prototypeint NumDigits(num) that determines the number
of digits in its parameter. Use the ideas of the previous exercise, but be sure that the
function works forall integer values (including zero, which has one digit, and negative
numbers—don’t forget about the functionfabs).

5.8 Write a boolean-valued predicate function similar toIsPrime that returns true if its
parameter is a perfect number and false otherwise. A number is perfect if it is equal to
the sum of its proper divisors (i.e., not including itself). For example, 6= 1+2+3 and
28 = 1+2+4+7+14 are the first two perfect numbers. Recall that the expressionnum
% divisor has value 0 exactly whendivisor dividesnum exactly; for example,
30 % 6 == 0 but 30 % 7 = 2. The function should be namedIsPerfect .

5.9 Write a functionSumOfNumsthat calculates and returns the sum of the numbers from
1 ton (wheren is a parameter). The statement

cout << SumOfNums(100) << endl;

should cause 5050 to be printed since 1+2+· · ·+100= 5050. It’s possible to write this
program without using a loop (such a solution is often attributed to the mathematician
C. F. Gauss, who supposedly discovered it when he was a boy).

5.10The following loop sums all numbers entered by the user (and stops when the user enters
a nonpositive number).

int num;
cin >> num;
int sum = 0;
while (num >= 0)
{ sum += num;

cin >> num;
}

Explain how the two uses ofcin >> correspond to a kind of fence post problem. Then
write a program based on the foregoing loop to calculate the average of a sequence of
nonnegative numbers entered by the user.

5.11 Write a function that simulates a slot machine by printing three randomly chosen strings
as the values displayed by the slot machine. Each string should be chosen randomly from
among four different choices, such as"orange" , "lemon" , "lime" , "cherry"
(but any words will do). Choose the random values eight times and display each choice
of three as shown in the following sample run. If the strings are all the same or are all
different when the final sequence of these strings appears, then print a message that the
user wins; otherwise the user loses.

June 7, 1999 10:10 owltex Sheet number 70 Page number 206magentablack

206 Chapter 5 Iteration with Programs and Classes

O U T P U T

prompt> slots
Welcome to the slot machine simulation
Here’s a spin....
cherry orange cherry
lime lemon cherry
lime lemon lemon
lime cherry cherry
lemon lime cherry
lemon lemon lime
orange lime lime
you lose!!

prompt> slots
Welcome to the slot machine simulation
Here’s a spin....
lime lime orange
orange cherry orange
orange cherry lime
cherry orange lime
lime orange orange
cherry orange lemon
lemon lemon lemon
all values equal, you win!!

prompt> slots
Welcome to the slot machine simulation
Here’s a spin....
lemon cherry orange
lemon orange lemon
cherry orange lime
lime cherry lime
cherry cherry cherry
orange cherry cherry
orange lime cherry
all values different, you win!!

5.12Using the classBigInt make a table of how many times each of the digits 0. . . 9
occurs in huge numbers like 200! or 25000. You can determine digits by peeling off
digits one at a time, as indigits.cpp, Program 5.5, or you can use theBigInt member
functionToString() which returns a string of digits, such as"1234567" for the
value 1,234,567, then look at each character of the string.

5.13Write a program that displays the prime factors of a number. The prime factors of 60
are 2× 2× 3× 5. Use the program to display the prime factors of all numbers between
two user-entered numbers.

June 7, 1999 10:10 owltex Sheet number 71 Page number 207magentablack

5.6 Exercises 207

5.14Consider the following U.S. holidays:

Mother’s Day, the second Sunday in May
Labor Day, the first Monday in September
Thanksgiving, the fourth Thursday in November

Write one function that determines the date on which these holidays fall in any year. The
same function should be called with different parameters for the different holidays. For
example, for Labor Day you would pass parameters"Monday" , 1, and 9 for the first
Monday in September (the ninth month); for Mother’s day you would pass"Sunday" ,
2, and 5 (for May).
Use this function and write code to determine how many school days (Mon–Fri) there
are between Labor Day and Thanksgiving in any year.

5.15Daylight-saving time causes clocks to be reset in the spring and fall in many (but not
all) parts of the United States. Daylight saving begins on the first Sunday of April (set
clocks ahead one hour, “spring ahead”) and ends on the last Sunday of October (set
clocks back one hour, “fall back”). Write a program that shows the number of days in
which daylight-saving time is in effect for all years from 1990 to 2010. You may find
it useful to write a function that returns the number of daylight-saving days given the
year (as a parameter).

5.16Some people believe that our physical, emotional, and intellectual habits are governed
by biorhythms. A biorhythm cycle exists for each of these three traits; the length of the
cycle differs, but all cycles start when we are born. The physical cycle is 23 days long,
the intellectual cycle is 33 days long, and the emotional cycle is 28 days long. The
cycles repeat as sine waves, with the period of each wave given by the cycle length. A
critical day occurs when all three cycles cross at the equivalent ofy = 0 if the cycles
are plotted onx andy axes. When a cycle is at its peak (e.g., as sin(π/2) is the peak of
a sine wave), we are favored for that cycle, so that a peak on the intellectual cycle is a
good day to take an exam.
Use theDate class to determine when your next critical day is and when your next
peak and low days are for each of the three cycles.

5.17Here are rules for one version of the game of craps, played with six-sided dice.

Aplayer rolls two dice. If the sum of the two is 7 or 11, the roller wins immediately;
if the sum is a 2, 3, or 12, the roller loses at once. If the sum is 4, 5, 6, 8, 9, or 10,
the roller rolls again. By repeating the initial number, the roller “makes his or her
point” and wins. By rolling a 7 the roller “craps out” and loses. Otherwise, the
roller keeps on rolling again until he or she wins or loses.

Write a program that simulates a game of craps, then modify the program to simulate
10,000 games, reporting how many simulated games are “won.”

5.18Write a program that prints a calendar for any month in any year as shown below.

June 7, 1999 10:10 owltex Sheet number 72 Page number 208magentablack

208 Chapter 5 Iteration with Programs and Classes

O U T P U T

prompt> calendar
enter month between 1 and 12: 6
enter year between 1752 and 2500: 1999

June 1999
Su Mo Tu We Th Fr Sa

1 2 3 4 5
6 7 8 9 10 11 12

13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30

For a real challenge, make it possible for the user to specify how large the calendar
should be, something like this:

Su Mo Tu We Th Fr Sa
+---+---+---+---+---+---+---+
| | 1 | 2 | 3 | 4 | 5 | 6 |
+---+---+---+---+---+---+---+
| 7 | 8 | 9 | 10| 11| 12| 13|
+---+---+---+---+---+---+---+
| 14| 15| 16| 17| 18| 19| 20|
+---+---+---+---+---+---+---+
| 21| 22| 23| 24| 25| 26| 27|
+---+---+---+---+---+---+---+
| 28| 29| 30| | | | |
+---+---+---+---+---+---+---+

or like this

Sunday Monday Tuesday
+---------+---------+---------+
| 1 | 2 | 3 |
| | | | ...
| | | |
| | | |
+---------+---------+---------+

5.19Write a program to track the number of times each sum for two 12-sided dice occurs
over 10,000 rolls, or more generally, the number of times each sum for twoN-sided
dice occurs. We’ll learn how to do this simply in Chapter 8, but with the programming
tools you have, you’ll need to write a program to write the program for you! Write a
program, namedmetadice.cpp, that reads the number of sides of the dice and outputsa
programthat can be compiled and executed. For example, the following function might
be part of the program; it defines and initializes variables to track each dice sum:

June 7, 1999 10:10 owltex Sheet number 73 Page number 209magentablack

5.6 Exercises 209

void Definitions(int sides)
// post: variable definitions for c2, c3, ...
// are output int cX = 0; 2 <= x <= 2*sides
{

int k;
for(k=2; k <= 2*sides; k++)
{ cout << "\t" << "int c" << k < < " = 0;" << endl;
}
cout << endl << endl;

}

The functionDefinitions creates the variable definitions shown below; these are
part of the programthat is outputby the programmetadice.cppthat you write (and of
which the functionDefinitions is a part).

O U T P U T

prompt> metadice
enter # sides: 5
#include <iostream>
using namespace std;
#include "dice.h"

int main()
{

int c2 = 0;
int c3 = 0;
int c4 = 0;
int c5 = 0;
int c6 = 0;
int c7 = 0;
int c8 = 0;
int c9 = 0;
int c10 = 0;

program continues here

return 0;
}

June 7, 1999 10:10 owltex Sheet number 18 Page number 211magentablack

2
Program and Class

Construction
Extending the

Foundation

211

June 7, 1999 10:10 owltex Sheet number 19 Page number 212magentablack

June 7, 1999 10:10 owltex Sheet number 20 Page number 213magentablack

6Classes, Iterators, and
Patterns

Nature uses only the longest threads to weave her pattern, so each small piece of the fabric
reveals the organization of the entire tapestry.

Richard Feynman
in Grady Booch, Object Solutions

The control structures we studied in Chaps. 4 and 5 permit program statements to be
executed selectively or repeatedly according to values entered by the user or calculated
by the program. In Section 5.4 we saw how using classes likeDice andDate extends
the domain of problems we can solve by programming. In this chapter we’ll extend the
idea of repetition by processing various data in several applications. A common pattern
emerges from all these applications: the pattern of iterating over a sequence of data.
Examples of such iteration include processing each word in one of Shakespeare’s plays,
processing the elements of a set, and processing movement of a simulated molecule.
We’ll also explore classes in more depth, studying class implementation as well as class
use. We’ll explore design guidelines for constructing classes and programs.

In particular, we’ll cover classes used to read information from files stored on a disk
rather than entered from the keyboard. We’ll use a standard stream class that behaves in
the same waycin behaves but that allows data to flow from text files. We’ll develop a
new class for reading words from files and build on the pattern of iteration developed for
the class to develop new classes. Writing programs and functions that use these classes
requires a new kind of parameter, called areference parameter,which we’ll discuss in
some detail.

6.1 Classes: From Use to Implementation
In Section 5.4 we studied code examples using classesDice andDate . These classes
complement the standard C++ classstring and will be part of the toolkit of classes
we’ll extend and use throughout the book. In this section we’ll examine classes more
closely. This will help you get comfortable with the syntax ofclass implementation
in addition to the syntax of using classes that you’ve already seen. You’ll learn how to
modify classes and how to implement your own.

6.1.1 Class Documentation:The Interface (.h File)

C++ classes encapsulatestateandbehavior. The behavior of a class is what the class
does. Behavior is often described with verbs: cats eat, sleep, and play; dice are rolled.
The state of a class depends on physical properties. For example, dice have a fixed
number of sides.

213

June 7, 1999 10:10 owltex Sheet number 21 Page number 214magentablack

214 Chapter 6 Classes, Iterators, and Patterns

Class behavior is defined bypublic member functions; these are the class functions
that client programs can call. Public member functions of the classDice are theDice
constructor and the functionsNumRolls() , NumSides() , andRoll() . Theclass
declaration for Dice is shown below; the entire header filedice.his found in Howto G
as Program G.3 (the header file includes many comments that aren’t shown below.)

class Dice
{

public:
Dice(int sides); // constructor
int Roll(); // return the random roll
int NumSides() const; // how many sides this die has
int NumRolls() const; // # times this die rolled

private:
int myRollCount; // # times die rolled
int mySides; // # sides on die

};

The state of an object is usually specified by classprivate data like myRollCount
andmySides for aDice object. Private state data are often calledmember data, data
members, instance variablesor data fields. As we’ll see, the term instance variable is
used because eachDice instance (or object) has its own data members.

When an object isdefined,by a call to a constructor, memory is allocated for the
object, and the object’s state is initialized. When a built-in variable is defined, the
variable’s state may be uninitialized. For programmer-defined types such asDice ,
initialization takes place when theDice variable is defined. As a programmer using
the Dice class, you do not need to be aware of how aDice object is initialized and
constructed or what is in the private section of theDice class. You do need to know
some properties, such as when aDice object is constructed it has been rolled zero times.
As you begin to design your own classes, you’ll need to develop an understanding of
how the state of an object is reflected by its private data and how member functions use
private data. Class state as defined by private data is not directly accessible byclient
programs. A client program is a program likeroll.cpp, Program 5.11, that uses a class.
We’ll soon see how a class likeDice is implemented so that client programs that use
Dice objects will work.

6.1.2 Comments in .h Files

The documentation for a class, in the form of comments in theheader file in which the
class is declared, furnishes information about the constructor’s parameters and about all
public member functions.

The names of header files traditionally end with a.h suffix. When the C++ stan-
dard was finalized, the.h suffix was no longer used so that what used to be called
<iostream.h> became<iostream> . I continue to use the.h suffix for classes
supplied with this book, but use the standard C++ header file names.

June 7, 1999 10:10 owltex Sheet number 22 Page number 215magentablack

6.1 Classes: From Use to Implementation 215

In this book the name of a header file almost always begins with the name of the
class that is declared in the header file. The header file provides the compiler with the
information it needs about the form of class objects. For programmers using the header
file, the header file may serve as a manual on how to use a class or some other set of
routines (as<cmath> or <math.h> describes math functions such assqrt). Not all
header files are useful as programmer documentation, but the compiler uses the header
files to determine if functions and classes are used correctly in client programs. The
compilermustknow, for example, that the member functionsNumSides andRoll
are legalDice member functions and that each returns anint value. By reading the
header file you can see that twoprivate data variables, myRollCount andmySides ,
define the state of aDice object. As the designer and writer of client programs, you do
not need to look at the private section of a class declaration. Since client programs can
access a class only by calling public member functions, you should take the view that
class behavior is described only by public member functions and not by private state.

A header file is aninterface to a class or to a group of functions. The interface is a
description of what the behavior of a class is, but not of how the behavior is implemented.
You probably know how to use a stereo—at least how to turn one on and adjust the volume.
From a user’s point of view, the stereo’s interface consists of the knobs, displays, and
buttons on the front of the receiver, CD player, tuner, and so on. Users don’t need
to know how many watts per channel an amplifier delivers or whether the tuner uses
phase-lock looping. You may know how to drive a car. From a driver’s point of view,
a car’s interface is made up of the gas and brake pedals, the steering wheel, and the
dashboard dials and gauges. To drive a car you don’t need to know whether a car engine
is fuel-injected or whether it has four or six cylinders.

The dice.h header file is an interface to client programs that useDice objects.
Just as you use a stereo without (necessarily) understanding fully how it works, and just
as you use a calculator by pressing the

√
button without understanding what algorithm

is used to find a square root, aDice object can be used in a client program without
knowledge of its private state. As the buttons and displays provide a means of accessing
a stereo’s features, the public member functions of a class provide a means of accessing
(and sometimes modifying) the private fields in the class. The displays on an amp, tuner,
or receiver are like functions that show values; the buttons that change a radio station
actually change the state of a tuner, just as some member functions can change the state
of a class object.

When a stereo is well-designed, one component can be replaced without replacing
all components. Similarly, several models of personal computer offer the user the ability
to upgrade the main chip in the computer (the central processing unit, or CPU) without
buying a completely new computer. In these cases the implementation can be replaced,
provided that the interface stays the same. The user won’t notice any difference in how the
buttons and dials on the box are arranged or in how they are perceived to work. Replacing
the implementation of a class may make a user’s program execute more quickly, or use
less space, or execute more carefully (by checking for precondition violations) but should
not affect whether the program works as intended. Since client programs depend only
on the interface of a class and not on the implementation, we say that classes provide a
method ofinformation hiding —the state of a class is hidden from client programs.

June 7, 1999 10:10 owltex Sheet number 23 Page number 216magentablack

216 Chapter 6 Classes, Iterators, and Patterns

William H. (Bill) Gates (b. 1955)

Bill Gates is the richest person in the United States and CEO of Microsoft. He
began his career as a programmer writing the first BASIC compiler for early

microcomputers while a student at
Harvard.

When asked whether studying com-
puter science is the best way to pre-
pare to be a programmer, Gates re-
sponded:No, the best way to pre-
pare is to write programs, and to
study great programs that other peo-
ple have written. In my case, I went
to the garbage cans at the Computer
Science Center and I fished out list-
ings of their operating system. You’ve
got to be willing to read other peo-
ple’s code, then write your own, then
have other people review your code.
Gates is a visionary in seeing how
computers will be used both in busi-
ness and in the home. Microsoft pub-
lishes best-selling word processors,
programming languages, and oper-
ating systems as well as interactive

encyclopedias for children. Some people question Microsoft’s business tactics,
but in late 1994 and again in 1999 antitrust proceedings did little to deter Mi-
crosoft’s progress. There is no questioning Gates’s and Microsoft’s influence on
how computers are used.

Although Gates doesn’t program anymore, he remembers the satisfaction that
comes from programming.

When I compile something and it starts computing the right results, I really
feel great. I’m not kidding, there is some emotion in all great things, and
this is no exception.

For more information see [Sla87].

6.1.3 Class Documentation: the Implementation or .cpp File

The header file<cmath> (or <math.h>) contains function prototypes, or headers, for
functions likesqrt andsin . The bodies of the functions are not part of the header file.
A function prototype provides information that programmers need to know to call the
function. A prototype also provides information that enables the compiler to determine

June 7, 1999 10:10 owltex Sheet number 24 Page number 217 magentablack

6.1 Classes: From Use to Implementation 217

if a function is called correctly. The prototype is an interface, just as the class declaration
in "dice.h" is an interface for users of theDice class.

The bodies of theDice member functions are not part of the header filedice.h, Pro-
gram G.3. These function bodies provide an implementation for each member function
and are put in a separate file. As a general rule (certainly one we will follow in this book),
the name of theimplementation file will begin with the same prefix as the header file
but will end with a.cpp suffix, indicating that it consists of C++ code1.

Like all functions we’ve studied, a member function has a return type, a name, and a
parameter list. However, there must be some way to distinguish member functions from
nonmember functions when the function is defined. The double colon:: scope resolu-
tion operator specifies that a member function is part of a given class. The prototypeint
Dice::NumSides() indicates thatNumSides() is a member function of theDice
class. Constructors have no return type. The prototypeDice::Dice(int sides)
is theDice class constructor. The prototype for the constructor of theBalloon class
described ingballoon.h,Program 3.7, isBalloon::Balloon() , since no parameters
are required. As an analogy, when I’m with my family,

Syntax: member function prototype

ClassName::ClassName (parameters)
// constructor (cannot have return type)

typeClassName::FunctionName (parameters)
// nonconstructor member function

I’m known simply asOwen,
but to the world at large I’m
Astrachan::Owen . This
helps identify which of many
possible Owens I am; I belong
to the Astrachan “class.”
The implementation of each
Dice member function is in

dice.cpp, Program 6.1. EachDice member function is implemented with only a few
lines of code. The variablemySides , whose value is returned byDice::NumSides ,
is not a parameter and is not defined within the function. Similarly, the variable
myRollCount , incremented within the functionDice::Roll , is neither a parameter
nor a variable locally defined inDice::Roll .

Program 6.1 dice.cpp

#include "dice.h"
#include "randgen.h"

// implementation of dice class
// written Jan 31, 1994, modified 5/10/94 to use RandGen class
// modified 3/31/99 to move RandGen class here from .h file

Dice::Dice(int sides)
// postcondition: all private fields initialized
{

myRollCount = 0;
mySides = sides;

}

int Dice::Roll()

1A suffix of .cc is used in the code provided for use in Unix/Linux environments.

June 7, 1999 10:10 owltex Sheet number 25 Page number 218magentablack

218 Chapter 6 Classes, Iterators, and Patterns

// postcondition: number of rolls updated
// random ’die’ roll returned
{

RandGen gen; // random number generator

myRollCount= myRollCount + 1; // update # of times die rolled
return gen.RandInt(1,mySides); // in range [1..mySides]

}

int Dice::NumSides() const
// postcondition: return # of sides of die
{

return mySides;
}

int Dice::NumRolls() const
// postcondition: return # of times die has been rolled
{

return myRollCount;
}

dice.cpp

The variablesmyRollCount and mySides are private variables that make up
the state of aDice object. As shown in Figure 6.1, each object orinstance of the
Dice class has its own state variables. Each object may have a different number of
sides or be rolled a different number of times, so different variables are needed for
each object’s state. The convention of using the prefixmy with each private data field
emphasizes that the data belongs to a particular object. The variablecube in roll.cpp,
Program 5.11, has amySides field with value six, whereas themySides that is part
of thedodeca variable has value 12. This is whydodeca.NumSides() returns 12
butcube.NumSides() returns 6; the member functionNumSides returns the value
of mySides associated with the object to which it is applied with. , the dot operator.

Dice (int sides)

int Roll()

int NumSides () const

int NumRolls () const

myRollCount

mySides

P
ub

lic
P

ri
va

te

B
eh

av
io

r
S

ta
te0

6

Dice (int sides)

int Roll()

int NumSides () const

int NumRolls () const

myRollCount

mySides

P
ub

lic
P

ri
va

te

B
eh

av
io

r
S

ta
te0

 cube, after Dice cube(6); dodeca , after Dice dodeca (12);

12

Figure 6.1 After Dice constructors have executed.

June 7, 1999 10:10 owltex Sheet number 26 Page number 219magentablack

6.1 Classes: From Use to Implementation 219

If the interface (header file) is well designed, you can change the implementation
without changing or recompiling the client program.2 Similarly, once the implementation
is written and compiled, it does not need to be recompiled each time the client program
changes. For large programs this can result in a significant savings in the overhead of
designing and testing a program. With the advent of well-constructed classlibraries
that are available for a fee or for free, users can write programs much more easily and
without the need for extensive changes when a new implementation is provided. This
process of compiling different parts of a program separately is described in Section 3.5.

6.1.4 Member Function Implementation

We’ll look briefly at the implementation of each member function of theDice class as
given indice.cpp, Program 6.1.

The Dice Constructor. A class’s constructor must initialize all private data (instance
variables), so each data member should be given a value explicitly by the constructor.
In the body of the constructorDice::Dice() both instance variablesmySides and
myRollCount are initialized.

Program Tip 6.1: Assign a value to all instance variables in every class
constructor. It’s possible that you won’t know what value to assign when an object is
constructed, because the actual value will be determined by another member function. In
this case, provide some known value, such as zero for anint instance variable. Known
values will help as you debug your code.

The Member Functions Dice::NumRolls and Dice::NumSides . Class mem-
ber functions are often divided into two categories:

Accessor functionsthat access state, but do not alter the state.

Mutator functions that alter the state.

The functionsDice::NumRolls() and Dice::NumSides() are accessor
functions since they return information about aDice object, but they do not change
the object’s state. Note that the implementation of these functions is a single line that
returns the value of the appropriate instance variable. Accessor functions often have
simple implementations like this. Nearly every programmer that designs classes adheres
to thedesign heuristicof making all state data private. A heuristic is a rule of thumb or
guideline. As a guideline, there may be exceptional situations in which the guideline is
not followed, but in this book all class state will be private.

2You will need to relink the client program with the new implementation.

June 7, 1999 10:10 owltex Sheet number 27 Page number 220magentablack

220 Chapter 6 Classes, Iterators, and Patterns

Program Tip 6.2: All state or instance variables in a class should be pri-
vate. You can provide accessor functions for clients to get information about an object’s
state, but all access should be through public member functions; no instance variables
should be public.

Accessor functions in C++ almost always have the keywordconst following the
parameter lists, both in the .h file and in the .cpp file. We discuss this use ofconst in
detail in Howto D. Since accessor functions likeDice::NumSides do not change an
object’s state, the wordconst is used by the compiler to actually prohibit changes to
state.

Program Tip 6.3: Make accessor functions const . You make a member
function aconst function by putting the keywordconst after the parameter list.

The Member Function Dice::Roll . The functionDice::Roll() is amutator
function since it alters the state of aDice object. State is altered since aDice ob-
ject keeps track of how many times it has been rolled. The private instance variable
myRollCount is modified as follows.

myRollCount = myRollCount + 1;

Because the state changes, the functionDice::Roll() cannot be aconst function.
The other lines inDice::Roll() actually generate the random roll using another

classRandGen that generates pseudo-random numbers.

6.1.5 Scope of PrivateVariables

The instance variables defined in the private section of a class declaration are ac-
cessible in all member functions of the class. Private variable names areglobal to
all member functions, since they can be accessed in each member function. In the
Dice class the instance variablemySides is initialized in the constructor and used
in Dice::Roll() to generate a random roll. The instance variablemyRollCount
is initialized in the constructor, incremented inDice::Roll() and used to return a
value inDice::NumRolls() .

Program Tip 6.4: If a variable is used in only one member function, it’s
possible that the variable should be defined locally within the function,
and not as a private instance variable. There are occasions when this heuristic
doesn’t hold (e.g., when a variable must maintain its value over multiple calls of the same
member function), but it’s a good, general class design heuristic.

June 7, 1999 10:10 owltex Sheet number 28 Page number 221magentablack

6.1 Classes: From Use to Implementation 221

By defining a variable at the beginning of a program and outside of any function,
you can make it global to all the functions in a program. Aglobal variable is accessible
everywhere in a program without being passed as a parameter. This is considered poor
programming style, because the proliferation of global variables in large programs makes
it difficult to modify one part of the program without affecting another part. Because
global variables cannot be used in large programs without great care (and even then
global variables can cause problems) we will not use any global variables even in small
programs.

Program Tip 6.5: Avoid using global program variables. Global variables
don’t work in large programs, so practice good coding style by avoiding their use in small
programs.

6.1 How do the displays and buttons on a stereo receiver provide an interface to thePause to Reflect

receiver? If you purchase a component stereo system (e.g., a CD player, a tuner,
a receiver, and a cassette deck), do you need to buy a new receiver if you upgrade
the CD player? How is this similar to or different from a header file and its
corresponding implementation?

6.2 Do you know how a soda-vending machine works (on the inside)? Can you
“invent” a description of how one works that is consistent with your knowledge
based on using such machines?

6.3 Why are there so many comments in the header filedice.h ?

6.4 What is the purpose of the member functionsNumSides andNumRolls ? For
example, why won’t the lines

Dice tetra(4);
cout << "# of side s = " << tetra.mySides << endl;

compile, and what is an alternative that will compile?

6.5 In the member functionDice::Roll() the value returned is specified by the
following:

gen.RandInt(1,mySides)

What type/class of variable isgen and where is the class declared?

6.6 What changes toroll.cpp, Program 5.11, permit the user to enter the number of
sides in the simulated die?

6.7 Can the statementmyRollCount++ by used in place ofmyRollCount =
myRollCount + 1 in Dice::Roll() ?

June 7, 1999 10:10 owltex Sheet number 29 Page number 222 magentablack

222 Chapter 6 Classes, Iterators, and Patterns

6.8 Suppose a member functionDice::LastRoll() is added to the classDice .
The function returns the value of the most recent roll. ShouldDice::LastRoll()
be aconst function? What changes to private data and to other member functions
are needed to implement the new member function?

int Dice::LastRoll() // is const needed here?
// post: returns value of last time Roll() was called

6.2 Program Design with Functions
To see how useful classes are in comparison to using only free functions3 in the design
and implementation of programs we’ll study a program that gives a simple quiz on
arithmetic using addition. For example, you might be asked to write a program like
this to help your younger sibling practice with math problems, or to help an elementary
school teacher with a drill-and-practice program for the computer. We’ll begin with a
program that uses free functions to implement the quiz. In the next chapter we’ll modify
the quiz programs from this chapter so that several collaborating classes are used instead
of free functions. The version developed in this chapter serves as a prototype of the final
version. Aprototype is not a finished product, but is useful in understanding design
issues and in getting feedback from users.

Program Tip 6.6: A prototype is a good way to start the implementa-
tion phase of program development and to help in the design process. A
prototype is a “realistic model of a system’s key functions” [McC93]. Booch says that
“prototypes are by their very nature incomplete and only marginally engineered.” [Boo94]
Aprototype is an aid to help find some of the important issues before design and implemen-
tation are viewed as frozen, or unchanging. For those developing commercial software,
prototypes can help clients articulate their needs better than a description in English.

Program 6.2 uses classes and functions we’ve used in programs before. The header
file randgen.h for classRandGen is in Howto G, but we’ll need only the function
RandGen::RandInt that returns a random integer between (and including) the values
of the two parameters as illustrated in Program 6.2

Program 6.2 simpquiz.cpp

#include <iostream>
#include <iomanip> // for setw
#include <string>
using namespace std;
#include "randgen.h" // for RandInt
#include "prompt.h"

3Recall that a free function is any function defined outside of a class.

June 7, 1999 10:10 owltex Sheet number 30 Page number 223magentablack

6.2 Program Design with Functions 223

// simple quiz program

int MakeQuestion()

// postcondition: creates a random question, returns the answer

{

const WIDTH = 7;

RandGen gen;

int num1 = gen.RandInt(10,20);

int num2 = gen.RandInt(10,20);

cout << setw(WIDTH) << num1 << endl;

cout << "+" << setw(WIDTH −1) << num2 << endl;

cout << "——-" << endl;

return num1 + num2;

}

int main()

{

string name = PromptString("what is your name? ");

int correctCount = 0;

int total = PromptRange(name + ", how many questions, ",1,10);

int answer,response, k;

for(k=0 ; k < total; k++)

{ answer = MakeQuestion();

cout << "answer here: ";

cin >> response;

if (response == answer)

{ cout << "correct! " << endl;

correctCount++;

}

else

{ cout << "incorrect, answe r = " << answer << endl;

}

}

int percent = double(correctCount)/total ∗ 100;

cout << name << ", your score is " << percent << "%" << endl;

return 0;

} simpquiz.cpp

June 7, 1999 10:10 owltex Sheet number 31 Page number 224magentablack

224 Chapter 6 Classes, Iterators, and Patterns

O U T P U T

prompt> simpquiz
what is your name? Owen
Owen, how many questions, between 1 and 10: 3

20
+ 18

answer here: 38
correct

13
+ 17

answer here: 20
incorrect, answer = 30

18
+ 10

answer here: 28
correct
Owen, your score is 66%

6.2.1 Evaluating Classes and Code: Coupling and Cohesion

This program works well for making simple quizzes about arithmetic, but it’s hard to
modify the program to make changes such as these:

1. Allow the student (taking the quiz) more than one chance to answer the question.
A student might be allowed several chances depending on the difficulty of the
question asked.

2. Allow more than one student to take a quiz at the same time, say two students
sharing the same keyboard.

3. Record a student’s results so that progress can be monitored over several quizzes.

As we noted in Program Tips 4.4 and 4.10, writing code that’s simple to modify is
an important goal in programming. You can’t always anticipate what changes will be
needed, and code that’s easy to modify will save lots of time in the long run.

The modifications above are complicated for a few reasons.

1. There’s no way to repeat the same question. If the student is prompted for an
answer several times, the original question may scroll off the screen.

2. The body of thefor loop could be moved into another function parameterized by

June 7, 1999 10:10 owltex Sheet number 32 Page number 225magentablack

6.2 Program Design with Functions 225

name. This might be the first step in permitting a quiz to be given to more than
one student at the same time, but in the current program it’s difficult to do this.

3. Once we learn about reading and writing information from and to files we’ll be
able to tackle this problem more easily, but it will still be difficult using the current
program. It’s difficult in part because the code for giving the quiz and the code
for recording quiz scores will be mixed together, making it hard to keep the code
dealing with each part separate. Keeping the code separate is a good idea because
it will be easier to modify each part if it is independent of the other parts.

The last item is very important. It is echoed by two program and class design
heuristics.

Program Tip 6.7: Code, classes, and functions should be as cohesive as
possible. A cohesive functiondoes one thing rather than several things. Acohesive
classcaptures one idea or set of related behaviors rather than many more unrelated ideas
and behaviors. When designing and implementing functions and classes you should make
them highly cohesive.

The functionMakeQuestion from Program 6.2 does two things: it makes a ques-
tion and it returns the answer to the question. Doing two things at the same time makes
it difficult to do just one of the two things, (e.g., ask the same question again). Functions
that do one thing are more cohesive than functions that do two things.

ProgramTip 6.8: Code,classes,and functions should not be coupled with
each other. Each function and class should be as independent from others as possible,
or loosely coupled. It’s impossible to have no coupling or functions and classes wouldn’t
be able to call or use each other. But loose coupling is a goal in function and class design.

A function is tightly coupled with another function if the functions can’t exist in-
dependently or if a change in one causes a change in the other. Ideally, changing a
function’s implementation without changing the interface or prototype should cause few
changes in other functions. In Prog 6.2,simpquiz.cppthe functionMakeQuestion
which makes questions andmain which gives a quiz are tightly coupled with each other
and with the student taking the quiz. These three parts of the program should be less
coupled than they are.

6.2.2 Toward a Class-based Quiz Program

We want to develop a quiz program that will permit different kinds of questions, that is
not just different kinds of arithmetic problems, but questions about state capitals, English
literature, rock and roll songs, or whatever you think would be fun or instructive. We’d
like the program to be able to give a quiz to more than one student at the same time, so

June 7, 1999 10:10 owltex Sheet number 33 Page number 226 magentablack

226 Chapter 6 Classes, Iterators, and Patterns

that two people sharing a keyboard at one computer could both participate. If possible,
we’d like to allow a student to have more than one chance at a question.

In the next chapter we’ll study one design of a program that will permit different
kinds of quizzes for more than one student. That program will use three collaborating
classes. However, we need to study a few more C++ language features and some new
classes before we tackle the quiz program.

Before we develop the class design we must study another mode of parameter passing
that we’ll need in developing more complex classes, functions, and programs. We’ll use
a modified version ofsimpquiz.cpp, Program 6.2.

As we move toward a new quiz program, think about how the program changes.
You’ll find that there is no “best design” or “correct design” when it comes to writing
programs. However, there are criteria by which classes and programs can be evaluated,
such ascoupling andcohesionas outlined in Program Tips 6.8 and 6.7.

6.2.3 Reference parameters

Program 6.3,simpquiz2.cpp,is a modified version of Program 6.2 that uses a function
GiveQuiz as an encapsulation of the code inmain of Program 6.2. This encapsulation
makes it easier to give a quiz to more than one person in the same program and is a step
toward developing a class-based program. The output of Program 6.2 and Program 6.3
are exactly the same (given that the random questions may be different). The function
GiveQuiz passes two values back tomain whenGiveQuiz is called: the number
of questions answered correctly and the total number of questions. Since two values are
passed back, it’s not possible to use a return type which passes only one value back.

In the header ofGiveQuiz in Program 6.3,simpquiz2.cpp,note that the last two
parameters are preceded by an ampersand,&. Using an ampersand permits values to be
passed back from the function to the calling statement.

Program 6.3 simpquiz2.cpp

#include <iostream>
#include <iomanip> // for setw
#include <string>
using namespace std;
#include "randgen.h" // for RandInt
#include "prompt.h"

// simple quiz program

int MakeQuestion()
// postcondition: creates a random question, returns the answer
{

const WIDTH = 7;
RandGen gen;
int num1 = gen.RandInt(10,20);
int num2 = gen.RandInt(10,20);

cout << setw(WIDTH) << num1 << endl;

June 7, 1999 10:10 owltex Sheet number 34 Page number 227magentablack

6.2 Program Design with Functions 227

cout << "+" << setw(WIDTH −1) << num2 << endl;
cout << "——-" << endl;

return num1 + num2;
}

void GiveQuiz(string name, int & correct, int & total)
// precondition: name = person taking the quiz
// postcondition: correc t = # correct answers, tota l = # questions
{

correct = 0;
total = PromptRange(name + ", how many questions, ",1,10);
int answer,response, k;

for(k=0 ; k < total; k++)
{ answer = MakeQuestion();

cout << "answer here: ";
cin >> response;
if (response == answer)
{ cout << "correct! " << endl;

correct++;
}
else
{ cout << "incorrect, answe r = " << answer << endl;
}

}
}

int main()
{

int correctCount, total;
string student = PromptString("what is your name? ");
GiveQuiz(student, correctCount, total);
int percent = double(correctCount)/total ∗ 100;
cout << student << ", your score is " << percent << "%" << endl;

return 0;
} simpquiz2.cpp

The first parameter of the functionGiveQuiz represents the name of the student
taking the quiz. This value is passed into the function. The other parameters are used
to pass values back from the functionGiveQuiz to the statement calling the function.
These last three parameters arereferenceparameters; the ampersand appearing between
the type and name of the parameter indicates a reference parameter. The diagram in
Figure 6.2 shows how information flows betweenGiveQuiz and the statement that calls
GiveQuiz frommain . The ampersand modifier used for the last three parameters in the
prototype ofGiveQuiz makes these references to integers rather than integers. We’ll
elaborate on this distinction, but a reference is used as an alias to refer to a variable that
has already been defined. The memory for a reference parameter is defined somewhere
else, whereas the memory for a nonreference parameter, also called avalue parameter,
is allocated in the function.

June 7, 1999 10:10 owltex Sheet number 35 Page number 228magentablack

228 Chapter 6 Classes, Iterators, and Patterns

Owen 6

Owen

 GiveQuiz(student, correctCount, total);

 void GiveQuiz(string name, int & correct, int & total)

10

Function prototype/header, formal parameters

int correctCount,total; string student;

Function call, arguments

Figure 6.2 Passing parameters by value and by reference in simpquiz2.cpp

The value ofstudent (Owen,in the figure) is copied frommain into the memory
location associated with the parametername in GiveQuiz . Once the value is copied,
the variablestudent defined inmain and the parametername in GiveQuiz are not
connected or related in any way. For example, if the value ofname in GiveQuiz is
changed, the value ofname in main is not affected. This is very different from how
reference parameters work. As indicated in Figure 6.2, the storage for the last two argu-
ments in the function call is referenced, or referred to, by the corresponding parameters
in GiveQuiz . For example, the variablecorrectCount defined inmain is referred
to by the namecorrect within the functionGiveQuiz . When one storage location
(in this case, defined inmain) has two different names, the termaliasing is sometimes
used. Whatever happens tocorrect in GiveQuiz is really happening to the variable
correctCount defined inmain sincecorrect refers tocorrectCount . This
means that if the statementcorrect++; assigns 3 tocorrect in GiveQuiz , the
value is actually stored in the memory location allocated inmain and referred to by the
namecorrectCount in main . Rich Pattis, author ofGet A-Life: Advice for the Be-
ginning C++ Object-Oriented Programmer[Pat96] calls reference parameters “voodoo
doll” parameters: if you “stick”correct in GiveQuiz , the objectcorrectCount
in main yells “ouch.”

One key to understanding the difference between the two kinds of parameters is
to remember where the storage is allocated. For reference parameters, the storage is
allocated somewhere else, and the name of the parameter refers back to this storage.
For value parameters, the storage is allocated in the function, and a value is copied into
this storage location. This is diagrammed by the leftmost arrow in Figure 6.2. When
reference parameters are used, memory is allocated for the arguments, and the formal

June 7, 1999 10:10 owltex Sheet number 36 Page number 229magentablack

6.2 Program Design with Functions 229

parameters are merely new names (used within the called function) for the memory
locations associated with the arguments. This is shown in Figure 6.2 by the arrows
that point “up” from the identifierscorrect andtotal that serve as aliases for the
memory locations allocated for the variablescorrectCount andtotal in main .

6.2.4 Pass byValue and Pass by Reference

Program 6.4,pbyvalue.cppshows a contrived (but hopefully illustrative) example of
parameter passing.

Program 6.4 pbyvalue.cpp

#include <iostream>

#include <string>

using namespace std;

// illustrates pass-by-value/pass-by-reference semantics

void DoStuff(int number, string & word)

{

cout << "DoStuff in:\t" << number < < " " << word << endl;

number ∗= 2;

word = "What's up Doc?";

cout << "DoStuff out:\t" << number < < " " << word << endl;

}

void DoStuff2(int & one, int & two, string & word)

{

cout << "DoStuff2 in:\t" << one < < " " << two << " " << word << endl;

one ∗= 2;

cout << "DoStuff2 mid:\t" << one < < " " << two << " " << word << endl;

two += 1;

word = "What's up Doc?";

cout << "DoStuff2 out:\t" << one < < " " << two << " " << word << endl;

}

int main()

{

int num = 30;

string name = "Bugs Bunny";

DoStuff(num,name);

cout << endl << "DoStuff main:\t" << num < < " " << name << endl << endl;

DoStuff2(num,num,name);

cout << endl << "DoStuff2 main:\t" << num < < " " << name << endl;

return 0;

} pbyvalue.cpp

June 7, 1999 10:10 owltex Sheet number 37 Page number 230magentablack

230 Chapter 6 Classes, Iterators, and Patterns

The parameternumber in the functionDoStuff is passed by value, not by refer-
ence, so assignment tonumber doesnot affect the value of the argumentnum. The
same does not hold for the reference parameterword ; the changed value does change
the value of the argumentname in main .

In contrast, all parameters are reference parameters inDoStuff2 . What’s very
tricky4 aboutDoStuff2 is that the reference parametersone andtwo both alias the
same memory locationnum in main . Assignment toone is really assignment tonum
and thus also assignment totwo since bothone andtwo reference the same memory.
It helps to draw a diagram like the one in Figure 6.2, but with arrows fromone andtwo
both pointing to the same memory location associated withnum in main .

O U T P U T

prompt> pbyvalue
DoStuff in: 30 Bugs Bunny
DoStuff out: 60 What’s up Doc?

DoStuff main: 30 What’s up Doc?

DoStuff2 in: 30 30 What’s up Doc?
DoStuff2 mid: 60 60 What’s up Doc?
DoStuff2 out: 61 61 What’s up Doc?

DoStuff2 main: 61 What’s up Doc?

The first line of output prints the values that are passed toDoStuff . The value of
the parameternumber in DoStuff is the same as the value ofnum in main since this
value is copied when the argument is passed toDoStuff . After the value is copied,
there is no relationship betweennumber andnum. This can be seen in the first line
of output generated inmain : num is still 30. However, the change to parameterword
does changename in main . Values arenot copied when passed by reference. The
identifiersword andname are aliases for the same memory location.

When a function is called and an argument passed to a reference parameter, we use
the termcall by reference. When an argument is copied into a function’s parameter,
we use the termcall by value. Value parameters require time to copy the value and
require memory to store the copied value; it’s possible for this time and space to have
an impact on a program’s performance. Sometimes reference parameters are used to
save time and space. Unfortunately, this permits the called function to change the value
of the argument—the very reason we used reference parameters in Program 6.3. You
can, however, protect against unwanted change and still have the efficiency of reference
parameters when needed.

4I could have written, “what’s verwy twicky,” but I didn’t.

June 7, 1999 10:10 owltex Sheet number 38 Page number 231magentablack

6.2 Program Design with Functions 231

6.2.5 const Reference Parameters

Value parameters are copied from the corresponding argument, as shown inpbyvalue.cpp,
Program 6.4. For parameters that require a large amount of memory, making the copy
takes time in addition to the memory used for the copy. In contrast, reference parameters
are not copied, and thus no extra memory is required and less time is used.

Some programs must make efficient use of time and memory space. Value parameters
for large objects are problematic in such programs. Usingconst referenceor constant
referenceparameters yields the efficiency of reference parameters and the safety of value
parameters. “Safety” means that it’s not possible to change a value parameter so that
the argument is also changed. The argument is protected from accidental or malicious
change. Like value parameters, const reference parameters cannot be changed by a
function so that the argument changes (as we’ll see, assignments to const reference
parameters are prohibited by the compiler.) Aconst reference parameter is defined
using theconst modifier in conjunction with an ampersand as shown inconstref.cpp,
Program 6.5. Const reference parameters are also calledread-only parameters.

Program 6.5 constref.cpp

#include <iostream>

#include <string>

using namespace std;

#include "prompt.h"

// illustrates const reference parameters

// Owen Astrachan, 7/11/96, 4/19/99

void Print(const string & word);

int main()

{

string word = PromptString("enter a word: ");

Print("hello world");

Print(word);

Print(wor d + " " + word);

return 0;

}

void Print(const string & word)

{

cout << "printing: " << word << endl;

} constref.cpp

June 7, 1999 10:10 owltex Sheet number 39 Page number 232magentablack

232 Chapter 6 Classes, Iterators, and Patterns

O U T P U T

prompt> constref
enter a word: rabbit
printing: hello world
printing: rabbit
printing: rabbit rabbit

The parameterword in Print is aconst reference parameter. The use ofconst
prevents the code inPrint from “accidentally” modifying the value of the argument
corresponding toword . For example, adding the statementword = "hello" just
before the output statement generates the following error message with one compiler:

Error : cannot pass const/volatile data object to
non-const/volatile member function

constref.cpp line 23 {word = "hello";

In addition, const reference parameters allow literals and expressions to be passed as ar-
guments. Inconstref.cpp,the first call ofPrint passes the literal"hello world" ,
and the third call passes the expressionword + " " + word . Literals and expres-
sions can be arguments passed to value parameters since the value parameter provides
the memory. However, literals and expressions cannot be passed to reference parameters
since there is no memory associated with either a literal or an expression. Fortunately,
the C++ compiler will generate a temporary variable for literals and expressions when
a const reference parameter is used. If theconst modifier is removed fromPrint in
constref.cpp,the program will fail to compile with most compilers.

ProgramTip 6.9: Parameters of programmer-defined classes like string
should be const reference parameters rather than value parameters.
(Occasionally a copy is needed rather than a const reference parameter, but such situa-
tions are rare). There is no reason to worry about this kind of efficiency for built-in types
like int anddouble ; these use relatively little memory, so that a copy takes no more
time to create than a reference does and no temporary variables are needed when literals
and expressions are passed as arguments.

For some classes a specific function is needed to create a copy. If a class does not
supply such a “copy-making” function—actually a special kind of constructor called a
copy constructor—one will be generated by the compiler. This default copy constructor
may not behave properly in certain situations that we’ll discuss at length later. A brief
discussion of copy constructors can be found in Section 12.10.

The compiler will allow only accessor functions (see Section 6.1) labelled asconst
member functions to be applied to a const reference parameter. If you try to invoke a

June 7, 1999 10:10 owltex Sheet number 40 Page number 233magentablack

6.2 Program Design with Functions 233

mutator (non-const) member function on a const reference parameter the compilation
will catch this error and fail to compile the program.5

6.9 What is the function header and body of a functionGetName that prompts for aPause to Reflect

first and last name and returns two strings, one representing each name?

6.10 Write a functionRoots having the following function header:

void Roots(double a, double b, double c,
double & root1, double & root2)

// precondition: a,b,c coefficients of
// axˆ2 + bx + c
// postcondition: sets root1 and root2 to roots
// of quadratic

that uses the quadratic formula:

−b ± √
b2 − 4ac

2a

to find the roots of a quadratic. The callRoots(1,5,6,r1,r2) would result
in r1 andr2 being set to−2 and−3. You’ll have to decide what to do if there
are no real roots.

6.11 Suppose that a functionMystery has only value parameters. What is printed by
the following statements? Why?

int num = 3;
double top = 4.5;
Mystery(num,top);
cout << num < < " " << top << endl;

6.12 Write the header for a function that returns the number of weekdays (Monday
through Friday) and weekend days (Saturday and Sunday) in a month and year
that are input to the function as integer values using 1 for January and 12 for
December. Don’t write the function, just a header with pre- and post-conditions.

6.13 Two formal parameters can alias the same argument as shown inChange :

void Change(int & first, int & second)
{

first += 2;
second *= 2;

}

5Some older compilers may issue a warning rather than an error, but 32-bit compilers will catch const
errors and fail.

June 7, 1999 10:10 owltex Sheet number 41 Page number 234magentablack

234 Chapter 6 Classes, Iterators, and Patterns

Using the functionChange above, explain why 20 is printed by the code fragment
below and determine what is printed ifnum is initialized to 3 rather than 8.

int main()
{

int num = 8;
Change(num,num);
cout << num << endl;
return 0;

}

6.14 It is often necessary to interchange, or swap, the values of two variables. For
example, ifa = 5 andb = 7, then swapping values would result ina = 7 and
b = 5. Write the body of the functionSwap(Hint: You’ll need to define a variable
of type int).

void Swap(int & a, int & b)
// postcondition: interchanges values of a and b

We want to develop question classes for different kinds of quizzes, but we need
some more programming tools. In the next sections we’ll see how to read from
files instead of just from the keyboard. We’ll see how to write to files too.

6.3 Reading Words: Stream Iteration

If you steal from one author, it’s plagiarism;
if you steal from many, it’s research.

Wilson Mizner

Word processing programs merely manipulate words and characters, but scholars some-
times use programs that process character data to determine authorship. For example,
literary investigators have sought to determine the authorship of Shakespeare’s plays
and sonnets. Some have argued that they were written by philosopher Francis Bacon or
dramatist Christopher Marlowe, but most Shakespearean authorities doubt these claims.
To amass evidence regarding the authorship of a literary work, it is possible to gather
statistics to create a “literary fingerprint.” Such a fingerprint can be based on frequently
used words, phrases, or allusions. It can also include a count of uncommon words.
Computer programs facilitate the gathering of these data.

In this section, we demonstrate the pattern of iterating over words and characters by
simpler, but similar, kinds of programs. These programs will count words and letters—
the kind of task that is built into many word processing programs and used when a limit
on the number of words in an essay is set, (e.g., by newspaper columnists and students
writing English papers). We’ll first write a program that counts words entered by the
user or stored in a text file. A text file is the kind of file in which C++ programs are
stored or word processing documents are saved when the latter are saved as plain text6.

June 7, 1999 10:10 owltex Sheet number 42 Page number 235magentablack

6.3 Reading Words: Stream Iteration 235

I’ll adopt a four-step process in explaining how to develop the program. As you write
and develop programs, you should think about these steps and use them if they make
sense. These steps are meant as hints or guidelines, not rules that should be slavishly
followed.

6.3.1 Recommended Problem-solving and Programming Steps

1. Think about how to solve the problem with paper, pencil, and brain (but no com-
puter). Consider how to extend the human solution to a computer-based solution.
You may find it useful to sketch a solution usingpseudocode,a mixture of English
and C++.

2. If, after thinking about how to solve the problem with a computer (and perhaps
writing out a solution), you are not sure how to proceed, pause. Try thinking
about solving a related problem whose solution is similar to a program previously
studied.

3. Develop a working program or class in an iterative manner, implementing one part
at a time before implementing the entire program. This can help localize problems
and errors because you’ll be able to focus on small pieces of the program rather
than the entirety.

4. When you’ve finished, pause to reflect on what you’ve learned about C++, pro-
gramming, and program design and implementation. You may be able to develop
guidelines useful in your own programming, and perhaps useful to others as well.

We will use these steps to solve the word count problem. First we’ll specify the problem
in more detail and develop a pseudocode solution. This step will show that we’re missing
some knowledge of how to read from files, so we’ll solve a related problem on the way
to counting the words in a text file. After writing a complete program we’ll develop a
class-based alternative that will provide code that’s easier to reuse in other contexts.

6.3.2 A Pseudocode Solution

Counting the words in this chapter or in Shakespeare’s playHamletby hand would be
a boring and arduous task. However, it’s an easy task for a computer program—simply
scan the text and count each word. It would be a good idea to specify more precisely
what a “word” is. The first part of any programming task is often a carefulspecification
of exactly what the program should do. This may require defining terms such asword.
In this case, we’ll assume that a word is a sequence of characters separated from other
words by white space. White space characters are included in the escape characters in
Table A.5 in Howto A; for our purposes, white space is’ ’ , ’ \t’ , and ’ \n’ : the
space, tab, and newline characters7. Escape sequences represent certain characters such

6The adjectiveplain is used to differentiate text files from files in word processors that show font, page
layout, and formatting commands. Most word processors have an option to save files as plain text.
7Other white space characters are formfeed, return, and vertical tab.

June 7, 1999 10:10 owltex Sheet number 43 Page number 236magentablack

236 Chapter 6 Classes, Iterators, and Patterns

as the tab and newline in C++. To print a backslash requires an escape sequence;\\
prints as a single backslash8.

For this problem, we’ll write a pseudocode description of a loop to count words.
Pseudocode is a language that has characteristics of C++ (or Java, or some other lan-
guage), but liberties are taken with syntax. Sketching such a description can help focus
your attention on the important parts of a program.

numWords = 0;
while (words left to read)
{ read a word;

numWords++;
}
print number of words read

White Space Delimited Input for Strings. These pseudocode instructions are very close
to C++, except for the test of thewhile loop and the statementread a word . In fact,
we’ve seen code that reads a word using the extraction operator>> (e.g., Program 3.1,
macinput.cpp). White space separates one string from another when the extraction
operator>> is used to process input. This is just what we want to read words. As an
example, what happens if you typesteel-gray tool-box when the code below is
executed?

string first, second;
cout << "enter two words:";
cin >> first >> second;
cout << first < < " : " << second << endl;

Since the space between they of steel-grayand thet of tool-box is used to delimit the
words, the output is the following:

O U T P U T

steel-gray : tool-box

As another example, consider this loop, which will let you enter six words:

string word;
int numWords;
for(numWords=0; numWords < 6; numWords++)
{ cin >> word;

cout << numWords < < " " << word << endl;
}

8Consider buying groceries. Often a plastic bar is used to separate your groceries from the next person’s.
What happens if you go to a store to buy one of the plastic bars? If the person behind you is buying one
too, what can you use to separate your purchases?

June 7, 1999 10:10 owltex Sheet number 44 Page number 237magentablack

6.3 Reading Words: Stream Iteration 237

Suppose you type the words below with a tab character betweenit andain’t , the
return key pressed afterbroke , and two spaces betweendon’t andfix .

If it ain’t broke,
don’t fix it.

O U T P U T

0 If
1 it
2 ain’t
3 broke,
4 don’t
5 fix

Although the input typed by the user appears as two lines, the input streamcin processes
a sequence of characters, not a sequence of words or lines. The characters on the input
stream appear as literally a stream of characters (the symbolt is used to represent a
space).

If t it \tain \’t t broke, \ndon \’t tt fix it.

There are three different escape characters in this stream: the tab character,\t , the
newline character,\n, and the apostrophe character,\’ . We don’t need to be aware of
these escape characters, or any other individual character, to read a sequence of words
using the loop shown above. At a low level a stream is a sequence of characters, but at
a higher level we can use the extraction operator,>>, to view a stream as a sequence of
words.

The extraction operator,>>—when used withstring variables—groups adjacent,
nonwhite space characters on the stream to form words as shown by the output of the
while loop above. Note that punctuation is included as part of the wordbroke,
because all nonwhite space characters, including punctuation, are the same from the
point of view of the input streamcin . Since the operator>> treats all white space
the same, the newline is treated the same as the spaces or tabs between adjacent words.
Any sequence of white space characters is treated as white space, as can be seen in the
example above, where a tab character space separatesit from ain’t and two spaces
separatedon’t from fix .

Now that we have a better understanding of how the extraction operator works with
input streams, characters, and words, we need to return to the original problem of count-
ing words in a text file. We address two problems: reading an arbitrary number of words
and reading from a file. We cannot use a definite loop because we don’t know in advance
how many words are in a file—that’s what we’re trying to determine.

June 7, 1999 10:10 owltex Sheet number 45 Page number 238magentablack

238 Chapter 6 Classes, Iterators, and Patterns

6.3.3 Solving a Related Problem

How can a loop be programmed to stop when there are no more words in the input? Step
two of our method requires solving a familiar but related problem when confronted with
a task whose solution isn’t immediately apparent. In this case, suppose that words are to
be entered and counted until you enter some specific word signaling that no more words
will be entered. The test of a while loop used to solve this task can consist ofwhile
(word != LAST_WORD) , whereLAST_WORDis the special word indicating the end
of the input andword holds the value of the string that you enter.

This is an example of asentinelloop—the sentinel is the special value that indicates
the end of input. Such loops are classic fence post problems: you must enter a word
before the test is made and, if the test indicates there are more words, you must enter
another word. Program 6.6 shows such a sentinel loop accepting entries until the user
enters the wordend. The special sentinel value isnot considered part of the data being
processed. Sometimes it’s difficult to designate a sentinel value since no value can be
singled out as invalid data. In the second run the number of words does not appear
immediately after the wordend is entered since more typing takes place afterward. The
number of words is not output until after the return key is pressed, and this occurs several
words after the wordend is entered.

Program 6.6 sentinel.cpp

#include <iostream>

#include <string>

using namespace std;

// count words in the standard input stream, cin

int main()

{

const string LAST_WORD = "end";

string word;

int numWords = 0; // initially, no words

cout << "type '" << LAST_WORD << "' to terminate input" << endl;

cin >> word;

while (word != LAST_WORD) // read succeeded

{ numWords++;

cin >> word;

}

cout << "number of words rea d = " << numWords << endl;

return 0;

} sentinel.cpp

June 7, 1999 10:10 owltex Sheet number 46 Page number 239magentablack

6.3 Reading Words: Stream Iteration 239

O U T P U T

prompt> sentinel
type ’end’ to terminate input
One fish, two
fish, red fish, blue fish
end
number of words read = 8

prompt> sentinel
type ’end’ to terminate input
How will the world end — with a bang or a whimper?
number of words read = 4

This apparent delay is a side effect ofbuffered input, which allows the user to make
corrections as input is entered. When input is buffered, the program doesn’t actually
receive the input and doesn’t do any processing until the return key is pressed. The input
is stored in a memory area called abuffer and then passed to the program when the
line is finished and the return key pressed. Most systems use buffered input, although
sometimes it is possible to turn this buffering off.

Although we still haven’t solved the problem of developing a loop that reads all
words (until none are left), the sentinel loop is a start in the right direction and will lead
to a solution in the next section.

6.15 The sentinel loop shown here reads integers until the user enters a zero. Modify thePause to Reflect

loop to keep two separate counts: the number of positive integers entered and the
number of negative integers entered. Use appropriate identifiers for each counter.

const int SENTINEL = 0;
int count = 0;

int num;
cin >> num;
while (num != SENTINEL)
{ count++;

cin >> num;
}

6.16 Does your system buffer input in the manner described in this section? What
happens if Program 6.6 is run and the user enters the text below? Why?

This is the start, this is the end --- nothing
is in between.

June 7, 1999 10:10 owltex Sheet number 47 Page number 240magentablack

240 Chapter 6 Classes, Iterators, and Patterns

6.17 Another technique used with sentinel loops is to force the loop to iterate once. This
is calledpriming the loop9. If the statementcin >> word before thewhile
loop in Program 6.6 is replaced with the statementword = "dummy"; , how
should the body of the while loop be modified so that the program counts words
in the same way?

6.18 Suppose that you want to write a loop that stops after either of two sentinel values
is read. Using the technique of the previous problem in which the loop is forced
to iterate once by giving a dummy value to the string variable used for input, write
a loop that counts words entered by the user until the user enters either the word
end or the wordfinish . Be sure to use appropriateconst definitions for both
sentinels.

6.3.4 The Final Program: Counting Words

We are finally ready to finish a program that counts all the words in a text file or all
the words a user enters. We would like to refine the loop in Program 6.6,sentinel.cpp,
so that it reads all input but does not require a sentinel value to identify the last word
in the input stream. This will let us calculate the number of words (or characters, or
occurrences of the wordthe) in any text file since we won’t need to rely on a specific word
to be the sentinel last word. This is possible in C++ because the extraction operator not
only extracts strings (or numbers) from an input stream, but returns a result indicating
whether the extraction succeeds. For example, a code fragment used earlier read the
wordssteel-gray andtool-box using the statement

cin >> first >> second;

This statement is read, or parsed, by the C++ compiler as though it were written as

(cin >> first) >> second;

because>> is left-associative (see Table A.4 in Howto A.) Think of the input stream,
cin , as flowing through the extraction operators,>>. The first word on the stream is
extracted and stored infirst , and the stream continues to flow so that the second word
on the stream can be extracted and stored insecond . The result of the first extraction,
the value of the expression(cin >> first) , is the input stream,cin , without the
word that has been stored in the variablefirst .

The ReturnValue of operator >>. The most important point of this explanation is
that the expression(cin >> first) not only reads a string fromcin but returns the
stream so that it can be used again, (e.g., for another extraction operation). Although it
may seem strange at first, the stream itself can be tested to see if the extraction succeeded.
The following code fragment shows how this is done.

9The derivation of priming probably comes from old water-pumps that had to beprimed or filled with
water before they started.

June 7, 1999 10:10 owltex Sheet number 48 Page number 241magentablack

6.3 Reading Words: Stream Iteration 241

int num;
cout << "enter a number: ";
if (cin >> num)
{ cout << "valid integer: " << num << endl;
}
else
{ cout << "invalid integer: " << num << endl;
}

O U T P U T

enter a number: 23
valid integer: 23
enter a number: skidoo23
invalid integer: 292232
enter a number: 23skidoo
valid integer: 23

The expression(cin » num) evaluates totrue when the extraction of an integer
from cin has succeeded. The charactersskidoo23 do not represent a valid integer,
so the messageinvalid integer is printed. The integer printed here is a garbage
value. Since no value is stored in the variablenumwhennum is first defined, whatever
value is in the memory associated withnum is printed. Other runs of the program may
print different values. Note that when23skidoo is entered, the extraction succeeds
and 23 is stored in the variablenum. In this case, the charactersskidoo remain on the
input stream and can be extracted by a statement such ascin >> word , whereword
is astring variable. The use of the extraction operator to both extract input and return
a value used in a boolean test can be confusing since the extraction operation does two
things.

Some people prefer to write theif statement using thefail member function of
the streamcin .

cin >> num;
if (! cin.fail())
{ cout << "valid integer: " << num << endl;
}

The member functionfail returns true when an extraction operation has failed and
returns false otherwise. You do not need to usefail explicitly since the extraction
operator returns the same value asfail , but some programmers find it clearer to use
fail . The stream member functionfail returns true whenever a stream operation
has failed, but the only operations we’ve seen so far are I/O operations. Details of all
the stream member functions can be found in Howto B.

June 7, 1999 10:10 owltex Sheet number 49 Page number 242magentablack

242 Chapter 6 Classes, Iterators, and Patterns

Program 6.7 correctly counts the number of words in the input streamcin by testing
the value returned by the extraction operator in awhile loop.

Program 6.7 countw.cpp

#include <iostream>
#include <string>
using namespace std;

// count words in the standard input stream, cin

int main()
{

string word;
int numWords = 0; // initially, no words

while (cin >> word) // read succeeded
{ numWords++;
}
cout << "number of words rea d = " << numWords << endl;
return 0;

} countw.cpp

The test of thewhile loop is false when the extraction operation fails. When reading
strings, extraction fails only when there is no more input. As shown above, input with
integers (anddouble s) can fail if a noninteger value is entered. Since any sequence
of characters is a string, extraction fails for strings only when there is no more input. If
you’re using the program interactively, you indicate no more input by typing a special
character called theend-of-filecharacter. This character should be typed as the first and
only character on a line, followed by pressing the return key. When UNIX or Macintosh
computers are used, this character is Ctrl-D, and on MS-DOS/Windows machines this
character is Ctrl-Z. To type this character the control key must be held down at the same
time as the D (or Z) key is pressed. Such control characters are sometimes not shown
on the screen but are used to indicate to the system running the program that input is
finished (end of file is reached).

O U T P U T

prompt> countw
How shall I love thee? Let
me count
the ways.
ˆD
number of words read = 10

June 7, 1999 10:10 owltex Sheet number 50 Page number 243magentablack

6.3 Reading Words: Stream Iteration 243

The end-of-file character wasnot typed as the strinĝD but by holding down the Control
key and pressing the D key simultaneously.

We’ll modify countw.cppso that it will count words stored in a text file; then we’ll
see how to turn this program into a class that makes it a general-purpose programming
tool.

6.3.5 Streams Associated with Files

In Program 6.6,sentinel.cpp,and Program 6.7,countw.cpp,the standard input stream,
cin , was used as the source of words. Clearly you can’t be expected to type in all
of Hamlet to count the words in that play. Instead, you need some way to create a
stream associated with a text file (rather than with the keyboard and the standard input
stream,cin). A classifstream , accessible by including the file<fstream> (or
<fstream.h> on some systems), is used for streams that are associated with text files.
Program 6.8,countw2.cpp,is a modification of Program 6.7 but uses anifstream
variable.

Program 6.8 countw2.cpp

#include <iostream>
#include <fstream> // for ifstream
#include <string>
#include "prompt.h"

// count words in a file specified by the user

int main()
{

string word;
int numWords = 0; // initially no words
int sum = 0; // sum of all word lengths
ifstream input;

string filename = PromptString("enter name of file: ");

input.open(filename.c_str()); // bind input to named file

while (input >> word) // read succeeded
{ numWords++;

sum += word.length();
}
cout << "number of words rea d = " << numWords << endl;
cout << "average word lengt h = " << sum/numWords << endl;

return 0;
} countw2.cpp

In the following runs, the filemelville.txt is the text of Herman Melville’s
Bartleby, The Scrivener: A Story of Wall-Street.The filehamlet.txt is the complete

June 7, 1999 10:10 owltex Sheet number 51 Page number 244magentablack

244 Chapter 6 Classes, Iterators, and Patterns

text of William Shakespeare’sHamlet. These, as well as other works by Shakespeare,
Edgar Allen Poe, Mark Twain, and others, are accessible as text files.10

O U T P U T

prompt> countw2
enter name of file: melville.txt
number of words read = 14353
average word length = 4
prompt> countw2
enter name of file: hamlet.txt
number of words read = 31956
average word length = 4

prompt> countw2
enter name of file: macbet.txt
number of words read = 0
Floating exception

The variableinput is an instance of the classifstream —aninput file stream—
and supports extraction using>> just ascin does. The variableinput is asso-
ciated, orbound, to a particular user-specified text file with the member function
ifstream::open() .

input.open(filename.c_str()); // bind input to named file

The stringfilename that holds the name of the user-specified file is an argument to
the member functionifstream::open() . The standard string member function
c_str() returns a C-style string required by the prototype for the functionopen() .
Theopen() function may be modified to accept standard strings, but the conversion
functionc_str() will always work. Onceinput is bound to a text file, the extraction
operator>> can be used to extract items from the file (instead of from the user typing
from the keyboard as is the case withcin).

There is a similar classofstream(for output file stream) also accessible by including
the header file<fstream> . This class supports the use of the insertion operator,<<,
just asifstream supports extraction, using the>> operator. The code fragment below
writes the numbers 1 to 1,024 to a file named"nums.dat" , one number per line.

ofstream output;
output.open("nums.dat");
int k;
for(k=0 ; k < 1024; k++)

10The files containing these literary works are available with the material that supports this book. These
texts are in the public domain, which makes on-line versions of them free.

June 7, 1999 10:10 owltex Sheet number 52 Page number 245magentablack

6.3 Reading Words: Stream Iteration 245

{ output << k << endl;
}

In the example of using Program 6.8, filemacbet.txt has no words. I made a
mistake when entering the name of the file to read (I meant to typemacbeth.txt),
which caused the extraction operation to fail because the file does not exist. Because no
words were read, the average calculation resulted in a division-by-zero error. On some
systems, division by zero can cause the machine to crash. Arobust program protects
against errors. Program 6.8 could be made robust by guarding the average calculation
with an if statement to check whethernumWords == 0. It’s also possible to check
the result of the functionifstream::open as shown.

input.open(filename.c_str());
if (input.fail())
{ cout << "open for " << filename << " failed " << endl;
}

You should always look carefully at program output to determine if it meets your
expectations. The average printed for bothHamletandMelville is four. This is surpris-
ing; you probably do not expect the averages to be exactly the same. To fix this problem
we’ll need to change how the average is calculated; we need to usedouble values.

6.3.6 Type Casting

Since bothnumWords andsum areint variables, the result of the division operator,
/ , is anint . How can the correct average be calculated? One method is to definesum
to be adouble variable. Since the statement

sum += word.length();

will correctly accumulate a sum of integers even whensum is adouble variable, this
method will work reasonably well. However, it may not be the best method, since the
wrong type (double) is being used to accumulate the sum of integers. Instead, we can
use atype cast.This is a method that allows one type to be converted (sometimes called
coerced) into another type. For example, the statement:

cout << "average lengt h = " << double(sum)/numWords << endl;

yields the correct average of 4.705 forMelville and 4.362 forHamlet. The expression
double(sum) shows that the typedouble is used like a function name with an ar-
gumentsum. The result is adouble that is as close to the integer value ofsum as
possible. Since the result of a mixed-type arithmetic expression is of the highest type
(in this case,double), 3.5 will be printed. You can also write a cast as((double)
sum)/numWords .11 A cast has higher precedence than arithmetic operators (see Ta-
ble A.4 in Howto A), so(double) sum/numWords will also work becausesum is
cast to adouble value before the division occurs.

11This is the C-style of casting but can be used in C++ and is useful if the cast is to a type whose name
is more than one word, such aslong int .

June 7, 1999 10:10 owltex Sheet number 53 Page number 246magentablack

246 Chapter 6 Classes, Iterators, and Patterns

Alternatively, the statement

cout << "average lengt h = " << sum/double(numWords) << endl;

also gives a correct result since the mixed-type expression yields adouble result.

ProgramTip 6.10: Be careful when casting a value of one type to another.
It is possible that a type cast will result in a value changing. Casting is sometimes

necessary, but you should be cautious in converting values of one type to another type.

For example, using Turbo C++ the output of the three statements

cout << int(32800.2) << endl;
cout << double(333333333333333) << endl;
cout << int(3.6) << endl;

follows.

O U T P U T

-32736
9.214908e+08
3

The third number printed is easy to explain—casting a double to anint truncates,
or chops off, the decimal places. The first two numbers exceed the range of valid values
for int anddouble , respectively using Turbo C++.

In general, casting is sometimes necessary, but you must be careful that the values
being cast are valid values in the type being cast to.

Casting with static_cast . Four cast operators are part of standard C++. In this
book the operatorstatic_cast will be used.12 As an example, the statement

cout << double(sum)/numWords << endl;

is written as shown in the following to use thestatic_cast operator.

cout << static_cast<double>(sum)/numWords << endl;

Your C++ compiler may not supportstatic_cast , but this will change soon as the
C++ standard is adopted. Usingstatic_cast makes casts easier to spot in code.
Also, since casting a value of one type to another is prone to error, some people prefer
to usestatic_cast because it leads to ugly code and will be less tempting to use.

12The other cast operators areconst_cast , dynamic_cast , and reinterpret_cast ; we’ll
have occasion to use these operators, but rarely.

June 7, 1999 10:10 owltex Sheet number 54 Page number 247magentablack

6.3 Reading Words: Stream Iteration 247

6.3.7 A Word-Reading Class Using ifstream

The third of the program development guidelines given in Section 6.3.1 calls for programs
to be developed using an iterative process. Sometimes this means redesigning an already
working program so that it will be useful in different settings. In the case of Program 6.7,
countw.cpp,we want to reimplement the program in a new way to study a programming
pattern that we will see on many occasions throughout this book. The resulting program
will be longer, but it will yield a C++ class that is easier to modify for new situations
than the original program. It will also help us focus on a pattern you can use in other
classes and programs: the idea of processing “entries.” In this case we’ll process all
the words in a text file. The same design pattern can be used to process all the prime
numbers between 1000 and 9999, all the files in a computer disc directory, and all the
tracks on a compact disc.

The pattern of iteration over entries is expressed in pseudocode as

find the first entry;
while (the current entry is valid)
{

process the current entry;
advance to the next entry;

}

We’ll use aWordStreamIterator class to get words one at a time from the text file.
As an example of how to use the class, the functionmain below is black-box

equivalent to Program 6.7,countw.cpp.For any input, the output of these two programs
is the same.

int main()
{

string word;
int numWords = 0; // initially, no words
WordStreamIterator iter;

iter.Open(PromptString("enter name of file: "));

for(iter.Init(); iter.HasMore(); iter.Next())
{ numWords++;
}
cout << "number of words rea d = " << numWords << endl;

return 0;
}

This program fragment may seem more complex than the code incountw2.cpp,Pro-
gram 6.8. This is often the case; using a class can yield code that is lengthier and more
verbose than non class-based code. However, class-based code is often easier to adapt
to different situations. Using classes also makes programs easier to develop on more
than one computing platform. For example, if there are differences in how text files

June 7, 1999 10:10 owltex Sheet number 55 Page number 248magentablack

248 Chapter 6 Classes, Iterators, and Patterns

are read using C++ on different computers, these differences can be encapsulated in
classes and made invisible to programmers who can use the classes without knowing the
implementation details. This makes the code more portable. The process of develop-
ing code in one computing environment and moving it to another is calledporting the
code. The member functionsInit , HasMore , Next , andCurrent together form a
programming pattern called aniterator . This iterator pattern is used to loop over values
stored somewhere, such as in anifstream variable. By using the same names in other
iterating contexts we may be able to develop correct code more quickly. Using the same
names also lets us use programming tools developed for iterators.

We have focused on how to use classes rather than on how to design classes. In
general, designing classes and programs is a difficult task. One design rule that helps is
based on building new designs on proven designs. This is especially true when a design
pattern can be reused.

Program Tip 6.11: A pattern is a solution to a problem in a context. In
the case of theWordStreamIterator class, the problem is accessing the strings in
a stream many times within the same program. The class hides the details of the stream
functions and lets us concentrate on accessing a sequence of strings rather than on details
of how to re-read a stream.

The class declaration forWordStreamIterator is found in worditer.h, Pro-
gram G.6 in Howto G. We won’t look at the implementation inworditer.cpp, but the
code is provided for use with this book. You need to understand how to use the class,
but to use the class you don’t need to understand the implementation.

In the case of aWordStreamIterator object, you should know that the member
functionWordStreamIterator::HasMore will return true if there is more input to
be read. WhenHasMore returns false, accessing the current word using theCurrent
member function is not a valid operation.

The constructorWordStreamIterator::WordStreamIterator leaves the
object iter in a state where accessing the current word isnot valid. In this state the
functionHasMore will return false. You must call the functionInit to access words.
The calliter.Init reads the first word from the input stream and updates the internal
state accordingly.

6.19 What statements can be added tocountw2.cpp, Program 6.8 so that three valuesPause to Reflect

are tracked: the number of small (1–3 letter) words, the number of medium (4–7
letter) words, and the number of large (8 or more letter) words.

6.20 What is the function header for a function that accepts a file name and returns the
number of small, medium, and large words as defined in the previous exercise (the
function has four parameters, the file name is passed into the function, the other
values are returned from the function via parameters.)

6.21 What is the value of1/2 and why is it different from1/2.0 ? What is the value
of 20/static_cast<double>(6) ?

June 7, 1999 10:10 owltex Sheet number 56 Page number 249magentablack

6.4 Finding ExtremeValues 249

6.22 Write code that prompts for two file names, one for input and one for output.
Every word in the input file should be written to the output file, one word per line.

6.23 The statement below reads one string and two ints.

string s; int m,n;
cin >> s >> m >>n;

The statement succeeds in reading three values if the user types"hello 12
3" (without the quotes.) What is the value ofn in this case? If the user types
"hell o 1 2 3 4 5" the statement succeeds (what is the value ofn?), but if
it is executed immediately again, the value ofn will be 5. Why, and what is the
value ofs after the statement executes again.

6.24 Suppose a text file named"quiz.dat" stores student information, one student
per line. Each student’s first name, last name, and five test scores are on one line
(there are no spaces other than between names and scores.)

owen astrachan 70 85 80 70 60
josh astrachan 100 100 95 97 93
gail chapman 88 90 92 94 96
susan rodger 91 91 91 55 91

Write a loop to read information for all students and to print the average for each
student.

6.25 Why can’t theWordStreamIterator class be used to solve the problem in
the previous exercise (knowing what you’ve learned so far, there is a way to solve
the problem using the functionatoi from "strutils.h" , see Howto G.)

6.4 Finding ExtremeValues

We ascribe beauty to that which is simple,
which has no superfluous parts;
which exactly answers its end,

which stands related to all things,
which is the mean of many extremes.

Ralph Waldo Emerson
The Conduct of Life

The maximum and minimum values in a set of data are sometimes calledextreme
values. In this section we’ll examine code to find the maximum (or minimum) val-
ues in a set of data. For example, instead of just counting the number of words in
Shakespeare’sHamletwe might like to know what word occurs most often. Using the
WordStreamIterator class we can do so, although the program is very slow. Later

June 7, 1999 10:10 owltex Sheet number 57 Page number 250magentablack

250 Chapter 6 Classes, Iterators, and Patterns

in the chapter I will introduce a mechanism for speeding up the program. As a prelimi-
nary step, we’ll look atmindata.cpp,Program 6.9, designed to find the minimum of all
numbers in the standard input stream.

The if statement compares the value of the number just read with the current min-
imum value. A new value is assigned tominimum only when the newly read number
is smaller. However, Program 6.9 does not always work as intended, as you may be
able to see from the second run of the program. Using the second run, you may reason
about a mistake in the program: the variableminimum is initialized incorrectly. You
may wonder about what happens when the string"apple" is entered when a number
is expected. As you can see from the output, the program only counts four numbers as
read in the second run.

The operator>> fails when you attempt to extract an integer but enter a noninteger
value such as"apple" . The operator>> fails in the following situations:

1. There are no more data to be read (extracted) from the input stream; (i.e., all input
has been processed).

2. There was never any data because the input stream was not bound to any file.
This can happen when anifstream object is constructed and initialized with
the name of a file that doesn’t exist or isn’t accessible.

3. The data to be read are not of the correct type, (e.g., attempting to read the string
"apple" into an integer variable).

Program 6.9 mindata.cpp

#include <iostream>
using namespace std;

// determine minimum of all numbers in input stream

int main()
{

int numNums = 0; // initially, no numbers
int minimum = 0; // tentative minimal value is 0

int number;
while (cin >> number)
{ numNums++;

if (number < minimum)
{ minimum = number;
}

}
cout << "number of number s = " << numNums << endl;
cout << "minimal number is " << minimum << endl;

return 0;
} mindata.cpp

June 7, 1999 10:10 owltex Sheet number 58 Page number 251magentablack

6.4 Finding ExtremeValues 251

O U T P U T

prompt> mindata
−3 5 2 135−33 14 3
199 257−582 9392 78
number of numbers = 19
minimal number is −582

prompt> mindata
20 30 40 50 apple 60 70
number of numbers = 4
minimal number is 0

There are two methods for fixing the program so that it will work regardless of what
integer values are entered; currently the test in theif statement ofmindata.cppwill
never be true if the user enters only positive numbers.

Initialize minimum to “infinity” so the first time theif statement is executed the
entered value will be less thanminimum .

Initialize minimum to the first value entered on the input stream.

We’ll elaborate on each of these approaches in turn.

6.4.1 Largest/SmallestValues

To implement the first approach we’ll take advantage of the existence of a largest integer
in C++. Since integers (and other types such asdouble) are stored in a computer
using a fixed amount of memory, there cannot be arbitrarily large or small values. In the
standard system file<climits> (or limits.h), several useful constants are defined:

INT_MAX INT_MIN LONG_MAX LONG_MIN

These constants represent, respectively, the largest and smallestint values and the
largest and smallestlong values. We can now initializeminimum from Program 6.9
as follows (assuming<climits> is included.)

int main()
{

int numNums = 0; // initially, no numbers
int minimum = INT_MAX; // all values less than this

}

The program finds the correct minimum because theif test evaluates to true the first
time, since any integer value is less than or equal toINT_MAX. However, if only values

June 7, 1999 10:10 owltex Sheet number 59 Page number 252magentablack

252 Chapter 6 Classes, Iterators, and Patterns

of INT_MAX are encountered, the test of theif statement will never be true. In this
case the program still finds the correct minimum ofINT_MAX.

Similar constants exist fordouble values; these are accessed by including<cfloat>
(or <float.h>). The largest and smallestdouble values are represented by the con-
stantsDBL_MINandDBL_MAX, respectively.

6.4.2 Initialization: Another Fence Post Problem

Implementing the second approach to the extreme value problem—using the first item
read as the initial value forminimum —is a typical fence post problem. An item must
be read before the loop to initializeminimum . Items must continue to be read within
the loop. In developing code for this approach, we must decide what to do if no items
are entered. What is the minimum of no values? Perhaps the safest approach is to print
an error message as shown in Program 6.10.

Program 6.10 mindata2.cpp

#include <iostream>
using namespace std;

// determine minimum of all numbers in input stream
// illustrates fencepost problem: first item is minimum initialization

int main()
{

int numNums = 0; // initially, no numbers
int minimum; // smallest number entered
int number; // user entered number

if (cin >> number) // read in first value
{ minimum = number; // to initialize minimum

numNums++;
}
while (cin >> number) // read in any remaining values
{ numNums++;

if (number < minimum)
{ minimum = number;
}

}
if (numNums > 0)
{ cout << "number of number s = " << numNums << endl;

cout << "minimal number is " << minimum << endl;
}
else
{ cout << "no numbers entered, no minimum found" << endl;
}
return 0;

}
mindata2.cpp

June 7, 1999 10:10 owltex Sheet number 60 Page number 253magentablack

6.4 Finding ExtremeValues 253

The input statementcin >> number is the test of theif statement. It ensures
that a number was read. Another approach to using the first number read as the initial
value ofminimum uses anif statement in the body of thewhile loop to differentiate
between the first number and all other numbers. The value ofnumNumscan be used for
this purpose.

while (cin >> number)
{ numNums++;

if (numNums == 1 || number < minimum)
{ minimum = number;
}

}

Many people prefer the first approach because it avoids an extra check in the body of
thewhile loop. The checknumNums == 1is true only once, but it is checked every
time through the loop. In general, you should prefer an approach that does not check
a special case over and over when the special case can only occur once. On the other
hand, the check in the loop body results in shorter code because there is no need to read
an initial value forminimum . Since code isn’t duplicated (before the loop and in the
loop), there is less of a maintenance problem because code won’t have to be changed
in two places. The extra check in the loop body may result in slightly slower code, but
unless you have determined that this is a time-critical part of a program, ease of code
maintenance should probably be of greater concern than a very small gain in efficiency.
There is no single rule you can use to determine which is the best method. As with many
problems the best method depends on the exact nature of the problem.

ProgramTip 6.12: The safest approach to solving extreme problems is to
use the first value for initialization of all variables that track the extreme
(minimum or maximum). If you’re finding the minimum or maximum of numeric
values represented byint or double , then constants likeINT_MIN can be used, but
using the first value is always safe.

6.26 If mindata.cpp,Program 6.9, is modified so that it reads floating-point numbersPause to Reflect

(of typedouble) instead of integers, which variables’ types change? What other
changes are necessary?

6.27 If the largest and smallest in a sequence ofBigInt values are being determined,
what is the appropriate method for initializing the variables tracking the extreme
values? (The typeBigInt was introduced in Section 5.1.3.)

6.28 What happens if each of the following statements is used to calculate the average
of the values entered in Program 6.8 Why?

cout << "average word length = "
<< (double) sum/numWords << endl;

June 7, 1999 10:10 owltex Sheet number 61 Page number 254 magentablack

254 Chapter 6 Classes, Iterators, and Patterns

Does the statement below produce different output?

cout << "average word length = "
<< (double sum/numWords) << endl;

6.29 Write and run a small program to output the largest and smallest integer values on
your system.

6.30 Modify mindata.cpp,Program 6.9, andmindata2.cpp,Program 6.10, to calculate
the maximum of all values read.

6.31 Strings can be compared alphabetically (also calledlexicographically) using the
operators<and>so that"apple" < "bat" and"cabinet" > "cabbage" .
What is the function header and body of a function that exhaustively reads input
and returns the alphabetically first and last word read?

6.4.3 Word Frequencies

We can use the method of finding extreme values frommindata.cpp,Program 6.9, and
theWordStreamIterator class to find the word that occurs most often in a text file.
The idea is to read one word at a time using aWordStreamIterator object and to
use another iterator to read the entire text file from beginning to end counting how many
times the given word occurs. This is shown in Program 6.11. Using nested iterators in
this way results in a very slow program, because if there are 2000 words in a file, the file
will be read 2000 times. Redundancy occurs because we don’t have the programming
tools to track whether a word is already counted; thus we may count the number of times
theoccurs more than 100 times.

Program 6.11 maxword.cpp

#include <iostream>
#include <string>
using namespace std;
#include "worditer.h"

#include "prompt.h"

// illustrates nested loops using WordStreamIterator class
// to find the word that occurs most often in a file
// Owen Astrachan, 2/13/96, 4/10/99

int main()
{

int maxOccurs = 0;
int wordCount = 0;
string word,maxWord;
string filename = PromptString("enter file name: ");
WordStreamIterator outer,inner;

June 7, 1999 10:10 owltex Sheet number 62 Page number 255magentablack

6.4 Finding ExtremeValues 255

outer.Open(filename); // open two iterators
inner.Open(filename);

for(outer.Init(); outer.HasMore(); outer.Next())
{ wordCount++;

word = outer.Current(); // current word for comparison
int count = 0; // count # occurrences

for(inner.Init(); inner.HasMore(); inner.Next())
{ if (inner.Current() == word) // found another occurrence

{ count++;
}

}
if (count > maxOccurs) // maximal so far
{ maxOccurs = count;

maxWord = word;
}
if (wordCount % 100 == 0) // update "progress bar"
{ cout << "..";

if (wordCount % 1000 == 0) cout << endl;
}

}
cout << endl << "word \"" << maxWord << "\" occurs "

<< maxOccurs << " times" << endl;
return 0;

} maxword.cpp

O U T P U T

prompt> maxword
enter file name: poe.txt
....................
....................
......
word "the" occurs 149 times

The outer loop, using the iteratorouter , processes each word from a text file one at a
time. The inner loop reads the entire file, counting how many timesword occurs in the
file. Since eachWordStreamIterator object has its own state, the iteratorouter
keeps track of where it is in the input stream, even as the iteratorinner reads the entire
stream from beginning to end.

6.32 According tocountw2.cpp,Program 6.8,Hamlethas 31,956 words and an averagePause to Reflect

word length of 4.362 characters. If a computer can read 200,000 characters per
second, provide a rough but reasoned estimate of how long it will takemaxword.cpp
to find the word inHamletthat occurs most often.

June 7, 1999 10:10 owltex Sheet number 63 Page number 256magentablack

256 Chapter 6 Classes, Iterators, and Patterns

6.33 Suppose that the code inmain from mindata.cpp,Program 6.9, is moved to a
function namedReadNumsso that the new body ofmain is

{
....
ReadNums(numNums,minimum);
cout << "number of number s = " << numNums << endl;
cout << "minimal number is " << minimum << endl;

}

What is the function header and body ofReadNums? How would the function
header and body change if only the average of the numbers read is to be returned?

6.34 How can you modifymaxword.cppso that instead of printing two dots every 100
words as it does currently, it prints a percentage of how much it has processed,
like this:

10%...20%...30%...40%...50%...60%...70%...80%...90%...
word "the" occurs 149 times

(Hint: count the total words first.)

6.4.4 Using the CTimer class

Program 6.11 is slow, but how slow is it? User-interface studies show that people are
more willing to put up with slow programs, or slow internet connections, if feedback
is provided about how much time a program or download is expected to take13. Using
the classCTimer , whose interface is given inctimer.has Program G.5 in Howto G,
allows us to provide a user with feedback. TheCTimer class also allows us to time how
long code fragments or functions take to execute which, in turn, allows us to evaluate
algorithm and program efficiency.

Program 6.12 shows howCTimer can be used to time loop-execution time. The pro-
gram shows all but one of theCTimer member functions. The functionCTimer::Reset
resets aCTimer ’s internal stopwatch to zero. The precision orgranularity of the timing
done byCTimer may depend on the machine on which it’s run. On many machines,
the class “ticks” in increments of one-sixtieth of a second14.

13Have you ever watched the progress bar in an internet browser as it updates the time to complete a
download?
14The tick-value is found as the constantCLOCKS_PER_SECin the header file<ctime> or time.h .

June 7, 1999 10:10 owltex Sheet number 64 Page number 257magentablack

6.4 Finding ExtremeValues 257

Program 6.12 usetimer.cpp

#include <iostream>

using namespace std;

#include "ctimer.h"

#include "prompt.h"

// illustrate CTimer class and loop timings

int main()

{

int inner = PromptRange("# inner iterations x 10,000 ",1,10000);

int outer = PromptRange("# outer iterations",1,20);

long j,k;

CTimer timer;

for(j=0 ; j < outer; j++)

{ timer.Start();

for(k=0 ; k < inner ∗10000L; k++)

{

// nothing done here

}

timer.Stop();

cout << j << "\t" << timer.ElapsedTime() << endl;

}

cout << "——-" << endl;

cout << "tota l = " << timer.CumulativeTime() << "\t"

<< inner ∗outer ∗10000L << " iterations "<< endl;

return 0;

} usetimer.cpp

June 7, 1999 10:10 owltex Sheet number 65 Page number 258 magentablack

258 Chapter 6 Classes, Iterators, and Patterns

O U T P U T

run on a PII, 300 Mhz machine running Windows NT
prompt> usetimer
#inner iterations x 10,000 between 1 and 10000: 10000
outer iterations between 1 and 20: 3
0 2.364
1 2.353
2 2.373

total = 7.090 300000000 iterations

run on a P100 machine running Linux
prompt> usetimer
#inner iterations x 10,000 between 1 and 10000: 10000
outer iterations between 1 and 20: 3
0 17.11
1 17.11
2 17.12

total = 51.34 300000000 iterations

Using theCTimer class we can add code to Program 6.11 to give the user an estimate
of how long the program will take to run. The modified program ismaxword2.cpp .
The entire program is accessible online, or with the code that comes with this book. The
timing portions of the code are shown as Program 6.13 after the output.

O U T P U T

prompt> maxword2
enter file name: poe.txt
2.314 of 46.5

timing data removed

46.197 of 46.5
48.5 of 46.5
50.804 of 46.5
53.107 of 46.5
word "the" occurs 149 times

June 7, 1999 10:10 owltex Sheet number 66 Page number 259magentablack

6.5 Case Study: Iteration and String Sets 259

Program 6.13 maxword2time.cpp

CTimer timer;
timer.Start();
for(outer.Init(); outer.HasMore(); outer.Next())
{ wordCount++;
}
timer.Stop();
double totalTime = timer.ElapsedTime() ∗wordCount;
wordCount = 0;
timer.Reset();

for(outer.Init(); outer.HasMore(); outer.Next())
{ word = outer.Current(); // current word for comparison

wordCount++;

int count = 0; // count # occurrences
timer.Start();
for(inner.Init(); inner.HasMore(); inner.Next())
{ if (inner.Current() == word) // found another occurrence

{ count++;
}

}
if (count > maxOccurs) // maximal so far
{ maxOccurs = count;

maxWord = word;
}
if (count > maxOccurs) // maximal so far
{ maxOccurs = count;

maxWord = word;
}
timer.Stop();
if (wordCount % 100 == 0)
{ cout << timer.CumulativeTime() << "\tof " << totalTime << endl;
}

} maxword2time.cpp

As you can see in the output, the time-to-completion is underestimated by the pro-
gram. The loop that calibrates the time-to-completion reads all the words, but does not
compare words. The string comparisons in the inner nested loop take time that’s not
accounted for in the time-to-completion calibrating loop.

6.5 Case Study: Iteration and String Sets
We’ll take one step toward speeding upmaxword.cpp, Program 6.11 by studying the
classStringSet and its associated iterator classStringSetIterator .

Sets used in programming are based on the mathematical notion of set: a collection
of elements with no duplicates. Examples include sets of integers:{1, 3, 2, 4}, sets
of shapes: {4, 5, FG, ©}, and sets of spicy spices{"paprika", "cayenne",

June 7, 1999 10:10 owltex Sheet number 67 Page number 260magentablack

260 Chapter 6 Classes, Iterators, and Patterns

"chili"} . The collection{1, 3, 2, 3, 4, 3, 1} is not a set because it contains duplicate
elements.

Program 6.14 illustrates how to program using the classStringSet and the associ-
ated classStringSetIterator . The member functions ofStringSetIterator
have the same names as those of the classWordStreamIterator .

Program 6.14 setdemo.cpp

#include <iostream>
using namespace std;
#include "stringset.h"

// demonstrate string set use

int main()
{

StringSet sset;
sset.insert("watermelon");
sset.insert("apple");
sset.insert("banana");
sset.insert("orange");
sset.insert("banana");
sset.insert("cherry");
sset.insert("guava");
sset.insert("banana");
sset.insert("cherry");

cout << "set siz e = " << sset.size() << endl;

StringSetIterator it(sset);
for(it.Init(); it.HasMore(); it.Next())
{ cout << it.Current() << endl;
}
return 0;

} setdemo.cpp

O U T P U T

prompt> setdemo
set size = 6
apple
banana
cherry
guava
orange
watermelon

June 7, 1999 10:10 owltex Sheet number 68 Page number 261magentablack

6.5 Case Study: Iteration and String Sets 261

Client programs can callStringSet::insert hundreds of times with the same
argument, but only the first call succeeds in inserting a new element into the set. Other
StringSet member functions includeStringSet::clear which removes all ele-
ments from a set andStringSet::erase which removes one element, if it is present;
that is,sset.erase("apple") decreases the size of the set used insetdemo.cpp,
Program 6.14 by removing("apple"). The header filestringset.his Program G.7 in
Howto G.

6.5.1 Iterators and the strutils.h Library

Program 6.15,setdemo2.cppshows two different kinds of iterators used in the same
program. The program reads a file and stores all the words in aStringSet object. The
words are first converted to lowercase and all leading and trailing punctuation is removed
using functionsToLower and StripPunc from "strutils.h" (for details see
Program G.8 in Howto G.) This reduces the number of different words in many of the
English text files used in this book. For example, the line below occurs inThe Cask of
Amontillado, used in this book as the filepoe.txt.

‘‘Yes, yes,’’ I said; ‘‘yes, yes.’’

If we don’t strip punctuation and convert to lowercase this line contains four occurrences
of the word “yes” (each word is shown surrounded by double quotes “” that aren’t part of
the word as read by the program): “‘‘Yes, ”, “ yes,’’ ”, “ ‘‘yes, ”, and “yes.’’ ”.

6.5.2 TheType ofstream

Program 6.15,setdemo2.cppshows how to print to a text file of typeofstream . Open-
ing anofstream variable uses the same syntax as opening anifstream variable.
Writing to an ifstream uses the same syntax as writing tocout as shown by the
function Print which accepts eithercout or the ifstream variableoutput as
arguments. The reason that both streams can be arguments is that the parameter has
typeostream. We’ll explore why bothcout and anifstream object have the type
ostream in a later chapter.15

Program Tip 6.13: When passing streams as parameters, use ostream
for output streams and istream for input streams. Using the most general
kind of stream as a parameter ensures that you’ll be able to pass many different kinds of
streams as arguments.

Although we’ve only studiedcin andifstream for input, andcout andofstream
for output, you’ll encounter other kinds of streams later in this book and your study of
C++.

15This works because of inheritance, but you do not need to understand inheritance conceptually, or
how it is implemented in C++, to use streams.

June 7, 1999 10:10 owltex Sheet number 69 Page number 262magentablack

262 Chapter 6 Classes, Iterators, and Patterns

Program Tip 6.14: Streams must be passed by reference. The compiler
may not complain if you pass a stream by value, but your program will not work properly.
Streams are almost never const-reference parameters since stream functions invariably
change the state of the stream.

Program 6.15 setdemo2.cpp

#include <iostream>
#include <fstream> // for ifstream and ofstream
#include <string>
using namespace std;

#include "worditer.h"
#include "stringset.h"
#include "strutils.h"
#include "prompt.h"

Print(StringSetIterator& ssi, ostream& output)
{

for(ssi.Init(); ssi.HasMore(); ssi.Next())
{ output << ssi.Current() << endl;
}

}

int main()
{

string filename = PromptString("enter file name: ");
WordStreamIterator wstream;
wstream.Open(filename);
string word;

StringSet wordset;
for(wstream.Init(); wstream.HasMore(); wstream.Next())
{ word = wstream.Current();

ToLower(word);
StripPunc(word);
wordset.insert(word);

}
StringSetIterator ssi(wordset);
Print(ssi,cout);
cout << "# different word s = " << wordset.size() << endl;

filename = PromptString("file for output: ");
ofstream output(filename.c_str());
Print(ssi,output);

return 0;
} setdemo2.cpp

June 7, 1999 10:10 owltex Sheet number 70 Page number 263 magentablack

6.5 Case Study: Iteration and String Sets 263

O U T P U T

prompt> hamlet.txt
1
1604
a
a’mercy

output words removed

yourself
yourselves
youth
zone
different words = 4832
file for output: hamwords.dat

When the program is run on Shakespeare’sHamletas shown, the filehamwords.dat
is created and contains the 4,832 different words occurring inHamlet. The words are
printed in alphabetical order because of how theStringSet class is implemented.
Note that words include “1” and “1604” and that these appear before words beginning
with “a” because of the character system used in computers in which digits come before
letters.

6.5.3 Sets and Word Counting

Using aStringSet object greatly speeds up the execution time formaxword.cpp,
Program 6.11. The original program used nested iterators to find the most frequently
occurring word in a file. The modified version below,maxword3.cpp, Program 6.16, puts
the words in a set, then the outer iterator goes over the set while the inner iterator reads
the file each time. The program uses an object of typeCircleStatusBar to monitor
how much time remains as it’s reading a file and finding the most frequently occurring
word.16 Three snapshots of theCircleStatusBar timing a run using Poe’sThe Cask
of Amontilladoare shown in Figure 6.3. The program does not use the"strutils.h"
functionsStripPunc andToLower that were used insetdemo2.cpp, Program 6.15.
This is why the number of different words is shown as 1,040 formaxword3.cpp, but as
810 forsetdemo2.cpp.

16TheCircleStatusBar class intstatusbar.h requires the use of the graphics library discussed
in Howto H.

June 7, 1999 10:10 owltex Sheet number 71 Page number 264 magentablack

264 Chapter 6 Classes, Iterators, and Patterns

Figure 6.3 Timed output from maxword3.cpp using StatusCircle , WordIter , and
StringSet classes.

Program 6.16 maxword3.cpp

#include <iostream>
#include <string>
using namespace std;
#include "worditer.h"
#include "stringset.h"
#include "prompt.h"
#include "statusbar.h"

// 4/23/99, find most frequently occurring word using stringsets/iterators

int main()
{

int maxOccurs = 0;
int wordsRead = 0;
string word,maxWord;
StringSet wordSet;
StatusCircle circle(50);

string filename = PromptString("enter file name: ");
WordStreamIterator ws;
ws.Open(filename);

for(ws.Init(); ws.HasMore(); ws.Next())
{ wordSet.insert(ws.Current());
}
cout << "read " << wordSet.size() << " different words" << endl;

StringSetIterator ssi(wordSet);
for(ssi.Init(); ssi.HasMore(); ssi.Next())
{ circle.update(wordsRead/double(wordSet.size()) ∗100);

int count = 0;
wordsRead++;
word = ssi.Current();
for(ws.Init(); ws.HasMore(); ws.Next())

June 7, 1999 10:10 owltex Sheet number 72 Page number 265magentablack

6.5 Case Study: Iteration and String Sets 265

{ if (ws.Current() == word)
{ count++;
}

}
if (count > maxOccurs)
{ maxOccurs = count;

maxWord = word;
}

}
cout << endl << "word \"" << maxWord << "\" occurs "

<< maxOccurs << " times" << endl;

return 0;
} maxword3.cpp

O U T P U T

enter file name: poe.txt
read 1040 different words
word "the" occurs 149 times

If the functionsStripPunc and ToLower are used, the word “the” will occur
more than 149 times.

6.35 Write the body of the function below that creates the union of two string sets.Pause to Reflect

void union(const StringSet& lhs, const StringSet& rhs,
StringSet& result)

// post: result contains elements in either lhs or rhs

6.36 Write the body of the function below that creates the intersection of two string
sets.

void intersect(const StringSet& lhs, const StringSet& rhs,
StringSet& result)

// post: result contains elements in both lhs and rhs

(If you compare the sizes oflhs andrhs you can make the function more efficient
by looping over the smallest set).

6.37 Write a loop that prints all the strings in a set that are still elements of the set if the
first character is removed, (e.g., like"eat" and"at" if both were in the set).

6.38 Write a loop to print all the strings in a set that are “pseudo-palindromes” — dif-
ferent words when written backwards, such as"stressed" and"desserts"
(if both are in the set.)

June 7, 1999 10:10 owltex Sheet number 73 Page number 266magentablack

266 Chapter 6 Classes, Iterators, and Patterns

6.6 Chapter Review
In this chapter we studied how classes were implemented, with an in-depth look at the
classDice . Member functions of classes are categorized as constructors, accessor, and
mutator functions; private data makes up the state of a class. We studied different modes
of parameter/argument passing. We saw how (relatively) simple it is to read and write
text files in C++ because of the similarity of file streams tocin andcout . We saw a
pattern of iteration using functionsInit , HasMore , andNext used with both streams
and with sets of strings. The pattern was used to permit programs to access the elements
of a collection without real knowledge of how the collection is implemented. By using
the same names for iterator functions, we’ll make it easier to understand new iterators
when we encounter them. We also studied how to solve extreme problems; such as
finding the maximum and minimum in a collection.

Important topics covered include the following:

Accessor and mutator functions allow a class’ state to be examined and changed,
respectively.

Private instance variables are accessible only in member functions, not in client
programs.

Coupling and cohesion are important criteria for evaluating functions, classes, and
programs.

Reference parameters permit values to be returned from functions via parameters.
This allows more than one value to be returned. Const reference parameters are
used for efficiency and safety.

Parameters are passed by value (a copy is made) unless an ampersand,&, is used
for pass by reference. In this case the formal parameter identifier is an alias for
the memory associated with the associated function argument.

A variable isdefinedwhen storage is allocated. A variable isdeclaredif no storage
is allocated, but the variable’s type is associated with the variable’s identifier.

Parameters for programmer-defined classes are often declared asconst reference
parameters to save time and space while ensuring safety.

Programs are best designed in an iterative manner, ideally by developing a working
program and adding pieces to it so that the program is always functional to some
degree. Writing pseudocode first is often a good way of starting the process of
program development.

The extraction operator,>>, uses white space to delimit, or separate, one string
from another.

In sentinel loops, the sentinel value isnot considered part of the data.

The extraction operator returns a value that can be tested in a loop to see whether the
extraction succeeds, sowhile (cin » word) is a standard idiom for reading
streams until there is no more data (or until the extraction fails). The stream
member functionfail can be used too.

Files can be associated with streams usingifstream variables. The extraction
operator works with these streams. Theifstream member functionopen is

June 7, 1999 10:10 owltex Sheet number 74 Page number 267magentablack

6.7 Exercises 267

used to bind a named disk file to a file stream. Anofstream variable is used to
associate an output file stream with a named disk file.

If you enter a nonnumeric value when a numeric value (e.g., anint or adouble)
is expected, the extraction will fail and the nonnumeric character remains unpro-
cessed on the input stream.

Types sometimes need to be cast, or changed, to another type. Casting often causes
values to change; that is when casting from adouble to anint , truncation occurs.
A new cast operator,static_cast , should be used if your compiler supports
it.

Constants for the largestint and double values are accessible and can be
found in the header files<limits.h> and <float.h> , respectively. The
constants defining system extreme values areINT_MAX, INT_MIN , LONG_MAX,
LONG_MIN, DBL_MAX, andDBL_MIN.

Finding extreme (highest and lowest) values is a typical fence post problem. Ini-
tializing with the first value is usually a good approach, but sometimes a value of
“infinity” is available for initialization (e.g.,INT_MAX).

The classCTimer can be used to time program segments. The granularity of it’s
underlying clock may differ among different computers.

The WordStreamIterator class encapsulates file-reading so that the same
file can be easily read many times within the same program.

The StringSet class is used to represent sets of strings (no duplicates). An
associated classStringSetIterator allows access to each value in a set.

6.7 Exercises
6.1 Create a data file in the format

firstname lastname testscore
firstname lastname testscore

where the first two entries on a line arestring values and the last entry is anint test
score in the range 0–100. For example:

Owen Astrachan 95
Dave Reed 56
Steve Tate 99
Dave Reed 77
Steve Tate 92
Owen Astrachan 88
Mike Clancy 100
Mike Clancy 95
Dave Reed 47

Write a program that prompts for a name and then reads the text file and computes and
outputs the average test score for the person whose name is entered. Use the following
while statement to read entries from anifstream variableinput .

June 7, 1999 10:10 owltex Sheet number 75 Page number 268magentablack

268 Chapter 6 Classes, Iterators, and Patterns

string first, last;
int score;
while (input >> first >> last >> score)
{

// read one line, process it
}

6.2 Implement a class similar to the classDice but like the child’s gameMagic 8-Ball. Call
the classFortune . A Fortune object should represent a many-sided fortune-teller.
You can choose six sides, or eight sides, or even twenty sides like the “real” Magic
8-ball, but the number of sides is fixed. It is not specified at construction as it is for
the classDice . Each time the object is “rolled,” (or shaken, or asked to tell the future)
a different fortune is returned. For example, consider the code below and the sample
output.

#include "fortune.h"

int main()
{

int rolls = PromptRange("# of fortunes ", 1, 10);
Fortune f;
int k;
for(k=0 ; k < rolls; k++)
{ cout << f.Shake() << endl;
}
return 0;

}

O U T P U T

prompt> testfortune
of fortunes 4
Reply Hazy, Try Again
My Reply is No
Concentrate and Ask Again
Signs Point to Yes

Be creative with your fortunes, and develop a program that illustrates all the member
functions of your class. For an added challenge, make the class behave so that after it
has told more than 100 fortunes it breaks and tells the same one every time.

6.3 Create a classWordDice similar to the class from the previous exercise, but with a
constructor that takes a file name and reads strings from the specified file. The strings
can be stored in aStringSet instance variable. One of the strings is returned at
random each time the functionWordDice::Roll is called.
For example, the code segment below might print any one of seven different colors if

June 7, 1999 10:10 owltex Sheet number 76 Page number 269magentablack

6.7 Exercises 269

the data file"spectrum.dat" contains the lines:

red orange yellow
green blue indigo violet

The code fragment using this file follows:

WordDice wd("spectrum.dat");
cout << wd.Roll() << endl;
cout << wd.Roll() << endl;
cout << wd.Roll() << endl;

O U T P U T

prompt> testwordie
red
green
yellow

You should test the program with different data files. For an added challenge, test the
program by rolling aWordDice object as many times as needed until all the different
words are “rolled.” Print the number of rolls needed to generate all the possible words.

6.4 Create a data file where each line has the format

item size retail-price-sold-for

For example, a file might contain information from a clothing store (prices aren’t meant
to be realistic):

coat small 110.00
coat large 130.00
shirt medium 22.00
dress tiny 49.00
pants large 78.50
coat large 140.00

Write a program that prompts the user for the name of a data file and then prompts for
the name of an item, the size of the item, and the wholesale price paid for the item. The
program should generate several statistics as output:

Average retail price paid for the item
Total profit made for selling the item
Percentage of all sales accounted for by the specified item and size, both by price
and by units sold
Percentage of all item sales, where the item is the same as specified, both by price
and by units sold

June 7, 1999 10:10 owltex Sheet number 77 Page number 270magentablack

270 Chapter 6 Classes, Iterators, and Patterns

For example, in the data file above, if the wholesale price of a large coat is $100.00,
then the output should include:

Average retail price for large coats is $135.00.
Total profit is $70.00.
Percentage of all sales is one-third (2 out of 6).
Percentage of all coat sales is two-thirds (2 out of 3).

6.5 Write a program based on the word gameMadlibs.The input to Madlibs is a vignette or
brief story, with words left out. Players are asked to fill in missing words by prompting
for adjectives, nouns, verbs, and so on. When these words are used to replace the
missing words, the resulting story is often funny when read aloud.
In the computerized version of the game, the input will be a text file with certain words
annotated by enclosing the words in brackets. These enclosed words will be replaced
after prompting the user for a replacement. All words are written to another text file (use
anofstream variable).17 Since words will be read and written one at a time, you’ll
need to keep track of the number of characters written to the output file so that you can
use anendl to finish off, or flush, lines in the output file. For example, in the sample
run below, output lines are flushed usingendl after writing 50 characters (the number
of characters can be accumulated using thestring member functionlength .)
The output below is based on an excerpt fromRomeo and Julietannotated for the game.
Punctuation must be separated from words that are annotated so that the brackets can be
recognized (usingsubstr). Alternatively, you could search for brackets usingfind
and maintain the punctuation.
The text filemad.in is

But soft! What [noun] through yonder window [verb] ?
It is the [noun] , and [name] is the [noun] !
Arise, [adjective] [noun] , and [verb] the [adjective]
[noun] , Who is already [adjective] and
[another_adjective] with [emotion]

The output is shown on the next page. Because we don’t have the programming tools
to read lines from files, the lines in the output aren’t the same as the lines in the input.
In the following run, the output file created is reread to show the user the results.

17You may need to call the member functionclose on theofstream object. If the output file is
truncated so that not all data is written, callclose when the program has finished writing to the stream.

June 7, 1999 10:10 owltex Sheet number 78 Page number 271magentablack

6.7 Exercises 271

O U T P U T

prompt> madlibsenter madlibs file: mad.in
name for output file: mad.out
enter noun: fish
enter verb: jumps
enter noun: computer
enter name: Susan
enter noun: porcupine
enter adjective: wonderful
enter noun: book
enter verb: run
enter adjective: lazy
enter noun: carwash
enter adjective: creative
enter another_adjective: pretty
enter emotion: anger

But soft! What fish through yonder window jumps ?
It is the computer, and Susan is the porcupine !
Arise, wonderful book , and run the lazy carwash ,
Who is already creative and pretty with anger

6.6 Write a program to compute the average of all the numbers stored in a text file. Assume
the numbers are integers representing test scores, for example:

70 85 90
92 57 100 88
87 98

First use the extraction operator,>>. Then use aWordStreamIterator object.
SinceWordStreamIterator::Current returns a string, you’ll need to convert
the string to the corresponding integer; that is, thestring "123" should be converted
to theint 123. The functionatoi in "strutils.h" in Howto G will convert the
string.

int atoi(string s)
// pre: s represents an int, that is "123", "-457", etc.
// post: returns int equivalent of s
// if s isn’t properly formatted (that is "12a3")
// then 0 (zero) is returned

6.7 The standard deviation of a group of numbers is a statistical measure of how much
the numbers spread out from the average (the average is also called themean). A
low standard deviation means most of the numbers are near the mean. If numbers are
denoted as(x1, x2, x3, . . . , xn), then the mean is denoted asx. The standard deviation
is the square root of thevariance. (The standard deviation is usually denoted by the
Greek letter sigma,σ , and the variance is denoted byσ 2.

June 7, 1999 10:10 owltex Sheet number 79 Page number 272magentablack

272 Chapter 6 Classes, Iterators, and Patterns

The mathematical formula for calculating the variance is

σ 2 = 1

n − 1
[(x1 − x̄)2 + (x2 − x̄)2 + · · · (xn − x̄)2]

= 1

n − 1
[

n∑
i=1

(xi − x̄)2]

Using algebra this formula can be rearranged to yield the formula

σ 2 = 1

n − 1
[

n∑
i=1

x2
i − 1

n
(

n∑
i=1

xi)
2] (6.1)

This formula does not involve the mean, so it can be computed with a single pass over
all the data rather than two passes (one to calculate the mean, the other to calculate the
variance).
Write a program to compute the variance and standard deviation using both formu-
lae. Although these formulae are mathematically equivalent, they often yield very
different answers because of errors introduced by floating-point computations. Use the
technique from the previous exercise so that you can read a file of data twice using a
WordStreamIterator object. If the data consist of floating-point values instead
of integers, you can use the functionatof to convert a string to thedouble value it
represents, such asatof("123.075") == 123.075 .

6.8 Thehailstonesequence, sometimes called the3n+1 sequence, is defined by a function
f (n):

f (n) =
{

n/2 if n is even
3 × n + 1 otherwise, ifn is odd

(6.2)

We can use the value computed byf as the argument off as shown below; the successive
values ofn form the hailstone sequence.18

while (n != 1)
{ n = f(n);
}

Although it is conjectured that this loop always terminates, no one has been able to
prove it. However, it has been verified by computer for an enormous range of numbers.
Several sequences are shown below with the initial value ofn on the left.

7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

18It’s called ahailstone sequencebecause the numbers go up and down, mimicking the process that
forms hail.

June 7, 1999 10:10 owltex Sheet number 80 Page number 273magentablack

6.7 Exercises 273

8 4 2 1

9 28 14 7 22 11 34 17 52 26 13 40 20 10 5 16 8 4 2 1

Write a program to find the value ofn that yields the longest sequence. Prompt the user
for two numbers, and limit the search forn to all values between the two numbers.

6.9 Use theCTimer class test two methods for computing powers outlined in Section 5.1.7.
The first method outlined there makesn multiplications to computexn; the second
method makes roughly log2(n) multiplications, that is, 10 multiplications to compute
x1024 (herex is adouble value butn is anint .)
Write two functions, with different names but the same parameter lists, for computingxn

based on the two methods. Call these functions thousands of times each with different
values ofn. For example, you might calculate 3.050, 3.0100, 3.0150 and so on. You’ll
need to do several calculations for a fixedn to make aCTimer object register. Plot the
values with values ofn on the x-axis and time (in seconds) on the y-axis. If you have
access to a spreadsheet program you can make the plots automatically by writing the
data to an output file.
You should also compare the time required by these two methods, with the time using the
functionpow from <cmath> . Finally, you should test both methods of exponentiation
usingBigInt values rather thandouble values for the base (the exponent can still
be an integer.) You should try to explain the timings you observe withBigInt values
which should be different from the timings observed fordouble values.

6.10Data files for several of Shakespeare’s plays are available on the web pages associated
with this book (and may be included in a CD you can get with the book’s programs.)
Write a program that reads the words from at least five different plays, putting the
words from each play in aStringSet object. You should find the words that are in
the intersection of all the plays. Finding the intersection may take a while, so test the
program with small data files before trying Shakespeare’s plays.
After you’ve found the words in common to all five plays (or more plays) find the top
ten most frequently occurring of these words. There are many ways to do this. One
method is to find the most frequently occurring word using code from Program 6.16,
maxword3.cpp. After this word is found, remove it from the set of common words
and repeat the process. You can use this method to rank order (most frequent to least
frequent) all the words in common to the plays, but this will take a long time using the
WordStreamIterator class.

6.11 Do the last exercise, but rather than reading a file of words many times (e.g., once for
each word in the list of common words) adopt a different approach. First read all the
words from a file into a list, using the classStringList from clist.h. Program 6.17,
listcount.cppshows howStringList is used. The only function that’s needed other
than iterating functions is the functioncons that attaches an element to the front of a
list and returns the new list (the old list is not changed).

June 7, 1999 10:10 owltex Sheet number 81 Page number 274magentablack

274 Chapter 6 Classes, Iterators, and Patterns

O U T P U T

prompt> hamlet.txt

first 31,949 words removed

DENMARK
OF
PRINCE
HAMLET,
OF
TRAGEDY
THE
1604
31957 words read

Program 6.17 listcount.cpp

#include <iostream>
#include <fstream>
#include <string>
using namespace std;

#include "clist.h"
#include "prompt.h"

int main()
{

string filename = PromptString("enter filename ");
ifstream input(filename.c_str());
string word;

StringList slist;
while (input >> word)
{ slist = cons(word,slist);
}

StringListIterator it(slist);
for(it.Init(); it.HasMore(); it.Next())
{ cout << it.Current() << endl;
}
cout << slist.Size() << " words read " << endl;

return 0;
} listcount.cpp

Since new words are added to the front usingcons , the words are stored in the list so
that the first word read is the last word in the list. Using the classStringList can
make string processing programs faster that using the classWordStreamIterator

June 7, 1999 10:10 owltex Sheet number 82 Page number 275magentablack

6.7 Exercises 275

because strings are read from memory rather than from disk.
For example, on my 300 MHz Pentium, usingmaxword.cpp, Program 6.11 takes ap-
proximately 53 seconds to processpoe.txt . Using maxword3.cpp, Program 6.16
takes approximately 28 seconds. Replacing the innerWordStreamIterator by a
StringListIterator reduces the time to 3.4 seconds because memory is so much
faster than disk.

June 7, 1999 10:10 owltex Sheet number 20 Page number 277magentablack

7Class Interfaces, Design,
and Implementation

There is no single development, in either technology or management technique, which by itself
promises even one order-of-magnitude improvement within a decade in productivity, in

reliability, in simplicity.
Fred P. Brooks

No Silver Bullet — Essence and Accident in Software Engineering

One tenet of object-oriented programming is that a library of well-designed classes makes
it easier to design and write programs. The acronymCOTS, for commercial, off-the shelf
software, is often used to identify the process of reusing (commercial) libraries of classes
and code. Classes are often easier to reuse in programs than non-class code. For example,
we’ve used theDice andRandGen classes and the functions from"prompt.h" in
many programs. In almost every program we’ve usedcout andcin , objects that are
part of the hierarchy of stream classes. As programmers and designers, we need to be
familiar with what classes are available and with patterns of design that we can use.
Reusing concepts is often as important as reusing code.

In this chapter we’ll discuss the design and implementation of a class-based program
for administering on-line quizzes. We’ll see that careful planning makes it possible to
reuse the same class interface so that different kinds of quizzes can be given. We’ll study
another example of class interface reuse in a program that simulates random walks in
one- and two-dimensions.

7.1 Designing Classes: From Requirements
to Implementation

Choosing classes and member functions is a difficult design process. It’s very hard to
choose the right number of classes with the right member functions so that the classes are
cohesive, loosely coupled, easy to modify, and yield an elegant and correctly working
program. Many programmers and computer scientists are good algorithmic thinkers but
bad class designers, and vice versa. You shouldn’t expect to become an accomplished
designer early in your studies, but you can build expertise by studying other designs, and
by modifying existing designs before creating your own. In this way you’ll learn as an
apprentice learns any craft.1

1Programming is both an art and a science. To some, it’s only a science or only an art/craft. In my view
there are elements of both in becoming an accomplished programmer. You must understand science
and mathematics, but good design is not solely a scientific enterprise.

277

June 7, 1999 10:10 owltex Sheet number 21 Page number 278magentablack

278 Chapter 7 Class Interfaces, Design, and Implementation

7.1.1 Requirements

The requirements of a problem or programming task are the constraints and demands
asked by the person or group requesting a programming solution to a problem. As a
designer/programmer your task in determining requirements is to interact with the user
(here user means both the person using the program and the person hiring you) to solicit
information and feedback about how the program will be used, what it must accomplish,
and how it interacts with other programs and users. In this book and in most early
courses, the requirements of a problem are often spelled out explicitly and in detail.
However, sometimes you must infer requirements or make a best guess (since you don’t
have a real user/software client with whom to interact.)

Thespecificationof the quiz problem from Section 6.2.2 is reproduced below. From
the specification you may be able to infer the requirements. We’ll use the specification
as a list of requirements and move toward designing classes.

We want to develop a quiz program that will permit different kinds of questions;
that is not just different kinds of arithmetic problems, but questions about state
capitals, English literature, rock and roll songs, or whatever you think would be
fun or instructive. We’d like the program to be able to give a quiz to more than one
student at the same time, so that two people sharing a keyboard at one computer
could both participate. If possible, we’d like to allow a student to have more than
one chance at a question.

Thinking about this specification leads to the following requirements (in no particular
order).

1. More than one kind of question can be used in a quiz.

2. Several students can take a quiz sharing a keyboard.

3. Students may be allowed more than one chance to answer a question.

With a real client you would probably get the chance to ask questions about the require-
ments. Should a score be reported as in Programs 6.2 and 6.3? Should the scores be
automatically recorded in a file? Should the user have the choice of what kind of quiz to
take? We’ll go forward with the requirements we’ve extracted from the problem speci-
fication. We’ll try to design a program that permits unanticipated demands (features?)
to be incorporated.

As we develop classes we’ll keep the examples simple and won’t go deeply into all
the issues that arise during design. Our goal here is to see the process simply, glossing
over many details but giving a real picture of the design process. In later chapters and
future courses you’ll delve more deeply into problems and issues of designing classes.

7.1.2 Nouns as Classes

The nouns in a specification are usually good candidates for classes. In the specification
above the nouns that seem important include:

quiz, question, problem, student, computer, keyboard, chance

June 7, 1999 10:10 owltex Sheet number 22 Page number 279magentablack

7.1 Designing Classes: From Requirements to Implementation 279

Our program doesn’t need to deal with the nouns computer and keyboard, so we’ll use the
other nouns as candidates for classes. As you become more experienced, you’ll develop
a feel for separating important nouns/classes from less important ones. You’ll learn to
identify some candidate class nouns as synonyms for others. For this quiz program we’ll
develop three classes: quiz, question, and student. A question object will represent a
kind of question factory that can generate new problems. For example, an arithmetic
question class might generate problems like “what is 2+ 2?” or “what is 3× 7?” On
the other hand, an English literature question class might generate problems like “Who
wroteCharlotte’s Web?” or “In what work does the character Holden Caulfield appear?”.
As you’ll see, a problem will be a part of the question class rather than a separate class.

7.1.3 Verbs as Member Functions (Methods)

The first step in designing identified classes is determining class behavior and responsibil-
ity. A class’s public member functions determine itsbehavior. In some object-oriented
languages member functions are calledmethods; I’ll often use the terms member func-
tion and method interchangeably. Sometimes you may think at first that a method belongs
to one class, but during the design process it will seem better to place it in another class.
There isn’t usually one right way to design classes or a program. Theresponsibilities
of a class are the methods associated with the class and the interactions between classes.
Sometimes candidate class methods can be found as verbs in a specification. Often,
however, you’ll need to anticipate how a program and classes are used to find methods.

7.1.4 FindingVerbs Using Scenarios

It’s not always clear what member functions are needed. Sometimes creatingscenarios
of how a program works helps determine class behavior and responsibility. A scenario is
a description, almost like a dialog, between the user and the program or between classes
in a program.

In the quiz example scenarios could include:

Two students sit at a keyboard, each is asked to enter her name, then a quiz is given
and students alternate providing answers to questions.

When a quiz is given, the student determines the number of questions that will
be asked before the quiz starts. If two people are taking a quiz together, both are
asked the same number of questions.

Students have two chances to respond to a question. A simple “correct” or “in-
correct” is given as feedback to each student response. If a student doesn’t type a
correct response, the correct answer is given.

At the end of a quiz, each student taking the quiz is given a score.

Some verbs from these scenarios follow (long, descriptive names are chosen to make
the verbs more clear).

June 7, 1999 10:10 owltex Sheet number 23 Page number 280magentablack

280 Chapter 7 Class Interfaces, Design, and Implementation

EnterName, ChooseNumberOfQuestions, ChooseKindOfQuestion, RespondTo-
Question, GetCorrectAnswer, GetScore, AskQuestion, ProvideFeedback

Which of these verbs goes with which class? In assigning responsibilities we’ll
need to return to the scenarios to see how the classes interact in a program. At this
point we’re concentrating only on public behavior of the classes, not on private state or
implementation of the classes.

ProgramTip 7.1: Concentrate on behavior rather than on state in initial
class design. You can change how a class is implemented without affecting client pro-
grams that use the class, but you cannot change the member functions (e.g., the parameters
used) without affecting client programs.

Client programs depend on theinterface provided in a header file. If the interface
changes, client programs must change too. Client programs should not rely on how
a class is implemented. By writing code that conforms to an interface, rather than to
an implementation, changes in client code will be minimized when the implementation
changes.2

7.1 The methodDice::Roll in dice.cpp, Program 6.1 uses a localRandGen vari-Pause to Reflect

able to generate simulated random dice rolls. If theRandGen class is changed,
does a client program likeroll.cpp, Program 5.11 change? Why?

7.2 What are the behaviors of the classCTimer declared in the header filectimer.h,
Program G.5 and used in the client codeusetimer.cpp, Program 6.12?

7.3 Write a specification for a class that simulates a coin. “Tossing” the coin results
in either heads or tails.

7.4 Write a specification and requirements for a program to help a library with overdue
items (libraries typically loan more than books). Make up whatever you don’t
know about libraries, but try to keep things realistic. Develop some scenarios for
the program.

7.5 Suppose you’re given an assignment to write a program to simulate the gambling
game roulette using a computer (see Exercise 9 at the end of this chapter for an ex-
planation of the game). Write a list of requirements for the game; candidate classes
drawn from nouns used in your description; potential methods; and scenarios for
playing the game.

2Client programs may depend indirectly on an implementation, that is, on how fast a class executes a
certain method. Changes in class performance may not affect the correctness of a client program, but
the client program will be affected.

June 7, 1999 10:10 owltex Sheet number 24 Page number 281magentablack

7.1 Designing Classes: From Requirements to Implementation 281

Mary Shaw (b. 19??)

Mary Shaw is Professor of Computer Science at Carnegie Mellon University.
Her research interests are in the area of software engineering, a subfield of com-

puter science concerned with developing soft-
ware using well-defined tools and techniques.
In [EL94] Shaw says this about software en-
gineering:

Science often grows hand-in-hand with re-
lated engineering. Initially, we solve prob-
lems any way we can. Gradually a small set
of effective techniques enters the folklore and
passes from one person to another. Eventu-
ally the best are recognized, codified, taught,
perhaps named. Better understanding yields
theories to explain the techniques, to predict
or analyze results, and to provide a base for
systematic extension. This improves practice
through better operational guidance and tools
that automate details. The software devel-
oper, thus freed from certain kinds of detail,

can tackle bigger, more complex problems.
In discussing her current research interests, Shaw combines the themes of both

language and architecture. She describes her research in the following:

Software now accounts for the lion’s share of the cost of developing and
using computer systems. My research is directed at establishing a genuine
engineering discipline to support the design and development of software
systems and reduce the costs and uncertainties of software production. My
current focus is on design methods, analytic techniques, and tools used to
construct complete software systems from subsystems and their constituent
modules. This is the software architecture level of design, which makes me
a software architect. (This is from her World Wide Web home page at
Carnegie Mellon.)

In 1993 Shaw received the Warnier prize for contributions to software engi-
neering. Among her publications are guides to bicycling and canoeing in western
Pennsylvania.

7.1.5 Assigning Responsibilities

Not all responsibilities will be assigned to a class. Some will be free functions or code
that appears inmain , for example. In my design, I decided on the following assignments
of responsibilities to classes.

June 7, 1999 10:10 owltex Sheet number 25 Page number 282magentablack

282 Chapter 7 Class Interfaces, Design, and Implementation

Student
Construct using name (ask for name inmain)
RespondTo a question
GetScore
GetName (not in scenario, but useful accessor)

Quiz
ChooseKindOfQuestion
AskQuestion of/GiveQuestion to a student

Question
Create/Construct question type
AskQuestion
GetCorrectAnswer

These assignments are not the only way to assign responsibilities for the quiz pro-
gram. In particular, it’s not clear that aStudent object should be responsible for
determining its own score. It might be better to have theQuiz track the score for each
student taking the quiz. However, we’ll think about how scores are kept (this is state, and
we shouldn’t think about state at this stage, but we can think of which class is responsible
for keeping the state). IfQuiz keeps score, then it may be harder to keep score for three,
four, or more students. If eachStudent keeps score, we may be able to add students
more easily.

We haven’t assigned to any class the responsibilities of determining the number
of questions and of providing feedback. We’ll prompt the student for the number of
questions inmain and feedback will be part of eitherQuiz::GiveQuestionTo or
Student::RespondTo . We’re using thescope resolution operator:: to associate
a method with a class since this makes it clear how responsibilities are assigned.

7.1.6 Implementing andTesting Classes

At this point you could write a header (.h) file for each class. This helps solidify our
decisions and writing code usually helps in finding flaws in the initial design. Design is
not a sequential process, but is a process ofiterative enhancement. At each step, you
may need to revisit previous steps and rethink decisions that you thought were obviously
correct. As you begin to implement the classes, you may develop scenarios unanticipated
in the first steps of designing classes.

Program Tip 7.2: One cornerstone of iterative enhancement is adding
code to a working program. This means that the software program grows, it
doesn’t spring forth fully functional. The idea is that it’s easier to test small pieces and
add functionality to an already tested program, than it is to test many methods or a large
program at once.

Ideally we’ll test each class separately from the other classes, but some classes are

June 7, 1999 10:10 owltex Sheet number 26 Page number 283magentablack

7.1 Designing Classes: From Requirements to Implementation 283

strongly coupled and it will be difficult to test one such class without having the other class
already implemented and tested. For example, testing theStudent::RespondTo
method probably requires passing a question to this method that the student can respond
to. If we don’t have a question what can we do? We can usestub functions that are not
fully functional (e.g., the function might be missing parameters) but that generate output
we’ll use to test our scenarios. We might use the stub shown as Program 7.1.

Program 7.1 studentstub.cpp

void Student::RespondTo(missing Question parameter)
{

string answer;
cout << endl << "type answer after question " << endl;
cout << "what is your favorite color? ";
cin >> answer;
if (answer == "blue")
{ cout << "that is correct" << endl;
myCorrect++;
}
else
{ cout << "No! your favorite color is blue" << endl;
}

} studentstub.cpp

We could use this stub function to test the other member functionsStudent::Name()
andStudent::Score() . Program 7.2 shows a test program for the classStudent .

Program 7.2 mainstub.cpp

#include <iostream>
#include <string>
using namespace std;
#include "student.h"
#include "prompt.h"

int main()
{

string name = PromptString("enter name: ");
int numQuest = PromptRange("number of questions: ",1,10);
Student st(name);
int k;
for(k=0 ; k < numQuest; k++)
{ st.RespondTo(); // question parameter missing
}
cout << st.Name() << ", your score is "

<< st.Score() << " out of " << numQuest << endl;
return 0;

} mainstub.cpp

June 7, 1999 10:10 owltex Sheet number 27 Page number 284magentablack

284 Chapter 7 Class Interfaces, Design, and Implementation

In testing the classStudent I created a programteststudent.cpplike mainstub.cpp
above. I put the class interface/declaration (.h file) and implementation/definition (.cpp
file) in teststudent.cpprather than in separate files (although the program above shows a
#include"student.h" , that’s not how I originally wrote the test program). After
the class was tested, I cut-and-pasted the code segments into the appropriate student.h
and student.cpp files. Although not shown here, a test program similar to the one above
is available asteststudent.cppin the on-line programs available for this book (but see
quiz.cpp, Program 7.8 for a complete program with classesStudent andQuiz). A
run of teststudent.cpp(or mainstub.cpp, Program 7.2) follows.

O U T P U T

enter name: Owen
number of questions: between 1 and 10: 3

type answer after question
what is your favorite color? red
No! your favorite color is blue

type answer after question
what is your favorite color? blue
that is correct

type answer after question
what is your favorite color? yellow
No! your favorite color is blue
Owen, your score is 1 out of 3

After testing theStudent class we can turn to theQuiz class. In general the
order in which classes should be implemented and tested is not always straightforward.
In [Ben88] John Bentley offers the following “tips” from Al Schapira:

ProgramTip 7.3: Always do the hard part first. If the hard part is impossible,
why waste time on the easy part? Once the hard part is done, you’re home free.

Program Tip 7.4: Always do the easy part first. What you think at first is
the easy part often turns out to be the hard part. Once the easy part is done, you can
concentrate all your efforts on the hard part.

June 7, 1999 10:10 owltex Sheet number 28 Page number 285magentablack

7.1 Designing Classes: From Requirements to Implementation 285

7.1.7 Implementing the Class Quiz

There are two behaviors in the list of responsibilities for the classQuiz : choosing the
kind of question and giving the question to a student. The kind of question will be an
integral part of the classQuestion . It’s not clear what the classQuiz can do in picking
a type of question, but if there were different kinds of questions perhaps theQuiz class
could choose one. Since we currently have only one type of question we’ll concentrate
on the second responsibility: giving a question to a student.

In designing and implementing the functionQuiz::GiveQuestionTo we must
decide how theQuiz knows which student to ask. There are three possibilities. The im-
portant difference between these possibilities is the responsibility of creatingStudent
objects.

1. A Quiz object knows about all the students and asks the appropriate student. In
this case allStudent objects would be private data in theQuiz class, created
by theQuiz .

2. The student of whom a question will be asked is passed as an argument to the
Quiz::GiveQuestionTo member function. In this case theStudent object
is created somewhere likemain and passed to aQuiz .

3. The student is created in the functionQuiz::GiveQuestionTo and then asked
a question.

These are the three ways in which aQuiz member function can access any kind of
data, and in particular aStudent object. The three ways correspond to howStudent
objects are defined and used:

1. As instance variables of the classQuiz since private data is global to allQuiz
methods, so is accessible inQuiz::GiveQuestionTo .

2. As parameter(s) toQuiz::GiveQuestionTo . Parameters are accessible in
the function to which they’re passed.

3. As local variables inQuiz::GiveQuestionTo since local variables defined
in a function are accessible in the function.

In our quiz program, the third option is not a possibility. Variables defined within
a function are not accessible outside the function, soStudent objects defined within
the functionQuiz::GiveQuestionTo are not accessible outside the function. This
means no scores could be reported, for example. If we choose the first option, theQuiz
class must provide some mechanism for getting student information since the students
will be private in theQuiz class and not accessible, for example, inmain to print scores
unless theQuiz class provides accessor functions for students.

The second option makes the most sense.Student objects can be defined inmain ,
as can aQuiz object. We can use code like the following to give a quiz to two students.

June 7, 1999 10:10 owltex Sheet number 29 Page number 286magentablack

286 Chapter 7 Class Interfaces, Design, and Implementation

int main()
{

Student owen("Owen");
Student susan("Susan");
Quiz q;
q.GiveQuestionTo(owen);
q.GiveQuestionTo(susan);

cout << owen.Name() << " score = "
<< owen.Score() << endl;

cout << susan.Name() << " score = "
<< susan.Score() << endl;

return 0;
}

This code scenario corresponds to one of the original requirements: allow two students
to take a quiz at the same time using the same program. The code should also provide a
clue as to how theStudent parameter is passed toQuiz::GiveQuestionTo , by
value, by reference, or by const-reference.

If you think carefully about the code, you’ll see that the score reported for each
student must be calculated or modified as part of having a question asked. This means
the score of a student changes (potentially) when a question is asked. For changes to
be communicated, theStudent parameter must be a reference parameter. A value
parameter is a copy, so any changes will not be communicated. A const-reference
parameter cannot be changed, so the number of correct responses cannot be updated.
Reference parameters are used to pass values back from functions (and sometimes to
pass values in as well), so theStudent parameter must be passed by reference.

We’ll design the functionQuiz::GiveQuestionTo() to permit more than one
attempt, one of the original program requirements. The code is shown in Program 7.3.

Program 7.3 quizstub.cpp

void Quiz::GiveQuestionTo(Student & s)

// postcondition: student s asked a question

{

cout << endl << "Ok, " << s.Name() << " it's your turn" << endl;

cout << "type answer after question " << endl;

myQuestion.Create();

if (! s.RespondTo(myQuestion))

{ cout << "try one more time" << endl;

if (! s.RespondTo(myQuestion))

{ cout << "correct answer is " << myQuestion.Answer() << endl;

}

}

} quizstub.cpp

June 7, 1999 10:10 owltex Sheet number 30 Page number 287magentablack

7.1 Designing Classes: From Requirements to Implementation 287

This code shows some of the methods of the classQuestion . From the code,
and the convention of using the prefixmy for private data, you should be able to rea-
son that the objectmyQuestion is private data inQuiz and that methods for the
Question class includeQuestion::Create() andQuestion::Answer() .
The other method listed in the original responsibilities forQuestion , which we’ll call
Question::Ask() is responsible for asking the question. As we’ll see, this method
is called inStudent::RespondTo() .

7.6 If myQuestion is an instance variable of the classQuiz , where ismyQuestionPause to Reflect

constructed?

7.7 Why is s , the parameter ofQuiz::GiveQuestionTo() a reference param-
eter? Why can’t it be a const reference parameter (think about the scenarios and
what happens to parameters after a question is given.)

7.8 As shown in Program 7.3, the functionStudent::RespondTo() returns a
bool value. Based on the value’s use, what is an appropriate postcondition for
the function?

7.9 How is the functionStudent::RespondTo() in Program 7.3 different from
the version used inmainstub.cpp, Program 7.2? Is it appropriate that the function
changed?

7.10 What is the prototype of the methodStudent::RespondTo() as it is used in
Program 7.3? In particular, how is the parameter passed: by value, by reference,
or by const reference (and why)?

7.11 Question::Answer() returns the correct answer in some printable form.
When do you think the correct answer is determined?

7.1.8 Implementing the Class Question

In testing the functionQuiz::GiveQuestionTo above, I didn’t have the class
Question implemented. I could have implemented a simple version of the class;
a version good enough for testing other classes. Alternatively I could use output state-
ments in place of calling theQuestion methods, much like the quiz about favorite
colors was used in testing the classStudent . Since a simple version of the class is use-
ful in testing other classes, I implemented the version shown inquestion.h, Program 7.4.
Note that each member function is implemented in the class rather than as a separate
function outside the class. In general, the class declaration (interface) should be kept
separate from the definition (implementation). For a test implementation like this one,
which will eventually be replaced by separate .h and .cpp files, making all the code part
of the class declaration is acceptable practice. When function definitions are included in
a class declaration, the functions are calledinline functions. In general you should not
use inline member functions, but should define them in a separate .cpp file.

June 7, 1999 10:10 owltex Sheet number 31 Page number 288magentablack

288 Chapter 7 Class Interfaces, Design, and Implementation

Program Tip 7.5: Some programmers use inline member functions for
“small” classes — those classes that have few member functions and few
instance variables. However, as you’re learning to design and implement classes it’s
a good idea to use the generally accepted practice of separating a class’s interface from
its implementation by using separate .h and .cpp files.

Program 7.4 question.h

#include <iostream>
#include <string>
using namespace std;

// simple Question class for testing other classes

class Question
{

public:
Question()
{ // nothing to initialize
}
void Create()
{ // the same question is used every time
}
void Ask()
{ cout << "what is your favorite color? ";
}
string Answer() const
{ return "blue";
}

}; question.h

Our test version ofStudent::RespondTo can be modified to use the simple
Question class as shown. The output of the program will not change from the original
version inteststudent.cpp.

void Student::RespondTo(Question & q)
{

string answer;
cout << endl << "type answer after question " << endl;
q.Ask();
cin >> answer;

if (answer == q.Answer())
{ cout << "that is correct" << endl;

myCorrect++;
}
else

June 7, 1999 10:10 owltex Sheet number 32 Page number 289magentablack

7.1 Designing Classes: From Requirements to Implementation 289

{ cout << "No! your favorite color is "
<< q.Answer() << endl;

}
}

With this simple version ofQuestion done, we can test the implementations of
Student andQuiz completely. Then we can turn to a complete implementation of a
Question class for implementing quizzes in arithmetic as called for in the requirements
for this problem.

7.1.9 Sidebar: Converting int and double Values to strings

In our test-version of theQuestion class the functionQuestion::Answer() re-
turns a string. As we turn to the final implementation it seems like we’ll need to change
this return type to be anint since the answer to a question about an arithmetic operation
like addition is almost certainly an integer, not a string. There’s a compelling reason
to leave the return type asstring , however. One of the original requirements was to
design and implement a program that allows quizzes about a wide variety of topics, such
as English literature and rock and roll songs in the original list of topics. The answers
to these questions will almost certainly be strings rather than numbers. How can we
accommodate all possible quiz answers?

If we could convertint values to strings, such as the number 123 to the string
"123" , we could continue to use strings to represent answers. Since almost any kind
of answer can be represented as a string, we’d like to use strings. For example, the
string"3.14159" prints just like thedouble value 3.14159. We built functions for
converting integers to an English representation innumtoeng.cpp, Program 4.10 and
in digits.cpp, Program 5.5. These programs converted an int value like 123 to"one
hundred twenty three" and"one two three" , respectively. We could use
these as a basis for writing our own conversion functions. Fortunately, there are functions
already written that convert numeric values to equivalent strings and vice versa. These
functions are demonstrated innumtostring.cpp, Program 7.5.

As shown in the output, the functionstostring , atoi , andatof do no error
checking (non-numeric strings are converted to zero by bothatoi andatof .) These
conversion functions are part of the string processing functions accessible usingstrutils.h
given in Howto G as Program G.8.3

With the conversion functions fromstrutils.hnow in our programming tool kit, we can
tackle the problem of implementing theQuestion class for questions about arithmetic
problems.

3The functionsatoi and atof are adapter functions for standard conversion functions with the
same names in<cstdlib> (or <stdlib.h>). The functionsatoi and atof in <cstdlib>
take C-style, char * strings as parameters, so functions accepting string parameters are provided in
"strutils.h" as adapters for the standard functions.

June 7, 1999 10:10 owltex Sheet number 33 Page number 290magentablack

290 Chapter 7 Class Interfaces, Design, and Implementation

Program 7.5 numtostring.cpp

#include <iostream>

#include <string>

using namespace std;

#include "strutils.h" // for tostring, atoi

// illustrate string to int/double conversion and vice versa

int main()

{

int ival;

double dval;

string s;

cout << "enter an int ";

cin >> ival;

s = tostring(ival);

cout << ival << " as a string is " << s << endl;

cout << "enter a double ";

cin >> dval;

cout << dval << " as a string is " << tostring(dval) << endl;

cout << "enter an int (to store in a string) ";

cin >> s;

ival = atoi(s);

cout << s << " as an int is " << ival << endl;

cout << "enter a double (to store in a string) ";

cin >> s;

cout << s << " as a double is " << atof(s) << endl;

return 0;

} numtostring.cpp

June 7, 1999 10:10 owltex Sheet number 34 Page number 291magentablack

7.1 Designing Classes: From Requirements to Implementation 291

O U T P U T

prompt> numtostring
enter an int 1789
1789 as a string is 1789
enter a double 2.7182
2.7182 as a string is 2.7182
enter an int (to store in a string) -639
-639 as an int is -639
enter a double (to store in a string) 17e2
17e2 as a double is 1700
prompt> numtostring
enter an int -123
-123 as a string is -123
enter a double 17e2
1700 as a string is 1700
enter an int (to store in a string) 23skidoo
23skidoo as an int is 23
enter a double (to store in a string) pi
pi as a double is 0

The member functionQuestion::Ask() must ask the question last created by the
functionQuestion::Create() . Since these functions are called independently by
client programs, theCreate function must store information in private, state variables
of theQuestion class. These state variables are then used byQuestion::Ask()
to print the question. We’ll use simple addition problems like “what is 20 + 13?”. We’ll
store the two numbers that are part of a question in instance variablesmyNum1and
myNum2. Values will be stored in these variables byQuestion::Create() and
the values will be accessed inQuestion::Ask() . We’ll also store the answer in
the instance variablemyAnswer so that it can be accessed in the accessor function
Question::Answer() .

ProgramTip 7.6: Instance variables are useful for communicating values
between calls of different member functions. The values might be set in one
function and accessed in a different function. Sometimes instance variables are used to
maintain values between calls of the same function.

As the last step in our design we’ll think about frequent uses of the class that we can
make easier (or at least simpler). Client code will often check if a student response is
correct, using code like this:

if (response == q.Answer()) // correct

June 7, 1999 10:10 owltex Sheet number 35 Page number 292 magentablack

292 Chapter 7 Class Interfaces, Design, and Implementation

We’ll make this easier by using a bool-valued functionQuestion::IsCorrect so
that checking code will change to this:

if (q.IsCorrect(response)) // correct

This opens the possibility of changing how the functionQuestion::Answer works.
For example, we could allowalbany to be a match forAlbany by makingIsCorrect
ignore the case of the answers. We could even try to allow for misspellings. We might
also try to prevent clients from callingAnswer , but allow them to check if an answer is
correct. We’ll leave theAnswer function in place for now, but in designing classes the
goal of hiding information and minimizing access to private state should be emphasized.
Consider the unnecessary information revealed in some campus debit-card systems. If
a student buys some food, and the register shows a balance of $1,024.32 to everyone
in the checkout line, too much information has been revealed. The only information
that’s needed to complete the purchase is whether the student has enough money in her
account to cover the purchase. It’s fine for the everyone to see “Purchase OK,” but it’s
not acceptable for everyone to see all balances. A student balance, for example, could
be protected by using a password to access this sensitive information.

Finally, we decide which functions are accessors and which are mutators. Accessor
functions don’t change state, so they should be created asconst functions. The final
class declaration is shown asmathquest.h, Program 7.6.

Program 7.6 mathquest.h

#ifndef _MATHQUEST_H
#define _MATHQUEST_H

// ask a question involving arithmetic
//
// This class conforms to the naming conventions
// of quiz questions in "A Computer Science Tapestry" 2e,
// this convention requires the following functions:
//
// void Create() – ask a new question
// void Ask() const – ask the last question Create()’d
//
// bool IsCorrect(const string& answer) const
// – return true iff answer is correct to last (Create()) question
// string Answer() const
// – return the answer to the last (Create()) question
//
#include <string>
using namespace std;

class Question
{

public:
Question();

bool IsCorrect(const string& answer) const;

June 7, 1999 10:10 owltex Sheet number 36 Page number 293magentablack

7.1 Designing Classes: From Requirements to Implementation 293

string Answer() const;

void Ask() const;

void Create(); // create a new question

private:

string myAnswer; // store the answer as a string here

int myNum1; // numbers used in question

int myNum2;

};

#endif mathquest.h

The final class definition/implementation is shown asmathquest.cpp, Program 7.7.
Some new syntax is shown in Program 7.7 for initializing instance variables in a construc-
tor. In previous constructors like theDice constructor indice.cpp, Prog 6.1, instance
variables were assigned values in the body of the constructor using syntax identical to
variable assignment in other contexts.

The code in theQuestion::Questionconstructor uses aninitializer list to give initial
values to all instance variables. Each instance variable must be constructed. Con-
struction of instance variables takes place before the body of the constructor executes.

Syntax: initializer list

ClassName::ClassName (parameters)
: myVar1(parameters),

myVar2(parameters),
myVar3(),
myVarN(parameters)

{
code as needed for further initialization

}

When parameters must be sup-
plied to a variable at construction
time, the values are supplied in
an initializer list that appears be-
tween the constructor header and
the body of the constructor. A
single colon’:’ is used to begin
the initializer list and each item
in the list is separated from other
items by a comma’,’ — but
note that the last item is not fol-
lowed by a comma since commas

separate items (this is a fence post problem.) Since some instance variables require pa-
rameters at construction time, such as aDice variable requires a parameter, I’ll use
initializer lists for constructors in code shown from now on. When an instance variable
doesn’t need a constructor you can show it with a parameterless constructor as shown
for myVar3 in the syntax diagram. Alternatively you can omit this constructor call,
but then one of the instance variables won’t appear in the list. I’ll try to be consistent
in initializing all instance variables. Instance variables are initialized in the order in
which they appear in a class declaration, andnot in the order in which they appear in the
initializer list. To avoid problems, make the order of construction in the initializer list
the same as the order in which instance variables appear in the private section of a class
declaration. Some compilers will catch inconsistent orderings and issue a warning.

June 7, 1999 10:10 owltex Sheet number 37 Page number 294magentablack

294 Chapter 7 Class Interfaces, Design, and Implementation

Program 7.7 mathquest.cpp

#include <iostream>
#include <iomanip>
using namespace std;

#include "mathquest.h"
#include "randgen.h"
#include "strutils.h"

Question::Question()
: myAnswer("*** error ***"),

myNum1(0),
myNum2(0)

{
// nothing to initialize

}

void Question::Create()
{

RandGen gen;

myNum1 = gen.RandInt(10,20);
myNum2 = gen.RandInt(10,20);
myAnswer = tostring(myNum1 + myNum2);

}

void Question::Ask() const
{

const int WIDTH = 7;
cout << setw(WIDTH) << myNum1 << endl;
cout << "+" << setw(WIDTH −1) << myNum2 << endl;
cout << "——-" << endl;
cout << setw(WIDTH −myAnswer.length()) << " ";

}

bool Question::IsCorrect(const string& answer) const
{

return myAnswer == answer;
}

string Question::Answer() const
{

return myAnswer;
} mathquest.cpp

Program 7.8,quiz.cpp, uses all the classes in a complete quiz program. The class
declarations and definitions forStudent and Quiz are included inquiz.cpprather
than in separate .h and .cpp files. TheQuestion class is separated into separate files
to make it easier to incorporate new kinds of questions.

June 7, 1999 10:10 owltex Sheet number 38 Page number 295 magentablack

7.1 Designing Classes: From Requirements to Implementation 295

Program 7.8 quiz.cpp

#include <iostream>
#include <string>
using namespace std;
#include "mathquest.h"
#include "prompt.h"

// quiz program for illustrating class design and implementation

class Student
{

public:
Student(const string& name); // student has a name

int Score() const; // # correct
string Name() const; // name of student

bool RespondTo(Question & q); // answer a question, update stats

private:

string myName; // my name
int myCorrect; // my # correct responses

};

Student::Student(const string& name)
: myName(name),

myCorrect(0)
{

// initializer list does the work
}

bool Student::RespondTo(Question & q)
// postcondition: q is asked, state updated to reflect responses
// return true iff question answered correctly
{

string answer;
q.Ask();
cin >> answer;

if (q.IsCorrect(answer))
{ myCorrect++;

cout << "yes, that's correct" << endl;
return true;

}
else
{ cout << "no, that's not correct" << endl;

return false;
}

}

June 7, 1999 10:10 owltex Sheet number 39 Page number 296 magentablack

296 Chapter 7 Class Interfaces, Design, and Implementation

int Student::Score() const
// postcondition: returns # correct
{

return myCorrect;
}

string Student::Name() const
// postcondition: returns name of student
{

return myName;
}

class Quiz
{

public:
Quiz();
void GiveQuestionTo(Student & s); // ask student a question

private:

Question myQuestion; // question generator
};

Quiz::Quiz()
: myQuestion()

{
// nothing to do here

}

void Quiz::GiveQuestionTo(Student & s)
// postcondition: student s asked a question
{

cout << endl << "Ok, " << s.Name() << " it's your turn" << endl;
cout << "type answer after question " << endl;

myQuestion.Create();
if (! s.RespondTo(myQuestion))
{ cout << "try one more time" << endl;

if (! s.RespondTo(myQuestion))
{ cout << "correct answer is " << myQuestion.Answer() << endl;
}

}
}

int main()
{

Student owen("Owen");
Student susan("Susan");
Quiz q;
int qNum = PromptRange("how many questions: ",1,5);
int k;
for(k=0 ; k < qNum; k++)
{ q.GiveQuestionTo(owen);

q.GiveQuestionTo(susan);
}

June 7, 1999 10:10 owltex Sheet number 40 Page number 297magentablack

7.1 Designing Classes: From Requirements to Implementation 297

cout << owen.Name() << " score:\t" << owen.Score()

<< " out of " << qNum

<< " = " << double(owen.Score())/qNum ∗ 100 << "%" << endl;

cout << susan.Name() << " score:\t" << susan.Score()

<< " out of " << qNum

<< " = " << double(susan.Score())/qNum ∗ 100 << "%" << endl;

return 0;

} quiz.cpp

O U T P U T

prompt> quiz
how many questions: between 1 and 5: 3

Ok, Owen it’s your turn
type answer after question

19
+ 17

36
yes, that’s correct

Ok, Susan it’s your turn
type answer after question

11
+ 16

27
yes, that’s correct

Ok, Owen it’s your turn
type answer after question

17
+ 15

34
no, that’s not correct
try one more time

output continued

June 7, 1999 10:10 owltex Sheet number 41 Page number 298magentablack

298 Chapter 7 Class Interfaces, Design, and Implementation

O U T P U T

17
+ 15

32
yes, that’s correct

Ok, Susan it’s your turn
type answer after question

20
+ 17

37
yes, that’s correct

Ok, Owen it’s your turn
type answer after question

16
+ 17

23
no, that’s not correct
try one more time

16
+ 17

27
no, that’s not correct
correct answer is 33

Ok, Susan it’s your turn
type answer after question

15
+ 17

32
yes, that’s correct
Owen score: 2 out o f 3 = 66.6667%
Susan score: 3 out o f 3 = 100%

June 7, 1999 10:10 owltex Sheet number 42 Page number 299magentablack

7.1 Designing Classes: From Requirements to Implementation 299

7.12 What (simple) modifications can you make to the sampleQuestion class inPause to Reflect

question.h, Program 7.4 so that one of two colors is chosen randomly as the
favorite color. The color should be chosen inQuestion::Create() and used
in the other methods,Ask() andAnswer() .

7.13 Why is the string"pi" converted to thedouble value zero byatof in the
sample run of Program 7.5,numtostring.cpp?

7.14 Does conversion of"23skidoo" to the int value 23 mirror how the string
would be read if the user typed"23skidoo" if prompted by the following:

int num;
cout << "enter value ";
cin >> num;

7.15 Why is the functionQuestion::Ask() declared asconst in mathquest.h,
Program 7.6?

7.16 The declaration for a classGameis partially shown below.

class Game
{

public:
Game();
...

private:
Dice myCube;
int myBankRoll;

};

The constructor should makemyCube represent a six-sidedDice and should
initializemyBankRoll to 5000. Explain why an initializer list is required because
of myCubeand show the syntax for the constructorGame::Game() (assuming
there are only the two instance variables shown in the class).

7.17 The statements for reporting quiz scores for two students inquiz.cpp , Pro-
gram 7.8 duplicate the code used for the output. Write a function that can be
called to generate the output for either student, so that the statements below re-
place the score-producing output statements inquiz.cpp .

reportScores(owen,qNum);
reportScores(susan,qNum);

7.18 What question is asked if a client program callsQuestion::Ask() without
ever callingQuestion::Create() ?

June 7, 1999 10:10 owltex Sheet number 43 Page number 300magentablack

300 Chapter 7 Class Interfaces, Design, and Implementation

7.2 A Conforming Interface: a new Question
Class

We want to develop a newQuestion class for a different kind of quiz. As an illustration,
we’ll develop a class for asking questions about state capitals for U.S. states. We don’t
have the programming tools needed to easily store the state/capital pairs within the new
Question class.4 Instead, we’ll put the state/capital pairs in a text file and read the
text file repeatedly using aWordStreamIterator object. To generate a random
state/capital question we’ll skip a random number of lines of the file when reading it.
Suppose the first five lines of the text file are as follows.

Alabama Montgomery
Alaska Juneau
Arizona Phoenix
Arkansas Little_Rock
California Sacramento

If we skip two lines of the file we’ll ask what the capital of Arizona is; if we skip four
lines we’ll ask about the capital of California; and if we don’t skip any lines we’ll ask
about Alabama.

7.2.1 Using the New Question Class

We’ll call the new classQuestion . This will allow us to use the class without changing
the programquiz.cpp, Program 7.8, except to replace the#include"mathquest.h"
line by#include"capquest.h" . Since the class about capitals declared incapquest.h
has the same interface, (i.e., the same class name and the same public member functions)
as the class declared inmathquest.h, the client program inquiz.cppdoesn’t change at
all. A run of the programquiz.cpp, Program 7.8, modified to include"capquest.h"
is shown below.

The downside of this approach is that we can’t let the user choose between math
questions and capital questions while the program is running; the choice must be made
before the program is compiled. This is far from ideal, because we wouldn’t expect a
real student-user to compile a program to take a quiz using a computer. However, until
we study inheritance in Chapter 13 we don’t really have any other options.

4Perhaps the simplest way to do this is to use a vector or array, but the method used in theQuestion
class developed in this chapter is fairly versatile without using a programming construct we haven’t yet
studied.

June 7, 1999 10:10 owltex Sheet number 44 Page number 301magentablack

7.2 A Conforming Interface: a new Question Class 301

O U T P U T

prompt> quiz
how many questions: between 1 and 5: 2

it’s your turn Owen
type answer after question
the capital of Wisconsin is Madison
yes, that’s correct

it’s your turn Susan
type answer after question
the capital of Washington is Seattle
no, try one more time
the capital of Washington is Tacoma
no, correct answer is Olympia

it’s your turn Owen
type answer after question
the capital of Utah is Salt_Lake_City
yes, that’s correct

it’s your turn Susan
type answer after question

the capital of New_Mexico is Albuquerque
no, try one more time
the capital of New_Mexico is Santa_Fe
yes, that’s correct
Owen score: 2 out o f 2 = 100%
Susan score: 1 out o f 2 = 50%

7.2.2 Creating a Program

Before looking briefly at the new implementation ofQuestion , we’ll review the process
of creating a working C++ program. This will help you understand how the different
Question classes work with the quiz program.

Three steps are needed to generate an executable program from source files.

1. The preprocessingstep handles all#include directives and some others we
haven’t studied. Apreprocessoris used for this step.

2. Thecompilation step takes input from the preprocessor and creates anobject file
(see Section 3.5) for each .cpp file. Acompiler is used for this step.

June 7, 1999 10:10 owltex Sheet number 45 Page number 302magentablack

302 Chapter 7 Class Interfaces, Design, and Implementation

3. One or more object files are combined with libraries of compiled code in the
linking step. The step creates an executable program by linking together system-
dependent libraries as well as client code that has been compiled. Alinker is used
for this step.

7.2.3 The Preprocessor

The preprocessor is a program run on each source file before the source file is compiled.
A source file likehello.cpp, Program 2.1 is translated into something called atranslation
unit which is then passed to the compiler. The source file isn’t physically changed by
the preprocessor, but the preprocessor does usedirectives like #include in creating
the translation unit that the compiler sees. Each preprocessor directive begins with a
sharp (or number) sign# that must be the first character on the line.

Processing #include Statements. A #include statement literally cut-and-pastes
the code in the file specified into the translation unit that is passed to the compiler. For
example, the preprocessor directive#include<iostream> causes the preprocessor
to find the file namediostream and insert it into the translation unit. This means that
what appears to be a seven line program like the following might actually generate a
translation unit that causes the compiler to compile 10,000 lines of code.

#include<iostream>
using namespace std;
int main()
{

cout << "hello world" << endl;
return 0;

}

I tried the program above with three different C++ environments. The size of the trans-
lation unit ranged from 2,986 lines using g++ with Linux, to 16,075 using Borland
CBuilder, to 17,261 using Metrowerks Codewarrior.

Compilers are fast. At this stage of your programming journey you don’t need to
worry about minimizing the use of the#include directive, but in more advanced
courses you’ll learn techniques that help keep compilation times fast and translation
units small.

Where are include Files Located? The preprocessor looks in a specific list of di-
rectories to find include files. This list is typically called theinclude path. In most
environments you can alter the include path so that the preprocessor looks in different
directories. In many environments you can specify the order of the directories that are
searched by the preprocessor.

June 7, 1999 10:10 owltex Sheet number 46 Page number 303magentablack

7.2 A Conforming Interface: a new Question Class 303

Program Tip 7.7: If the preprocessor cannot find a file specified, you’ll
probably get a warning. In some cases the preprocessor will find a dif-
ferent file than the one you intend; one that has the same name as the
file you want to include. This can lead to compilation errors that are hard to fix. If
your system lets you examine the translation unit produced by the preprocessor you may
be able to tell what files were included. You should do this only when you’ve got real
evidence that the wrong header file is being included.

Most systems look in the directory in which the .cpp file that’s being preprocessed is
located. More information about setting options in your programming environment can
be found in Howto I.

Other Preprocessor Directives. The only other preprocessor directive we use in this
book is theconditional compilation directive. Each header file begins and ends with
preprocessor directives as follows (see alsodice.h, Program G.3). Suppose the file below
is calledfoo.h.

#ifndef _FOO_H
#define _FOO_H

header file for Foo goes here

#endif

The first line tells the preprocessor to include the filefoo.hin the current translation unit
only if the symbol_FOO_His not defined. Then in ifndef means “if NOT defined”,
then proceed. The first thing that happens if the symbol_FOO_His not defined, is that it
becomes defined using the directive#define . The final directive#endif helps limit
the extent of the first#ifndef . Every#ifndef has a matching#endif . The reason
for bracketing each header file with these directives is to prevent the same file from being
included twice in the same translation unit. This could easily happen, for example, if
you write a program in which you include both<iostream> and"date.h" . The
header file"date.h" also includes<iostream> . When you include one file, you
also include all the files that it includes (and all the files that they include, and all the files
that they include). Using the#ifndef directive prevents an infinite chain of inclusions
and prevents the same file from being included more than once.

Occasionally it’s useful to be able to prevent a block of code from being compiled.
You might do this, for example, during debugging or development to test different ver-
sions of a function. The directive#ifdef causes the preprocessor to include a section
of a file only if a specific symbol is defined.

#ifdef FOO
void TryMe(const string& s)
{ cout << s << " is buggy" << endl;
}
#endif

June 7, 1999 10:10 owltex Sheet number 47 Page number 304magentablack

304 Chapter 7 Class Interfaces, Design, and Implementation

void TryMe(const string& s)
{ cout << s << "is correct" << endl;
}

In the code segment above, the callTryMe("rose") generatesrose is correct
as output. The first version (on top) ofTryMe isn’t compiled, because the preprocessor
doesn’t include it in the translation unit passed to the compiler unless the symbolFOOis
defined. You can, of course, define the symbolFOOif you want to. Some programmers
use#ifdef 0 to block out chunks of code since zero is never defined.

7.2.4 The Compiler

The input to the compiler is the translation unit generated by the preprocessor from a
source file. The compiler generates anobject file for each compiled source file. Usually
the object file has the same prefix as the source file, but ends in .o or .obj. For example, the
source filehello.cppmight generatehello.objon some systems. In some programming
environments the object files aren’t stored on disk, but remain in memory. In other
environments, the object files are stored on disk. It’s also possible for the object files to
exist on disk for a short time, so that the linker can use them. After the linking step the
object files might be automatically erased by the programming environment.

Object files are typically larger than the corresponding source file, but may be smaller
than the translation unit corresponding to the source file. Many compilers have options
that generateoptimized code. This code will run faster, but the compiler will take longer
to generate the optimized code. On some systems you won’t be able to use a debugger
with optimized code.

ProgramTip 7.8: Turn code optimization off. Unless you are writing an appli-
cation that must execute very quickly, and you’ve used profiling and performance tools
that help pinpoint execution bottlenecks, it’s probably not worth optimizing your pro-
grams. In some systems, debuggers may get confused when using optimized code, and
it’s more important for a program to be correct than for it to be fast.

Since the compiler uses the translation unit provided by the preprocessor to create
an object file, any changes in the translation unit from a .cpp source file will force the
.cpp file to be recompiled. For example, if the header filequestion.his changed, then
the source programquiz.cpp, Program 7.8 will need to be recompiled. Since the file
question.his part of the translation unit generated fromquiz.cpp, the recompilation is
necessary because the translation unit changed. In general, a source file has several
compilation dependencies. Any header file included by the source file generates a
dependency. For example, Program 7.8,quiz.cpphas four direct dependencies:

<iostream> andstring , two system dependencies.

"prompt.h" and"mathquest.h" , two non-system dependencies.

June 7, 1999 10:10 owltex Sheet number 48 Page number 305magentablack

7.2 A Conforming Interface: a new Question Class 305

There may be other indirect dependencies introduced by these. Since both"prompt.h"
and"mathquest.h" include<string> , another dependency would be introduced,
but<string> is already a dependency.

ProgramTip 7.9: You should try to minimize the number of dependencies
for each source file. Since a change in a dependency will force the source file to be
recompiled, keeping the number dependencies small means you’ll need to recompile less
often during program development.

Notice thatmathquest.cpp, Program 7.7 depends directly on the filesrandgen.h
andstrutils.h . These two files arenot dependencies forquiz.cppsince they’re not
part of the translation unit forquiz.cpp.

Libraries. Often you’ll have several object files that you use in all your programs. For
example, the implementations ofiostream andstring functions are used in nearly
all the programs we’ve studied. Many programs use the classes declared inprompt.h ,
dice.h , date.h and so on. Each of these classes has a corresponding object file
generated by compiling the .cpp file. To run a program using all these classes the
object files need to be combined in the linking phase. However, nearly all programming
environments make it possible to combine object files into a library which can then be
linked with your own programs. Using a library is a good idea because you need to
link with fewer files and it’s usually simple to get an updated library when one becomes
available.

7.2.5 The Linker

The linker combines all the necessary object files and libraries together to create an
executable program. Libraries are always needed, even if you are not aware of them.
Standard libraries are part of every C++ environment and include classes and functions
for streams, math, and so on. Often you’ll need to use more than one library. For example,
I use a library calledtapestry.libfor all the programs in this book. This library contains
the object files for classesDice , Date , RandGen and functions fromstrutils
among many others. The suffix.lib is typically used for libraries.

You aren’t usually aware of the linker as you begin to program because the libraries
are linked in automatically. However, as soon as you begin to write programs that use
several .cpp files, you’ll probably encounter linker errors.

For example, if I try to create an executable program fromquiz.cpp, Program 7.8, but
I forget to link in the code from the classQuestion in mathquest.cpp, Program 7.7,
the following errors are generated. The first two errors using Metrowerks Codewarrior
follow:

Link Error : Undefined symbol: ?Ask@Question@@QBEXXZ
(Question::Ask) in file: quiz.cpp

June 7, 1999 10:10 owltex Sheet number 49 Page number 306magentablack

306 Chapter 7 Class Interfaces, Design, and Implementation

Link Error : Undefined symbol:?IsCorrect@Question@@QBE_NABV?
$basic_string@DU?$char_traits@D@std@@V?$

allocator@D@2@@std@@@Z
(Question::IsCorrect) in file:quiz.cpp

Using Microsoft Visual C++ the first two errors follow:

quiz.obj : error LNK2001: unresolved external symbol
"public: void__thiscall Question::Ask(void)const "

(?Ask@Question@@QBEXXZ)
quiz.obj : error LNK2001: unresolved external symbol
"public: bool__thiscall Question::IsCorrect
(class std::basic_string<char,struct std::char_traits<char>,
class std::allocator<char> > const &)const "
(?IsCorrect@Question@@QBE_NABV?$basic_string@DU

These errors may be hard to understand. The key thing to note is that they arelinker
errors. Codewarrior specifically identifies the errors as linker errors. If you look at the
Visual C++ output you’ll see a clue that the linker is involved; the errors are identified
aserror LNK2001 .

Program Tip 7.10: If you get errors about unresolved references, or un-
defined/unresolved external symbols, then you’ve got a linker error. This
means that you need to combine the object files from different .cpp files together. In
most C++ environments this is done by adding the .cpp file to a project, or by changing a
Makefile to know about all the .cpp files that must be linked together.

String Compilation and Linker Errors. The other reason the errors are hard to read is
because of the standard classstring . Thestring class is complicated because it is
intended to be an industrial-strength class used with several character sets (e.g., ASCII
and UNICODE) at some point. Thestring class is actually built on top of a class
namedbasic_string which you may be able to identify in some of the linker errors
above.

7.2.6 A New Question Class

The new question class incapquest.hhas the same public member functions as, but a
different private section from, the class inmathquest.h. Part ofcapquest.hfollows.

class Question
{

public:
Question(const string& filename);

June 7, 1999 10:10 owltex Sheet number 50 Page number 307 magentablack

7.2 A Conforming Interface: a new Question Class 307

bool IsCorrect(const string& answer) const;
string Answer() const;
void Ask() const;

void Create(); // create a new question

private:

string myAnswer; // answer (state capital)
string myQuestion; // the state
WordStreamIterator myIter; // iterates over file

};

The instance variablemyIter processes the file of states and capitals, choosing one
line at random as the basis for a question each timeQuestion::Create() is called
(see Program 7.9,capquest.cpp.) The instance variablemyQuestion replaces the two
instance variablesmyNum1andmyNum2from mathquest.h, Program 7.6. The method
Question::Create() in capquest.cppdoes most of the work. In creating the new
Question class three goals were met.

Using the same interface (public methods) as the class inmathquest.hhelped in
writing the new class. When I wrote the new class I concentrated only on the
implementation since the interface was already done.

The client programquiz.cpp did not need to be rewritten. It did need to be re-
compiled after changing#include"mathquest.h" to use"capquest.h" .

The new classQuestion can be used for questions other than states and capitals.
The modifications are straightforward and discussed in the following Pause and
Reflect exercises.

Program 7.9 capquest.cpp

#include <iostream>
#include <iomanip>
using namespace std;

#include "randgen.h"
#include "strutils.h"

Question::Question(const string& filename)
: myAnswer("*** error ***"),

myQuestion("*** error ***")
{

myIter.Open(filename.c_str());
}

void Question::Create()
{

June 7, 1999 10:10 owltex Sheet number 51 Page number 308magentablack

308 Chapter 7 Class Interfaces, Design, and Implementation

RandGen gen;

int toSkip = gen.RandInt(0,49); // skip this many lines
int k;
myIter.Init();
for(k=0 ; k < toSkip; k++)
{ myIter.Next(); // skip the state

myIter.Next(); // and the capital
}
myQuestion = myIter.Current();
myIter.Next();
myAnswer = myIter.Current();

}

void Question::Ask() const
{

cout << "the capital of " << myQuestion << " is ";
}

bool Question::IsCorrect(const string& answer) const
{

return myAnswer == answer;
}

string Question::Answer() const
{

return myAnswer;
} capquest.cpp

7.19 Why are the state New York and the capital Little Rock stored in the data file asPause to Reflect

New_York andLittle_Rock , respectively (why aren’t spaces used)?

7.20 The classQuestion declared incapquest.huses aWordStreamIterator
instance variable, so it has#include"worditer.h" at the top of the file. This
means thatquiz.cpp, Program 7.8, depends directly on"worditer.h" and indi-
rectly on<string> since<string> is included inworditer.h. What prevents
the file <string> from being included multiple times when the preprocessor
creates a translation unit forquiz.cpp?

7.21 The file capquest.cpp, Program 7.9 includes"randgen.h" . Doesquiz.cpp
depend on"randgen.h" ? Why?

7.22 If the classRandGen declared in"randgen.h" is rewritten so that the header
file changes, doesquiz.cppneed to be recompiled? Relinked (to create an exe-
cutable program about state capitals)? Why?

7.23 The constant 49 ishardwired into the definition ofQuestion::Create()
for skipping lines in the file of states and capitals. Explain howmyIter could be
used in the constructor of the class to count the lines in the file so that the number
49 would be computed by the class itself at run time.

June 7, 1999 10:10 owltex Sheet number 52 Page number 309magentablack

7.3 Random Walks 309

7.24 Suppose you want to create a quiz based on artists/groups and their records. Data
are stored in a text file as follows:

Lawn_Boy Phish
A_Live_One Phish
Automatic_for_the_People R.E.M.
Broken Nine_Inch_Nails
The_Joshua_Tree U2
Nick_of_Time Bonnie_Raitt

The idea is to ask the user to identify the group that made an album. How can
you change the classQuestion in capquest.handcapquest.cppso that it can
be used to give both state/capital and group/recording quizzes. With the right
modifications you should be able to use questions of either type in the same quiz
program. (Hint: the newQuestion class constructor could have two parameters,
one for the file of data and one for the prompt for someone taking the quiz.)

7.3 Random Walks

When you can measure what you are speaking about,
and express it in numbers, you know something about it…

Lord Kelvin
Popular Lectures and Addresses

We must never make experiments to confirm our ideas, but simply to control them.
Claude Bernard

Bulletin of New York Academy of Medicine, vol. IV, p. 997

In this section we’ll explore some programs and classes that are simulations of
natural and mathematical events. We’ll also use the pattern of iteration introduced with
theWordStreamIterator class inworditer.h, Program G.6 (see Howto G) and used
in maxword.cpp, Program 6.11. We’ll design and implement several classes. Classes
for one- and two-dimensional random walks will share a common interface, just as the
classQuestion declared in bothmathquest.hand capquest.hdid. Because of this
common interface, a class for observing random walks (graphically or by printing the
data in the walk to a file) will be able to observe both walks. First we’ll write a simple
program to simulate random walks, then we’ll design and implement a class based on
this program. Comparing the features of both programs will add to your understanding
of object-oriented programming. We’ll also studystruct s, a C++ feature for storing
data that can be used instead of a class.

A random walk is a model built on mathematical and physical concepts that is used
to explain how molecules move in an enclosed space. It’s also used as the basis for
several mathematical models that predict stock market prices. First we’ll investigate a
random walk in one dimension and then move to higher dimensions.

June 7, 1999 10:10 owltex Sheet number 53 Page number 310magentablack

310 Chapter 7 Class Interfaces, Design, and Implementation

0

Figure 7.1 Initial position of a frog in a one-dimensional random walk.

7.3.1 One-Dimensional Random Walks

Suppose a frog lives on a lily pad and there are lily pads stretching in a straight line in
two directions. The frog “walks” by flipping a coin. If the coin comes up heads, the frog
jumps to the right, otherwise the frog jumps to the left. Each time the frog jumps, it jumps
one unit, but the length of the jump might change. This jumping process is repeated for
a specific number of steps and then the walk stops. The initial configuration for such a
random walk is shown in Figure 7.1. We can gather several interesting statistics from a
random walk when it is complete (and sometimes during the walk). In a walk ofn steps
we might be interested in how far from the start the frog is at the end of the walk. Also
of interest are the furthest points from the start reached by the frog (both east and west
or positive and negative if the walk takes place on the x-axis) and how often the frog
revisits the “home” lily pad.

We’ll look at a simple program for simulating random walks, then think about design-
ing a class that encapsulates a walk, but be more general than the walk we’ve described.
The size of a frog’s world might be limited, for example, if the frog lives in a drain pipe.

We’ll use a two-sidedDice object to represent the coin that determines what direc-
tion the frog jumps. Program 7.10,frogwalk.cpp,simulates a one-dimensional random
walk. The program uses the C++switch instead of anif/else statement. The
switch statement is the final control statement we’ll use in our programs. A switch
statement is often shorter than the corresponding sequence of cascadedif/else state-
ments, but it’s also easier to make programming errors when writing code usingswitch
statements. We’ll discuss the statement after the program listing.

With a graphical display, the frog could be shown moving to the left and right.
Alternatively, a statement that prints the position of the frog could be included within the
for loop. This would provide clues as to whether the program is working correctly. In
the current program, the only output is the final position of the frog. Without knowing
what this position should be in terms of a mathematical model, it’s hard to determine if
the program accurately models a one-dimensional random walk.

June 7, 1999 10:10 owltex Sheet number 54 Page number 311magentablack

7.3 Random Walks 311

Program 7.10 frogwalk.cpp

#include <iostream>

using namespace std;

#include "dice.h"

#include "prompt.h"

// simulate one-dimensional random walk

// Owen Astrachan, 8/13/94, modified 5/1/99

int main()

{

int numSteps = PromptRange("enter # of steps",0,20000);

int position = 0; // "frog" starts at position 0

Dice die(2); // used for "coin flipping"

int k;

for(k=0 ; k < numSteps; k++)

{ switch (die.Roll())

{

case 1:

position++; // step to the right

break;

case 2:

position −−; // step to the left

break;

}

}

cout << "final positio n = " << position << endl;

return 0;

} frogwalk.cpp

O U T P U T

prompt> frogwalk
enter # of steps between 0 and 20000: 1000
final position = 32
prompt> frogwalk
enter # of steps between 0 and 20000: 1000
final position = -14
prompt> frogwalk
enter # of steps between 0 and 20000: 1000
final position = 66

June 7, 1999 10:10 owltex Sheet number 55 Page number 312magentablack

312 Chapter 7 Class Interfaces, Design, and Implementation

7.3.2 Selection with the switch Statement

In Exercise 9 of Chapter 4 a program was specified for drawing different heads as part
of a simulated police sketch program. The following functionHair comes from one
version of this program:

void Hair(int choice)
// precondition: 1 <= choice <= 3
// postcondition: prints hair in style specified by choice
{

if (1 == choice)
{ cout << " |||||||///////// " << endl;
}
else if (2 == choice)
{ cout << " |||||||||||||||| " << endl;
}
else if (3 == choice)
{ cout << " |______________| " << endl;
}

}

The cascadedif /else statements work well. In some situations, however, an alterna-
tive conditional statement can lead to code that is shorter and sometimes more efficient.
You shouldn’t be overly concerned about this kind of efficiency, but in a program dif-
ferentiating among 100 choices instead of three the efficiency might be a factor. The
switch statement provides an alternative method for writing the code inHair .

void Hair(int choice)
// precondition: 1 <= choice <= 3
// postcondition: prints hair in style specified by choice
{

switch(choice)
{

case 1:
cout << " |||||||///////// " << endl;
break;

case 2:
cout << " |||||||||||||||| " << endl;
break;

case 3:
cout << " |______________| " << endl;
break;

}
}

Eachcase label, such ascase 1 , determines what statements are executed based on
the value of the expression used in theswitch test (in this example, the value of the

June 7, 1999 10:10 owltex Sheet number 56 Page number 313magentablack

7.3 Random Walks 313

variablechoice). There should be one case label for each possible value of the switch
test expression.

All of the labels areconstantsthat representintegervalues known at compile time.
Examples include13 ,53 - 7 , true , and’a’ . It’s not legal to usedouble values like
2.718,string values like"spam" , or expressions that use variables like2*choice

Syntax: switch statement

switch (expression)
{

caseconstant1:
statement list;
break;

caseconstant2:
statement list;
break;

…
default :

statement list;
}

for case labels in aswitch statement.
If the value ofexpressionin theswitch
test matches a case label, then the corre-
sponding statements are executed. The
break causes flow of control to con-
tinue with the statement following the
switch . If no matching case label
is found, thedefault statements, if
present, are executed. Most program-
mers put the default statement last in-
side aswitch , but a few argue that it
should be the first label. There are no
“shortcuts” in forming cases. You can-
not write case 1,2,3: , for exam-
ple, to match either one, two, or three.

For multiple matches, each case is listed separately as follows:

case 1 :
case 2 :
case 3 :

statement list
break;

In theswitch statement shown inHair , exactly onecase statement is executed; the
break causes control to continue with the statement following theswitch . (Since
there is no following statement inHair , the function exits and the statement after the
call of Hair is executed next.) In general, abreak statement is required, or control
will fall through from onecase to the next.

Program Tip 7.11: It’s very easy to forget the break needed for each
case statement, so when you write switch statements, be very careful.

ProgramTip 7.12: As a general design rule, don’t include more than two
or three statements with each case label. If more statements are needed, put
them in a function and call the function. This will make theswitch statement easier to
read.

June 7, 1999 10:10 owltex Sheet number 57 Page number 314magentablack

314 Chapter 7 Class Interfaces, Design, and Implementation

A missingbreak statement often causes hard-to-find errors. If thebreak corre-Stumbling Block

sponding tocase 2 in the functionHair is removed, and the value ofchoice is 2,
two lines of output will be printed.

(Warning! Incorrect code follows!)

void Hair(int choice)
// precondition: 1 <= choice <= 3
// postcondition: prints hair in style specified by choice
{

switch(choice)
{

case 1:
cout << " |||||||///////// " << endl;
break;

case 2:
cout << " |||||||||||||||| " << endl;

case 3:
cout << " |______________| " << endl;
break;

}
}

O U T P U T

||||||||||||||||
|______________|

Because there is nobreak following the hair corresponding tocase 2 , execution
falls through to the next statement, and the output statement corresponding tocase 3
is executed.

The efficiency gained from aswitch statement occurs because only one expression
is evaluated and the correspondingcase statements are immediately executed. In a
sequence ofif /else statements it is possible for all theif tests to be evaluated. As
mentioned earlier, it’s not worth worrying about this level of efficiency until you’ve timed
a program and know what statements are executed most often. Theswitch statement
does make some code easier to read, and the efficiency gains can’t hurt.

7.3.3 A RandomWalk Class

Program 7.10,frogwalk.cpp,is short. It’s not hard to reason that it correctly simulates a
one-dimensional random walk. However, modifying the program to have more than one
frog hopping on the lily pads is cumbersome because the program is not designed to be

June 7, 1999 10:10 owltex Sheet number 58 Page number 315 magentablack

7.3 Random Walks 315

extended in this way. If we encapsulate the state and behavior of a random-walking frog
in a class, it will be easier to have more than one frog in the same program. With a class
we may be able to have different random-walkers jump with different probabilities, that
is, one walker might jump left 50% of the time, another 75% of the time. Using a class
will also make it easier to extend the program to simulate a two-dimensional walk.

We’ll use a classRandomWalk whose interface is shown inwalk.h, Program 7.11.
Member functionsInit , HasMore , and Next behave similarly to their counter-
parts in theWordStreamIterator class (see Program 6.11,maxword.cpp) and the
StringSetIteratorclass (seemaxword2.cpp.) This usage of theiterator pattern is some-
what different from what we’ve used in previous classes and programs, but we use the
same names since the random walk is an iterative process. There are two differences in
the use of an iterator here.

The iterator functions are part of the classRandomWalk rather than belonging
to a separate class. In the other uses the iterator class was separate from the class
being iterated over.

In the StringSetIterator andWordStreamIterator classes the col-
lection being iterated over was complete when the iterators execute. For the
RandomWalk class the iterating functions create the random walk — using the
functions again results in a different random walk rather than reiterating over the
same walk.

Program 7.11 walk.h

#ifndef _RANDOMWALK_H
#define _RANDOMWALK_H

// Owen Astrachan, 6/20/96, modified 5/1/99
// class for implementing a one dimensional random walk
//
// constructor specifies number of steps to take, random walk
// goes left or right with equal probability
//
// two methods for running simulation:
//
// void Simulate() – run a complete simulation
//
// Init(); HasMore(); Next() – idiom for starting and iterating
// one step at a time
// accessor functions:
//
// int Position() – returns x coordinate
// (# steps left/right from origin)
// int Current() – alias for GetPosition()
//
// int TotalSteps() – returns total # steps taken

class RandomWalk

June 7, 1999 10:10 owltex Sheet number 59 Page number 316 magentablack

316 Chapter 7 Class Interfaces, Design, and Implementation

{
public:

RandomWalk(int maxSteps); // constructor, parameter = max # steps
void Init(); // take first step of walk
bool HasMore(); // returns false if walk finished, else true
void Next(); // take next step of random walk

void Simulate(); // take all steps in simulation

int Position() const; // returns position (x coord) of walker
int Current() const; // same as position
int TotalSteps() const; // returns total # of steps taken

private:

void TakeStep(); // simulate one step of walk
int myPosition; // current x coordinate
int mySteps; // # of steps taken
int myMaxSteps; // maximum # of steps allowed

};

#endif walk.h

A parameter to theRandomWalk constructor specifies the number of steps in the
walk. A main function that uses the class follows.

int main()
{

int numSteps = PromptRange("enter # steps",0,1000000);

RandomWalk frog(numSteps);
frog.Simulate();
cout << "final positio n = " << frog.GetPosition() << endl;

}

In this program an entire simulation takes place immediately using the member function
Simulate . The output from this program is the same as the output fromfrogwalk.cpp.
Using theRandomWalk class makes it easier to simulate more than one random walk
at the same time. Infrogwalk2.cpp,Program 7.12, two random walkers are defined.
The program keeps track of how many times the walkers are located at the same po-
sition during the walk. It would be very difficult to write this program based onfrog-
walk.cpp, Program 7.10. Since the number of steps in the simulation is a parameter to the
RandomWalk constructor, variablesfrog andtoad must be definedafter you enter
the number of steps. One alternative would be to have a member functionSetSteps
used to set the number of steps in the simulation.

Program 7.12 frogwalk2.cpp

#include <iostream>
using namespace std;

June 7, 1999 10:10 owltex Sheet number 60 Page number 317magentablack

7.3 Random Walks 317

#include "prompt.h"

#include "walk.h"

// simulate two random walkers at once

// Owen Astrachan, 6/29/96, modified 5/1/99

int main()

{

int numSteps = PromptRange("enter # steps",0,30000);

RandomWalk frog(numSteps); // define two random walkers

RandomWalk toad(numSteps);

int samePadCount = 0; // # times at same location

frog.Init(); // initialize both walks

toad.Init();

while (frog.HasMore() && toad.HasMore())

{ if (frog.Current() == toad.Current())

{ samePadCount++;

}

frog.Next();

toad.Next();

}

cout << "frog positio n = " << frog.Position() << endl;

cout << "toad positio n = " << toad.Position() << endl;

cout << "# times at same locatio n = " << samePadCount << endl;

return 0;

} frogwalk2.cpp

Because both random walkers take the same number of steps, it isn’t necessary to
have checks using bothfrog.HasMore() andtoad.HasMore() , but since both
walkers must be initialized usingInit and updated usingNext , we useHasMore for
both to maintain symmetry in the code.5

Reviewing Program Tip 7.1 we find that it’s good advice to concentrate first on class
methods and behavior, then move to instance variables and state.

5Checking bothHasMore functions will be important if we modify the classes to behave differently.
Write programs anticipating that they’ll change.

June 7, 1999 10:10 owltex Sheet number 61 Page number 318magentablack

318 Chapter 7 Class Interfaces, Design, and Implementation

O U T P U T

prompt> frogwalk2
enter # steps between 0 and 30000: 10000
frog position = -6
toad position = -26
times at same location = 87
prompt> frogwalk2
enter # steps between 0 and 30000: 10000
frog position = 16
toad position = 40
times at same location = 392

For RandomWalk I first decided to use the iteration pattern ofInit , HasMore ,
andNext . Since it may be useful to execute an entire simulation at once I decided to
implement aSimulate function to do this. As we’ll see, it will be easy to implement
this function using the iterating member functions. Finally, the class must provide some
accessor functions. In this case we need functions to determine the current location of a
RandomWalk object and to determine the total number of steps taken.

Determining what data should be private is not always a simple task (see Program
Tip 7.6 for some guidance.) You’ll often need to revise initial decisions and add or delete
data members as the design of the class evolves. As a general guideline, private data
should be an intrinsic part of what is modeled by the class. For example, the current
position of aRandomWalk object is certainly an intrinsic part of a random walk. The
Dice object used to determine the direction to take at each step is not intrinsic. The
state of oneDice object does not need to be accessed by different member functions,
nor does the state need to be maintained over several invocations of the same function.
Even if aDice object is used in several member functions, there is no compelling reason
for the sameDice object to be used across more than one function.

When you implement a class you should use the same process of iterative enhance-
ment we used in previous programs. For classes this means you might not implement
all member functions at once. For example, you could leave a member function out of
the public section at first and add it later when the class is partially complete. Alter-
natively, you could include a declaration of the function, but implement it as an empty
stub function with no statements.

When I implementedRandomWalk I realized that there would be code duplicated
in Init andNext since both functions simulate one random step. Since it’s a good idea
to avoid code duplication whenever possible, I decided to factor the duplicate code out
into another function calledTakeStep called from bothInit andNext .6 This kind
of helper function should be declared in the private section so that it is not accessible
to client programs. Member functions, however, can call private helper functions.

6Actually, I wrote the code forInit andNext and then realized it was duplicated after the fact so I
added the helper function.

June 7, 1999 10:10 owltex Sheet number 62 Page number 319 magentablack

7.3 Random Walks 319

It’s not unreasonable to makeTakeStep public so that client programs could use
either the iteration member functions or theTakeStep function. Similarly you may
decide that the functionSimulate is superfluous since client programs can implement
it by usingInit , HasMore , andNext (see Program 7.13,walk.cpp). There is often a
tension between including too many member functions in an effort to provide as much
functionality as possible and too few member functions in an effort to keep the public
interface simple and easy to use. There are usually many ways of writing a program,
implementing a class, skinning a cat, and walking a frog.

In [Rie96], Arthur Riel offers two design heuristics we’ll capture as one programming
tip.

Program Tip 7.13: Minimize the number of methods in the interface
(protocol) of a class. You should also implement a minimal public interface that all
classes understand.

TheRandomWalk member functions are fairly straightforward. All private data are
initialized in the constructor; the functionRandomWalk::TakeStep() simulates a
random step and updates private data accordingly, and the other member functions are
used to simulate a random walk or to access information about a walk, such as the current
location of the simulated walker. The implementation is shown in Program 7.13.

Program 7.13 walk.cpp

#include "walk.h"
#include "dice.h"

RandomWalk::RandomWalk(int maxSteps)
: myPosition(0),

mySteps(0),
myMaxSteps(maxSteps)

// postcondition: no walk has been taken, but walk is ready to go
{

// work done in initializer list
}

void RandomWalk::TakeStep()
// postcondition: one step of random walk taken
{

Dice coin(2);
switch (coin.Roll())
{

case 1:
myPosition −−;
break;

case 2:
myPosition++;
break;

}

June 7, 1999 10:10 owltex Sheet number 63 Page number 320magentablack

320 Chapter 7 Class Interfaces, Design, and Implementation

mySteps++;
}

void RandomWalk::Init()
// postcondition: first step of random walk taken
{

myPosition = 0;
mySteps = 0;
TakeStep();

}

bool RandomWalk::HasMore()
// postcondition: returns true when random walk still going
// i.e., when # of steps taken < max. # of steps
{

return mySteps < myMaxSteps;
}

void RandomWalk::Next()
// postcondition: next step in random walk simulated
{

TakeStep();
}

void RandomWalk::Simulate()
// postcondition: one simulation completed
{

for(Init(); HasMore(); Next())
{
// simulation complete using iterator methods
}

}

int RandomWalk::Position() const
// postcondition: returns position of walker (x coordinate)
{

return myPosition;
}

int RandomWalk::Current() const
// postcondition: retrns position of walker (x coordinate)
{

return Position();
}

int RandomWalk::TotalSteps() const
// postcondition: returns number of steps taken by walker
{

return mySteps;
} walk.cpp

Each member function requires only a few lines of code. The brevity of the functions
makes it easier to verify that they are correct. As you design your own classes, try to

June 7, 1999 10:10 owltex Sheet number 64 Page number 321magentablack

7.3 Random Walks 321

keep the implementations of each member function short. Using private helper functions
can help both in keeping code short and in factoring out common code.

ProgramTip 7.14: Use private helper functions to avoid code-duplication
in public methods. The helper functions should be private because client programs
don’t need to know how a class is implemented, and helper functions are an implementation
technique.

7.3.4 ATwo-Dimensional Walk Class

In this section we’ll extend the one-dimensional random walk to two dimensions. A
two-dimensional random walk is a more realistic model of a large molecule moving in
a gas or liquid, although it is still much simpler than the physical forces that govern
molecular motion. Nevertheless, the two-dimensional walk provides insight into the
phenomenon known asBrownian motion, named after the botanist Robert Brown who,
in the early 1800s, investigated pollen grains moving in water. His observations were
modeled physically by Albert Einstein, whose hypotheses were confirmed by Jean-
Baptiste Perrin, who won a Nobel prize for his work.

The classRandomWalk2Dmodels a two-dimensional random walk, the implemen-
tation and use of which are shown inbrownian.cpp,Program 7.14. In two dimensions, a
molecule can move in any direction. This direction can be specified by a random number
of degrees from the horizontal. A random number between 1 and 360 can be generated
by a 360-sided dice. However, using aDice object would constrain the molecule to
use a direction that is an integer. We’d like molecules to be able to go in any direction,
including angles such as 1.235157 and 102.3392. Instead of using aDice object, we’ll
use an object from the classRandGen, specified inrandgen.h, Program G.4. Since the
sine and cosine functionssin andcos from <cmath> are needed for this simulation,
and since these functions require an angle specified in radians7 rather than degrees, we
need to use randomdouble values.

The geometry to translate a random direction intox andy distances follows:

ste
p

siz
e

a

Y

X

cos(a) = X /step size
sin(a) = Y/step size

If a random anglea is chosen, the distance moved in theX -direction is cos(a) ×
step size as shown in the diagram.

7There are 360 degrees in a circle and 2π radians in a circle. It’s not necessary to understand radian
measure, but 180◦ = π radians. This means thatd◦ = d(3.14159/180) radians. You can also use
conversion functionsdeg2rad andrad2deg in mathutils.h, Program G.9 in Howto G.

June 7, 1999 10:10 owltex Sheet number 65 Page number 322 magentablack

322 Chapter 7 Class Interfaces, Design, and Implementation

The distance in theY-direction is a similar function of the sine of the anglea. In the
member functionRandomWalk2D::TakeStep() these properties are used to update
the coordinates of a molecule in simulating a two-dimensional random walk. The manner
in which a direction is calculated changes in moving from one to two dimensions. We
also need to change how a position is stored so that we can track both an x and y
coordinate. We could use two instance variables, such asmyXcoord andmyYcoord .
Instead, we’ll use thePoint class for representing points in two dimensions (the header
file point.his Program G.10 in Howto G). As we’ll see in Section 7.4,Point acts like
a class, but is in some ways different because it has public data. These are the principal
differences between the classRandomWalk andRandomWalk2D:

The implementation of the member functionTakeStep to cope with a two-
dimensional random direction.

The change of type for instance variablemyPosition from int to Point to
cope with two dimensions.

The change in return type for methodsPosition andCurrent from int to
Point .

Program 7.14 brownian.cpp

#include <iostream>
#include <cmath> // for sin, cos, sqrt
#include "randgen.h"
#include "prompt.h"
#include "mathutils.h" // for PI
#include "point.h"
using namespace std;

// simluate two-dimensional random walk
// Owen Astrachan, 6/20/95, modified 6/29/96, modified 5/1/99

class RandomWalk2D
{

public:
RandomWalk2D(long maxSteps,

int size); // # of steps, size of one step
void Init(); // take first step of walk
bool HasMore(); // returns false if walk finished, else true
void Next(); // take next step of random walk
void Simulate(); // complete an entire random walk

long TotalSteps() const; // total # of steps taken by molecule
Point Position() const; // current position
Point Current() const; // alias for Position

private:
void TakeStep(); // simulate one step of walk
Point myPosition; // coordinate of current position

June 7, 1999 10:10 owltex Sheet number 66 Page number 323 magentablack

7.3 Random Walks 323

long mySteps; // # of steps taken
int myStepSize; // size of step
long myMaxSteps; // maximum # of steps allowed

};

RandomWalk2D::RandomWalk2D(long maxSteps,int size)
: myPosition(),

mySteps(0),
myStepSize(size),
myMaxSteps(maxSteps)

// postcondition: walker initialized
{

}

void RandomWalk2D::TakeStep()
// postcondition: one step of random walk taken
{

RandGen gen; // random number generator
double randDirection = gen.RandReal(0,2 ∗PI);

myPosition.x += myStepSize ∗ cos(randDirection);
myPosition.y += myStepSize ∗ sin(randDirection);
mySteps++;

}

void RandomWalk2D::Init()
// postcondition: Init step of random walk taken
{

mySteps = 0;
myPosition = Point(0,0);
TakeStep();

}

bool RandomWalk2D::HasMore()
// postcondition: returns false when random walk is finished
// i.e., when # of steps taken >= max. # of steps
// return true if walk still in progress
{

return mySteps < myMaxSteps;
}

void RandomWalk2D::Next()
// postcondition: next step in random walk simulated
{

TakeStep();
}

void RandomWalk2D::Simulate()
{

for(Init(); HasMore(); Next())
{

// simulation complete using iterator methods
}

}

June 7, 1999 10:10 owltex Sheet number 67 Page number 324magentablack

324 Chapter 7 Class Interfaces, Design, and Implementation

long RandomWalk2D::TotalSteps() const

// postcondition: returns number of steps taken by molecule

{

return mySteps;

}

Point RandomWalk2D::Position() const

// postcondition: return molecule’s position

{

return myPosition;

}

Point RandomWalk2D::Current() const

// postcondition: return molecule’s position

{

return myPosition;

}

int main()

{

long numSteps= PromptRange("enter # of random steps",1L,1000000L);

int stepSize= PromptRange("size of one step",1,20);

int trials= PromptRange("number of simulated walks",1,1000);

RandomWalk2D molecule(numSteps,stepSize);

int k;

double total = 0.0;

Point p;

for(k=0 ; k < trials; k++)

{

molecule.Simulate();

p = molecule.Position();

total += p.distanceFrom(Point(0,0)); // total final distance from origin

}

cout << "average distance from origi n = " << total/trials << endl;

return 0;

} brownian.cpp

June 7, 1999 10:10 owltex Sheet number 68 Page number 325magentablack

7.3 Random Walks 325

O U T P U T

prompt> brownian
enter # of random steps between 1 and 1000000: 1024
size of one step between 1 and 20: 1
number of simulated walks between 1 and 1000: 100
average distance from origin = 26.8131
prompt> brownian
enter # of random steps between 1 and 1000000: 1024
size of one step between 1 and 20: 4
number of simulated walks between 1 and 1000: 100
average distance from origin = 108.861

If the output of one simulation is printed and used in a plotting program, a graph of the
random walk can be made. Two such graphs are shown in Figs. 7.2 and 7.3. Note that the
molecule travels in completely different areas of the plane. However, the molecule’s final
distance from the origin doesn’t differ drastically between the two runs. The distance
from the origin of a point(x, y) is calculated by the formula

√
x2 + y2. The distances

are accumulated in Program 7.14 using the methodPoint::distanceFrom() so
that the average distance can be output.

The paths of the walk shown in the plots are interesting because they areself-similar.
If a magnifying glass is used for a close-up view of a particular part of the walk, the
picture will be similar to the overall view of the walk. Using a more powerful magnifying
glass doesn’t make a difference; the similarity still exists. This is a fundamental prop-
erty of fractals, a mathematical concept that is used to explain how seemingly random
phenomena aren’t as random as they initially seem.

The results of both random walks illustrate one of the most important relationships
of statistical physics. In a random walk, the average (expected) distanceD from the start
of a walk ofN steps, where each step is of lengthL, is given by the following equation:

D = √
N × L (7.1)

The results of the simulated walks above don’t supply enough data to validate this
relationship, but the data are supportive. In the exercises you’ll be asked to explore this
further.

7.25 Modify frogwalk.cpp,Program 7.10, so the user enters a distance from the origin—Pause to Reflect

say, 142—and the program simulates a walk until this distance is reached (in either
the positive or negative direction). The program should output the number of steps
needed to reach the distance.

7.26 Only one simulation is performed in Program 7.10. The code for that one simu-
lation could be moved to a function. Write a prototype for such a function that
returns both the final distance from the start as well as the maximum distance from
the start reached during the walk.

June 7, 1999 10:10 owltex Sheet number 69 Page number 326magentablack

326 Chapter 7 Class Interfaces, Design, and Implementation

–40

–35

–30

–25

–20

–15

–10

–5

0

5

–25 –20 –15 –10 –5 0 5 10 15 20

Brownian motion: 1,024 steps of unit length

Figure 7.2 Fractal characteristics of two-dimensional random walks.

7.27 Can you find an expression for use infrogwalk.cpp,Program 7.10, so that no
switch or if/else statement is needed when the position is updated? For
example:position += die.Roll() would add either 1 or 2 to the value
of position . What’s needed is an expression that will add either−1 or 1 with
equal probability.

7.28 A two-dimensional walk on a lattice constrains the random walker to take steps
in the compass point directions: north, east, south, west. How can the class
RandomWalk be modified to support a frog that travels on lattice points? How
can the classRandomWalk2D be modified?

7.29 If you modified the random walking classesRandomWalk2DandRandomWalk
with code to track the number of times the walker returned to the starting position,
either (0,0) or 0 respectively, would you expect the results to be similar?

7.30 Suppose the one-dimensional walker is restricted to walking in a circle instead of
on an infinite line. Outline a modification to the classRandomWalk so that the
number of “lily pads” on a circle is specified as well as the number of steps in a
walk. Strive for a modification that entails minimal change to the class.

June 7, 1999 10:10 owltex Sheet number 70 Page number 327 magentablack

7.3 Random Walks 327

–5

0

5

10

15

20

25

30

35

40

–10 –5 0 5 10 15 20 25 30

Brownian motion: 1,024 steps of unit length

Figure 7.3 Fractal characteristics of two-dimensional random walks (continued).

7.3.5 The Common Interface in RandomWalk and RandomWalk2D

Because the methods ofRandomWalk andRandomWalk2Dhave the same names, we
can modify Program 7.12,frogwalk2.cpp very easily. That program keeps track
of how many times two walkers have the same position (we used the metaphor of two
frogs sharing the same lily pad). The only difference between the one-dimensional walk
class declared inwalk.hand the two-dimensional class whose declaration and definition
are both given inbrownian.cpp, Program 7.14 is that the functionsCurrent() and
Position() return anint in the one-dimensional case and aPoint in the two-
dimensional case. As we’ll see in Section 7.4,Point objects can be compared for
equality and printed, so the only change needed to the code infrogwalk2.cppto accom-
modate two-dimensional walkers is a change in the#include from "walk.h" to
"walk2d.h" . Here I’m assuming that the classRandomWalk2D has been defined
and implemented in .h and .cpp files rather than inbrownian.cpp. Actually a small
change must be made in the constructor calls offrog andtoad since the size of the
step is specified for the two-dimensional walkers.

June 7, 1999 10:10 owltex Sheet number 71 Page number 328magentablack

328 Chapter 7 Class Interfaces, Design, and Implementation

Program 7.15 twodwalk.cpp

#include <iostream>
using namespace std;
#include "prompt.h"
#include "walk2d.h"

// simulate two random walkers at once
// Owen Astrachan, 6/29/96, modified 5/1/99

int main()
{

int numSteps = PromptRange("enter # steps",0,30000);

RandomWalk2D frog(numSteps,1); // define two random walkers
RandomWalk2D toad(numSteps,1);
int samePadCount = 0; // # times at same location

frog.Init(); // initialize both walks
toad.Init();

while (frog.HasMore() && toad.HasMore())
{ // if (frog.Current() == toad.Current())

if (frog.Current().distanceFrom(toad.Current()) < 1.0)
{ samePadCount++;

}
frog.Next();

toad.Next();
}
cout << "frog positio n = " << frog.Position() << endl;
cout << "toad positio n = " << toad.Position() << endl;
cout << "# times at same locatio n = " << samePadCount << endl;
return 0;

} twodwalk.cpp

O U T P U T

prompt> twodwalk
enter # steps between 0 and 30000: 20000
frog position = (138.376, 118.173)
toad position = (59.5489, -61.5897)
times at same location = 0

prompt> twodwalk
enter # steps between 0 and 30000: 20000
frog position = (-57.0885, 53.7944)
toad position = (-6.07683, 142.7)
times at same location = 0

June 7, 1999 10:10 owltex Sheet number 72 Page number 329magentablack

7.4 structs as Data Aggregates 329

It’s probably not surprising that the two-dimensional walkers never occupy the same
position. Even if the walkers are very close to each other it’s extraordinarily unlikely
that thedouble values representing bothx andy coordinates will be exactly the same.
This is due in part to accumulated round-off errors introduced when smalldouble
values are added together. In general you should avoid comparingdouble values for
exact equality, but use a function likeFloatEqual in mathutils.h, Program G.9 and
discussed in Howto G.

A simple change in Program 7.15,twodwalk.cpp, can track if two walkers are very
close rather than having exactly the same position. UsingPoint::distanceFrom()
(see Program 7.14,brownian.cpp) lets us do this if we change theif test as follows.

if (frog.Current().distanceFrom(toad.Current()) < 1.0)

Two runs with this test show a change in behavior.

O U T P U T

prompt> twodwalk
enter # steps between 0 and 30000: 20000
frog position = (-37.9018, 68.9209)
toad position = (-4.6354, 18.2154)
times at same location = 6

prompt> twodwalk
enter # steps between 0 and 30000: 20000
frog position = (-125.509, 98.8204)
toad position = (82.7206, -24.1438)
times at same location = 11

7.4 structs as Data Aggregates
Suppose you’re writing a function to find the number of words in a text file that have
fewer than four letters, between four and seven letters, and more than seven letters. The
prototype for such a function might be:

void fileStats(const string& filename, int& smallCount,
int& medCount, int& largeCount)

// postcondition: return word counts for text-file filename
// smallCount = # words with length() < 4
// medCount = # words with 4 <= length() <= 7
// largeCount = # words wit h 7 < length()

It’s easy to imagine a more lengthy and elaborate set of statistics for a text file; the
parameter list for a modifiedfileStats function would quickly become cumbersome.

June 7, 1999 10:10 owltex Sheet number 73 Page number 330magentablack

330 Chapter 7 Class Interfaces, Design, and Implementation

We could write a class instead, with instance variables recording each count or other
statistic. However, if we write a single member function to get all the statistics, we have
the same prototype as the functionfileStats shown above. If we use one member
function for each statistic, that quickly gets cumbersome in a different way.

Instead of using several related parameters, we can group the related parameters
together so that they can be treated as a single structure. A class works well as a way
to group related data together, but if we adhere to the guideline in Program Tip 6.2,
all data should be private with public accessor functions when clients need access to
some representation of a class’ state. Object-oriented programmers generally accept
this design guideline and implement accessor and mutator methods for retrieving and
updating state data.

Sometimes, rather than using a class to encapsulate both data (state) and behavior,
a struct is used. In C++ a struct is similar to a class but is used for storing related data
together. Structs are implemented almost exactly like classes, but the wordstruct
replaces the wordclass . The only difference between a struct and a class in C++ is
that by default all data and functions in a struct are public whereas the default in a class
is that everything is private. We’ll use structs to combine related data together so that
the data can be treated as a single unit. A struct used for this purpose is described in the
C++ standard asplain old data,or pod.

In the file statistics example we could use this declaration:

struct FileStats
{

string fileName; // name of text file
int smallCount; // # words with length() < 4
int medCount; // # words with 4 <= length() <= 7
int largeCount; // # words wit h 7 < length()

};

Since the combined data have different types, that isstring and int , a struct is
often called aheterogeneous aggregate,a means of encapsulating data of potentially
different types into one new type. As a general design rule we won’t require any member
functions in a struct and will rely on all data fields being public by default. As we’ll
see, it may be useful to implement some member functions, including constructors, but
we won’t insist on these as we do for the design and implementation of a new class. In
general, we’ll use structs when we want to group data (state) and perhaps some behavior
(functions) together, but we won’t feel obligated to use the same kinds of design rules
that we use when we design classes (e.g., all data are private). You should know that
other programmers use structs in a different way and do not include constructors or
other functions in structs. Since constructors often make programs shorter and easier to
develop without mistakes, we’ll use them when appropriate.

Using the structFileStats we might have the following code:

void computeStats(FileStats& fs)
// precondition: fs.fileName is name of a text file
// postcondition: data fields of fs represent statistics
{ // code here

June 7, 1999 10:10 owltex Sheet number 74 Page number 331 magentablack

7.4 structs as Data Aggregates 331

}
int main()
{

FileStats fs;
fs.fileName = "poe.txt";
computeStats(fs);
cout << "# large words in " << fs.fileName

<< " = " << fs.largeCount << endl;
return 0;

}

ProgramTip 7.15: If you’re designing a class with little or no behavior,but
just data that are accessed and modified,consider implementing the class
as a struct. A class should have behavior beyond setting and retrieving the value of
each instance variable. Using structs for encapsulating data (with helper functions when
necessary, such as for construction and printing) is a good compromise when development
of a complete class seems like overkill.

7.4.1 structs for Storing Points

We’ve used objects of typePoint in programs for simulating two-dimensional random
walks (see Program 7.14,brownian.cpp, for an example.) The typePoint declared in
point.h, Program G.10 in Howto G is implemented as struct rather than a class. With our
design guidelines, a struct allows us to make the data public. ForPoint the data are x
and y coordinates. Using a struct means we don’t need to provide methods for getting
and setting the coordinates, but can access them directly as shown in Program 7.16,
usepoint.cpp.

Program 7.16 usepoint.cpp

#include <iostream>
using namespace std;

#include "point.h"

int main()
{

Point p;
Point q(3.0, 4.0);

// print the points
cout << " p = " << p << " q = " << q << endl;

q.x ∗= 2;

June 7, 1999 10:10 owltex Sheet number 75 Page number 332magentablack

332 Chapter 7 Class Interfaces, Design, and Implementation

q.y ∗= 2;
cout << "q double d = " << q << endl;

p = q;
if (p == q)
{ cout << "points are now equal" << endl;
}
else
{ cout << "points are NOT equal" << endl;
}

p = Point(0,0);
cout << q.distanceFrom(p) < < " = distance of q from " << p << endl;

return 0;
} usepoint.cpp

O U T P U T

prompt> usepoint
p = (0, 0) q = (3, 4)
q doubled = (6, 8)
points are now equal
10 = distance of q from (0, 0)

The data members of the structsp andq are accessed with a dot notation just as
member functions of a class are accessed. However, because the data fields are public,
they can be updated and accessed without using member functions. Sometimes the
decision to use either a struct, or several variables, or a class will not be simple. Using
a struct instead of several variables makes it easy to add more data at a later time.

ProgramTip 7.16: Be wary when you decide to use a struct rather than
a class. When you use a struct, client programs will most likely depend directly on
the implementation of the struct rather than only on the interface. If the implementation
changes, all client programs may need to be rewritten rather than just recompiled or
relinked as when client programs use only an interface rather than direct knowledge of an
implementation.

If you reason carefully about the output fromusepoint.cppyou’ll notice several
properties ofPoint . You can verify some of these by examining the header filepoint.h
in Howto G.

The default (parameterless)Point constructor initializes to the origin: (0,0).

June 7, 1999 10:10 owltex Sheet number 76 Page number 333magentablack

7.4 structs as Data Aggregates 333

Point objects can be assigned to each other, as inp = q , and compared for
equality, as inif (p == q) .

A temporary (or anonymous) Point object can be created by calling a con-
structor and using the constructedPoint in a statement. The following statement
from usepoint.cppcreates a temporaryPoint representing the origin (0,0) and
assigns it top.

p = Point(0,0);

A temporary is also used inbrownian.cpp, Program 7.14 to compute a walker’s
final distance from the origin.

The methodPoint::distanceFrom() computes the distance of one point
from another.

7.4.2 Operators for struct s

In the programs usingPoint objects we printed points and compared them for equality.
These operations are possible onPoint objects because the relational operators and the
output insertionoperator << areoverloadedfor the classPoint . The definition
of the overloaded stream insertion operator is shown below (see alsopoint.cppwith the
files provided for use with this book.)

ostream& operator << (ostream& os, const Point& p)
// postcondition: p inserted on output as (p.x,p.y)
{

os << p.tostring();
return os;

}

The parameteroutput represents any output stream, that is, eithercout or anofstream
object. After the pointp is inserted onto streamoutput , the stream is returned so that
a chain of insertions can be made in one statement as shown inusepoint.cpp.A full
description of how to overload the insertion operator and all other operators is found in
Howto E

ProgramTip 7.17: Many classes should have a member function named
tostring that produces a representation of the class as a string . Using
the tostring method makes it very simple to overload the stream insertion operator,
but is also useful in other contexts.

If you use the graphics package associated with this book you’ll probably use the
tostring method to “print” on the graphics screen since the screen displays strings,
but not streams.

As another example, here is the relational operator== for Point objects.

June 7, 1999 10:10 owltex Sheet number 77 Page number 334magentablack

334 Chapter 7 Class Interfaces, Design, and Implementation

bool operator == (const Point& lhs, const Point& rhs)
{

return lhs.x == rhs.x && lhs.y == rhs.y;
}

Note that the prototype for this function is declared inpoint.h, but the definition above
is found inpoint.cppjust as methods are declared in a header file and implemented in
the corresponding .cpp file.

Program Tip 7.18: When possible, design a class to behave as users will
expect from the behavior of built-in types like int and double . This often
means overloading relational operators, the stream insertion operator, and ensuring that
objects can be assigned to each other.

As we’ll see in Howto E and study in later chapters, overloaded operators can make
the syntax of developing programs with new classes much simpler than if no overloaded
operators were implemented.

7.5 Chapter Review
The first step in developing programs and classes is to develop a specification and
a list of requirements.

Nouns in a problem statement or specification help identify potential classes; verbs
help identify potential methods.

When designing and implementing classes, first concentrate on behavior (meth-
ods), then concentrate on state (private data).

Use scenarios to help develop classes and programs.

Use stub functions when you want to test a class (or program) without implement-
ing all the functions at once. Test classes in isolation from each other whenever
possible.

Factor out common code accessed by more than one function into another function
that is called multiple times. For member functions, make these helping functions
private so that they can be called from other member functions but not from client
programs.

Try to keep the bodies of each member function short so that the functions are easy
to verify and modify.

Functionsatoi , atof allow conversion from strings to ints and doubles, respec-
tively. These and the overloaded functiontostring to convert from ints and
doubles to strings are found instrutils.h .

Keep classes to a single purpose. Use more than one class rather than combining
different or unrelated behaviors in the same class.

Program by conforming to known interfaces whenever possible. This reduces both

June 7, 1999 10:10 owltex Sheet number 78 Page number 335magentablack

7.6 Exercises 335

conceptual hurdles and potential recompilation and relinking.

Creating a program from source files in C++ consists of preprocessing, compiling,
and linking. Libraries are often accessed in the linking phase.

Compilation errors and linking errors have different causes.

Initializer lists are used to construct private data in a class. You should use initializer
lists rather than assigning values in the body of a constructor.

Random walks are useful models of many natural phenomenon with a basis in
mathematics and statistical physics.

Theswitch statement is an alternative to cascadedif/else statements.

Structs are used as heterogeneous aggregates. When related data should be stored
together without the programming and design overhead of implementing a class,
structs are a useful alternative. Structs are classes in which the data are public
by default. Structs can also have constructors and helper functions to make them
easier to use.

The insertion operator can be overloaded for programmer-defined types as can
relational operators.

7.6 Exercises

7.1 Write a quiz program similar toquiz.cpp, Program 7.8, but using different levels of
mathematical drill questions. Give the user a choice of easy, medium, or hard questions.
An easy question involves addition of two-digit numbers, but no carry is required, so
that 23 + 45 is ok, but27 + 45 is not. A medium question uses addition, but a
carry is always required. A hard question involves multiplication of a two-digit number
by a one-digit number, but the answer must be less than one-hundred.

7.2 Modify Program 7.10,frogwalk.cpp, to keep track of all the locations that are visited
more than once, not just the number of times the walkers are at the same location. To
do this, use aStringSet object (see Programs 6.14 and 6.15 in Section 6.5.) Use the
functionstostring from strutils.hto convert walker positions to strings so that they
can be stored in aStringSet .
Then change the program so that two two-dimensional walkers are used as intwod-
walk.cpp. You’ll need to usePoint::tostring() to store two-dimensional loca-
tions in aStringSet .

7.3 A result of Dirichlet (see [Knu98a], Section 4.5) says that if two numbers are chosen at
random, the probability that their greatest common divisor equals 1 is 6/π2. Write a
program that repeatedly chooses two integers at random and calculates the approxima-
tion toπ . For best results use aRandGenvariablegen (from randgen.h) and generate
a random integer usinggen.RandInt(1,RAND_MAX) .

June 7, 1999 10:10 owltex Sheet number 79 Page number 336magentablack

336 Chapter 7 Class Interfaces, Design, and Implementation

7.4 A reasonable but rough approximation of the mathematical constantπ can be obtained
by simulating throwing darts. The simulated darts are thrown at a dart board in the
shape of a square with a quarter-circle in it.

(0, 1)

(1, 0)

If 1000 darts are thrown at the square, and 785 land in the circle, then 785/1000 is
an approximation forπ/4 since the area of the circle (with radius 1) isπ/4. The
approximation forπ is 4× 0.785 = 3.140. Write a program to approximateπ using
this method. Use a unit square as shown in the figure, with corners at (0,0), (1,0), (1,1),
and (0,1). Use theRandGen class specified inrandgen.hand the member function
RandReal , which returns a randomdouble value in the range[0 . . 1). For example,
the following code segment generates randomx and y values inside the square and
increments a counterhits if the point(x, y) lies within the circle.

x = gen.RandReal();
y = gen.RandReal();

if (x*x + y*y <= 1.0)
{ hits++;
}

This works because the equation of the unit circle isx2 + y2 = 1. Allow the user to
specify the number of darts (random numbers) thrown or use a varying number of darts
to experiment with different approximations. This kind of approximation is called a
Monte Carlo approximation.

7.5 This problem (adapted from [BRE71]) is a simplistic simulation of neutrons in a nuclear
reactor. Neutrons enter the lead wall of a nuclear reactor and collide with the lead atoms
in the wall. Each time a neutron collides with a lead atom it rebounds in a random
direction (between 0 and 2π radians) before colliding with another lead atom, reentering
the reactor, or leaving the wall. To simplify the simulation we’ll assume that all neutrons
enter the wall at a right angle; each neutron travels a distanced before either colliding,
reentering the reactor, or leaving the wall; and the wall is 3d units thick. Figure 7.4
diagrams a wall; the reactor is at the bottom. The neutron at the left reenters the reactor,
the neutron in the middle leaves the wall outside the reactor, and the neutron on the
right is absorbed in the wall (assume that after 10 collisions within the wall a neutron
is absorbed).
If p is the depth of penetration inside the wall, thenp is changed after each collision
by p += d * cos(angle) whereangle is a random angle (seebrownian.cpp,
Program 7.14). Ifp < 0, then the neutron reenters the reactor, and if 3d < p, then the

June 7, 1999 10:10 owltex Sheet number 80 Page number 337magentablack

7.6 Exercises 337

distance =
 3d

Figure 7.4 Collisions in a nuclear reactor.

neutron leaves the wall; otherwise it collides with another lead atom or is absorbed.
Write a program to simulate this reactor. Use 10,000 neutrons in the simulation and
determine the percentage of neutrons that return to the reactor, are absorbed in the wall,
and penetrate the wall to leave the reactor. Use the simulation to determine the minimal
wall thickness (as a multiple ofd) required so that no more than 5% of the neutrons
escape the reactor. To help test your simulation, roughly 26% of the neutrons should
leave a 3d-thick wall and roughly 22% should be absorbed.

7.6 Repeat the simulation from the previous exercise but assume the neutrons enter the wall
at a random angle rather than at a right angle. Then implement a neutron observer class
that records the movements of a neutron. Record the motion of 10 neutrons and graph
the output if you have access to a plotting program.

7.7 Write a program to test the relationshipD = √
N ×L from statistical physics, described

in Section 7.10. Use a one-dimensional random walk and vary both the length of each
stepL and the number of stepsN. You’ll need to run several hundred experiments for
each value; try to automate the process.
If you have access to a graphing program, graph the results. If you know about curve
fitting, try to fit a curve to the results and see if the empirical observations match the
theoretical equation. You can repeat this experiment for the two-dimensional random
walk.

7.8 Write a program for two-dimensional random walks in which two frogs (or two molecules)
participate at the same time. Keep track of the closest and furthest distances the
molecules are away from each other during the simulation. Can you easily extend
this to three frogs or four frogs?

7.9 Write a program to simulate a roulette game. In roulette you can place bets on which of
38 numbers is chosen when a ball falls into a numbered slot. The numbers range from
1 to 36, with special 0 and 00 slots. The 0 and 00 slots are colored green; each of the
numbers 1 through 36 is red or black. The red numbers are 1, 3, 5, 7, 9, 12, 14, 16, 18,
19, 21, 23, 25, 27, 30, 32, 34, and 36. Gamblers can make several different kinds of bet,
each of which pays off at different odds as listed in Table 7.1. A payoff of 1 to 1 means
that a $10.00 bet earns $10.00 (plus the bet $10.00 back); 17 to 1 means that a $10.00
bet earns $170.00 (plus the $10.00 back). If the wheel spins 0 or 00, then all bets lose

June 7, 1999 10:10 owltex Sheet number 81 Page number 338magentablack

338 Chapter 7 Class Interfaces, Design, and Implementation

Table 7.1 Roulette bets and payoff odds

bet payoff odds
red/black 1 to 1
odd/even 1 to 1
single number 35 to 1
two consecutive numbers 17 to 1
three consecutive numbers 11 to 1

except for a bet on the single number 0/00 or on the two consecutive numbers 0 and 00.
You may find it useful to implement a separateBet class to keep track of the different
kinds of bets and odds. For example, when betting on a number, you’ll need to keep
track of the number, but betting on red/black requires only that you remember the color
chosen.

7.10Design and implement a struct for representing points in three dimensions. Then pro-
gram a random walk in three dimensions and determine how often two walkers are
within 10 units of each other. Use a classRandomWalk3D patterned after the class
RandomWalk2D in brownian.cpp, Program 7.14.

June 7, 1999 10:10 owltex Sheet number 19 Page number 339magentablack

8Arrays, Data, and
Random Access

A teacher who can arouse a feeling for one single good action. . . , accomplishes more than he
who fills our memory with rows on rows of natural objects, classified with name and form.

Goethe
Elective Affinities, Book II, Ch. 7

Computers are useless, they can only give you answers.
Pablo Picasso

21st Century Dictionary of Quotations

A compact disc (CD), a computer graphics monitor, and a group of campus mailboxes
share a common characteristic, as shown in Figure 8.1: Each consists of a sequence of
items, and each item is accessible independently of the other items. In the case of a
CD, any track can be played without regard to whether the other tracks are played. This
arrangement is different from the way songs are recorded on a cassette tape, where, for
example, the fifth song is accessible only after playing or fast-forwarding past the first
four. In the case of a graphics monitor, any individual picture element, orpixel, can be
turned on or off, or changed to a different color, without concern as to what the values of
the other pixels are. The independence of each pixel to display different colors permits
images to be displayed very rapidly. The address of a student on many campuses, or a
person living in an apartment building, is typically specified by a box number.

Track 3

114 115 116 117

114

hello world

Figure 8.1 Random or constant-time access.

339

June 7, 1999 10:10 owltex Sheet number 20 Page number 340 magentablack

340 Chapter 8 Arrays, Data, and Random Access

Postal workers can deliver letters to box 117 without worrying about the location of the
first 100 boxes, the last 100 boxes, or any boxes other than 117.

This characteristic of instant access is useful in programming applications. The
terminology used israndom access,as opposed to thesequential accessto a cassette
tape. Most programming languages include a construct that allows data to be grouped
together so that each data item is accessible independently of the other items. For
example, a collection of numbers might represent test scores; a collection of strings
could represent the different words inHamlet;and a collection of strings and numbers
combined in a struct might represent the words inHamlet and how many times each
word occurs.

We’ve studied three ways of structuring data in C++ programs: classes, structs, and
files accessible using streams. In this chapter you will learn about a data structure called
anarray—one of the most useful data structures in programming. Examples of array
use in this chapter include:

Using an array as many counters, for example, to keep track of how many times
all sums of rollingn-sided dice occur or to keep track of how many times each
letter of the alphabet occurs inHamlet.

Using an array to store a list of words in a file, keeping track of each different word
and then extending this array to track how many times each different word occurs.

Using an array to maintain a database of on-line information for over 3,000 different
CD titles, or alternatively, an on-line address book.

8.1 Arrays andVectors as Counters
Consider Program 8.1,dieroll.cpp, which tracks the number of times each sum between
2 and 8 occurs when two four-sided dice are rolled. Modifying this program to track the
number of times each possible dice roll occurs for six-sided dice would be very ugly.

Program 8.1 dieroll.cpp

#include <iostream>
using namespace std;
#include "dice.h"
#include "prompt.h"

// illustrates cumbersome programming
// roll two dice and track occurrences of all possible rolls

const int DICE_SIDES = 4;

int main()
{

int twos= 0; // counters for each possible roll
int threes= 0;
int fours= 0;

June 7, 1999 10:10 owltex Sheet number 21 Page number 341magentablack

8.1 Arrays andVectors as Counters 341

int fives= 0;

int sixes= 0;

int sevens= 0;

int eights= 0;

int rollCount = PromptRange("how many rolls",1,20000);

Dice d(DICE_SIDES);

int k;

for(k=0 ; k < rollCount; k++) // simulate all the rolls

{ int sum = d.Roll() + d.Roll();

switch (sum)

{

case 2:

twos++;

break;

case 3:

threes++ ;

break;

case 4:

fours++;

break;

case 5:

fives++;

break;

case 6:

sixes++;

break;

case 7:

sevens++;

break;

case 8:

eights++;

break;

}

}

// output for each possible roll # of times it occurred

cout << "roll\t# of occurrences" << endl;

cout << "2\t" << twos << endl;

cout << "3\t" << threes << endl;

cout << "4\t" << fours << endl;

cout << "5\t" << fives << endl;

cout << "6\t" << sixes << endl;

cout << "7\t" << sevens << endl;

cout << "8\t" << eights << endl;

return 0;

} dieroll.cpp

June 7, 1999 10:10 owltex Sheet number 22 Page number 342magentablack

342 Chapter 8 Arrays, Data, and Random Access

O U T P U T

prompt> dieroll
how many rolls between 1 and 20000 10000
roll # of occurrences
2 623
3 1204
4 1935
5 2474
6 1894
7 1246
8 624

The code indieroll.cpp would be much more compact if loops could be used to
initialize the variables and generate the output. To do this we need a new kind of
variable that maintains several different values at the same time; such a variable could
be used in place oftwos , threes , fours , and so on. Most programming languages
support such variables; they are calledarrays. An array structures data together, but has
three important properties:

1. An array is ahomogeneouscollection. Each item stored in an array is the same
type; for example, all integers, alldouble s, or all strings. It is not possible to
store both integers and strings in the same array.

2. Items in an array are numbered, or ordered; that is, there is a first item, a fifteenth
item, and so on. The number that refers to an item is the item’sindex, sometimes
called thesubscript.

3. An array supportsrandom access.The time to access the first item is the same as
the time to access the fifteenth item or the hundredth item.

In C++ the built-in array type has many problems; it is difficult for beginning program-
mers to use and its use is too closely coupled with its low-level implementation.1 We’ll
study built-in arrays, but we want to study the concept of homogeneous collections
and random access without the hardships associated with using the built-in array type.
Instead, we’ll use a class that behaves like an array from a programming perspective
but insulates us from the kind of programming problems that are common with built-in
arrays. We’ll use a classtvector , defined in the header filetvector.h.2 The “t” in

1The built-in array type in C++ is the same as its C-based counterpart. It is based on pointers, designed
to be very efficient, and prone to hard-to-find errors, especially for beginning programmers.
2The classvector is defined as part of the STL library in standard C++. The classtvector declared
in tvector.his consistent with this standard class. The classapvector , defined for use in the Advanced
Placement computer science course, is based on the classtvector . All member functions of the
apvector class are also member functions of thetvector class. Howeover, thetvector class
supportspush_back andpop_back functions not supported byapvector .

June 7, 1999 10:10 owltex Sheet number 23 Page number 343magentablack

8.1 Arrays andVectors as Counters 343

tvector stands for “Tapestry.” You can use the standardvector class in any of
the programs in this book, but you’ll find thetvector class is much more forgiving
of the kinds of mistakes that beginning and experienced programmers make. Because
tvector catches some errors thatvector doesn’t catch,tvector is slightly less
efficient. If you really need the efficiency, develop usingtvector and then switch to
vector when you know your program works correctly.

Before studying Program 8.2, a program that is similar todieroll.cpp but uses a
tvector to track dice rolls, we’ll discuss important properties of thetvector class
and how to definetvector variables.

8.1.1 An Introduction to the Class tvector

The simplest definition of atvector variable includes the variable’s name, the type
of item being stored, and an integer value passed to the constructor that indicates how
many items the vector can store. The definitions below define a variablenumbers that
can store seven integer values and a variablewords that can store five string values.

tvector<int> numbers(7);
tvector<string> words(5);

Because atvector is a homogeneous collection, you can think of atvector variable
as a collection of boxes:

0 1 2 3 4 5 6

0 1 2 3 4

Numbers

Words

Each box or item in thetvector is referenced using a numerical index. In C++ the
first item stored in atvector has index zero. Thus, in the diagram here, the five items
in words are indexed from zero to four. In general, the valid indices in atvector
with n elements are 0, 1, . . . , n − 1.

An element of atvector is selected, or referenced, using a numerical index and
brackets: []. The following statements store the number 13 as the first element of
numbersand the string"fruitcake" as the first element ofwords(remember that the
first element has index zero):

numbers[0] = 13;
words[0] = "fruitcake";

tvector variables can be indexed using a loop as follows, where all the elements of
numbers are assigned the value zero:

int k;
for(k=0 ; k < 5; k++)
{ numbers[k] = 0;
}

June 7, 1999 10:10 owltex Sheet number 24 Page number 344 magentablack

344 Chapter 8 Arrays, Data, and Random Access

tvector<int> diceStats(2*DICE_SIDES+1);

Type of variable Variable identifier

Dice d(6);

Argument passed to constructor

Figure 8.2 Comparing a tvector variable definition to a Dice variable definition. Both
variables have names and a constructor parameter.

The number of elements in a vector variable is specified by a parameter to thetvector
constructor, just as the number of sides of aDice variable is specified when theDice
variable is constructed, as shown in Figure 8.2. This value can be a variable whose value
is entered by the user; an expression; or, in general, any integer value. More details on
definingtvector variables are given in Section 8.2.1.

8.1.2 Counting with tvectors

Program 8.2,dieroll2.cppuses atvector to keep track of different dice rolls but
otherwise performs the same tasks as Program 8.1,dieroll.cpp.

From a black-box viewpoint there is no difference between the programsdieroll.cpp
anddieroll2.cpp.The tvector variablediceStats can store nine different integer
values. The capacity ofdiceStats is determined when the variable is defined by the
statementtvector<int> diceStats(2*DICE_SIDES+1) .

Program 8.2 dieroll2.cpp

#include <iostream>
using namespace std;
#include "dice.h"
#include "prompt.h"
#include "tvector.h"

// use vector to simulate rolling of two dice
// Owen Astrachan, March 9, 1994, modified 5/2/99

const int DICE_SIDES = 4;

int main()
{

int sum;
int k;
Dice d(DICE_SIDES);
tvector<int> diceStats(2 ∗DICE_SIDES+1); // room for largest dice sum
int rollCount = PromptRange("how many rolls",1,20000);

June 7, 1999 10:10 owltex Sheet number 25 Page number 345magentablack

8.1 Arrays andVectors as Counters 345

for(k=2; k <= 2 ∗DICE_SIDES; k++) // initialize counters to zero
{ diceStats[k] = 0;
}

for(k=0 ; k < rollCount; k++) // simulate all the rolls
{ sum = d.Roll() + d.Roll();

diceStats[sum]++;
}

cout << "roll\t\t# of occurrences" << endl;
for(k=2; k <= 2 ∗DICE_SIDES; k++)
{ cout << k << "\t\t" << diceStats[k] << endl;
}
return 0;

} dieroll2.cpp

O U T P U T

prompt> dieroll2
how many rolls between 1 and 20000 10000
roll # of occurrences
2 623
3 1204
4 1935
5 2474
6 1894
7 1246
8 624

There is one major difference between the definition ofdiceStats as atvector
variable and that ofd as aDice variable: thetvector definition indicates that the
tvector contains integers. We’ll discuss this in depth after examining other parts of
the program.

Because the indexing begins with 0, the last location in a nine-element array has
index 8. This is why space for nine integer values is allocated in Program 8.2 even
though only seven of the locations are accessed in the program—diceStats[2]
throughdiceStats[8] —as shown in Figure 8.3. The conceptual simplicity of using
diceStats[sum] to represent the number of times two dice are rolled more than
compensates for the two memory locations that could be saved by defining an array
of seven values and usingdiceStats[sum-2] to store the number of timessum is
obtained.

In Figure 8.3 theswitch statement used to increment the appropriate counter in
Program 8.1 is contrasted with the single statementdiceStats[sum]++ , which in-
crements the corresponding vector location serving as a counter in Program 8.2.

June 7, 1999 10:10 owltex Sheet number 26 Page number 346magentablack

346 Chapter 8 Arrays, Data, and Random Access

When a vector is defined, the values in each vector location, orcell, are initially
undefined. The vector cells can be used as variables, but they must be indexed, as shown
here for a vector nameddiceStats containing nine cells:

tvector<int> diceStats(9);
? ? ? ? ? ? ? ? ? values undefined

index 0 1 2 3 4 5 6 7 8

diceStats[1] = 0;
? 0 ? ? ? ? ? ? ? one value defined

index 0 1 2 3 4 5 6 7 8

diceStats[1]++;
? 1 ? ? ? ? ? ? ? one value incremented

index 0 1 2 3 4 5 6 7 8

The indexing expression determines which of the many array locations is accessed.
Indexing makes arrays extraordinarily useful. One array variable represents potentially
thousands of different values, each value specified by the array variable name and the
indexing value. The expressiondiceStats[1] is read as “diceStats sub one,” where
the word “sub” comes from the mathematical concept of asubscriptedvariable such as
n1.

switch (sum){
 case 2:
 twos += 1;
 break;
 case 3:
 threes += 1;
 break;
 case 4:
 fours += 1;
 break;
 case 5:
 fives += 1;
 break;
 case 6:
 sixes += 1;
 break;
 case 7:

 break;
 case 8:
 eights += 1;
 break;
}

 sevens += 1;

diceStats[sum]++;

0 1 2 3 4 5 6 7 8

Figure 8.3 Using a tvector to store counts for tracking dice rolls.

June 7, 1999 10:10 owltex Sheet number 27 Page number 347magentablack

8.2 Defining and Using tvectors 347

8.2 Defining and Using tvectors

8.2.1 tvector Definition

When you define atvector variable you’ll normally specify the number of entries, or
cells, in thetvector . As we’ll see later in this chapter, when you use avector so
that it grows to accommodate more cells, it’s possible that you won’t specify the number
of cells when the vector is first constructed.

Since vectors are homogeneous collections, you must also specify the type stored in
each entry, such asint , string , or double . The following statements define three
tvector variables:values stores 200double s, names stores 50string s, and
scores which stores some number between 1 and 1000 ofint values.

tvector<double> values(200);
tvector<string> names(50);
tvector<int> scores(PromptRange("# of scores",1,1000));

The type of value stored in each cell of atvector variable is specified between angle
brackets (the less-than and greater-than symbols) before the name of the variable is given.
The size of thetvector is an argument to the constructor, as illustrated in Figure 8.2.

Syntax: tvector definition

tvector< type> varname;
tvector< type> varname(size expression) ;
tvector< type> varname(size expression,

value) ;

The type that defines whatkind of
element is stored in each array cell
can be any built-in type (e.g.,int ,
double , bool). It can also be
a programmer-defined type such as
string . The only qualification on
programmer-defined types is that the
type must have a default (or parame-

terless) constructor. For example, it isnotpossible to have a definitiontvector<Dice>
dielist(10) for an array of 10 dice elements, because aDice object requires a pa-
rameter indicating the number of sides that theDice object has. It is possible to define a
vector ofDate elements (seedate.h, in Howto G or Program 5.10,usedate.cpp), because
there is a default constructor for theDate class.

Theexpressionin the tvector constructor determines the number of cells of the
tvector variable. This integer expression can use variables, arithmetic operators, and
function calls. For example, it is possible to use

tvector<int> primes(int(sqrt(X)));

to allocate a variable namedprimes whose number of cells is given by the (integer)
truncated value of the square root of a variableX. If no integer expression is used, as
in tvector<int> list , a vector with zero cells is created. We’ll see later that
sometimes this is necessary and that the number of cells in a vector can grow or shrink.
The third form of constructor initializes all the cells to the value passed as the second
argument to the constructor.

June 7, 1999 10:10 owltex Sheet number 28 Page number 348 magentablack

348 Chapter 8 Arrays, Data, and Random Access

8.2.2 tvector Initialization

For vectors of user-defined types likestring , all vector elements are initialized using
the default constructor unless an argument is supplied thetvector constructor for
initalization as shown below. For built-in types thetvector class does not initialize
each vector cell, so the values will most likely be undefined.3 For example, when a
variable is used to represent several counters, as it is in Program 8.2,dieroll2.cpp, each
element of the vector must be initialized to zero. As shown in the syntax diagram for
tvector construction, it’s possible to initialize all elements of a vector when the vector
is constructed. For example, the statements below create a vector of 20 strings in which
each string has the value"Fred Brooks" and a vector of 100 ints in which each int
has the value 25.

tvector<string> names(20,"Fred Brooks");
tvector<int> nums(100,25);

8.2.3 tvector Parameters

tvector variables can be passed as parameters just like any other variable in C++.4 To
illustrate how vectors are used and passed as parameters, we’ll study another example
in which a vector is used to count several quantities. First we’ll count how many times
each different character occurs in an input file. For example, we can count the number
of occurrences of the lettere in Hamletusing Program 8.3,letters.cpp.Just as a vector
of counters was used to count dice rolls indieroll2.cpp,Program 8.2, atvector of
counters is used to track how many times each character occurs in the file.

Counting characters is similar to counting dice rolls: eachtvector element records
the number of occurrences of one character. We mentioned the typechar briefly in
Section 3.2.4. You can find more information on the typechar in Howto A and in
Chapter 9. Two character processing functions are used inletters.cppthat we haven’t
seen before, but hopefully you’ll understand their use from the context and the com-
ments. The functionisalpha from <cctype> (or <ctype.h>) returnstrue if
its char parameter is a letter, either ’a’–’z’ or ’A’–’Z’ (see Table F.2 in Howto F for
more information.) The stream functionget() reads one character at a time from a
stream; white space is not skipped. More information onget is found in Howto A and
in Chapter 9.

Program 8.3 letters.cpp

#include <iostream>
#include <fstream> // for ifstream

3The standardvector class initializes all vector elements, including built-in types. Built-in types are
initialized to 0, where 0 meansfalse for bool values and 0.0 fordouble values, for example. The
tvector class uses a different method to allocate memory than the standard vector class, so cells will
not, necessarily, have a defined value unless one is supplied when thetvector is constructed.
4This is not quite true of arrays, as we’ll see later in this chapter. This is another reason to prefer using
thetvector class to using built-in arrays.

June 7, 1999 10:10 owltex Sheet number 29 Page number 349 magentablack

8.2 Defining and Using tvectors 349

#include <cstdlib> // for exit()
#include <cctype> // for tolower()
#include <climits> // for CHAR_MAX
#include <string>
#include <iomanip>
using namespace std;

#include "prompt.h"
#include "tvector.h"

// count # occurrences of all characters in a file
// written: 8/5/94, Owen Astrachan, modified 5/1/99

void Print(const tvector<int> & counts, int total);
void Count(istream & input, tvector<int> & counts, int & total);

int main()
{

int totalAlph = 0;
string filename = PromptString("enter name of input file: ");
ifstream input(filename.c_str());

if (input.fail())
{ cout << "could not open file " << filename << endl;

exit(1);
}
tvector<int> charCounts(CHAR_MAX+1,0); // all initialized to 0

Count(input,charCounts,totalAlph);
Print(charCounts,totalAlph);

return 0;
}

void Count(istream & input, tvector<int> & counts, int & total)
// precondition: input open for reading
// counts[k] == 0, 0 < = k < CHAR_MAX
// postcondition: counts[k] = # occurrences of character k
// tota l = # alphabetic characters
{

char ch;
while (input.get(ch)) // read a character
{ if (isalpha(ch)) // is alphabetic (a-z)?

{ total++;
}
ch = tolower(ch); // convert to lower case
counts[ch]++; // count all characters

}
}

void Print(const tvector<int> & counts, int total)
// precondition: total = total of all entries in counts[’a’]..counts[’z’]
// postcondition: all values of counts from ’a’ to ’z’ printed
{

const int MIDALPH = 13;

June 7, 1999 10:10 owltex Sheet number 30 Page number 350magentablack

350 Chapter 8 Arrays, Data, and Random Access

cout.setf(ios::fixed); // print 1 decimal place
cout.precision(1);
char k;
for(k = 'a'; k <= 'm'; k++)
{ cout << k << setw(7) << counts[k] << " ";

cout << setw(4) << 100 ∗ double(counts[k])/total << "% \t\t";
cout << char(k+MIDALPH) << setw(7) << counts[k+MIDALPH] << " ";
cout << setw(4) << 100 ∗ double(counts[k+MIDALPH])/total << "%" << endl;

}
} letters.cpp

For all practical purposes, achar variable is an integer constrained to have a value
between 0 andCHAR_MAX. Sincechar variables can be used as integers, we can use
a char variable to index an array. We’ll use the vector element with index’a’ to
count the occurrences of’a’ , the element with index’b’ to count theb’s, and so on.
The constantCHAR_MAXis defined in<climits> (or <limits.h> .) We use it to
initialize charCounts , a tvector of counters, so that all counters are initially zero.

tvector<int> charCounts(CHAR_MAX+1,0);

Only the 26 vector elements corresponding to the alphabetic characters’a’ through
’z’ are printed, but every character is counted.5 An alternative method of indexing
charCounts that uses only 26 array elements rather thanCHAR_MAXelements is
explored in the Pause to Reflect exercises. To make the output look nice, we use stream
member functions to limit the number of places after a decimal point when adouble
value is printed. These member functions are discussed in Howto B.

tvector parameters should always be passed by reference, unless you need to pass
a copy of thetvector rather than thetvector itself, but it’s very rare to need a copy.
Avoid copying, because it takes time and uses memory. Some functions require value
parameters, but these are rare whentvector parameters are used, so you should use
reference or const-reference parameters all the time. Use aconst reference parameter,
as shown inPrint in Program 8.3, when atvector parameter isn’t changed. A
const reference parameter is efficient and also allows the compiler to catch inadvertent
attempts to change the value of the parameter. The parametercounts in the function
Print is not changed; its contents are used to print the values of how many times each
letter occurs.

ProgramTip 8.1: tvector parameters should be passed by reference (us-
ing &) or by const reference. Use aconst reference parameter as part of a defensive
programming strategy when a parameter is not changed, but is passed by reference because
of efficiency considerations.

5I had a bug in the version of this program that appeared in the first edition: I usedCHAR_MAXinstead
of CHAR_MAX+1as the size of the vector. IfCHAR_MAXhas the value 255, then the array will have
255 elements, but the largest index will be 254, and a character with value 255 will cause an illegal-
index error. I never encountered this error in practice because I useletters.cppto read text files, and
the characters in text files typically don’t have values ofCHAR_MAX. This kind of off-by-one indexing
error is common when using vectors. Some people call this an OBOB error (off-by-one bug).

June 7, 1999 10:10 owltex Sheet number 31 Page number 351magentablack

8.2 Defining and Using tvectors 351

Notice that thefor loop in the functionPrint uses achar variable to index the
values between’a’ and’z’ . The loop runs only from’a’ to ’m’ because each line
of output holds data for two letters, such as’a’ and’n’ or ’b’ and’o’ . The result
of adding 13 to’a’ is ’n’ , but the explicit cast tochar in Print() of Program 8.3
ensures that a character is printed. When ASCII values are used, these characters ’a’ to
’z’ correspond to array cells 97 to 122 (see Table F.3 in Howto F.)

O U T P U T

prompt> letters
enter name of input file: hamlet.txt
a 9950 7.6% n 8297 6.4%
b 1830 1.4% o 11218 8.6%
c 2606 2.0% p 2016 1.5%
d 5025 3.9% q 220 0.2%
e 14960 11.5% r 7777 6.0%
f 2698 2.1% s 8379 6.4%
g 2420 1.9% t 11863 9.1%
h 8731 6.7% u 4343 3.3%
i 8511 6.5% v 1222 0.9%
j 110 0.1% w 3132 2.4%
k 1272 1.0% x 179 0.1%
l 5847 4.5% y 3204 2.5%
m 4253 3.3% z 72 0.1%

8.1 In Program 8.1, how many lines must be changed or added to simulate two 12-Pause to Reflect

sided dice? How many lines must be changed or added in Program 8.2 to simulate
two 12-sided dice?

8.2 What changes must be made to Program 8.2 to simulate the rolling of three 6-sided
dice?

8.3 Write definitions for atvector doubVec of 512doubles and intVec of
256 int s. Write code to initialize each vector location to twice its index so that
doubVec[13] = 26.0 andintVec[200] = 400.

8.4 Is it possible to create a vector ofBalloon s as declared in Program 3.7,gbal-
loon.h? Why?

8.5 Write a definition for atvector of strings that stores the names of the computer
scientists for whom “Happy Birthday” was printed in Program 2.6,bday2.cpp.
Write a loop that would print the song for all the names stored in the vector.

June 7, 1999 10:10 owltex Sheet number 32 Page number 352magentablack

352 Chapter 8 Arrays, Data, and Random Access

8.6 Supposeletters.cppis modified so that the count of how many times’a’ occurs
is kept in the vector element with index zero (and the count of’z’ occurrences
is in the vector element with index 25). What changes are needed to do this (hint:
if ’a’ + 13 == ’n’ as shown inPrint , the value of’b’ - ’a’ is 1 and
the value of’z’ - ’a’ is 25.

8.7 Write a short program, with all code inmain , that determines how many two-
letter, three-letter, …, up to 15-letter words there are in a text file.

8.2.4 A tvector Case Study: Shuffling CDTracks

Many CD players have an option for “random play.” Pressing the random-play or shuffle
button causes the tracks on the CD to be “shuffled” and played in some arbitrary order,
which may be different each time the CD is played. CD jukeboxes shuffle collections of
CDs rather than just the collection of tracks on a single CD. In this section we’ll develop
the programshuffle.cpp,Program 8.4, to simulate this random-play feature for a single
CD.

We’ll need to store the tracks in atvector and rearrange the elements in the
tvector to simulate the shuffling. We’ll want to identify the original track number as
well as the title of the track, so we’ll use astruct to encapsulate this information.

Developing the Program. We’ll start with the declaration below for a structTrack
to store information about each track on a CD. All the tracks on a CD are stored in a
tvector<Track> object.

struct Track
{

string title; // title of song/track
int number; // the original track number

};

Rather than designing, coding, and testing the entire program at once, we’ll concen-
trate first on the two main features of the program: printing, and shuffling CD track
information. Before shuffling, we’ll need to print, so we’ll implementPrint first.
Programming Tip 7.2 reminds us to grow a program — develop a program by adding to
a working program rather than implementing the entire program at once.

A function to print the contents of a vector will need the vector and the number of
elements in the vector. We’ll write a function to encapsulate the loop below that prints
the firstcount elements of a vectortracks .

int k;
for(k=0 ; k < count; k++)
{ cout << tracks[k].number << "\t"

<< tracks[k].title << endl;
}

Sometimes it is hard to interpret (and even read) the expressions from the loop above
that follow:

June 7, 1999 10:10 owltex Sheet number 33 Page number 353magentablack

8.2 Defining and Using tvectors 353

tracks[k].title;
tracks[k].number;

To decipher such expressions, you can read them inside out, one piece at a time.6 The
[] are used to indicate an entry in a vector. The identifier to the left of them indicates
that the name of thetvector is tracks . The identifierk is used to select a particular
cell—note that the initial value ofk is 0, indicating the first cell. I read the first expression
as “tracks sub k dot title.”

Now you should think about what kind of element is represented bytracks[k] ,
what is stored intracks ? We’re dealing with a vector ofTrack structs. Now you
should think about whatTrack is. It’s astruct , so, as with a class, a period or dot.
is needed to access one of its fields. Thestruct Track has two fields:title and
number . Examining thestruct declaration may remind you what type each field is.
In particular,title is astring .

Initializing a tvector . To test a print function we’ll need to store track information
in a vector. Instead of reading track names from a file, we’ll test by hard-wiring several
tracks inmain , then pass the vector to the print function. Given the declaration for the
structTrack above, we’re stuck writing code like the following:

tvector<Track> tracks(9);

tracks[0].title= "The Squirming Coil";
tracks[0].number= 1;
tracks[1].title= "Reba";
tracks[1].number= 2;
...

When you find yourself writing ugly code like this you should say to yourself, “There
must be a better way.”

Program Tip 8.2: If you find yourself writing code that seems unneces-
sarily redundant, tedious, or that just offends your sense of aesthetics (it’s
ugly), step back and think if there might be a way to improve the code.
Sometimes you’ll just have to write code you don’t consider ideal, either because you

don’t know enough about the language, because you can’t think of the right approach, or
because there just isn’t any way to improve the code. Ugly code is often a maintenance
headache, and some time invested early in program development can reap benefits during
the lifetime of developing and maintaining a program.

In this case, adding a constructor to the structTrack makes initialization simpler.
We want to write code like the following:

6Sometimes the most inside piece isn’t obvious, but there are often several places to start.

June 7, 1999 10:10 owltex Sheet number 34 Page number 354 magentablack

354 Chapter 8 Arrays, Data, and Random Access

tvector<Track> tracks(10);

tracks[0] = Track("The Squirming Coil",1);
tracks[1] = Track("Reba",2);
tracks[2] = Track("My Sweet One",3);
...

Adding a two-parameter constructor to the struct lets us write this code; see the new
declaration forTrack in shuffle.cpp, Program 8.4. Since we want to make a vector
of Track structs we must supply a default/parameterless constructor as well (see the
Syntax Diagram fortvector construction.) With initialization inmain and the im-
plementation ofPrint , we’re ready to remove compilation errors, test the program, and
then add the shuffling function. When we writePrint we’ll need to pass the number
of elements in the vector. As we’ll see in the next section, we can avoid using two
parameters by having the vector keep track of how many elements it has, but for now
we’ll pass two parameters toPrint : a vector and a count of how many elements are in
the vector.

Program Tip 8.3: Functions that have tvector parameters sometimes
require an int parameter that specifies the number of values actually
stored in the tvector . The number of values stored is often different from the
capacity of thetvector . We’ll see that it’s easy to avoid this second size parameter if
the vector itself keeps track of the number of values it stores as well as its capacity.

We’ll discuss the shuffling algorithm and code after the program listing.

Program 8.4 shuffle.cpp

#include <iostream>
#include <string>
using namespace std;

#include "tvector.h"
#include "randgen.h"

struct Track
{

string title; // title of song/track
int number; // the original track number

Track::Track()
: title("no title"),

number(0)
{ }

Track::Track(const string& t, int n)
: title(t),

June 7, 1999 10:10 owltex Sheet number 35 Page number 355magentablack

8.2 Defining and Using tvectors 355

number(n)
{ }

};

void Print(const tvector<Track>& tracks, int count)
// precondition: there are count locations in tracks
// postcondition: contents of tracks printed
{

int k;
for(k=0 ; k < count; k++)
{ cout << tracks[k].number << "\t" << tracks[k].title << endl;
}

}

void Shuffle(tvector<Track> & tracks,int count)
// precondition: coun t = # of entries in tracks
// postcondition: entries in tracks have been randomly shuffled
{

RandGen gen; // for random # generator
int randTrack;
Track temp;
int k;
// choose a random song from [k..count-1] for song # k

for(k=0 ; k < count − 1; k++)
{ randTrack = gen.RandInt(k,count −1); // random track

temp = tracks[randTrack]; // swap entries
tracks[randTrack] = tracks[k];
tracks[k] = temp;

}
}

int main()
{

tvector<Track> tracks(10);

tracks[0] = Track("Box of Rain",1);
tracks[1] = Track("Friend of the Devil",2);
tracks[2] = Track("Sugar Magnolia",3);
tracks[3] = Track("Operator",4);
tracks[4] = Track("Candyman",5);
tracks[5] = Track("Ripple",6);
tracks[6] = Track("Brokedown Palace",7);
tracks[7] = Track("Till the Morning Comes",8);
tracks[8] = Track("Attics of my Life",9);
tracks[9] = Track("Truckin",10);

Print(tracks,10);
Shuffle(tracks,10);
cout << endl << "—- after shuffling —-" << endl << endl;
Print(tracks,10);

} shuffle.cpp

Each time the program is run a different order of tracks is generated.

June 7, 1999 10:10 owltex Sheet number 36 Page number 356magentablack

356 Chapter 8 Arrays, Data, and Random Access

O U T P U T

prompt> shuffle
1 Box of Rain
2 Friend of the Devil
3 Sugar Magnolia
4 Operator
5 Candyman
6 Ripple
7 Brokedown Palace
8 Till the Morning Comes
9 Attics of my Life
10 Truckin

---- after shuffling ----

5 Candyman
2 Friend of the Devil
8 Till the Morning Comes
4 Operator
10 Truckin
7 Brokedown Palace
6 Ripple
3 Sugar Magnolia
9 Attics of my Life
1 Box of Rain

ShufflingTracks. The shuffling algorithm we’ll employ is simple and is good theoretically—
that is, it really does shuffle things in a random way. In this case each of the possible
arrangements, orpermutations, of the tracks is equally likely to occur.

The basic algorithm consists of picking a track at random to play first. This can be
done by rolling anN-sided die, where there areN tracks on the CD, or by using the
RandGen class used in Program 7.14,brownian.cpp. Once the first random track is
picked, one of the remaining tracks is picked at random to play second. This process is
continued until a song is picked for the first track, second track, and so on through the
Nth track. Without atvector this would be difficult (though not impossible) to do.
Program 8.4,shuffle.cpp,performs this task.

The expressionrandTrack = gen.RandInt(k,count-1) is used in the
function Shuffle to choose a random track from those remaining. The first time
the for loop is executed, the value ofk is 0, all the tracks are eligible for selection,
and the random number is a valid index between 0 andcount-1 (which is a number
from 0 to 9 inshuffle.cpp.) The contents of thetvector cell at the randomly generated

June 7, 1999 10:10 owltex Sheet number 37 Page number 357magentablack

8.3 Collections and Lists Using tvectors 357

index are swapped with the contents of the cell with index 0 so that the random-index
track is now the first track. The next time through the loop, the random number chosen
is between 1 andcount-1 so that the first track (at index 0) cannot be chosen as the
random track.

8.8 Suppose a new functionInitialize is added toshuffle.cppto initialize thePause to Reflect

elements of a vector ofTrack structs. Write the header/prototype, pre-, and
post-conditions for the function. You’ll need two parameters, just as the two
functionsPrint , andShuffle have.

8.9 In Print , why can’t the output be generated by this statement?

cout << tracks[k] << endl;

8.10 In Shuffle , is it important that the test of thefor loop bek < count - 1
instead ofk < count ? What would happen if the test were changed?

8.11 The statement below fromShuffle assigns the contents of one vector element
to another.

tracks[randTrack] = tracks[k];

What kind of object is assigned in this statement? How many assignments do you
think are part of this assignement?

8.12 Suppose no items are specifically assigned inmain , but instead this code is used.

tvector<Track> tracks(10);
Print(tracks,10);
Shuffle(tracks,10);
Print(tracks,10);
return 0;

Would you be able to tell if the shuffle function works? Why (what’s printed)?

8.13 A different method of shuffling is suggested by the following idea. Pick two
random track numbers and swap the corresponding vector entries. Repeat this
process 1,000 times (or some other time as specified by a constant). Write code
that uses this method for shuffling tracks. Do you have any intuition as to why
this method is “worse” than the method used inshuffle.cpp?

8.3 Collections and Lists Using tvectors

Our first example programs used vectors as counters to determine how many times each
of several possible simulated dice rolls occurs and how many times each character in an
input file occurs. As we saw with the CD track-shuffling program, it’s possible to use
vectors to store objects other than counters. For example, we could store all the words

June 7, 1999 10:10 owltex Sheet number 38 Page number 358magentablack

358 Chapter 8 Arrays, Data, and Random Access

from a text file in a vector and write a program like Program 6.16,maxword3.cpp, to
find the most frequently occurring word. Using a vector will make the program execute
quickly since words will be in memory (in a vector) rather than on disk as they’re scanned
repeatedly to find the word that occurs most often.

In many programs, the number of items stored in a vector will not be known when
the program is compiled, but will be determined at runtime. This would be the case, for
example, if we store all the words in a text file in a vector. How big should we define
vectors to be in order to accommodate the many situations that may arise? If we make a
vector that can hold lots of data, to accommodate large text files, then we’ll be wasting
memory when the program is run on small text files. Conversely, if the vector is too
small we won’t be able to process large files. Fortunately, vectors can grow during a
program’s execution so that vector usage can be somewhat efficient. There will be some
inefficiency because to grow a vector we’ll actually have to make a new one and throw
out the old one. As a metaphor, suppose you keep addresses and phone numbers of
friends in an electronic personal organizer. You may become so popular, with so many
friends, that you run out of memory for all the addresses you store. You may be able
to buy more memory, but with most organizers you’ll need to replace the old memory
chip with a larger chip. This means you’ll need to copy the addresses you’ve saved (to a
computer, for example, but onto paper if you’re really unlucky), install the new memory,
then copy the addresses into the new memory.

8.3.1 Size and Capacity

In general, the number of elements stored in a vector will not be the same as the capacity
of the vector. The capacity is how many elements could be stored, or how many cells
the vector has. The size is the number of elements that are actually stored in the vector.
These are different ideas conceptually, and programs will usually need to track both
quantities separately. Using the electronic organizer as an example again, the capacity is
how many names and addresses the organizer is capable of storing (how much memory it
has) whereas the size is how many names are currently stored in it. Although client code
can grow a vector explicitly, it’s usually simpler and more efficient to have the vector
grow itself.

8.3.2 Using push_back , resize , and reserve

When a vector is defined with an explicit size as an argument to the constructor, this
argument determines both the capacity and the size of the vector. The size is deter-
mined since default objects will be constructed in each vector cell. Member function
tvector::size() returns the size.

tvector<Date> holidays(17); // holidays.size() == 17
tvector<double> values(1000); // values.size() == 1000
tvector<int> scores; // scores.size() == 0
tvector<string> names(10,"Joe"); // names.size() == 10

June 7, 1999 10:10 owltex Sheet number 39 Page number 359magentablack

8.3 Collections and Lists Using tvectors 359

The member functiontvector::push_back is used to add elements to the end
of a vector; the vector resizes itself as needed by doubling its capacity. The lines below
illustratepush_back and how size and capacity change each time an element is added.

tvector<string> names; // size() == 0, capacity() == 0
names.push_back("Fred"); // size() == 1, capacity() == 2
names.push_back("Wilma"); // size() == 2, capacity() == 2
names.push_back("Barney"); // size() == 3, capacity() == 4
names.push_back("Betty"); // size() == 4, capacity() == 4
names.push_back("Pebbles");// size() == 5, capacity() == 8

The size of a vector is determined by three things.

The number of timespush_back is called, each call increases the size by one.

The initial size of a vector when an argument is supplied at construction, this initial
value is the size and the capacity.

The argument in a call totvector::resize() which changes the size and can
change the capacity when the vector grows (resizing cannot shrink the capacity).

The code below prints the values stored innames in the example above.

int k;
for(k=0 ; k < names.size(); k++)
{ cout << names[k] << endl;
}

O U T P U T

Fred
Wilma
Barney
Betty
Pebbles

If a vector is given a size at construction, with subsequent elements added using
push_back , the methodtvector::size will not return the number of elements
added by callingpush_back .

tvector<string> names(7); // size() == capacity() == 7
names.push_back("Grace"); // size() == 8, capacity() == 14
names.push_back("Alan"); // size() == 9, capacity() == 14

The value ofnames[0] is "" because this value is constructed by the default string
constructor. The value ofnames[7] is "Grace" since the initial size puts default
string values in array elements 0–6.

June 7, 1999 10:10 owltex Sheet number 40 Page number 360 magentablack

360 Chapter 8 Arrays, Data, and Random Access

A vector grows when its size and capacity are equal andpush_back adds a new el-
ement to the vector. When a vector grows itself by client programs callingpush_back ,
the capacity doubles.7

Since the capacity doubles, it might go from 8 to 16 to 32 and so on. If you’re writing
a program and you know you’ll need to store at least 5,000 elements, this growing process
can be inefficient.8 The member functiontvector::reserve() is used to create
an initial capacity, but the size remains at zero.

tvector<string> names; // size() == 0, capacity() == 0
names.reserve(2048); // size() == 0, capacity() = 2048

ProgramTip 8.4: If you’re going to use push_back do not define a vector
by giving a size when the vector is constructed. If you construct with a size, the
methodtvector::size won’t return the number of elements added bypush_back ,
it will return that number plus the initial size. If you want to allocate space for efficiency
reasons usetvector::reserve .

We’ll use two functions in Program 8.5 that read words from a file and store them in
a vector to illustrate the differences between usingpush_back and callingresize
explicitly. The runs also show that usingtvector::reserve can lead to increased
efficiency when a vector would double frequently otherwise.

Program 8.5 growdemo.cpp

#include <iostream>
#include <string>
using namespace std;

#include "prompt.h"
#include "tvector.h"
#include "worditer.h"
#include "ctimer.h"

// show differences between push_back and calling resize explicity

void ReadAll(WordStreamIterator& iter, tvector<string>& list)
// postcondition: all words from iter stored in list
{

for(iter.Init(); iter.HasMore(); iter.Next())
{ list.push_back(iter.Current());
}

7The classtvector doubles its capacity each time except when the capacity is initially zero, that is,
when the vector is first constructed. The capacity goes from 0 to 2, and then doubles each time. The
standard vector class should double in capacity too, but implementations are not required to double the
capacity. Most implementations use doubling, but there may be some that don’t.
8Recall that doubling requires copying the elements into a new vector that’s twice as large.

June 7, 1999 10:10 owltex Sheet number 41 Page number 361magentablack

8.3 Collections and Lists Using tvectors 361

}

void ReadAll2(WordStreamIterator& iter,

tvector<string>& list, int& count)

// postcondition: all words from iter stored in list,

// count = number of words read

{

count = 0;

for(iter.Init(); iter.HasMore(); iter.Next())

{ if (count >= list.capacity())

{ list.resize(list.capacity() ∗2 + 1); // grow by doubling

}

list[count] = iter.Current();

count++;

}

}

int main()

{

CTimer timer;

string filename = PromptString("enter filename ");

WordStreamIterator iter;

iter.Open(filename);

tvector<string> listA; // listA.reserve(100000);

tvector<string> listB; // listB.reserve(100000);

timer.Start();

ReadAll(iter,listA);

timer.Stop();

cout << "# words: " << listA.size()

<< " capacity: " << listA.capacity()

<< " time: " << timer.ElapsedTime() << endl;

int count; // # elements stored in listB

timer.Start();

ReadAll2(iter,listB,count);

timer.Stop();

cout << "# words: " << count

<< " capacity: " << listB.capacity()

<< " time: " << timer.ElapsedTime() << endl;

return 0;

} growdemo.cpp

June 7, 1999 10:10 owltex Sheet number 42 Page number 362magentablack

362 Chapter 8 Arrays, Data, and Random Access

O U T P U T

enter filename hamlet.txt
words: 31956 capacity: 32768 time: 0.751
words: 31956 capacity: 32767 time: 0.941
enter filename hawthorne.txt
words: 85753 capacity: 131072 time: 2.874
words: 85753 capacity: 131071 time: 4.587

calls to reserve uncommented or both listA and listB

enter filename hawthorne.txt
words: 85753 capacity: 100000 time: 1.302
words: 85753 capacity: 100000 time: 1.302

The code inReadAll is considerably simpler than the code inReadAll2 . As the
runs show,ReadAll is also more efficient when there is considerable doubling.9

8.14 If the WordStreamIterator is replaced by anifstream variable in Pro-Pause to Reflect

gram 8.5, the call toReadAll returns the same values, but the call toReadAll2
returns a value of zero in reference parametercount , with nothing stored in the
vector. Why?

8.15 Why is the expressionlist.capacity()*2 + 1 used inReadAll2 of
growdemo.cpprather thanlist.capacity()*2 ?

8.16 What value would be returned bylistB.size() during the middle run shown
in the output box (whenlistB.capacity() returns 131071).

8.17 What changes are needed inmain of Program 8.4,shuffle.cppto usepush_back ?
How could the functionsPrint andShuffle change to take advantage of using
push_back in main ?

8.18 A tvector is constructed with size zero, then grows itself to a size of 2, 4, 8, 16,
…vector elements (assumingreserve is not used). Each time the vector grows,
new memory is allocated, and old memory de-allocated. When the capacity of the
vector is 512 how many vector elements has been allocated (including the final
512)? If the capacity is 16,384 how many vector elements have been allocated?

8.19 If a tvector grows by one vector element instead of doubling, (e.g., grows to
1, 2, 3, 4, …elements) then how many elements have been allocated when the
capacity is 32 (including the final 32)? When the capacity is 128? When the
capacity is 16,384? (Hint: 1+ 2 + · · · + n = n(n + 1)/2.)

9The efficiency improvements are a property of thetvector implementation. When the standard
classvector is used instead oftvector in growdemo.cpp the efficiency gains are not nearly as
pronounced.

June 7, 1999 10:10 owltex Sheet number 43 Page number 363 magentablack

8.3 Collections and Lists Using tvectors 363

8.20 Why do you think the time used ingrowdemo.cpp, Program 8.5 by thepush_back
functionReadAll is less than the time used by the functionReadAll2 (when
reserve isn’t used)?

8.3.3 Vector Idioms: Insertion, Deletion, and Searching

To illustrate common vector operations, we’ll use a small program that reads information
representing a portfolio of stocks. We’ll show examples of adding a new stock, deleting a
stock, and finding stocks that match certain criteria, that is, trading below $50.00, above
$100.00, on the NASDAQ exchange,10 or stocks whose symbols begin with the letter
’Q’.

We’ll read a file of information similar to what’s shown below, but without the
company name on the end of each line.11. The information below is out-of-date; it is
from 1996 and not meant to reflect current stock prices. The data for each stock includes
its symbol, such as,KO, the exchange (N = New York, T = NASDAQ), the price, the
number of shares traded, and the name of the company which doesn’t appear in the data
file we’ll use.

KO N 50.5 735000 COCA COLA CO
DIS N 64.125 282200 DISNEY CO WALT HLDG CO
ABPCA T 5.688 49700 AU BON PAIN CO INC CL A
NSCP T 42.813 385900 NETSCAPE COMM CORP
F N 32.125 798900 FORD MOTOR CO

Program 8.6 uses a classPortfolio to read and print a collection of stocks.

Program 8.6 stocks.cpp

#include <iostream>
#include <fstream>
#include <string>
#include <iomanip>
using namespace std;

#include "tvector.h"
#include "strutils.h" // for atoi and atof
#include "prompt.h"

struct Stock
{

string name;
string exchange;
double price;

10There are several stock exchanges in the world. Examples include the New York Exchange, the
NASDAQ exchange, the Toronto Exchange, and others.
11The other information on a line can be read using», but the company name requires the use of
the functiongetline because the name consists of more than one word. We’ll studygetline in
Chapter 9.

June 7, 1999 10:10 owltex Sheet number 44 Page number 364 magentablack

364 Chapter 8 Arrays, Data, and Random Access

int shares;

Stock()
: name("dummy"),

exchange("none"),
price(0.0),
shares(0)

{ }

Stock(const string& n, const string& xc,
double p, int ns)

: name(n),
exchange(xc),
price(p),
shares(ns)

{ }
};

class Portfolio
{

public:
Portfolio();
void Read(const string& filename);

void Print(ostream& out) const;

private:
tvector<Stock> myStocks;

};

Portfolio::Portfolio()
: myStocks(0)

{
myStocks.reserve(20); // start with room for 20 stocks

}

void Portfolio::Read(const string& filename)
{

ifstream input(filename.c_str());
string symbol, exchange, price, shares;

while (input >> symbol >> exchange >> price >> shares)
{ myStocks.push_back(Stock(symbol,exchange,atof(price),atoi(shares)));
}

}

void Portfolio::Print(ostream& out) const
{

int k;
int len = myStocks.size();

out.precision(3); // show 3 decimal places
out.setf(ios::fixed); // for every stock price

for(k=0 ; k < len; k++)

June 7, 1999 10:10 owltex Sheet number 45 Page number 365magentablack

8.3 Collections and Lists Using tvectors 365

{ out << myStocks[k].name << "\t"
<< myStocks[k].exchange << "\t"
<< setw(8) << myStocks[k].price << "\t"
<< setw(12) << myStocks[k].shares << endl;

}
cout << endl << "—-" << endl << "# stocks: " << len << endl;

}

int main()
{

string filename = PromptString("stock file ");
Portfolio port;

port.Read(filename);
port.Print(cout);

return 0;
} stocks.cpp

The conversion functionsatoi andatof from strutils.hare discussed in Howto G.
The formatting functionsprecision and setf for displaying a fixed number of
decimal places are discussed in Howto B.

O U T P U T

prompt> stocks
stock file stocksmall.dat
KO N 50.500 735000
DIS N 64.125 282200
ABPCA T 5.688 49700
NSCP T 42.813 385900
F N 32.125 798900

stocks: 5

The Portfolio constructor initializes the instance variablemyStocks to have
zero elements in the initializer list, then reserves space for 20 stocks in the body of the
constructor.tvector instance variablesmust beconstructed in an initializer list. It’s
not possible to include the size of a vector in the class declaration, (e.g., the following
code does not work).

class Thing
{ ...

private:
tvector<int> myData(30); // ***illegal***

};

June 7, 1999 10:10 owltex Sheet number 46 Page number 366magentablack

366 Chapter 8 Arrays, Data, and Random Access

A class declaration does not allocate memory; memory is allocated in the class definition,
specifically in a constructor. This means you must construct each privatetvector data
field in the initializer list of each constructor.12

Program Tip 8.5: When a tvector instance variable is used in a class,
each constructor for the class should explicitly construct the tvector in
the constructor’s initializer list. A vector can be given a size, or sized to zero with
space reserved by a call totvector::reserve in the constructor body.

8.3.4 Insertion into a SortedVector

As shown instocks.cpp, the functionpush_back is simple to use and effectively adds
a new element to the end of a vector. What can you do if you want to add a new element
to the middle of a vector, or to some other location? If the list of stocks is kept in
alphabetical order by symbol, for example, new stocks should be added in the correct
location to keep the list in sorted order. The only way to do this with a vector is to shift
elements to create an empty vector cell for the new element.

Suppose, for example, that you keep books arranged alphabetically by author, or a
collection of compact discs (CDs) arranged alphabetically by artist. When you get a
new book (or a new CD), you’ll probably have to move or shift several books to make a
spot for the new one. If you’re facing a bookshelf, you might start at the rightmost end
and slide the books to the right until you find where the new book belongs. This mimics
exactly how new elements are inserted into a vector when the vector is mainted in sorted
order.

We’ll write code to shift vector elements to the right. The key statement follows.

myStocks[loc] = myStocks[loc-1];

When loc has the value eight, for example, this copies the element with index seven
into the vector cell with index eight, effectively shifting an element to the right. After
this statement executes, the element in the vector cell with index seven is still there, but
has been copied into the cell with index eight as well. We’ll stop shifting when we’ve
looked at every vector element or when we find where the new stock belongs in the
sorted order. The code below inserts a stocks in sorted order by symbol.13

void Portfolio::Add(const Stock& s)
// postcondition: s added to porfolio in sorted order
{

int count = myStocks.size(); // size before adding
myStocks.push_back(s); // vector size is updated

12If you don’t include an explicittvector constructor in a class’ initializer list, the vector will have
zero elements, which is actually the right thing to do if you’re usingpush_back .
13This code is fromstocks2.cpp , not shown in the book, but available with the programs that come
with the book or from the book website.

June 7, 1999 10:10 owltex Sheet number 47 Page number 367magentablack

8.3 Collections and Lists Using tvectors 367

int loc = count;

while (0 < loc && s.symbol <= myStocks[loc-1].symbol)
{ myStocks[loc] = myStocks[loc-1];

loc--;
}
myStocks[loc] = s;

}

The new stock is first inserted at the end of the vector usingpush_back simply to
allow the vector to update its count of how many elements are in the vector. Elements
are then shifted and the stocks is stored in the proper location when the loop finishes.

To understand and reason about the loop that shifts elements to the right, we’ll
concentrate on three properties of the variableloc . These properties are true each time
the loop test is evaluated, so they constitute aloop invariant and should help us reason
about the correctness of the loop.

loc-1 is the index of the item that will be shifted right if necessary; this is the
rightmost element not yet processed.

loc is the index of the cell in which the new stock will be inserted in sorted order.

All items with index loc + 1 through indexcount are greater than the new
stock being inserted.

Figure 8.4 illustrates the process of inserting a stock with symbol ’D’ into a sorted
vector (for the purposes of illustration, all symbols are single characters.) Initially the
vector has eight elements, so the value ofloc is 8. The three properties that make up
the loop invariant hold the first time the loop test is evaluated.

loc-1 , or 7, is the index ofV, the rightmost unprocessed element. It will be
shifted as necessary.

loc , or 8, is the cell in which the new stock will be stored (if the new stock has
symbol ’Z’, it is stored in location 8.)

All items with indexes 9 through 8 are greater than the stock being inserted. In
this case the range 9. . . 8 represents anempty range, since 9> 8. There are
no elements in this empty range, so it’s true that all the elements in the range are
greater than the element being inserted.14

Whenloc is 4, as shown in Figure 8.4, the three properties still hold. At this point the
lettersQ, S, T, andVhave been shifted to the right, since the loop body has been executed
for values ofloc of 7, 6, 5, 4.

Since the loop test is true, the body is executed, andM is shifted to the right. Finally,
whenloc == 2 , the three properties still hold:

14Don’t worry too much about this. The key here is that it’s impossible to find a word in the range 9. . . 8
that’s smaller than the word being inserted. It’s impossible because there are no words in the empty
range.

June 7, 1999 10:10 owltex Sheet number 48 Page number 368magentablack

368 Chapter 8 Arrays, Data, and Random Access

loc-1 , or 1, is the rightmost unprocessed element

loc , or 2, is the index where the new stock will be inserted

all items with indexes between 3 and 8 have values greater than ’D’.

However, the loop test is false, becauses.symbol > myStocks[loc].symbol
sinceD > C. The loop exits, and the new stock is inserted in the cell with indexloc ,
as described by the invariant.

8.3.5 Deleting an Element Using pop_back

Deleting the last element of a vector is very simple; the methodtvector::pop_back
reduces a vector’s size by one, effectively deleting the last element. The capacity of the
vector is unchanged, but since client programs usetvector::size() to determine
the number of elements stored in a vector, callingpop_back removes the element.

The code below shows a simple method for removing an element from the middle
of a vector when the vector isnot maintained in sorted order. The last element is copied
into the vector cell that will be “deleted”. Callingpop_back ensures that the vector
updates its internal state properly.

myCount

myCount

80 1 2 3 4 5 6 7

80 1 2 3 4 5 6 7

80 1 2 3 4 5 6 7

80 1 2 3 4 5 6 7

myCount

myCount

DAdd to vector maintained in sorted order

Original list

loc = 8

loc = 6

loc = 4

loc = 2

B C F M Q S T V

B C F M Q

B C F

B C F F

M Q

M Q S T

Q S T

V

V

S T T V

Figure 8.4 Maintaining a vector in sorted order. The new element will go in the vector cell
with index loc when shifting is finished. The shaded location is being considered as the
location of the new element.

June 7, 1999 10:10 owltex Sheet number 49 Page number 369magentablack

8.3 Collections and Lists Using tvectors 369

// remove element with index loc from vector v
int lastIndex = v.size() - 1;
v[loc] = v[lastIndex];
v.pop_back();

If the vector is maintained in sorted order, vector elements must be shifted to delete an
element while maintaining the sorted order. In contrast to the code that shifted elements
to the right to make space for a new element, deletion requires shifts to the left.

// delete element with index loc
int k;
for(k=loc ; k < myStocks.size()-1; k++)
{ myStocks[k] = myStocks[k+1];
}
myStocks.pop_back();

8.3.6 Searching aVector

Searching and sorting are common applications in programming. In the stock portfolio
example fromstocks.cpp, Program 8.6, the program was modified to keep stocks in
sorted order. In this section we’ll see how to search for stocks that match some criterion.
Sometimes searching will yield an exact, or single, match. If we search for the stock
with symbolHRLwe expect only one match. In general, searching for a stock by symbol
should yield zero or one matches since stock symbols are unique. On the other hand,
if we search for all stocks below $10.00, or that traded more than 500,000 shares, there
may be many matches.

Searching for a Unique Match. In a sequential search(sometimes called alinear
search), elements in a vector are scanned in sequence, one after the other. Sequential
search is necessary, for example, if you want to find the person whose phone number is
555-2622 in your local phone book. Phone books are arranged alphabetically by name
rather than numerically by phone number, so you must scan all numbers, one after the
other, hoping to find 555-2622.

A search function must return something. Typically the returned value is an index
into the vector, or the matching element found during the search. Using an index as a
return value makes it possible to encode a failed search by returning a bad index value
like −1. If a vector element is returned, it’s not possible, in general, to return a value
indicating a failed search. Some people code search functions to return two values: a
bool to indicate if the search is successful and the matching element. If thebool value
is false, the matching element has no defined value. The code below shows a function
that returns the index of a match in a vector of strings. This code can also be found in
Program 8.7,timesearch.cpp.

int search(const tvector<string>& list, const string& key)
// pre: list.size() == # elements in list
// post: returns index of key in list, -1 if key not found
{

June 7, 1999 10:10 owltex Sheet number 50 Page number 370magentablack

370 Chapter 8 Arrays, Data, and Random Access

int k;
for(k=0 ; k < list.size(); k++)
{ if (list[k] == key)

{ return k;
}

}
return -1; // reach here only when key not found

}

Counting Matches. You may want to know how many stocks sell for more than $150.00
or traded more than 500,000 shares, but not care which stocks they are. This is an example
of a counting searchor counting match. Modifying the linear search code to count
matches is straightforward. The sequential search code returned as soon as a match was
found, but in counting all matches no early return is possible.

int countMatches(const tvector<Stock>& list, int minShares)
// pre: list.size() == # stocks in list
// post: returns # stocks that traded more than minShares shares
{

int k, count = 0;
for(k=0 ; k < list.size(); k++)
{ if (list[k].share > minShares)

{ count++;
}

}
return count;

}

Collecting Matches. In the previous example, the functioncountMatches could de-
termine the number of stocks that traded more than 500,000 shares, but could not de-
termine which stocks these are. It would be simple to add an output statement to the
function so that the stocks that matched were printed, but you may want to know the
average price of the matching stocks rather than just a printed list of the stocks. The
easiest way to collect matches in a search is to store the matches in a vector. The function
below is a modication ofcountMatches that returns the matching stocks as elements
of the parametermatches .

void collectMatches(const tvector<Stock>& list,
int minShares,tvector<Stock>& matches)

// pre: list.size() == # elements in list
// post: matches contains just the elements of list
// that traded > minShares shares
{

int k;
matches.resize(0); // initially no matches

June 7, 1999 10:10 owltex Sheet number 51 Page number 371magentablack

8.3 Collections and Lists Using tvectors 371

for(k=0 ; k < list.size(); k++)
{ if (list[k].share > minShares)

{ matches.push_back(list[k]);
}

}
}

The call tomatches.resize() ensures thatmatches contains just the stocks that
match the criterion of trading more thanminShares shares. Recall thatresize
cannot reduce the capacity of a vector, but it does make the size zero.

8.21 The loop below is designed to find the index at which a new item should bePause to Reflect

inserted in an array to keep the array in sorted order. The loop finds the in-
dex but doesn’t insert. For example, iflist is ("avocado", "banana",
"lemon", "orange") ands is "cherry" the function should return 2; if
s is "watermelon" the function should return 4.

int insertionIndex(const tvector<string>& list,
const string& s)

// pre: list is sorted, list[0] <= list[1] ... <= list[n]
// wher e n = list.size()-1
// post: return index i of s in list, so that
// i is largest value with list[0]..list[i-1] < s
{

int len = list.size();
int k=0;
// invariant: list[0]..list[k-1] < s
while (k < len && list[k] < s)
{ k++;
}
return k;

}

1. Why is list a const reference parameter?

2. What value should be returned ifs is "apple" ? Is this value returned?

3. Is 4 returned whens is "watermelon" ?

4. Why is the textk < len needed?

8.22 Assuming the functioninsertionIndex from the previous problem satisfies
its postcondition, write the function below which could be used as the basis for a
newPortfolio::Add from Section 8.3.4.

void insertAt(tvector<string>& list,
const string& s, int loc)

// post: s inserted into list at location with index loc
// order of list elements unchanged

June 7, 1999 10:10 owltex Sheet number 52 Page number 372magentablack

372 Chapter 8 Arrays, Data, and Random Access

To insert a string into a sorted vector, leaving it sorted, the following call should
work.

strin g s = "apple";
insertAt(list, s, insertionIndex(list,s));

8.23 In a vector ofn elements, what is the fewest number of elements that are shifted
to insert a new element in sorted order? What is the most number of elements that
are shifted?

8.24 The methodtvector::clear makes the size of a vector 0, the callt.clear()
has the same effect ast.resize(0) . If there were no functionsclear or
resize you could write a function to remove all the elements of vector by call-
ing pop_back . Write such a function.

8.25 Write a functiondeleteAt that works likeinsertAt from the second pause
and reflect exercise in this section.

void deleteAt(tvector<string>& list, int loc)
// post: item at index loc removed,
// order of other items unchanged

How could you call deleteAt to remove "banana" from the vector
("avocado", "banana", "lemon", "orange") ?

8.26 Assume the functionisVowel exists.

bool isVowel(const string& s)
// post: returns true if s is ’a’, ’e’, ’i’, ’o’, ’u’
// (or upper case equivalent)

Write the function below.

int vowelCount(const tvector<string>& list)
// post: return # strings in list that begin with a vowel

AssumingvowelCount works, what expression returns the number of strings
in a vectorlist that donot begin with a vowel?

8.27 Modify the function in the previous exercise to return a vector containing all the
strings that begin with a vowel, instead of just the count of the number of strings.

8.28 Write a function to return the sum of all the elements in a vector of ints.

int sum(const tvector<int>& list)
// post: returns list[0] + ... + list[list.size()-1]

June 7, 1999 10:10 owltex Sheet number 53 Page number 373magentablack

8.3 Collections and Lists Using tvectors 373

8.29 Write a function that removes duplicate elements from a sorted vector of strings.

void removeDups(tvector<string>& list)
// pre: list[0] <= ... <= list[list.size()-1] (sorted)
// post: duplicates removed from still sorted list

For example, the vector

("avocado","avocado","lemon","lemon","lemon","orange")

should be changed to

("avocado","lemon","orange")

David Gries (b. 19??)

David Gries is a computer scientist and educator at Cornell University. He is
well known for his advocation of the use of formal methods in designing and

implementing software and in the training of
undergraduates in computer science. He has
done perhaps more than any one person in
making the study of loop invariants and formal
methods accessible to students in introductory
courses.

In his World Wide Web biography he writes
of encounters with recursion when earning his
master’s degree in 1963: “it was fun, figuring
out how to implement recursion efficiently be-
fore there were many papers on the topic.” In
an essay [Gri74] written in 1974 he provides
timeless advice: It must be made clear that
one technique will never suffice (for exam-
ple, top-down programming). A programmer
needs a bag of tricks, a collection of methods
for attacking a problem. Secondly, if we are
to raise the level of programming, each pro-

grammer (no matter how good he feels he is) must become more conscious of the
tools and techniques he uses. It is not enough to just program; we must discover
how and why we do it.

Gries has twins, and in a coincidence of the highest order, the twins were born
on the birthday of Gries and his twin sibling. In noting that he is (perhaps) better
known for his educational work than his research work, Gries writes, “Do what you
are good at; bloom where you are planted.” For his work in education Gries was
awarded the 1994 IEEE Taylor L. Booth Award, the 1991 ACM SIGCSE award,
and the 1995 Karl V. Karlstrom Outstanding Educator Award.

June 7, 1999 10:10 owltex Sheet number 54 Page number 374magentablack

374 Chapter 8 Arrays, Data, and Random Access

one guess

two guesses

three guesses

four guesses

five guesses

six guesses

Sequential search Binary search

(low, high, high, low)

Figure 8.5 Comparing sequential/linear search, on the left, with binary search, on the right.

8.3.7 Binary Search

Phone books are arranged alphabetically by name rather than numerically by phone
number, so you must scan all numbers, one after the other, hoping to find 555-2622. Of
course if you were doing this, you could easily miss the number; people aren’t good at
this kind of repetitive task, but computers are. On the other hand, you can look up John
Armstrong’s, Nancy Drew’s, or Mr. Mxyzptlk’s number without scanning every entry.
Since name/number pairs are stored alphabetically by name, it’s possible to search for a
name efficiently. In this section we’ll investigatebinary search: a method of searching
that takes advantage of sorted data to speed up search. As we’ll see, binary search is not
always better than sequential search. Choosing the right searching algorithm depends
on the context in which the search will be used.

Binary search is based on the method you may have used in playing a guess-a-number
game. Suppose someone thinks of a number between 1 and 100 and will tell you whether
your guess is low, high, or correct. You’ll probably use 50 as the first guess. This will
eliminate half of the numbers from consideration and is considerably more fruitful than
guessing 1 (which, invariably, is low). The strategy of guessing the middle number
works regardless of the the range of numbers. For example, if someone initially thinks
of a number between 1 and 1024, you would guess 512. One guess shrinks the number of
possibilities by half, from 1024 to 512. The number of possibilities continues to shrink
from 512 to 256, 128, 64, 32, 16, 8, 4, 2, and finally 1. This is a total of 10 guesses to
find one of 1024 possible different numbers. Consider what happens if you’re told “yes”
or “no” rather than high/low, and how this affects your guessing strategy. That example
illustrates the difference between binary search and sequential search. Eliminating half of
the numbers with one guess, rather than one number, is shown graphically in Figure 8.5.
A tvector of 32 elements is shown; the shaded area represents the region of items
still being considered after each guess is made. The size of the region being considered
is reduced by half each time for binary search, but by only one for sequential search.

When binary search is used, each comparison cuts the range of potential matches in
half. The total number of guesses will be how many times the initial number of items

June 7, 1999 10:10 owltex Sheet number 55 Page number 375magentablack

8.3 Collections and Lists Using tvectors 375

can be cut in half. As we’ve seen, 1024 items require 10 guesses; it’s not a coincidence
that 210 = 1024. Doubling the number of items from 1024 to 2048 increases the number
of guesses needed by only one, because one guess cuts the list of 2048 down to 1024
and we know that 10 guesses are needed for 1024 items. Again, it’s not a coincidence
that 211 = 2048.

Looking up a name in a phone book of 1024 names might require 11 guesses. When
there is only one name left to check, it must be checked too, because the name being
sought might not be in the phone book (this doesn’t happen with the guess-a-number
game). How many guesses are needed using binary search to search a list of one million
names? As we’ve seen, this depends on how many times one million can be cut in half.
We want to find the smallest numbern such that 2n ≥ 1, 000, 000; this will tell us how
many items must be checked (we might need to add 1 if there’s a possibility that the item
isn’t in the list; this cuts the final list of one item down to a list of zero items). Since
219 = 524, 288 and 220 = 1, 048, 576, we can see that 20 (or 21) guesses are enough
to find an item using binary search in a list of one million items. If you’re familiar with
logarithms, you may recall that log functions are the inverse of exponential functions,
and therefore that the number of times a numberx can be cut in half is log2(x), or log
base 2 ofx. Again, we may need to add 1 if we need to cut a number in half to get down
to zero instead of 1. This is the analog of reducing the items down to a zero-element list
or a one-element list.

8.3.8 Comparing Sequential and Binary Search

We’re more concerned with comparing sequential search and binary search than with
the exact number of items examined with binary search. The difference between 20 and
21 items examined is far less important than the difference between 21 items (binary
search) and one million items (sequential search). Although it’s possible that only one
item is examined when a sequential search is used (consider looking up a word like
“aardvark” in the dictionary), the worst case is that one million items might need to be
examined (consider looking up “zzzz” in a million-word dictionary). Table 8.1 provides
a comparison of the number of items that must be examined using sequential and binary
search.

Examining 18 items will be much faster than examining 100,000 items, but how

Table 8.1 Comparing sequential/linear search with binary search

number of items examined
list size binary search sequential search

1 1 1
10 4 10

1,000 11 1,000
5,000 14 5,000

100,000 18 100,000
1,000,000 21 1,000,000

June 7, 1999 10:10 owltex Sheet number 56 Page number 376 magentablack

376 Chapter 8 Arrays, Data, and Random Access

much faster? If two strings can be compared in a microsecond (one millionth of a
second)—which is very possible on moderately fast computers—both searches will take
less than one second. Does it matter that binary search requires 0.000018 seconds and
sequential search requires 0.1 seconds? The answer is, “It depends.” It probably won’t
matter to you if you’re waiting for a response to appear on a computer monitor, but it
may matter if the computer is “waiting” for the search and 100 million searches are
necessary. On the computers I used to develop the code in this book, searching for one
word in an on-line dictionary of 25,000 words appears to take no time to me using either
sequential or binary search. To be precise, I can type a word to search for, press Enter,
and the word found in the dictionary appears on the screen instantaneously.

However, in Program 8.7,timesearch.cpp, a file of words is read, and then every
different word in the file is searched for in a vector of all the words in the file. To be
precise, the following sequence takes place intimesearch.cpp.

1. All the words in a file are read and stored in a vector. Words are converted to lower
case and leading/trailing punctuation is removed.

2. A StringSet is created from the words in the vector. The set is effectively a
list of the different words in the file (the vector contains duplicates.)

3. A copy of the vector is made, and the copy is sorted. There are now two vectors:
one sorted and one unsorted.15

4. Each word in the set is searched for in the vector. Sequential search is used with
the unsorted vector; binary search is used with the sorted vector.

As you can see in the runs, the time to search using a sorted vector with binary search is
very much faster than the time to search using sequential search. For Hawthorne’sThe
Scarlet Letter, searching for 9,164 different strings in a vector of 85,754 strings took 267
seconds using sequential search and only 0.17 seconds using binary search in a sorted
vector. Of course it took more than one minute to sort the vector in order to use binary
search, but the total time is still much less than the time for sequential search. On the
other hand, consider the times for Poe’sThe Cask of Amontillado. While still drastically
different at 0.501 and 0.01 seconds, a user doesn’t see much impact in a process that
finishes in half a second. That’s why the answer to whether binary search or sequential
search is better is “It depends.”

Program 8.7 timesearch.cpp

#include <iostream>
#include <fstream>
#include <string>
using namespace std;

#include "tvector.h"
#include "ctimer.h"

15The functionQuickSort from sortall.h is used to sort. Sorting is discussed in Chapter 11, but you
can call a sort function without knowing how it works.

June 7, 1999 10:10 owltex Sheet number 57 Page number 377 magentablack

8.3 Collections and Lists Using tvectors 377

#include "strutils.h" // for StripPunc and ToLower
#include "stringset.h"
#include "prompt.h"
#include "sortall.h"

// demonstrate differences between sequential and binary search
// Owen Astrachan, 5/4/99

void Read(const string& filename, tvector<string>& list)
// post: list is unsorted collection of all the strings
// in text file filename, each string is converted to
// lower case with leading/trailing punctuation removed
{

ifstream input(filename.c_str());
string word;
while (input >> word)
{ StripPunc(word);

ToLower(word);
list.push_back(word);

}
}

void makeSet(const tvector<string>& list,StringSet& sset)
// post: sset is set of strings from list
{

int k;
int len = list.size();
for(k=0 ; k < len; k++)
{ sset.insert(list[k]);
}

}

int search(const tvector<string>& list, const string& key)
// precondition: list.size() == # elements in list
// postcondition: returns index of key in list, -1 if key not found
{

int k;
for(k=0 ; k < list.size(); k++)
{ if (list[k] == key)

{ return k;
}

}
return −1; // reach here only when key not found

}

int bsearch(const tvector<string>& list, const string& key)
// precondition: list.size() == # elements in list
// postcondition: returns index of key in list, -1 if key not found
{

int low = 0; // leftmost possible entry
int high = list.size() −1; // rightmost possible entry
int mid; // middle of current range
while (low <= high)
{ mid = (low + high)/2;

if (list[mid] == key) // found key, exit search

June 7, 1999 10:10 owltex Sheet number 58 Page number 378 magentablack

378 Chapter 8 Arrays, Data, and Random Access

{ return mid;
}
else if (list[mid] < key) // key in upper half
{ low = mid + 1;
}
else // key in lower half
{ high = mid − 1;
}

}
return −1; // not in list

}

double timeLinear(const StringSet& sset, const tvector<string>& list)
{

CTimer timer;
StringSetIterator it(sset);

timer.Start();
for(it.Init(); it.HasMore(); it.Next())
{ int index = search(list,it.Current());

if (index == −1)
{ cout << "missed a search for " << it.Current() << endl;
}

}
timer.Stop();
return timer.ElapsedTime();

}

double timeBinary(const StringSet& sset, const tvector<string>& list)
{

CTimer timer;
StringSetIterator it(sset);

timer.Start();
for(it.Init(); it.HasMore(); it.Next())
{ int index = bsearch(list,it.Current());

if (index == −1)
{ cout << "missed a search for " << it.Current() << endl;
}

}
timer.Stop();
return timer.ElapsedTime();

}

int main()
{

string filename = PromptString("enter file ");
CTimer timer;
tvector<string> list, sortedList;
StringSet sset;

timer.Start();
Read(filename,list);
timer.Stop();

June 7, 1999 10:10 owltex Sheet number 59 Page number 379magentablack

8.3 Collections and Lists Using tvectors 379

cout << timer.ElapsedTime() << " secs to read "

<< list.size() << " total words" << endl;

timer.Start();

makeSet(list,sset);

timer.Stop();

cout << "make set time:\t" << timer.ElapsedTime() << " set size: "

<< sset.size() << endl;

timer.Start();

sortedList = list;

QuickSort(sortedList,sortedList.size());

timer.Stop();

cout << "make sorted time:\t" << timer.ElapsedTime() << endl;

cout << "unsorted search time:\t" << timeLinear(sset,list) << endl;

cout << "sorted search time:\t" << timeBinary(sset,sortedList) << endl;

return 0;

} timesearch.cpp

O U T P U T

prompt> timesearch
enter file poe.txt
0.08 secs to read 2325 total words
make set time: 0.17 set size: 810
make sorted time: 0.09
unsorted search time: 0.501
sorted search time: 0.01

prompt> timesearch
enter file hamlet.txt
1.072 secs to read 31957 total words
make set time: 6.429 set size: 4832
make sorted time: 6.429
unsorted search time: 56.652
sorted search time: 0.08

prompt> timesearch
enter file hawthorne.txt
3.895 secs to read 85754 total words
make set time: 24.896 set size: 9164
make sorted time: 68.228
unsorted search time: 267.585
sorted search time: 0.17

June 7, 1999 10:10 owltex Sheet number 60 Page number 380magentablack

380 Chapter 8 Arrays, Data, and Random Access

The postconditions for functionssearch and bsearch in Program 8.7,time-
search.cpp, are identical. You can use either function to search, but a vector must be
sorted to use binary search.

8.4 Built-in Arrays
This section covers materials not used in this book other than in this section.

In this section we’ll study the built-in C++array type and compare it with the
tvector class we’ve used to implement a homogeneous, random-access data structure.
The tvector class is defined using the built-in C++ array type. Using built-in arrays
results in code that will probably execute more quickly than when thetvector class
is used, because of overhead associated with checkingtvector indices.

However, it is much more difficult to develop correct programs with arrays than it
is with vectors. Any integer value can be used to subscript an array, even if the value
doesn’t represent a valid array location. In some languages (e.g., Java), indexing values
that do not represent valid array locations cause a program to generate an error message,
which can be used to trace the program’s behavior. In C and C++, on the other hand,
an invalid subscript value can cause unexpected behavior that can lead to hard-to-find
errors. Such invalid subscripts are not checked before being used to index a built-in
array. Using thetvector class rather than the built-in array type provides some safety
when using indexed variables, because indices are checked with thetvector class.
Arrays in C++ have several properties that, at best, might be described as idiosyncratic,
and at worst, are a programmer’s nightmare.

There are three reasons to study arrays in addition to vectors.

If you read programs written by other people you’ll proably see lots of array code.

Arrays are more low-level so can offer some performance gains, though the built-
in vector class (which has no range checking) should be just as fast with any
reasonable implementation.

It’s easier to initialize an array than it is to initialize a vector.

8.4.1 Defining an Array

In C++ the size of an array must be specified by an expression whose value can be
determined at compile time. The three statements below on the left define two arrays:
one namednumList , capable of storing 200 values of typedouble , and one named
names that can store 50string values. Correspondingtvector definitions are
given on the right.

const int SIZE = 100; const int SIZE = 100;
double numList[SIZE*2]; tvector<double> numList(SIZE*2);
string names[SIZE/2]; tvector<string> names(SIZE/2);

In contrast, the following definition ofnumList is illegal according to the C++ standard,
because the value ofsize must be determined at compile time but here is known only at

June 7, 1999 10:10 owltex Sheet number 61 Page number 381magentablack

8.4 Built-in Arrays 381

run time. Nevertheless, some compilers may permit such definitions, and in Chapter 12
we will see how to define in a legal manner an array whose size is not known at compile
time. There is no compile-time limit on the size oftvector variables—only on built-in
array variables.

int size;
cout << "enter size ";
cin >> size;
double numList[size]; // not legal in standard C++

8.4.2 Initializing an Array

Arrays can be initialized by assigning values to the individual array locations, using a
loop. It is also possible to assign values to individual array locations when an array is
defined. For example, the following definitions assign values representing the number
of days in each month tomonthDays and the names of each month tomonthNames:

int monthDays[13] = {0,31,28,31,30,31,30,
31,31,30,31,30,31};

string monthNames[13] = {"","January","February","March",
"April","May","June","July",
"August", "September","October",
"November","December"};

Given these definitions, it’s possible to print the names of all the months, in order from
January to December, and how many days are in each month, with the following loop.

for(k=1; k <= 12; k++)
{ cout << monthNames[k] << ", " << monthDays[k]

<< " days" << endl;
}

This kind of initialization isnot possible withtvector variables—only with variables
defined using built-in arrays. Note that the zeroth location of each array is unused, so
that thekth location of each array stores information for thekth month rather than storing
information for March in the location 2. Again, the conceptual simplicity of this scheme
more than compensates for an extra array location.

Although the number of entries in each array (13) is specified in the definitions
above, this is not necessary. It would be better stylistically to define a constantconst
int NUM_MONTHS = 12, and use the expressionNUM_MONTHS + 1in defining
the arrays, but no number at all needs to be used, as follows:

int monthDays [] = {0,31,28,31,30,31,30,
31,31,30,31,30,31};

string dayNames [] = {"Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday","Friday",
"Saturday"};

June 7, 1999 10:10 owltex Sheet number 62 Page number 382magentablack

382 Chapter 8 Arrays, Data, and Random Access

The definition fordayNames causes an array of seven strings to be allocated and
initialized. The definition ofmonthDays allocates and initializes an array of 13 integers.
Since the compiler can determine the necessary number of array locations (essentially
by counting commas in the list of values between curly braces), including the number
of cells is allowed but is redundant and not necessary.

It is useful in some situations to assign all array locations the value zero as is done in
Program 8.2. This can be done when the array is defined, by using initialization values
as in the preceding examples, but an alternative method for initializing all entries in an
array to zero follows:

int diceStats[9] = {0};

The int array diceStats has 9 locations, all equal to 0. When zero is used to
initialize all array locations, the number of locations in the array isnot redundant as it
is in the earlier examples, because there is no comma-separated list of values that the
compiler can use to determine the number of array values. This methodcannotbe used
to initialize arrays to values other than zero. The definition

int units[100] = {1};

results in an array withunits[0] == 1 , but all other locations inunits are zero.
When a list of values used for array initialization doesn’t have enough values, zeros are
used to fill in the missing values. This is essentially what is happening with the shortcut
method for initializing an array of zeros. I don’t recommend this method of initialization;
it leads to confusion, because zero is treated differently from other values.

In contrast,tvector variables can be initialized so that all entries contain any
value, not just zero. This can be done using the two-parametertvector constructor.

8.4.3 Arrays as Parameters

Arrays are fundamentally different from other types in C++ in two ways:

1. It is not possible to assign one array to another using an assignment operator=.

2. An array passed as a parameter isnot copied; it is as though the array were passed
by reference.

The reason for these exceptions to the normal rules of assignment and parameter passing
in C++ (which permit assignment between variables of the same type and use call-by-
value for passing parameters) is based on what an array variable name is: aconstant
whose value serves as areferenceto the first (index 0) item in the array. Since constants
cannot be changed, assignments to array variables are illegal:

int coins[] = {1,5,10,25};
int bills[] = {1,5,10,20};

coins = bills; // illegal in C and C++
coins[3] = bills[3]; // legal, assigning to array location

June 7, 1999 10:10 owltex Sheet number 63 Page number 383 magentablack

8.4 Built-in Arrays 383

Because the array name is a reference to the first array location, it can be used to access
the entire contents of the array, with appropriate indexing. Only the array name is passed
as the value of a parameter, but the name can be used to change the array’s contents even
though the array is not explicitly passed by reference. When an array is passed as a
parameter, empty brackets[] are used to indicate that the parameter is an array. The
number of elements allocated for the storage associated with the array parameter does
not need to be part of the array parameter. This is illustrated in Program 8.8

Program 8.8 fixlist.cpp

#include <iostream>
using namespace std;

// illustrates passing arrays as parameters

void Change(int list[], int numElts);
void Print(const int list[], int numElts);

int main()
{

const int SIZE = 10;

int numbers[SIZE];
int k;
for(k=0 ; k < SIZE; k++){

numbers[k] = k+1;
}

cout << "before" << endl << "———" << endl;
Print(numbers,SIZE);

cout << endl << "after" << endl << "———" << endl;
Change(numbers,SIZE);
Print(numbers,SIZE);
return 0;

}

void Change(int list[], int numElts)
// precondition: list contains at least numElts cells
// postcondition: list[k] = list[0] + list[1] + ... + list[k]
// for all 0 <= k < numElts
{

int k;
for(k=1 ; k < numElts; k++)
{ list[k] += list[k −1];
}

}

void Print(const int list[], int numElts)
// precondition: list contains at least numElts cells
// postcondition: all elements of list printed
{

June 7, 1999 10:10 owltex Sheet number 64 Page number 384magentablack

384 Chapter 8 Arrays, Data, and Random Access

int k;

for(k=0 ; k < numElts; k++)

{ cout << list[k] << endl;

}

} fixlist.cpp

O U T P U T

before

1
2
3
4
5
6
7
8
9
10

after

1
3
6
10
15
21
28
36
45
55

The identifiernumbers is used as the name of an array; its value is the location of the
first array cell (which has index zero). In particular,numbers doesnot change as a
result of being passed toChange() , but thecontentsof the arraynumbers do change.
This is a subtle distinction, but the array name is passed by value, as are all parameters
by default in C and C++. The name is used to access the memory associated with the
array, and the values stored in this memory can change. Since it is not legal to assign a
new value to an array variable (e.g.,list = newlist), the parameterlist cannot
be changed in any case, although the values associated with the array cells can change.

June 7, 1999 10:10 owltex Sheet number 65 Page number 385magentablack

8.4 Built-in Arrays 385

ProgramTip 8.6: An array name is like a handle that can be used to grab
all the memory cells allocated when the array is defined. The array name
cannot be changed, but it can be used to access the memory cells so that they can be
changed.

const Parameters. The parameter for the functionPrint in Program 8.8 is defined
asconst or a constant array. The values stored in the cells of a constant arraycannot
be changed; the compiler will prevent attempts to do so. The values stored in aconst
array can, however, be accessed, as is shown inPrint . If the statementlist[k] =
0 is added in the while loop ofPrint , the g++ compiler generates the following error
message:

fixlist.cpp: In function ‘void Print(const int *, int)’:
fixlist.cpp:46: assignment of read-only location

Compilation exited abnormally with code 1
at Sat Jun 4 14:02:18

ProgramTip 8.7: Using a const modifier for parameters is good, defen-
sive programming—it allows the compiler to catch inadvertent attempts
to modify a parameter. A const array parameter protects the values of the array
cells from being modified.

Array Size as a Parameter. The number of elements in an array parameter isnot included
in the formal parameter. As a result, there must be some mechanism for determining the
number of elements stored in an array parameter. This is commonly done by passing
this value as another parameter, by using a global constant, by using the array in a class
that contains the number of entries, or by using a sentinel value in the array to indicate
the last entry. As an example, the following functionAverage returns the average of
the firstnumScores test scores stored in the arrayscores .

double Average(const int scores, int numScores)
// precondition: numScore s = # of entries in scores
// postcondition: returns average of
// scores[0] ... scores[numScores-1]
{

int total = 0;
double average = 0.0; // stores returned average
int k;
for(k=0 ; k < numScores; k += 1)
{ total += scores[k];

June 7, 1999 10:10 owltex Sheet number 66 Page number 386magentablack

386 Chapter 8 Arrays, Data, and Random Access

}

if (numScores != 0) // guard divide by zero
{ average = double(total)/numScores;
}
return average;

}

Some other section of code might read numbers, store them in an array, and call the func-
tion Average to compute the average of the numbers read. Alternatively, the numbers
stored in the formal parameterscores might be data generated from a simulation or
some other computer program.

In the following program segment, numbers representing grades (for students in a
hypothetical course) are read until the input is exhausted or until the number of grades
would exceed the capacity of the array. The average of these grades is then calculated
using the functionAverage .

const int MAX_GRADES = 100; // maximum # of grades
int grades[MAX_GRADES];
int numGrades = 0; // # of grades entered

while (cin >> score && numGrades < MAX_GRADES)
{ grades[numGrades] = score;

numGrades++;
}
cout << "average grad e = " << Average(grades,numGrades)

<< endl;

This example is meant to illustrate how an array might be used. The approach of storing
the grades in an array to calculate the average is not a good one. Because the size of an
array is determined at compile time, the code in this example is limited to manipulating
at mostMAX_GRADESgrades. Since it is possible to calculate the average of a set
of numbers without storing all the numbers, the approach used above is unnecessarily
limiting.

The value ofnumScores in Average is exactly the number of values stored in
the arrayscores but is one more than the largest index of an array cell with a valid
value. This off-by-one difference is potentially confusing, so be careful in writing loops
that access all the elements in an array.

8.5 Chapter Review
We studied the vector classtvector used in place of built-in arrays to store collections
of values accessible by random access. Vectors can store thousands of values, and the
fifth, five-hundredth, and five-thousandth values can be accessed in the same amount of
time. Vectors and their built-in counterparts, arrays, are very useful in writing programs
that store and manipulate large quantities of data.

The important topics covered include the following:

June 7, 1999 10:10 owltex Sheet number 67 Page number 387magentablack

8.5 Chapter Review 387

tvectors can be used as counters, for example to count the number of occurrences
of each ASCII character in a text file or the number of times a die rolls each number
over several trials.

tvectors are constructed by providing the size of the vector (the number of elements
that can be stored) as an argument to the constructor. Vectors are indexed beginning
at zero, so a six-element vector has valid indices 0, 1, 2, 3, 4, 5.

tvectors can be grown by client programs usingresize or can grow themselves
when elements are added usingpush_back . Client programs should double the
size when a vector is grown as opposed to growing the size by adding one element.

When usingpush_back , vectors should be constructed without specifying a
size, though space can be allocated usingtvector::reserve .

tvectors of all built-in types can be defined, and vectors of programmer-defined
types (likestring) can be defined if the type has a default constructor.

tvectors can be initialized to hold the same value in every cell by providing a
second argument to the constructor when the vector is defined.

tvectors should always be passed by reference to save memory and the time that
would be required to copy if pass by value were used. There are occasions when
a copy is needed, but in general pass by reference is preferred. Useconst
reference parameters to protect the parameter from being altered even when passed
by reference.

Initializer lists should be used to construct vectors that are private data members
of class objects.

The functionpop_back removes the last element of a vector and decreases by
one the size of the vector.

Sequential search is used to find a value in an unsorted vector. Binary search can
be used to find values in sorted vectors. Binary search is much faster, needing
roughly 20 comparisons to find an item in a list of one million different items. The
drawback of binary search is that its use requires a sorted vector.

Insertion and deletion in a sorted vector requires shifting elements to the right and
left, respectively.

Built-in arrays are cumbersome to use but may be more efficient than vectors.
Nevertheless, you should use vectors and switch to arrays only when you’ve de-
termined that speed is essential and that the use of vectors is making your program
slow (which is probably not the case).

Built-in arrays can be initialized with several values at once. Built-in arrays cannot
be resized, cannot be assigned to each other, and do not support range-checked
indexing. The size of a built-in array must be known at compile time (although
we’ll see in Chapter 12 that an alternative form of array definition does permit
array size to be determined at run time).

June 7, 1999 10:10 owltex Sheet number 68 Page number 388magentablack

388 Chapter 8 Arrays, Data, and Random Access

8.6 Exercises

8.1 Modify Program 8.3,letters.cpp,so that a vector of 26 elements, indexed from 0 to
25, is used to track how many times each letter in the range’a’ –’z’ occurs. To do
this, map the character’a’ to 0, ’b’ to 1,…, and ’z’ to 25. Isolate this mapping in a
functionCharToIndex whose header is

int CharToIndex(char ch)
// pre: ’a’ <= ch and ch <= ’z’
// post: returns 0 for ’a’, 1 for ’b’, ... 25 for ’z’

Note that’a’ - ’a’ == 0 , ’b’ - ’a’ == 1 , and’z’ - ’a’ == 25 .)

8.2 Write a program that maintains an inventory of a CD collection, a book collection, or
some other common collectible. Model the program onstocks.cpp, Program 8.6, but in-
stead of implementing a classPortfolio , implement a class calledCDCollection ,
for example.
The user of the program should have the choice of printing all items, deleting items
given an identification number, or artist, searching for all work by a particular artist,
reading data from a file and saving data to a file. The data filecd.datthat comes with
the on-line materials for this book contains thousands of CD entries. For example, the
lines below show information for five CDs: an id, the price, the group, and the name of
the CD/album.

100121 : 15.98 : R.E.M. : Automatic for the People
100122 : 14.98 : Happy Mondays : Yes, Please
100126 : 14.98 : 10,000 Maniacs : Our Time In Eden
100127 : 11.98 : Skid Row : B-Side Ourselves

You won’t be able to read a file in this format using the extractionoperator »
because the artist and title contain whitespace. To read these you’ll need to use the
functiongetline discussed in Chapter 9. The loop below shows how to read a file in
the format above, and store the information in a structCD. The code is very similar to
the functionPortfolio::Read from stocks.cpp.

void CDCollection::Read(const string& filename)
{

ifstream input(filename.c_str());
string idnum, price, group, title;

while (getline(input,idnum, ’:’) &&
getline(input,price, ’:’) &&
getline(input,group, ’:’) &&
getline(input,title, ’\n’))

{ myCDs.push_back(CD(idnum, atof(price),
group, title));

}
}

8.3 Modify the classRandomWalk found inwalk.h, Program 7.11 so that the one-dimensional
walker keeps track of how many times it visits every position in the range−100 to 100.

June 7, 1999 10:10 owltex Sheet number 69 Page number 389magentablack

8.6 Exercises 389

You can either use onetvector with 201 elements or twotvector instance vari-
ables: one for nonnegative positions and one for negative positions. ARandomWalk
object should also keep track of how many times it goes outside the[−100..100] range.
You’ll need to add one or more member functions to get or print the data kept about
how many times each position is visited. The simplest approach is to add a method
PrintStats to print the data. Alternatively you could return a vector of statistics to
client programs. You’ll need to think carefully about how to verify that the program is
tracking visits properly.
For an extra challenge, keep track of every position visited, not just those in the range
[−100..100]. You’ll need to grow the vector(s) that keep track of visits to do this.

8.4 Write a program to implement the guess-a-number game described in Section 8.3.7 on
binary search. The user should think of a number between 1 and 100 and respond to
guesses made by the computer. Make the program robust so that it can tell whether the
user cheats by providing inconsistent answers.

O U T P U T
prompt> guessnum
Think of a number between 1 and 100 and I’ll guess it.

Is the number 50 [y/n]? no
Is the number less than 50 [y/n]? no
Is the number 75 [y/n]? no
Is the number less than 75 [y/n]? no
Is the number 87 [y/n]? no
Is the number less than 87 [y/n]? yes
Is the number 81 [y/n]? yes
I guessed your number using 7 questions.

You’ll find it useful to call the functionPromptYesNo in prompt.h(see Program G.1
in Howto G.)

8.5 Write a program that reads a text file and keeps track of how many time each of the
different words occur. AStringSet object can keep track of the different words,
but the program needs to keep track of how many times each word occurs. There are
several ways you might solve this problem; one is outlined below.

Create a struct containing a word and a count of how many times the word occurs.
Each time a word is read from the file, it is looked up in a vector of these structs.
If the word has been seen before, the word’s count is incremented, otherwise the
word is added with one occurrence.

8.6 Design and implement aHistogram class for displaying quantities stored in atvector .
A histogram is like a bar graph that displays a line relative to the size of the data being
visualized. You can construct aHistogram object from a vector, and use the vector
as a source of data that generates the histogram.
For example, the results of usingletters.cpp,Program 8.3, to find occurrences of each

June 7, 1999 10:10 owltex Sheet number 70 Page number 390magentablack

390 Chapter 8 Arrays, Data, and Random Access

letter inHamletcan be displayed as a histogram as follows:

O U T P U T

prompt> letters
enter name of input file: hamlet

a (9950) **************************
b (1830) ****
c (2606) ******
d (5025) *************
e (14960) **
f (2698) *******
g (2420) ******
h (8731) ***********************
i (8511) **********************
j (110)
k (1272) ***
l (5847) ***************
m (4253) ***********
n (8297) **********************
o (11218) *****************************
p (2016) *****
q (220)
r (7777) ********************
s (8379) **********************
t (11863) *******************************
u (4343) ***********
v (1222) ***
w (3132) ********
x (179)
y (3204) ********
z (72)

The absolute counts for each letter are shown in parentheses. The bars are scaled so that
the longest bar (for the lettere) has 40 asterisks and the other bars are scaled relative to
this. For example, the letterh has 23 asterisks and 8731/14960× 40 = 23.32 (where
we divide usingdouble precision, but truncate the final result to an integer).
Member functions for theHistogram class might include setting the length of the
longest bar, identifying labels for each bar drawn, plotting a range of values rather than
all values, and grouping ranges; for example, for plotting data in the range 0–99, you
might group by tens and plot 0–9, 10–19, 20–29, …, 90–99.
It’s difficult to write a completely general histogram class, so you’ll need to decide how
much functionality you will implement. The following histogram tracks 10,000 rolls of
two six-sided dice and scales the longest bar to 40 characters:

June 7, 1999 10:10 owltex Sheet number 71 Page number 391magentablack

8.6 Exercises 391

O U T P U T

prompt> rollem
how many sides for dice: 6
how many rolls: 10000

2 (282) ******
3 (522) ************
4 (874) *********************
5 (1106) **************************
6 (1376) *********************************
7 (1650) **
8 (1431) **********************************
9 (1131) ***************************

10 (815) *******************
11 (545) *************
12 (268) ******

8.7 Reimplement the histogram class from the previous exercise to draw a vertical his-
togram. For example, a graph for rolling two six-sided dice (scaled to 10 asterisks in
the longest bar) is shown below, followed by the same graph drawn vertically.

2 (243) *
3 (594) ***
4 (827) ****
5 (1066) ******
6 (1327) *******
7 (1682) **********
8 (1465) ********
9 (1091) ******

10 (807) ****
11 (606) ***
12 (292) *

*
*
* *

* * *
* * * * *
* * * * *

* * * * * * *
* * * * * * * * *
* * * * * * * * *

* * * * * * * * * * *

2 3 4 5 6 7 8 9 10 11 12

June 7, 1999 10:10 owltex Sheet number 72 Page number 392magentablack

392 Chapter 8 Arrays, Data, and Random Access

It’s harder to get labels drawn well for the vertical histogram, so first try to determine
how to draw the bars and don’t worry initially about the labels.

8.8 Implement aSieve of Eratosthenesto find prime numbers. Asieve is implemented using
a tvector of bool values, initialized so that all elements aretrue . To find primes
between 2 andN, usetvector indices 2 throughN, so you’ll need an(N +1)-element
tvector .

1. Find the first entry that istrue (initially this entry has index 2, because 0 and 1
do not count in the search for primes). We’ll call the index of thetrue entryp,
since this entry will be prime.

2. Set each entry whose index is a multiple ofp to false .
3. Repeat until alltvector elements have been examined.

The process is illustrated in Figure 8.6 for the numbers 2 through 18. Circled numbers
are true. In the topmost view of the array the firsttrue cell has index 2, so all the
even numbers (multiples of 2) are changed tofalse . These are shown as shaded
entries in the diagram. The nexttrue value is 3, so all multiples of 3 are changed
to false (although 6, 12, and 18 have already been changed). In the third row no
more new entries will be set to false that are not already false, and the primes have been
determined (although the steps are repeated until alltvector elements have been
examined).

8.9 Write a program that keeps track of important dates/events and reminds you of all the
important dates that occur in the next two weeks each time you run the program. For
example, you can store events in a data file as follows:

04 01 April Fools Day
02 08 Mom’s birthday
01 01 New Year’s Day
07 16 Laura’s birthday
11 22 Margaret’s birthday

To read data in this format you’ll need to use thegetline function from Chapter 9
to read all the words on a line after the month and day. The code below reads an
ifstream namedinput in this format and prints all the events.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 8.6 Using a Sieve of Eratosthenes to find primes

June 7, 1999 10:10 owltex Sheet number 73 Page number 393magentablack

8.6 Exercises 393

int month, day;
string event;
while (input >> month >> day &&

getline(input,event)
{

Date dday(month,day,1999);
cout << event << " occurs on " << dday << endl;

}

The program should prompt the user for a time frame, like one day, or one week, or 15
weeks, and print all the events that occur within that time frame of the current day (the
day on which the program is run). Seedate.h , Program G.2 in Howto G for a review
of theDate class.
You should allow the user the option of printing all the events in chronological order.

8.10Write a program that determines the frequently used words in a text file. We’ll define
frequently used to mean that a word accounts for at least 1% of all the words in a
file. For example, in the filemelville.txtthere are 14,353 total words, so any word that
occurs more than 143 times is a frequently used word. Formelville.txt the frequently
used words are shown in Table 8.2 with their number of occurrences.

Table 8.2 Frequent words in melville.txt

334 a 196 my
376 and 151 not
218 he 359 of
219 his 194 that
519 i 603 the
265 in 432 to
164 it 195 was

June 7, 1999 10:10 owltex Sheet number 19 Page number 394magentablack

394

June 7, 1999 10:10 owltex Sheet number 20 Page number 395magentablack

3
Design, Use, and

Analysis
Extending the

Foundation

395

June 7, 1999 10:10 owltex Sheet number 21 Page number 396magentablack

June 7, 1999 10:10 owltex Sheet number 22 Page number 397magentablack

9Strings, Streams, and
Operators

He was a poet and hated the approximate.
Rainer Maria Rilke

The Journal of My Other Self

Computer programs require precision even when abstraction is required
to make them intelligible.

J.A. Zimmer
Abstraction for Programmers

Abstraction …is seductive; forming generic abstract types can lead into confusing excess
Marian Petre

Psychology of Programming, 112.

In 1936 Alan Turing, a British mathematician, published a famous paper titled “On
Computable Numbers, with an Application to the Entscheidungsproblem.” This paper
helped lay the foundation for much of the work done in theoretical computer science, even
though computers did not exist when the paper was written.1 Turing invented a model of a
computer, called aTuring machine, and he used this model to develop ideas and proofs
about what kinds of numbers could be computed. His invention was an abstraction,
not a real machine, but it provided a framework for reasoning about computers. The
Church–Turing thesis says that, from a theoretical standpoint, all computers have the
same power. This is commonly accepted; the most powerful computers in the world
compute the same things as Turing’s abstract machine could compute. Of course some
computers are faster than others, and computers continue to get faster every year,2 but
the kinds of things that can be computed have not changed.

How can we define abstraction in programming? The American Heritage Dictionary
defines it as “the act or process of separating the inherent qualities or properties of
something from the actual physical object or concept to which they belong.” The general
user’s view of a computer is an abstraction of what really goes on behind the scenes.
You do not need to know how to program a pull-down menu or a tracking mouse to use
these tools. You do not need to know how numbers are represented in computer memory
to write programs that manipulate numeric expressions. In some cases such missing
knowledge is useful, because it can free you from worrying unnecessarily about issues
that aren’t relevant to programming at a high level.

Abstraction is a cornerstone of all computer science and certainly of our study of
programming. The capability that modern programming languages and techniques pro-

1At least, computers as we know them had not yet been invented. Several kinds of calculating machines
had been proposed or manufactured, but no general-purpose computer had been built.
2No matter when you read this sentence, it is likely to be true.

397

June 7, 1999 10:10 owltex Sheet number 23 Page number 398magentablack

398 Chapter 9 Strings, Streams, and Operators

vide us to avoid dealing with details permits more complex and larger programs to be
written than could be written with assembly language, for example.

In this chapter we’ll discuss characters, strings, files, and streams. These form
an abstraction hierarchy with characters at the lowest level and streams at the highest
level. A character is a symbol such as’a’ . Strings and files are both constructed
from characters. We’ll see that streams can be constructed from strings as well as from
files. Although a character lies at the lowest level, we’ll see that characters are also
abstractions. We’ll discuss programming tools that help in using and combining these
abstractions.

9.1 Characters: Building Blocks for Strings
From the beginning of our study of C++ we have worked with the classstring .
Although we haven’t worried about how thestring class is implemented or about
the individual characters from which strings are built, we have used thestring class
extensively in many programs. We have treated strings as abstractions—we understand
strings by their use and behavior rather than by their construction or implementation. If
we understand thestring member functions (such aslength , substr , operator
==, andoperator <<), we do not need to understand the details and idiosyncrasies
of the implementation. However, some programs manipulate the individual characters
used to build strings, so we’ll need to expand our understanding of characters.

9.1.1 TheType char as an Abstraction

We have discussed strings as sequences of characters but have not included detailed
discussions of how a character is implemented in C++. The typechar is used for
characters in C++.3

A char variable stores legal character values. The range of legal values depends on
the computer system being used and even the country in which the system is used. The
range of legal characters that is supported in a computing system is called thecharacter
set. The most commonly used set is the ASCII set (pronounced “askee,” an acronym for
American Standard Code for Information Interchange); all programs in this book are run
on a system with this character set. An emerging standard set is called Unicode, which
supports international characters, such as ä, that are not part of the ASCII set. Chinese,
Japanese, Arabic, and Cyrillic character sets may also be represented using Unicode.
You must try to isolate your programs as much as possible from the particular character
set being used in the program’s development. This will help ensure that the program is
portable—that is, useful in other computing environments than the one in which it was
developed.

The typechar is the smallest built-in type. Achar variable uses less (actually,
no more) memory than any other type of variable. Achar literal is identified by using

3Some people pronouncechar as “care,” short for “character.” Others pronounce it “char” as in
“charcoal.” A third common pronunciation is “car” (rhymes with “star”). I don’t like the “charcoal”
pronunciation and use the pronunciation that has character.

June 7, 1999 10:10 owltex Sheet number 24 Page number 399magentablack

9.1 Characters: Building Blocks for Strings 399

single quotes, as shown in the first two of the following examples:

char letter = ’a’;
char digit = ’9’;
string word = "alphabetic";

Note thatstring literals use double quotes, which are different from two single quotes.
As an abstraction, achar is very different from anint. Unfortunately, in almost

all cases achar can be treated as anint in C++ programs. This similarity has the
potential to be confusing. From a programmer’s view, achar is distinguished from an
int by the way it is printed and, perhaps, by the amount of computer memory it uses.
The relationship betweenchar andint values is determined by the character set being
used. For ASCII characters this relationship is given in Table F.3 in Howto F.

Program 9.1 shows how the typechar is very similar to the typeint but prints
differently. Thechar variablek is incremented just as anint is incremented, but, as
the output shows, characters appear on the screen differently than integers.

The output of Program 9.1 shows that capital letters come before lower-case letters
when the ASCII character set is used. Notice that the characters representing the digits
’0’ through ’9’ are contiguous and come before any alphabetic character.

Program 9.1 charlist.cpp

#include <iostream>

using namespace std;

// illustrates use of char as an integral type

int main()

{

char first,last;

cout << "enter first and last characters" << endl;

cout << "with NO SPACE separating them: ";

cin >> first >> last;

cout << first; // print first char (fencepost problem)

char k;

for(k=first+1; k <= last; k++)

{ cout < < " " << k;

}

cout << endl;

return 0;

} charlist.cpp

June 7, 1999 10:10 owltex Sheet number 25 Page number 400magentablack

400 Chapter 9 Strings, Streams, and Operators

O U T P U T

prompt> charlist
enter first and last characters
with NO SPACE separating them: AZ
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
prompt> charlist
enter first and last characters
with NO SPACE separating them: 2B
2 3 4 5 6 7 8 9 : ; < = > ? @ A B
prompt> charlist
enter first and last characters
with NO SPACE separating them: Zf
Z [\] \ˆ{} _ ‘ a b c d e f
prompt> charlist
enter first and last characters
with NO SPACE separating them: &3
& ’ () * + , - . / 0 1 2 3

If we change the output statement to cast the character to anint,

cout < < " " << int(k);

the program will display the internal numeric representation of eachchar rather than
its symbolic character representation.

O U T P U T

prompt> charlist
enter first and last characters
with NO SPACE separating them: AM
65 66 67 68 69 70 71 72 73 74 75 76 77

Using the cast makes it more difficult to verify that the output is correct, because
the symbolic form of each character isn’t used. In general, there isn’t any reason to
be concerned with what the numerical representation of each character is, because C++
provides many mechanisms that allow programs to use the typechar abstractly without
regard for the underlying character set. You can make the following assumptions about
character codes on almost every system you’ll use.

1. The digit characters’0’ through’9’ (ASCII values 48 through 57) are consec-
utive with no intervening characters.

June 7, 1999 10:10 owltex Sheet number 26 Page number 401magentablack

9.1 Characters: Building Blocks for Strings 401

Table 9.1 Some functions in <cctype>

function prototype returns true when

int isalpha(int c) c is alphabetic (upper or lower case)
int isalnum(int c) c is alphabetic or a digit
int islower(int c) c is a lowercase letter
int isdigit(int c) c is a digit character ’0’-’9’

2. The lower-case characters’a’ through’z’ (ASCII 97 through 122) are consec-
utive, and the upper-case characters’A’ through’Z’ (ASCII 65 through 90) are
consecutive.

These assumptions are true for the ASCII character set and the Unicode character set, but
not necessarily for all character sets.4 In almost all programming environments you’ll
use either ASCII or Unicode. In the next section we’ll study utility functions that help
in writing portable programs.

9.1.2 The Library <cctype>

To be portable, your code must not rely on a specific character set. Just as the functions in
the math library<cmath> make writing mathematical and scientific programs easier, a
library of character functions helps in writing portable character-manipulating programs.
This character library is accessible by using#include <cctype> or on some sys-
tems using<ctype.h> . The prototypes for some of the functions in<cctype> are
given in Table 9.1; prototypes for all the functions are found in Table F.2 in Howto F.

Although the formal parameter for each function is anint, these functions are in-
tended to work withchar arguments. Thusisalpha(’9’) evaluates to zero (false),
because’9’ is not an alphabetic character. In an ASCII environmentisdigit(57)
evaluates to nonzero (true), because 57 is the ASCII value for the character’9’.
You should avoid using these functions in such a manner; treat characters as symbolic
abstractions.

Program Tip 9.1: The functions in <cctype> return an int value rather
than a bool value; but treat the value as a bool. In particular, there is no
guarantee that the return value will be 1 for true (although the return value will always
be 0 for false). This means you should writeif (isdigit(ch)) rather thanif
(isdigit(ch) == 1) in your code.

4The C++ standard requires that’0’ through’9’ be consecutive, but in the EBCDIC character set the
letters’a’ through’z’ and’A’ through’Z’ are not consecutive.

June 7, 1999 10:10 owltex Sheet number 27 Page number 402magentablack

402 Chapter 9 Strings, Streams, and Operators

To write portable programs, use the functions in<cctype> rather than writing
equivalent functions. For example, if the ASCII character set is used, the following
function could serve as an implementation oftolower :

int tolower(int c)
// postcondition: returns lowercase equivalent of c
// if c isn’t upper case, returns c unchanged
{

if (’A’ <= c && c <= ’Z’) // c is uppercase
{ retur n c + 32;
}
return c;

}

This function works only when the ASCII character set is used, and it relies on two
properties of the character set:

The uppercase letters occur in order with no intervening characters.

The difference between a lower-case letter and its corresponding upper-case equiv-
alent is always 32.

You can isolate some dependencies on ASCII by subtracting characters:

int tolower(int c)
// postcondition: returns lowercase equivalent of c
// if c isn’t upper case, returns c unchanged
{

if (’A’ <= c && c <= ’Z’) // c is uppercase
{ retur n c + (’a’ - ’A’);
}
return c;

}

The correctness of this code depends only on a character set in which’a’ through’z’
and ’A’ through’Z’ are consecutive ranges. Sincechar values can be manipulated
as int values, you can subtract one character from another, yielding anint value.
However, although you can multiply’a’ * ’b’ , the result doesn’t make sense; using
ASCII, the result is97*98 == 9506 , which is not a legal character value. Although
you can usechar variables as integers, you should restrict arithmetic operations of
characters to the following:

1. Adding an integer to a character—for example,’0’ + 2 == ’2’

2. Subtracting an integer from a character—for example,’9’ - 3 == ’6’ and
’C’ - 2 == ’A’

3. Subtracting two characters—for example,’8’ - ’0’ == 8 and’Z’ - ’A’
== 25

June 7, 1999 10:10 owltex Sheet number 28 Page number 403magentablack

9.1 Characters: Building Blocks for Strings 403

You can use achar value in aswitch statement, becausechar values can be
used as integers. You can also compare twochar values using the relational operators
<, <=, >, >=. Character comparisons are based on the value of the underlying character
set, which will always reflect lexicographic (dictionary) order.

Now that we have covered the lowest level of the character–string–file–stream hi-
erarchy, we’ll see how characters are used to build strings and files. We’ll investigate
strings first.

9.1.3 Strings as char Sequences

The classstring , accessible using the header file<string> ,5 is an abstraction that
represents sequences of characters. However, we haven’t yet studied any mechanism
for extracting individual characters from astring . Although thesubstr member
function extracts strings andoperator + concatenates strings, until now we haven’t
been able to alter the individual characters of a string.

Basically, a string acts like a vector of characters. The characters are indexed from
0 tos.length()-1. For example, ifstr represents the string"computer" , then
’c’ has index 0 and’r’ has index 7. Individual characters in astring are accessed
using theindexing operator[] , shown inspreader.cpp,Program 9.2, to print a string
with spaces between each character.

Program 9.2 spreader.cpp

#include <iostream>
#include <string>
using namespace std;
#include "prompt.h"

// spread a string by inserting spaces between characters

int main()
{

strin g s = PromptString("enter a string: ");
int k, limit = s.length(); // # of chars in s
if (limit > 0) // at least one character
{ cout << s[0]; // first character, fencepost problem

for(k=1 ; k < limit; k++) // then loop over the rest
{ cout << " " << s[k];
}
cout << endl;

}
return 0;

} spreader.cpp

5The C++ standard string class is accessible using the header file<string> . You may be using
"tstring.h" or "apstring.h" rather than the standard header file. Each of these implementa-
tions work with the programs in this book.

June 7, 1999 10:10 owltex Sheet number 29 Page number 404magentablack

404 Chapter 9 Strings, Streams, and Operators

O U T P U T

prompt> spreader
enter a string: longwinded
l o n g w i n d e d
prompt> spreader
enter a string: !*#$%
! * # $ %

Because the expressions[k] is used for output, and because the compiler can determine
that the expressions[k] is achar , the symbolic form of each character is printed; that
is, an’o’ instead of 111 (the ASCII value of’o’). The indexing operator can also be
used to change an individual character in a string. For example, the following sequence
of statements would causetaste to be displayed:

strin g s = "paste";
s[0] = ’t’;
cout << s << endl;

A program that uses the[] operator with an index that isout of range (i.e., less than
0 or greater than or equal to the number of characters in a string) will cause undefined
behavior if the standard string class is used because the standard class does not check
for illegal indexes.6

Program Tip 9.2: Out-of-range string indexes can cause indeterminate
and hard-to-find errors. The errors are indeterminate because the program may
behave differently each time it is run, depending on what values are in memory. An out-
of-range index will either read from or write to a memory location that is not part of the
string. Such memory accesses invariably lead to errors.

6The implementations of string in"tstring.h" or "apstring.h" do check for illegal indexes.
These implementations will generate an error message when a program indexes a string with an out-of-
range value.

June 7, 1999 10:10 owltex Sheet number 30 Page number 405magentablack

9.1 Characters: Building Blocks for Strings 405

John von Neumann (1903–1957)

John von Neumann was a genius in many fields. He founded the field of game
theory with his bookTheory of Games and Economic Behavior(cowritten with

Oskar Morgenstern). He helped develop the
atomic bomb as part of the Manhattan Project.
Almost all computers in use today are based
on the von Neumann model of stored pro-
grams and use an architecture that he helped
develop in the early years of computing.

In 1944, von Neumann was working with
the ENIAC (Electronic Numerical Integrator
and Computer), a machine whose wires had
to be physically rearranged to run a different
program. The idea of storing a program in
the computer, just as data are stored, is gen-
erally credited to von Neumann (although
there has been a history of sometimes ran-
corous dispute; see [Gol93, Mac92]).

Hans Bethe, a Nobel Prize–winning physicist, graded academic seminars on a
scale of one to ten:

Grade one was something my mother could understand. Grade two my wife
could understand. Grade seven was something I could understand. Grade
eight was something only the speaker and Johnny von Neumann could
understand. Grade nine was something Johnny could understand, but the
speaker didn’t. Grade ten was something even Johnny could not yet
understand, but there was little of that.

Von Neumann’s powers of memory and calculation were prodigious, as were
his contributions to so many fields. For a full account of von Neumann’s life
see [Mac92].

9.1 The following function is intended to return the decimal equivalent of a digitPause to Reflect

character; for example, for’0’ it should return 0, and for’3’ it should return 3.

int todigit(int c)
// pre: c is a digit character: ’0’,’1’, ..., ’9’
// post: returns digit equivalent,
// e.g., 3 for ’3’
{

if (isdigit(c))
{ retur n c - ’0’;
}

}

June 7, 1999 10:10 owltex Sheet number 31 Page number 406magentablack

406 Chapter 9 Strings, Streams, and Operators

This function does return the correct values for all digit characters. The function
is not robust, because it may cause programs to crash if the precondition isn’t true.
How would you make it more robust?

9.2 The underlying numeric value of a character (in ASCII and other character sets)
reflects lexicographic order. For example,’C’ < ’a’ , since upper-case letters
precede lower-case letters in the ASCII ordering. Why does this help to explain
why "Zebra" < "aardvark" but "aardvark" < "yak" ?

9.3 Explain why the statementcout << ’a ’ + 3 << endl generates the inte-
ger 100 as output. Why does the statementcout << char(’a’ + 3) << endl
generate the character’d’ ?

9.4 If the ASCII set is used, what are the values ofiscntrl(’ \t’) , isspace(’ \t’) ,
andislower(’ \t’) ?

9.5 Write a functionisvowel that returns true when its parameter is a vowel:’a’ ,
’e’ , ’i’ , ’o’ , or ’u’ (or the upper-case equivalent). What is an easy way of
writing isconsonant (assumingisvowel exists)?

9.6 Write a boolean-valued functionIsPalindrome that returns true when its string
parameter is a palindrome and false otherwise. Apalindrome is a word that
reads the same backwards as forwards, such as “racecar,” “mom,” and “amana-
planacanalpanama” (which is “A man, a plan, a canal—Panama!” with no spaces,
capitals, or punctuation).

For a challenge, make the function ignore spaces and punctuation so that “A man,
a plan, a canal — Panama!!” is recognized as a palindrome.

9.7 Write the body of the following functionMakeLower so that all upper-case letters
in s are converted to lower case. Why iss a reference parameter?

void MakeLower(string & s)
// post: all letters in s are lower case

9.8 There are several functions in the library"strutils.h" (seestrutils.h, Pro-
gram G.8 in Howto G.) for converting strings to numbers:atoi converts a string
to anint andatof converts a string to adouble . (The “a” is for “alphabetic”;
“atoi” is pronounced “a-to-i.”)

Write a function with prototypeint atoi(string s) that converts a string
to its decimal equivalent; for example,atoi("1234") evaluates to 1234, and
atoi("-52") evaluates to−52.

9.2 Streams and Files as Lines and
Characters

A string variable is a sequence of characters, but we manipulate strings abstractly
without knowing the details of how the characters are stored or represented. When

June 7, 1999 10:10 owltex Sheet number 32 Page number 407magentablack

9.2 Streams and Files as Lines and Characters 407

information is hidden in this way, and a type is used independently of the underlying
representation of the data, the type is sometimes called anabstract data type,or ADT.
The data type is abstract because knowledge of its underlying implementation is not
necessary to use it. You probably don’t know how individual 0s and 1s are stored to
representint and double values, but you can still write programs that use these
numeric types.

In this section we’ll see that a stream is also an abstract data type. Until now we
have viewed a stream as a sequence of words or numbers. We extract words or numbers
from a stream using>> and insert onto a stream using«. We have developed programs
using the standard streamscin andcout , as well as streams bound to files using the
classesifstream andofstream. In this section we’ll study functions that let us
view streams as a sequence of lines rather than words and numbers. Other functions
let us view streams as sequences of characters; different views are useful in different
settings. We’ll see some applications that are most easily implemented when streams
are viewed as sequences of lines and others where a sequence of characters is a better
choice.

9.2.1 Input Using getline()

Input operations on strings using>> result in word-at-a-time input, where words are
treated as any sequence of non–white space characters. In some applications other
methods of input are needed. In particular, anifstream variable bound to a file may
require line-oriented input. Consider, for example, processing a file in the following
format, where an artist/group name is followed on the next line by the title of a compact
disc (CD) by the artist:

Spin Doctors
Pocket Full of Kryptonite
The Beatles
Sergeant Pepper’s Lonely Hearts Club Band
Strauss
Also Sprach Zarathustra
The Grateful Dead
American Beauty

There is no way to read all the words on one line of a file using the stream-processing
tools currently at our disposal. Since many text files are arranged as a sequence of lines
rather than white space–delimited words, we need a method for reading input other than
the extraction operator». The functiongetline allows an entire line of input to be
read at once. When we view a stream as line-oriented rather than word-oriented, we
need to be able to include white space as part of the line read from a stream.

If the linecin » s in spreader.cpp,Program 9.2, is replaced withgetline(cin,s) ,
the user can enter a string with spaces in it:

June 7, 1999 10:10 owltex Sheet number 33 Page number 408magentablack

408 Chapter 9 Strings, Streams, and Operators

O U T P U T

prompt> spreader
enter a string: Green Eggs and Ham
G r e e n E g g s a n d H a m

In the original program the only word read by the program isGreen, because the space
between “Green” and “Eggs” terminates the extraction operation when>> is used. The
characters"Eggs and Ham" will not be processed but will remain on the input stream.

The functiongetline is used in Program 9.3 to count the total number of lines in
a file. This gives a better count of the number of characters in a file too, because a line
can contain white space characters that would not be read if>> were used.

Program 9.3 filelines.cpp

#include <iostream>

#include <fstream>

#include <cstdlib>

#include <string>

using namespace std;

#include "prompt.h"

// count # of lines in input file

int main()

{

ifstream input;

string s; // line entered by user

long numLines = 0;

long numChars = 0;

string filename = PromptString("enter name of input file: ");

input.open(filename.c_str());

if (input.fail())

{ cout << "could not open file " << filename << endl;

exit(1);

}

while (getline(input,s))

{ numLines++;

numChars += s.length();

}

cout << "number of line s = " << numLines

<< ", number of character s = " << numChars << endl;

return 0;

} filelines.cpp

June 7, 1999 10:10 owltex Sheet number 34 Page number 409magentablack

9.2 Streams and Files as Lines and Characters 409

The functiongetline extracts a line, stores the line in astring variable, and returns
the state of the stream. Some programmers prefer to test the stream state explicitly:

while (getline(input,s) && ! input.fail())

However, it is fine to usegetline in a loop test, both to extract a line and as a test to
see whether the extraction succeeds, just as the expressioninfile » word can be
used as the test of awhile loop to process all the white space–delimited words in a
stream.

O U T P U T

prompt> filelines
enter name of input file: macbeth.txt
number of lines = 2849, number of characters = 110901
prompt> lines
enter name of input file: hamlet.txt
number of lines = 4463, number of characters = 187271
prompt> filelines
enter name of input file: filelines.cpp
number of lines = 31, number of characters = 696

As used in Program 9.3,getline has two parameters: an input stream and a string
for storing the line extracted from the stream. The stream can be a predefined stream
such ascin or an ifstream variable such asinput , as used in Program 9.3. An
optional third parameter togetline indicates theline delimiter or sentinel character
that identifies the “end of line”. Thestring functiongetline extracts one line from

Syntax: getline

istream &
getline(istream & is,

string & s,
char sentinel = ’ \n’);

the stream passed as the first parame-
ter. The characters composing the line
are stored in thestring parameters .
The state of the stream after the extrac-
tion is returned as the value of the func-
tion. The return value is a reference to
the stream, because streams should not
be passed or returned by value.

Normally, the end of a line is marked by the newline character’ \n’ . However, it
is possible to specify a different value that will serve as the end-of-line character. An
optional third argument can be passed togetline . Thischar parameter, (sentinel
in the diagram), is used as the end-of-line character. The end-of-line character is extracted
from the stream but isnot stored in the strings .

For example, suppose a file is formatted with a CD artist and title on the same line,
separated by a colon ’:’, as follows:

June 7, 1999 10:10 owltex Sheet number 35 Page number 410magentablack

410 Chapter 9 Strings, Streams, and Operators

Jimmy Buffet : Fruitcakes
Paul Simon : The Rhythm Of The Saints
Boyz II Men : Cooleyhighharmony

The following loop reads this file storing the artist and title in two strings.

string artist,title;
while (getline(input,artist,’:’) && getline(input,title))
{ cout << artist << "\t" << title << endl;
}

ProgramTip 9.3: Be very careful when using both getline and the ex-
traction operator >> with the same stream. Extraction skips white space,
but often leaves the white space on the stream. For example, if you type characters and
press Enter when>> is used, the newline character that was input by pressing the Enter
key is still on thecin stream. A subsequentgetline operation reads all characters
until the newline, effectively reading nothing. If your programs seem to be skipping
input from the user, look for problems mixing these two input operations. It’s better to
to use justgetline to read strings, and the conversion operatorsatof andatoi (see
"strutils.h" in Howto G) to convert a string to an int or to a double, respectively,
than to mix the two forms of stream input.

The value returned bygetline is the same value that would be returned if the stream
member functionfail were called immediately after the call togetline . As we’ve
seen, some programmers prefer to make the call tofail explicitly rather than to use
the value returned bygetline . A getline operation will fail if the stream cannot
be read, either because it is bound to a nonexistent file or because no more lines are left
on the stream.

A stream variable can be used by itself instead of the functionfail . For example,

input.open(filename.c_str());
if (input.fail())
{ cout << "could not open file " << filename << endl;

exit(1);
}

can be replaced by the statements

input.open(filename.c_str());
if (! input)
{ cout << "could not open file " << filename << endl;

exit(1);
}

The use of!input in place ofinput.fail() is common in C++ programs. I’ll use
fail most of the time, because it makes it clear how the stream is being tested.

June 7, 1999 10:10 owltex Sheet number 36 Page number 411 magentablack

9.2 Streams and Files as Lines and Characters 411

9.2.2 Parsing Line-Oriented Data Using istringstream

Data are often line-oriented, because people find it easy to edit and read lines of words,
numbers, and other data. Reading data is straightforward when the number of items per
line is the same for an entire data set, since afor loop can be used to iterate a set number
of times for each input line. Another approach is needed when the number of items per
line varies. For example, we might want to access the individual words in the titles of
the CDs stored in a file:

The Beatles
Sergeant Pepper’s Lonely Hearts Club Band
Strauss
Also Sprach Zarathustra
...

We might need to write a program to average students’ grades, where each student has a
different number of grades stored in the following format (firstname lastname grades):

Dave Reed 55 60 75 67 72 59
Mike Clancy 88 92 91 97
Stuart Reges 99 94 98 91 95

In general, parsing input and reading data often make up the hardest part of developing a
program. Reading data is not an algorithmically challenging problem, but dealing with
badly formed data and different kinds of data can be an unpleasant part of programming.

We already know how to process stream input a word at a time using the extrac-
tion operator >> . We need a tool that lets us use>> on one line of a file. The
classistringstream (for input string stream), accessible by including the file
<sstream> 7, is just the tool we need. Theistringstream class constructs a
stream bound to a string as the source of the input, much as theifstream class con-
structs a stream bound to a disk file as the source of input. Because anistringstream
object is a stream, it supports the same functions and operators asifstream objects
and the standard input streamcin.

The code inreadnums.cpp,Program 9.4, uses anistringstream variable to
read line-oriented numerical data where the number of integers on each line varies. The
average of the numbers on each line of input is calculated and printed.

Program 9.4 readnums.cpp

#include <iostream>
#include <sstream>
#include <string>
using namespace std;

// illustrates use of input string streams

7The nameistringstream is relatively new; older compilers that don’t use this name will use
istrstream . The header file foristrstream is <strstream.h> . On some systems this may
be shortened to<strstrea.h> .

June 7, 1999 10:10 owltex Sheet number 37 Page number 412magentablack

412 Chapter 9 Strings, Streams, and Operators

int main()

{

string s;

cout << "program computes averages of lines of numbers." << endl;

cout << "to exit, use end-of-file" << endl << endl;

while (getline(cin,s))

{ int total = 0;

int count = 0;

int num;

istringstream input(s);

while (input >> num)

{ count++;

total += num;

}

if (count != 0)

{ cout << "average of " << count << " numbers = "

<< double(total)/count << endl;

}

else

{ cout << "data not parsed as integers" << endl;

}

}

return 0;

} readnums.cpp

O U T P U T

prompt> readnums
program computes averages of lines of numbers.
to exit, use end-of-file

10 20 30
average of 3 numbers = 20
1 2 3 4 5 6 7 8
average of 9 numbers = 4.5
1 -1 2 -2 3 -3 4 -4 5 -5
average of 10 numbers = 0
apple orange guava
data not parsed as integers
2 4 apple 8 10
average of 2 numbers = 3
ˆZ

June 7, 1999 10:10 owltex Sheet number 38 Page number 413magentablack

9.2 Streams and Files as Lines and Characters 413

The getline function reads one line of input into the strings , and the
istringstream variableinput is constructed froms. Then input is used as
a stream: integers are extracted using>> until the extraction fails. The variableinput
mustbe defined (and hence constructed) inside thewhile (getline(cin,s)) loop
of readnums.cpp. The source of data in anistringstream object is thestring
passed as an argument to theistringstream constructor. It is not possible to define
input before the loop and then rebindinput to a string entered by the user within the
loop. Theistringstream variableinput is constructed anew at each iteration of
thewhile (getline(cin,s)) loop.

An istringstream is constructed from a standard string object, but it will work
correctly when constructed from a C-style string8. Changing the value of thestring
used to construct anistringstream object while the stream is being used can lead
to trouble.

9.2.3 Output Using ostringstream

It’s relatively easy to learn to program withistringstream objects because they
behave exactly likecin or anifstream variable. Sometimes it’s useful in programs
to be able to form a string by joining different values, such as a string formed from
the string"the answer is " and theint 257. The string formed by joining the
different values can be passed as a parameter, printed, and in general be treated like any
string object. You can use the conversion functiontostring from strutils.h in
Howto G and string catenation for this.

string result = "the answer i s " + tostring(257);

The value ofresult is the string"the answer is 257" . However, it’s much
easier to combine together different values using anostringstream object (output
string stream).

ostringstream output;
output << "the answer is " << 257;
string result = output.str();

An ostringstream (like istringstream , accessible from<sstream>) be-
haves like an output stream, that is likecout or anofstream variable. Values can be
written to the output string stream using standard stream insertion, including formatting
operators likesetw (see Howto B). The methodostringstream::str() returns
a string that contains the characters written to the output string stream.

8If a non-standardstring class is used, (e.g., from"apstring.h" or "tstring.h"), you’ll
need to use thec_str() string member function when constructing anistringstream variable.

June 7, 1999 10:10 owltex Sheet number 39 Page number 414magentablack

414 Chapter 9 Strings, Streams, and Operators

Niklaus Wirth (b. 1934)

Niklaus Wirth is perhaps best known as the inventor/developer of the programming
language Pascal. He also was an early adherent of a methodology of programming
he called “stepwise refinement,” writing a paper in 1971 that called for developing
programs in a style I’ve callediterative enhancementin this book. Pascal was
developed in the early 1970s; it was not, as conventional wisdom would have it,
developed solely as a language for educational use. In his 1984 Turing Award
lecture Wirth says:

Occasionally, it has been claimed that Pascal was designed as a language
for teaching. Although this is correct, its use in teaching was not the only
goal. In fact, I do not believe in using tools and formalisms in teaching that
are inadequate for any practical task. By today’s standards, Pascal has
obvious deficiencies for programming large systems, but 15 years ago it
represented a sensible compromise between what was desirable and what
was effective.

Wirth continued to develop languages that were successors of Pascal, notably
Modula-2 and Oberon. In discussing the difficulties of developing hardware and
software, Wirth has this to say about the complexity of these tasks:

It is true that we live in a complex world and strive to solve inherently
complex problems, which often do require complex mechanisms. However,
this should not diminish our desire for elegant solutions, which convince by
their clarity and effectiveness. Simple, elegant solutions are more effective,
but they are harder to find than complex ones, and they require more time,
which we too often believe to be unaffordable.

When contacted about providing a picture for the second edition of this book,
Wirth replied “I must say that I have never been a friend of C++.” Most of this
material is taken from [Wir87].

9.2.4 Strings, Streams, and Characters

Sometimes it is useful to regard a file (and its associated stream) as a collection of
characters rather than as a collection of lines. Of course, we could read a file a line
at a time usinggetline and then access each character of the extracted string, but
sometimes character-at-a-time input is more appropriate than line-at-a-time input. The
stream member functionget is used to read one character at a time. White space isnot
skipped whenget is used. Program 9.5,filelines2.cpp, usesget to count the characters
in a file one at a time. Note thatgetline is not a stream member function but that
get is.

June 7, 1999 10:10 owltex Sheet number 40 Page number 415magentablack

9.2 Streams and Files as Lines and Characters 415

Program 9.5 filelines2.cpp

#include <iostream>

#include <fstream>

#include <cstdlib> // for exit

#include <string>

using namespace std;

#include "prompt.h"

// count # of lines and chars in input file

int main()

{

long numChars = 0;

long numLines = 0;

char ch;

string filename = PromptString("enter name of input file: ");

ifstream input;

input.open(filename.c_str());

if (input.fail())

{ cout << "could not open file " << filename << endl;

exit(1);

}

while (input.get(ch)) // reading char succeeds?

{ if ('\n' == ch) // read newline character

{ numLines++;

}

numChars++;

}

cout << "number of line s = " << numLines

<< ", number of character s = " << numChars << endl;

return 0;

} filelines2.cpp

O U T P U T

prompt> filelines2
enter name of input file: macbeth.txt
number of lines = 2849, number of characters = 113750
prompt> filelines2
enter name of input file: hamlet.txt
number of lines = 4463, number of characters = 191734

June 7, 1999 10:10 owltex Sheet number 41 Page number 416magentablack

416 Chapter 9 Strings, Streams, and Operators

The number of lines printed byfilelines2.cpp,Program 9.5, is the same as the number
of lines calculated byfilelines.cpp,Program 9.3, but the number of characters printed
is different. If you look carefully at all the numbers printed by both programs, you
may be able to determine what the “missing” characters are. In the on-line version
of Hamlet, both programs calculate the number of lines as 4,463, but Program 9.3
calculates 187,271 characters, compared to the 191,734 calculated by Program 9.5. Not
coincidentally, 187, 271+ 4, 463 = 191, 734. The newline character’ \n’ is not part
of the total number of characters calculated by Program 9.3. This points out some subtle
behavior of thegetline function. getline reads a line of text, terminated by the
newline character’ \n’. The newline character is read but isnot stored in the string
parameter togetline . You can change Program 9.3 to count newlines is by changing
the calculation ofnumChars as follows:

numChars += s.length() + 1; // +1 for newline

The comment is important here; the reason for the addition of+ 1 may not be apparent
without it.

9.9 Write a small program that prompts for the name of an artist and prints all CDsPause to Reflect

by the artist. Assume input is in the following format.

The Black Crowes
The Southern Harmony and Musical Companion
10,000 Maniacs
Blind Man’s Zoo
The Beatles
Rubber Soul

For example, if the user entersThe Beatles , the output might be

Sergeant Pepper’s Lonely Hearts Club Band
The White Album
Revolver
Rubber Soul

depending on what CD titles are stored in the file.

9.10 From its use infilelines2.cpp,Program 9.5, thechar parameter toget must be
a reference parameter. Why is this the case?

9.11 Program 9.5,filelines2.cpp,can be modified so that it copies a file by writing every
character (using<<) that is read. What modifications are necessary so that the
user is prompted for the name of a new file to be written that will be a copy of the
file that is read?

9.12 How can the copy program from the previous exercise be modified so that all
upper-case letters in the input file are converted to lower-case letters in the output
file? (Hint: The change is very straightforward.)

June 7, 1999 10:10 owltex Sheet number 42 Page number 417 magentablack

9.3 Case Study: Removing Comments with State Machines 417

9.3 Case Study: Removing Comments with
State Machines

With the stream and string functions we have studied, we now have the choice of reading
streams in several ways:

A word at a time, using>> andstring variables

A line at a time, usinggetline andstring variables

A character at a time, usingget andchar variables

In this section we’ll develop a program to remove all comments from a file. We’ll see that
character-at-a-time input facilitates this task, and we’ll study an approach that extends
to other parsing-related problems.9 We’ll use a new syntactic feature of C++ called an
enum.

9.3.1 Counting Words

To make the method used to remove comments more familiar, we’ll modifyfilelines2.cpp
to count words in addition to counting lines and characters. We’ll use the same spec-
ification for words that the extractionoperator >> uses: a white space delimited
sequence of characters.

Since we’re reading one character at a time, we’ll need a method to determine when
a word starts and when it ends. We’ll use the functionisspace from <cctype>
(see Table F.2 in Howto F) to determine if a character is white space, but how can we
keep track of word boundaries? The key is recognizing that the program is in one of
two states. It is either reading a word, or not reading a word. When the program reads
a space, it is not in a word. When it reads a non-space character it is in a word. The
transition from the in-a-word state to the not-in-a-word state marks a word, so whenever
this transition occurs we’ll update the word count. The transitions are diagrammed in
Figure 9.1 and shown in code in Program 9.6,wc.cpp.10

Program 9.6 wc.cpp

#include <iostream>
#include <fstream>
#include <cstdlib> // for exit
#include <cctype> // for isspace
#include <string>
using namespace std;

9Aprogram isparsedby the compiler in the process of converting it into assembly or machine language.
“Parse” usually refers to the process of reading input in identifiable chunks such as C++ identifiers,
reserved words, etc.
10The Unix programwc counts words, lines, and characters, hence the name.

June 7, 1999 10:10 owltex Sheet number 43 Page number 418 magentablack

418 Chapter 9 Strings, Streams, and Operators

wordCount++

inWord ! inWord
! isspace(ch)

isspace(ch)

Figure 9.1 State for counting words.

#include "prompt.h"

// count # of lines and chars in input file

int main()
{

long numChars = 0;
long numLines = 0;
long numWords = 0;
char ch;
bool inWord = false; // initially not reading a word

string filename = PromptString("enter name of input file: ");
ifstream input;
input.open(filename.c_str());

if (input.fail())
{ cout << "could not open file " << filename << endl;

exit(1);
}
while (input.get(ch)) // reading char succeeds?
{ if ('\n' == ch) // read newline character

{ numLines++;
}
numChars++;
if (isspace(ch))
{ if (inWord) // just finished a word

{ inWord = false;
numWords++;

}
}
else // not a space
{ if (! inWord) // just started a word

{ inWord = true;
}

}
}

June 7, 1999 10:10 owltex Sheet number 44 Page number 419magentablack

9.3 Case Study: Removing Comments with State Machines 419

if (inWord) numWords++; // ended in a word

cout << "line s = " << numLines

<< "\tchar s = " << numChars

<< "\tword s = " << numWords << endl;

return 0;

} wc.cpp

O U T P U T

prompt> wc
enter name of input file: melville.txt
lines = 1609 chars = 82140 words = 14353
prompt> wc
enter name of input file: bible10.txt
lines = 228760 chars = 4959549 words = 822899

9.3.2 Problem Specification: What Is a Comment?

The first step in writing almost any program is to specify the problem properly. We
must decide what a comment is, and we should try to identify potential problems in our
definition. We’ll write a program that removes comments beginning with//. These
comments extend to the end of a line and are simpler to remove than/* …*/ comments,
which can extend over several lines. We’ll read and echo all characters except those that
are part of a comment.

9.3.3 A State Machine Approach to I/O

Our comment-removing program will prompt for the name of a program (actually any
text file) and print the program with all the comments removed. Our first program will
output usingcout, but we’ll design the program so that output to anofstream object
will be a simple change. We must decide whether to read a program a line at a time
or a character at a time. Since// comments are line-oriented, reading input a line at a
time makes sense. We could use the string member functionfind to determine whether
each line contains the string"//" and, if so, where the"//" begins. However, this
approach cannot be extended to removing/* …*/ comments, which can extend over
several lines, so we’ll use character-at-a-time input instead.

We’ll use a state machine approach in reading and removing comments. In astate
machineprogram, each input character causes the program to change its behavior de-
pending on the program’s state. We’ll use a three-state function to remove comments.
The function will be in one of three states as it reads each character:

June 7, 1999 10:10 owltex Sheet number 45 Page number 420magentablack

420 Chapter 9 Strings, Streams, and Operators

FIRST_SLASHTEXT

Echo(ch)

COMMENT

ch != '/'

ch == '/'

ch != '/'

ch == '/'

ch != '\n'

ch == '\n'

Echo('\n')

Echo('/')Echo(ch)

Figure 9.2 State machine diagram for removing // comments.

1. Processing regular, uncommented text

2. A slash’/’ has just been read

3. Processing commented text

In Figure 9.2, these states are labeled asTEXT, FIRST_SLASH,andCOMMENT.
Each state is shown as a circle, and state changes are shown with arrows. The program
can change state each time a character is read, although it’s possible to stay in the same
state. Some state changes (or state transitions) are accompanied by an action, shown in
a shaded box. In the text-processing stateTEXT,nonslash characters are echoed; a slash
character is not echoed but causes a state transition to the state labeledFIRST_SLASH.In
the stateFIRST_SLASHwe don’t know yet whether a comment follows or whether the
division operator/ was just read. The answer depends on the next character read. If a
slash character is read, we know a comment follows, so we change state toCOMMENT;
otherwise there was only one slash, so we echo the slash and the character just read
and return toTEXT,the state of parsing noncommented text. Finally, in theCOMMENT
state, we ignore all characters. However, when a newline character’ \n’ is read, we
know the comment has ended, so the newline is echoed and the state changes back to
TEXT.

The advantage of the state approach is that we simply read one character at a time
and take an action on the character depending on the current state of the program. In
a way, the states serve as memory. For example, in the stateFIRST_SLASHwe know
that one slash remains unprocessed. If the slash doesn’t begin a comment, we’ll echo
the unprocessed slash and change to reading regular text.

Program 9.7,decomment.cpp,implements this state machine approach. The method
Decomment::Transform actually removes the comments. An enumerated type
Decomment::ReadState is used so that symbolic values appear in code for each
state. The symbolic labelFIRST_SLASHis more informative than a number like 1 in
reading code. We’ll cover enumerated types after we discuss the program.

June 7, 1999 10:10 owltex Sheet number 46 Page number 421 magentablack

9.3 Case Study: Removing Comments with State Machines 421

Program 9.7 decomment.cpp

#include <iostream>
#include <fstream>
#include <cstdlib> // for exit
using namespace std;
#include "prompt.h"

// Owen Astrachan 7/4/1996, revised 5/4/99
// state-machine approach for removing all // comments from a file
// (doesn’t handle // in a string, e.g., " test // comment "

class Decomment
{

public:
Decomment();
void Transform(istream& input, ostream& output);

private:
void Echo(char ch, ostream& output);

const char SLASH;
const char NEWLINE;

enum ReadState{TEXT, FIRST_SLASH, COMMENT};
};

Decomment::Decomment()
: SLASH('/'),

NEWLINE('\n')
{

// constants initialized
}

void Decomment::Echo(char ch, ostream& output)
{

output << ch;
}

void Decomment::Transform(istream& input, ostream& output)
{

char ch;
ReadState currentState = TEXT;
while (input.get(ch)) // read one char at a time
{ switch(currentState)

{
case TEXT:

if (ch == SLASH) // potential comment begins
{ currentState = FIRST_SLASH;
}
else
{ Echo(ch,output);

June 7, 1999 10:10 owltex Sheet number 47 Page number 422magentablack

422 Chapter 9 Strings, Streams, and Operators

}

break;

case FIRST_SLASH:

if (ch == SLASH)

{ currentState = COMMENT;

}

else // one slash not followed by another

{ Echo(SLASH,output); // print the slash from last time

Echo(ch,output); // and the current character

currentState = TEXT; // reading uncommented text

}

break;

case COMMENT:

if (ch == NEWLINE) // end-of-line is end of comment

{ Echo(NEWLINE,output); // be sure to echo end of line

currentState = TEXT;

}

break;

}

}

}

int main()

{

string filename = PromptString("enter filename: ");

ifstream input(filename.c_str());

if (input.fail())

{ cout << "could not open " << filename << " for reading" << endl;

exit(1);

}

Decomment dc;

dc.Transform(input,cout);

return 0;

} decomment.cpp

June 7, 1999 10:10 owltex Sheet number 48 Page number 423magentablack

9.3 Case Study: Removing Comments with State Machines 423

O U T P U T

prompt> decomment
enter name of input file: commtest.cpp
#include <iostream>
using namespace std;

int main()
{

int x = 3;
cout < < x / 3 << endl;
return 0;

}

Enum values are used as the values of the variablecurrentState . Otherwise the
logic is precisely illustrated in Figure 9.2. The test input is the following file, named
commtest.cpp:

#include <iostream>
using namespace std;
// this is a sample program for comment removal
int main()
{

int x = 3; // meaningful identifier??
cout < < x / 3 << endl; // complex math is fun
return 0; // this is a useful comment

}

The programdecomment.cppdoes remove all comments properly, but there is a case that
causes text to be removed when it shouldn’t be. When the two-character sequence//
is embedded in a string, it is not the beginning of a comment:

cout << "Two slashes // not a comment" << endl; // tricky?

This situation causes problems with the state machine used indecomment.cpp,but it’s
possible to add more states to fix the problem.

9.13 Modify decomment.cpp,Program 9.7, so that the output goes to a file specified byPause to Reflect

the user.

9.14 Draw a state transition diagram similar to Figure 9.2 but for removing/* …*/
comments. Don’t worry about// comments; just remove the other kind of com-
ment.

June 7, 1999 10:10 owltex Sheet number 49 Page number 424magentablack

424 Chapter 9 Strings, Streams, and Operators

9.15 It’s possible to use two states to remove// comments. Instead of using the state
COMMENTin decomment.cpp,usegetline to gobble up the characters on a
line when a slash is read in the stateFIRST_SLASH. Modify decomment.cppto
use this approach.

9.16 Add states to either the diagram or the programdecomment.cppto avoid removing
the // sequence when it is embedded in a string.

9.17 Write a state transition diagram for word-at-a-time input that you could use to find
all int variables. Solve a simple version of the problem, assuming that every
variable is defined separately—that is, there are no definitions in the form

int x, y, z;

What other situations can cause problems for your approach?

9.3.4 EnumeratedTypes

An enumerated typeallows you to create all the legal values for a new type. For example,
a coin type might have the valuesheadsandtails, and a color spectrum type might have
the valuesred, orange, yellow, green, blue, indigo,andviolet. Using enumerated types
makes programs more readable. The typeReadState in the classDecomment from
decomment.cpp, Program 9.7 has three values:TEXT, FIRST_SLASH, andCOMMENT.
A variable of typeReadState can have only these values.

An enum introduces a new type whose possible values are defined completely when
the enum is declared. Each value of an enum type has an associated integer value;
default values of 0, 1, . . . are assigned to each enum value in succession. However,
enums are most often used because they let values be represented symbolically rather
than numerically. For example, the declaration

enum CardSuit{spade, heart, diamond, club};

creates a new typeCardSuit . The variable definitionCardSuit suit ; creates a
variablesuit whose only possible values arespade , heart , diamond , andclub .
The assignmentsuit = spade is legal; the assignmentsuit = 1 is not legal. The
integer values associated withCardSuit values makespade have the value 0 and
club have the value 3. The statementcout << suit outputs an integer, either 0, 1,
2, or 3. Enums arenotprinted symbolically except, perhaps, in a debugging environment.
It’s possible to assign explicit values using

enum CardSuit {spades=2, hearts=5, diamonds=7, clubs=9};

so that the value associated withdiamonds is 7, for example, but there are very few
good reasons to do this. Enums let you use symbolic values in your code, and this can
make code easier to read and maintain. Relying on a correspondence between the value
1 and a suit of hearts, which would be necessary if enums weren’t used, can cause errors
since it’s easy to forget that 1 means hearts and 0 means spades.

June 7, 1999 10:10 owltex Sheet number 50 Page number 425magentablack

9.3 Case Study: Removing Comments with State Machines 425

Using enums: Conversion between enum and int. As noted earlier, anint value cannot
be assigned to an enum variable. It is possible, however, to assign an enum to an int.

enum CardSuit{spades, hearts, diamonds, clubs};
int k = spades; // legal
CardSui t c = 3; // illegal
CardSui t s = CardSuit(3); // legal

As this example shows, if an explicit cast is used, an int can be converted to an enum.
Program 9.8 shows an enum used as an int as an argument toRandGen::RandInt
and as the index of an array.

Program 9.8 enumdemo.cpp

#include <iostream>
#include <string>
using namespace std;

#include "randgen.h"

int main()
{

enum spectrum{red, orange, yellow, green, blue, indigo, violet};

string specstrings[] = {"red", "orange", "yellow", "green",
"blue", "indigo", "violet"};

RandGen gen;
spectrum color = spectrum(gen.RandInt(red,violet));
cout << specstrings[color] << endl;

if (color == red)
{ cout << "roses are red" << endl;
}
else
{ cout << "that's a pretty color" << endl;
}
return 0;

} enumdemo.cpp

O U T P U T

prompt> enumdemo
indigo
that’s a pretty color
prompt> enumdemo
red
roses are red

June 7, 1999 10:10 owltex Sheet number 51 Page number 426magentablack

426 Chapter 9 Strings, Streams, and Operators

Class enums. By restricting an enum to be used as part of a class, several different
classes can share the same enum symbolic names. For example, it is not legal to declare
the following two enums in the same program unless they are declared inside separate
classes because the valueorange cannot be shared among different enumerated types.

enum spectrum {red, orange, yellow, green,
blue, indigo, violet};

enum fruit {orange, apple, cherry, banana};

However, if the enumerated types are moved inside classesSpectrum andFruit ,
respectively, then there is no conflict since the values areSpectrum::orange and
Fruit::orange , which are different.

class Spectrum
{

public:
...
enum Color{red, orange, yellow, green,

blue, indigo, violet};
};
class Fruit
{

public:
...
enum Kind{orange, apple, cherry, banana};

};

Here the new types introduced by theenum declaration areSpectrum::Color and
Fruit::Kind ; the scope-resolution operator:: is required as part of the enum type
name except when the enum is used within a member function.

9.4 Case Study: Overloaded Operators and
the ClockTime Class

Often the hardest part of writing a program is reading the data. This can be difficult
because data are often stored in a form that is inconvenient from the point of view of the
programmer. In general, this sentiment is aptly stated as

I/O is messy.

In this section we’ll develop a program that calculates the total playing time for all the
music stored on a compact disc (CD). The program could be extended with more options
such as those found on typical CD players: select some specific songs/tracks or play all
songs/tracks after randomly shuffling them. You could also use the program to combine
tracks from different CDs and compute the total playing time, part of making your own
CD of your favorite songs.

We’ll use the program to explore the implementation of overloaded operators. We
have used overloaded operators in many programs.

June 7, 1999 10:10 owltex Sheet number 52 Page number 427magentablack

9.4 Case Study: Overloaded Operators and the ClockTime Class 427

Overloaded operators are used when we addBigInt values using a plus sign,
compare them using a less-than sign, and read and write them using extraction and
insertion operators. These operators are defined for built-in types, but C++ allows
programmers to define the operators for user-constructed types. Operator overloading
is covered in detail in Howto E, but we’ll give basic guidelines and details here on how
to overload operators with minimal programmer effort without sacrificing performance.

The input to the program is a file in the format shown here. Each line of the file
consists of the duration of a track followed by the name of the track. For example, for
the compact discThe Best of Van Morrison(1990, Mercury Records) the input follows.

3:46 Bright Side Of The Road
2:36 Gloria
4:31 Moondance
2:40 Baby Please Don’t Go
4:19 Have I Told You Lately
3:04 Brown Eyed Girl
4:21 Sweet Thing
3:22 Warm Love
3:57 Wonderful Remark
2:57 Jackie Wilson Said
3:14 Full Force Gale
4:28 And It Stoned Me
2:46 Here Comes The Night
3:04 Domino
4:05 Did Ye Get Healed
3:32 Wild Night
4:40 Cleaning Windows
4:54 Whenever God Shines His Light
4:54 Queen Of The Slipstream
4:44 Dweller On The Threshold

For Handel’sWater Music (Suite in F Major, Suite in D Major)(Deutsche Grammophon,
1992, Orpheus Chamber Orchestra) the input is

3:12 Ouverture
1:49 Adagio e staccato
2:23 Allegro
2:11 Andante
2:25 da capo
3:22 Presto
3:26 Air.Presto
2:33 Minuet
1:38 Bourree.Presto
2:17 Hornpipe
2:53 (without indication)
1:52 Allegro
2:42 Alla Hornpipe

June 7, 1999 10:10 owltex Sheet number 53 Page number 428magentablack

428 Chapter 9 Strings, Streams, and Operators

1:01 Minuet
1:37 Lentement
1:10 Bourree

To determine the total playing time of a CD, the following pseudocode provides a good
outline.

total = 0;
while (getline(input,line))
{ parse track_time and title from line

total += track_time;
}
cout << "total playing tim e = " << total;

There are several details that must be handled to translate the pseudocode into a working
program. Most of these details involve getting the data from a file into the computer for
a program to manipulate. Although algorithmically this is a simple problem, the details
make it hard to get right.11 There are enough sticky details in the I/O that developing
the program takes patience, even if it seems easy at first.

9.4.1 Throw-Away Code vs. Class Design

We’ll be able to read the input using the string and stream functions we’ve covered in this
chapter. In previous programs we used the functionsatoi andatof from strutils.h,
Program G.8 in Howto G to convert strings to ints or doubles. We can useatoi here to
transform strings into int values for minutes and seconds.

At this point we face a decision as developers of the program. We could develop
code specifically for this program that correctly accumulates the total time for a CD. The
program would work well for the task at hand, but the code would not be very general.
At another extreme, we could develop a class for manipulating time stored in hours,
minutes, and seconds with overloaded arithmetic and I/O operators. The class would
provide code that could be reused in other contexts. Code reuse is a goal of object-
oriented design and programming, but it takes more effort to develop reusable code than
to develop program-specific code. The decision as to which approach to take is not
always simple; often a “quick and dirty” programming approach is quite appropriate.
We might even implement the quick and dirty solution as a first step in developing a
working program.

Program Tip 9.4: A quick and dirty solution is sometimes the best ap-
proach in getting a working program to solve a problem. Even quick and
dirty programs should be elegant and should be carefully commented since today’s quick
and dirty, use it once and forget it program may be still running ten years from now.

11David Chaiken, a computer scientist trained at MIT, uses the acronym SMOP to refer to this kind of
problem—it’s aSimple Matter Of Programming.Usually those who claim it’s simple aren’t writing the
program.

June 7, 1999 10:10 owltex Sheet number 54 Page number 429magentablack

9.4 Case Study: Overloaded Operators and the ClockTime Class 429

Using the three-parametergetline function, for example, we could write this loop
to solve the problem.

string minutes, seconds, title;
int secSum = 0, minSum = 0;
while (getline(input,minutes,’:’) &&

getline(input,seconds,’ ’) &&
getline(input,title)) // reading line ok

{ minSum += atoi(minutes);
secSum += atoi(seconds);

}
cout << "total time is " << minSum << ": " secSum << endl;

This will yield a total like65:644 , not quite as readable as1:15:44 . We’ll design a
class for manipulating time as stored in the format: hours, minutes, and seconds. We’ll
name the classClockTime and write functions that permit times in this format to be
added together, compared using boolean operators, and output to streams.

9.4.2 Implementing the ClockTime Class

In designing a class, two major decisions influence the development process.

1. What is the class behavior? This helps in determining appropriate public and
private member functions. (See Programming Tip 7.1.)

2. What is the class state? This helps in determining what instance variables are
needed for the class.

We’ll concentrate on behavior first. To make theClockTime class minimally useful
we’ll need to implement the following.

Constructor(s). We should probably include a default constructor so that vectors
of ClockTime objects can be defined, and other constructors that seem useful as
we develop scenarios of how the class will be used.

Printing . This means overloading the stream insertionoperator << so that
ClockTime objects can be written tocout and other streams. We’ll use the
same method in this class we use in other classes developed for this book; we’ll
implement a converter functionClockTime::tostring() that converts a
ClockTime object to a string. This makes it easy to insert onto a stream since
we can already output string objects. TheClockTime::tostring() function
is useful in other contexts. For example, we use it in the implementation of the class
CircleStatusBar (from statusbar.h) used in Program 6.16,maxword3.cpp.

Relational operators. We’ll need at leastoperator == , but as we’ll see the
implementation of these operators is relatively straightforward.

Arithmetic . We need to be able to addClockTime objects since that’s the reason
we’re exploring the class. We’ll implement addition only, but make it possible to
implement other operations later.

June 7, 1999 10:10 owltex Sheet number 55 Page number 430 magentablack

430 Chapter 9 Strings, Streams, and Operators

These functions lead to the interface given inclockt.h, Program 9.9. As we’ll see
when discussing overloaded operators, the functionsLess andEqual are helper func-
tions for implementing the relational operators. We’ll discuss the prototype for the
arithmeticoperator += in Section 9.4.8, and the functionNormalize when we
discuss constructors below.

Program 9.9 clockt.h

#ifndef _CLOCKTIME_H
#define _CLOCKTIME_H

#include <iostream>
#include <string>
using namespace std;

// class for manipulating "clock time", time given in hours, minutes, seconds
// class supports only construction, addition, Print() and output <<
//
// Owen Astrachan: written May 25, 1994
// modified Aug 4, 1994, July 5, 1996, April 29, 1999
//
// ClockTime(int secs, int mins, int hours)
// – normalized to <= 60 secs, <= 60 mins
//
// access functions
//
// Hours() – returns # of hours in ClockTime object
// Minutes() – returns # of minutes in ClockTime object
// Seconds() – returns # of seconds in ClockTime object
// tostring() – time in format h:m:s
// (with :, no space, zero padding)
//
// operators (for addition and output)
//
// ClockTime & operator +=(const ClockTime & ct)
// ClockTime operator +(const ClockTime & a, const ClockTime & b)
//
// ostream & operator <<(ostream & os, const ClockTime & ct)
// inserts ct into os, returns os, uses Print()

class ClockTime
{

public:
ClockTime();
ClockTime(int secs, int mins, int hours);

int Hours() const; // returns # hours
int Minutes() const; // returns # minutes
int Seconds() const; // returns # seconds
string tostring() const; // converts to string

bool Equals(const ClockTime& ct) const; // true if == ct

June 7, 1999 10:10 owltex Sheet number 56 Page number 431magentablack

9.4 Case Study: Overloaded Operators and the ClockTime Class 431

bool Less (const ClockTime& ct) const; // true if < ct

const ClockTime & operator +=(const ClockTime & ct);

private:

void Normalize(); // < 60 secs, < 60 min

int mySeconds; // constrained: 0-59
int myMinutes; // constrained: 0-59
int myHours;

};
// free functions, not member functions

ostream & operator << (ostream & os, const ClockTime & ct);
ClockTime operator + (const ClockTime & lhs, const ClockTime & rhs);

bool operator == (const ClockTime& lhs, const ClockTime& rhs);
bool operator != (const ClockTime& lhs, const ClockTime& rhs);
bool operator < (const ClockTime& lhs, const ClockTime& rhs);
bool operator > (const ClockTime& lhs, const ClockTime& rhs);
bool operator <= (const ClockTime& lhs, const ClockTime& rhs);
bool operator >= (const ClockTime& lhs, const ClockTime& rhs);

#endif clockt.h

The ClockTime Constructors. An instance of the classClockTime might be con-
structed by specifying just the seconds or just the hours. For the preliminary development
of the class we’ll provide a default constructor, which will initialize a time to 0 hours,
0 minutes, and 0 seconds, and a three-parameter constructor, which specifies all three
quantities. In our final design, the default constructor will construct an object repre-
senting the current time when the object is constructed, just as the defaultDate class
constructor yields the current day (seedate.h , Program G.2, Howto G.)

The first step in implementing the class requires implementing a constructor and
some mechanism for determining the value of aClockTime object. For example,
we could implement accessor functions for obtaining hours, minutes, or seconds. We
could also implement a function to print aClockTime object. We can’t develop other
operators or member functions until we can define objects and determine what the objects
look like.

Program Tip 9.5: The first step in implementing a class should include
constructors and some method for determining what an object looks like.
The state of an object can be examined by accessor functions or by using atostring

method and then printing the object.

We can’t implement a constructor without deciding about the state of the class. For
theClockTime class the state instance variables are straightforward: hours, minutes,

June 7, 1999 10:10 owltex Sheet number 57 Page number 432magentablack

432 Chapter 9 Strings, Streams, and Operators

and seconds. These are each integer fields, although the minutes and seconds fields are
constrained to have values in the range 0 through 59. There are alternatives. Rather than
store three values, we could store just seconds, and convert to other formats for printing.
This would make it very easy to add 1:02:15 and 2:17:24 since these values would be
represented as 3,735 and 8,244 seconds, respectively. The sum is simple to compute in
C++, but conversion to hours, minutes, and seconds is needed for printing.

9.4.3 Class or Data Invariants

What if the user constructs objects as follows (hours first, seconds last)?

ClockTime a;
ClockTime b(2,27,31);
ClockTime c(3,77,91);

Objecta is 0:0:0 , objectb is 2:27:31 , and objectc is 4:18:31 , although this
isn’t immediately obvious from the arguments to the constructor ofc . We could ignore
values that aren’t between 0 and 59 for minutes and seconds, but we’d like our class to
be robust in the face of errors so we’ll try to do something that makes sense, but leaves
an object in a good state (i.e., minutes and seconds between 0 and 59.)

Just as the constructor may involve overflow values, the code foroperator += will
need to check for overflow of minutes and seconds and adjust the other fields accordingly.
Alternatively, anormalizing function could be written to ensure that all minutes and
seconds were within proper range, as adata invariant of the classClockTime. Just
as a loop invariant is a statement that is true on every pass through a loop, a class data
invariant is a property of class state that is true after each method has executed. In this
case the data invariant would be something like:

Internal representations of minutes and seconds in aClockTime object are always
between 0 and 59.

All objects must maintain this invariant, but some methods likeoperator += may
invalidate the invariant, so the code must ensure that the invariant is re-established after
each method executes. An object that maintains the invariant is said to be in anormal
form. We’ll include a private, helper member functionNormalize , that ensures that
the invariant is maintained. This normalizing function will be called after adding two
times and after construction in case a time is constructed with 79 seconds. At this point,
we’ll implement two constructors and accessors for hours, minutes, and seconds. The
constructors are shown below with the accessor function for hours.

ClockTime::ClockTime()
: mySeconds(0), myMinutes(0), myHours(0)

// postcondition: time is 0:0:0
{

}
ClockTime::ClockTime(int secs, int mins, int hours)

: mySeconds(secs), myMinutes(mins), myHours(hours)

June 7, 1999 10:10 owltex Sheet number 58 Page number 433magentablack

9.4 Case Study: Overloaded Operators and the ClockTime Class 433

// postcondition: all data fields initialized
{

Normalize();
}

int ClockTime::Hours() const
// postcondition: return # of hours
{

return myHours;
}

With the header fileclockt.h, constructors, and accessors we’re ready to test the prelim-
inary implementation. Once we’re sure we can construct validClockTime objects,
we’ll turn to implementing the overloaded operators. We’ll test the class first, so that we
know its minimal implementation works correctly before developing new code.

9.4.4 Overloaded Operators

Only member functions have access to an object’s private data. This makes it difficult
to overload the stream insertion operator<<, which for technical reasons cannot be a
member function of theClockTime class (see Howto E.) Instead, we implement a
member functiontostring() that can be used to print aClockTime object. We
can then overload the insertion operator<< usingtostring() .

9.4.5 Friend Classes

It is not so much our friends’ help that helps us as the confident knowledge that they will help us.
Epicurus

Sometimes, however, it is useful for nonmember functions to have access to private
data fields. You can design functions (and even other classes) that have access to private
data by declaring the functions asfriend functions (or friend classes). However, granting
nonmember functions access to private data violates the principles of encapsulation and
information hiding that we’ve upheld in our programs. You should be very careful if you
decide you need to implement a friend function. We’ll discuss the syntax for declaring
friends in Section 12.3.3. The only use of friends in the code used in this book is to couple
a class with its associated iterator, for example, the classStringSetIterator is a
friend of the classStringSet (see Section 6.5.)

In theClockTime class, implementingtostring and an overloadedoperator
+= makes it possible to implementoperator << andoperator + without making
them friend functions. We’ll also implement member functionsLess andEqual and
use these to implement overloaded relational operators. An in-depth discussion of why
we overload operators this way instead of using friend functions is found in Howto E.

June 7, 1999 10:10 owltex Sheet number 59 Page number 434magentablack

434 Chapter 9 Strings, Streams, and Operators

9.4.6 Overloaded operator <<

If we assume, for the moment, that theClockTime::tostring function is imple-
mented, we can easily overload the stream insertion operator as follows.

ostream& operator << (ostream & os, const ClockTime & ct)
// postcondition: inserts ct onto os, returns os
{

os << ct.tostring();
return os;

}

TheClockTime objectct is inserted onto the streamos and the stream is returned.
Returning the stream allows insertion operations to be chained together since the insertion
operator is left-associative (see Table A.4 in Howto A.) Using atostring member
function to overload insertion has two benefits.

The same method for overloading insertion can be used for any class, and the
tostring function may be useful in other contexts, such as in a debugging
environment.

Usingtostring avoids making the insertion operator a friend function.

The statement below first insertsct onto the streamcout , then returns the stream so
that the string literal"is the time for run" can be inserted next.

ClockTime ct(1,30,59);
cout << ct << " is the time for fun" << endl;

Careful coding in the implementation ofClockTime::tostring() ensures that 5
seconds is printed as05 and that1:02:03 is printed for one hour, two minutes, and
three seconds. Two digits are always printed for each number, and a leading zero is
added when necessary. The stream manipulatorsetw specifies a field width of 2, and
a fill character’0’ is specified using the stream functionfill .

string ClockTime::tostring() const
{

ostringstream os;
os.fill(’0’);
os << Hours() << ":" << setw(2) << Minutes() << ":"

<< setw(2) << Seconds();
return os.str();

}

Because we use anostringstream variable it’s fine to set the fill character to’0’ .
If we were usingcout , for example, we couldn’t set the fill character to’0’ and leave
it that way since users won’t expect the fill character to change (e.g., from the default fill
character space) just by printing aClockTime object. Details on setting and resetting
the fill character can be found in Howto B.

June 7, 1999 10:10 owltex Sheet number 60 Page number 435magentablack

9.4 Case Study: Overloaded Operators and the ClockTime Class 435

9.4.7 Overloaded Relational Operators

The relational operators<, <=, ==, !=, >, >= should be overloaded for a class
as free functions, not as member functions (see Howto E for details.) As free functions,
these operators do not have access to class data which are private. Instead of making
the operators friend functions, we’ll use member functionsLess andEqual in im-
plementing the relational operators. In fact, onlyoperator == andoperator <
are implemented in terms of class member functions. The other relational operators are
implemented in terms of== and< as follows.

bool operator != (const ClockTime& lhs, const ClockTime& rhs)
{ return ! (lhs == rhs);
}

bool operator > (const ClockTime& lhs, const ClockTime& rhs)
{ return rhs < lhs;
}

bool operator <= (const ClockTime& lhs, const ClockTime& rhs)
{ return ! (lhs > rhs);
}

bool operator >= (const ClockTime& lhs, const ClockTime& rhs)
{ return ! (lhs < rhs);
}

Using this method to overload operators means we only implementoperator == and
operator < and these implementations are also the same for any class with member
functionsLess andEqual (see, for example,BigInt andDate .)

bool operator == (const ClockTime& lhs, const ClockTime& rhs)
// post: returns true iff lhs == rhs
{ return lhs.Equals(rhs);
}

bool operator < (const ClockTime& lhs, const ClockTime& rhs)
// post: returns true iff lhs < rhs
{ return lhs.Less(rhs);
}

9.4.8 Overloaded operator + and +=

When implementing arithmetic operators, it is much simpler to implementoperator
+= first and then call+= when implementingoperator +. Just as usingtostring
made it simple to overloadoperator << , usingoperator += makes it simple to
overloadoperator + for any class that has both operators.

June 7, 1999 10:10 owltex Sheet number 61 Page number 436magentablack

436 Chapter 9 Strings, Streams, and Operators

ClockTime operator + (const ClockTime & lhs,
const ClockTime & rhs)

// postcondition: return lhs + rhs
{

ClockTime result(lhs);
result += rhs;
return result;

}

To execute the statementlhs + rhs using this implementation a copy oflhs is
made, the value ofrhs added to the copy, and the result returned. Compare this
implementation, for example, tooperator + for the Date class indate.cpp(see
Howto G) – the bodies of the functions are identical.

The implementation ofoperator += is straightforward; we add values and nor-
malize.

ClockTime & ClockTime::operator += (const ClockTime & ct)
// postcondition: add ct, return result (normalized)
{

mySeconds += ct.mySeconds;
myMinutes += ct.myMinutes;
myHours += ct.myHours;
Normalize();

return *this;
}

For now, we’ll ignore the return type ofClocktime& and the last statement
return *this . These are explained in detail in Howto E. If you overload

Syntax: operator +=

const ClassName&
operator += (const ClassName& rhs)
{

implementation
return *this;

}

any of the arithmetic assignment
operators you should have the same
statement to return a value:return
*this; . The return type should be
a const reference to the class, such as
const ClockTime& . The same
syntax is used for any of the arith-
metic assignment operators, such as
*= , -= , /= , and%=. The imple-

mentation changes, but the format of the overloaded function does not.

9.4.9 Testing the ClockTime Class

Before proceeding with the development of the program to manipulate CDs, we must
test theClockTime class. In testing the program we’ll look for cases that might cause
problems such as adding 59 seconds and 1 second. It may seem like too much work
to develop a program just to test a class, but this kind of work pays dividends in the

June 7, 1999 10:10 owltex Sheet number 62 Page number 437magentablack

9.4 Case Study: Overloaded Operators and the ClockTime Class 437

long run. By constructing a simple test program it’s possible to debug a class rather
than debug a larger application program. This will make the development of the client
program easier as well, because (we hope) the class will be correct.

In the sample run following this program, a complete set of test data is not used.
You should think about developing a set of test data that would test important boundary
cases.

Program 9.10 useclock.cpp

#include <iostream>
using namespace std;

#include "clockt.h"

// test program for ClockTime class

int main()
{

int h,m,s;
cout << "enter two sets of 'h m s' data " << endl

<< "Enter non integers to terminate program." << endl << endl;

while (cin >> h >> m >> s)
{ ClockTime a(s,m,h);

cin >> h >> m >> s;
ClockTime b(s,m,h);
ClockTim e c = a + b;

cout << a < < " + " << b << " = " << c << endl;
}
return 0;

} useclock.cpp

O U T P U T

prompt> useclock
enter two sets of ’h m s’ data
Enter nonintegers to terminate program.

1 40 20 1 15 40
1:40:20 + 1:15:40 = 2:56:00
0 59 59 0 0 1
0:59:59 + 0:00:01 = 1:00:00
0 0 89 0 0 91
0:01:29 + 0:01:31 = 0:03:00
done done done

June 7, 1999 10:10 owltex Sheet number 63 Page number 438 magentablack

438 Chapter 9 Strings, Streams, and Operators

9.4.10 The Final Program

Each track for a CD is stored in the following format:

4:19 Have I Told You Lately
2:46 Here Comes The Night

Because white space is used to delimit strings when reading input using the extraction
operator>>, we’ll need to usegetline to read the title of a CD track, since the number
of words is different for each track. We’ll also use the optional third parameter of
getline to signal a sentinel other than newline when we read the minutes and seconds
that make up the time of a CD track. We’ll read all the characters up to the’:’ as the
minutes, then all the characters up to a space as the seconds. The remaining characters
on a line are the track’s title. Sincegetline reads strings, we’ll convert the strings for
minutes and seconds to integers using the functionatoi from strutils.h .12

The third parameter forgetline has a default value of’ \n’. This means that if
no value is specified for the third parameter, adefault value of ’ \n’ is used.

Program 9.11 cdsum.cpp

#include <iostream>
#include <fstream> // for ifstream
#include <cstdlib> // for exit
#include <string>
using namespace std;

#include "strutils.h" // for atoi
#include "clockt.h"
#include "prompt.h"

// reads file containing data for a cd in format below (one line/track)
// min:sec title
// and sums all track times

int main()
{

ifstream input;
string filename = PromptString("enter name of data file: ");
input.open(filename.c_str());

if (input.fail())
{ cerr << "could not open file " << filename << endl;

exit(0);
}
string minutes, // # of minutes of track

seconds, // # of seconds of track
title; // title of track

ClockTime total(0,0,0); // total of all times

12atoi , read as “a two i,” stands for “alphabetic to integer.”

June 7, 1999 10:10 owltex Sheet number 64 Page number 439magentablack

9.4 Case Study: Overloaded Operators and the ClockTime Class 439

while (getline(input,minutes,':') &&

getline(input,seconds,' ') &&

getline(input,title)) // reading line ok

{ ClockTime track(atoi(seconds.c_str()),atoi(minutes.c_str()),0);

cout << track < < " " << title << endl;

total += track;

}

cout << "——————————" << endl;

cout << "tota l = " << total << endl;

return 0;

} cdsum.cpp

O U T P U T

prompt> cdsum
enter name of data file vanmor.dat
0:04:31 Moondance
0:02:40 Baby Please Don’t Go
0:04:19 Have I Told You Lately
0:03:04 Brown Eyed Girl
0:04:21 Sweet Thing
0:03:22 Warm Love
0:03:57 Wonderful Remark
0:02:57 Jackie Wilson Said
0:03:14 Full Force gail
0:04:28 And It Stoned Me
0:02:46 Here Comes The Night
0:03:04 Domino
0:04:05 Did Ye Get Healed
0:03:32 Wild Night
0:04:40 Cleaning Windows
0:04:54 Whenever God Shines His Light
0:04:54 Queen Of The Slipstream
0:04:44 Dweller On The Threshold

total = 1:15:54

If you review the specification forgetline , you’ll see that the sentinel is read but is
not stored as part of the stringminutes . The secondgetline uses a space to delimit
the number of seconds from the title. Finally, the third use ofgetline relies on the
default value of the second parameter: a newline’ \n’ .

The functionatoi converts a string to the corresponding integer. If the string
parameter does not represent a valid integer, then zero is returned.

June 7, 1999 10:10 owltex Sheet number 65 Page number 440magentablack

440 Chapter 9 Strings, Streams, and Operators

9.18 In cdsum.cpp,Program 9.11, the title read includes leading white space if there isPause to Reflect

more than one space between the track duration and the title. Explain why this is
and describe a method for removing the leading white space from the title.

9.19 Provide three sets of data that could be used withuseclock.cpp,Program 9.10, to
test theClockTime implementation.

9.20 Explain why theClockTime parameters for operators<<, +, and+= are declared
asconst reference parameters.

9.21 What is output by the statementcout << ct << endl after each of the fol-
lowing definitions?

ClockTime ct(71,16,1);

ClockTime ct(5,62,1);

ClockTime ct(12);

ClockTime ct(21,5);

ClockTime ct;

9.22 If operators-= and- are implemented for subtracting clock times, which one is
easiest to implement? Write an implementation for operator-=.

9.23 After reading the number of minutes usinggetline(input, minutes) ,
is it possible to replace the expressiongetline(input, seconds) with
input >> seconds ? What ifseconds is defined as anint rather than as
astring ?

9.5 Chapter Review
In this chapter we discussed details of streams and characters and how these abstractions
are implemented in C++. We also discussed operator overloading and how it makes it
simpler to use some classes by mirroring how the built-in types work. We saw that a
low-level understanding of how strings and streams are implemented is not necessary in
order to use them in programs.

The following are some of the important topics covered:

The typechar represents characters and is used to construct strings and streams.
Most systems use ASCII as a way of encoding characters, but you should try to
write code that is independent of any particular character set.

The library<cctype> has prototypes for several functions that can be used to
write programs that do not depend on a particular character set such as ASCII.

Except for output and use in strings,char variables can be thought of asint
variables. In particular, it’s possible to add 3 to’a’ and subtract’a’ from ’z’ .

June 7, 1999 10:10 owltex Sheet number 66 Page number 441magentablack

9.6 Exercises 441

String variables are composed ofchar values. Individual characters of a string
are accessible using[] , the indexing operator. The standard string class does no
range-checking for illegal index values.

The functiongetline is used to read an entire line of text and doesn’t use white
space to delimit one word from another. The sentinel indicating end of line is an
optional third parameter.

The functionget reads one character at a time from a stream.

String streams, variables of typeistringstream or ostringstream , are
useful in reading line-oriented data and in writing to a string, respectively.

State machines can be useful when parsing data one character at a time or even
one word at a time.

Enumerated types, orenums, are useful as symbolic labels. When possible, enums
should be declared within a class.

A friend class (or function) has access to another class’s private data members.
Friendship must be granted by the class whose private data members will be ac-
cessed.

A class data invariant is a property of class state that is always true after each
member function has executed. Using class invariants helps develop and reason
about a class’s implementation and use.

It is possible to overload relational, arithmetic, and I/O operators for classes that
you write. A set of guidelines for implementing overloaded operators helps makes
coding them a straightforward process.

Class development and testing should be done together, with testing helping the
development process and increasing confidence in the correctness of the class
implementation (whether the class works as it should).

9.6 Exercises

9.1 Modify decomment.cpp,Program 9.7, so that removed comments are output to a sep-
arate file. Use string functions so that the name of the output file has a.ncm (for no
comments) suffix with the same prefix as the input file. For example, if the comments
are removed fromfrogwalk.cpp,the removed comments will be stored infrogwalk.ncm.
Each comment should be preceded by the line number from which it was removed. For
example:

3 // author: Naomi Smith
4 // written 4/5/93
10 // update the counter here, watch out for overflow
37 // avoid iterating too many times

June 7, 1999 10:10 owltex Sheet number 67 Page number 442magentablack

442 Chapter 9 Strings, Streams, and Operators

9.2 Add two new operators to theClockTime class and develop a test program to ensure
that the operators work correctly.

operator - for subtraction of two times. Here it’s clear that

03:02:05 - 02:01:03 == 01:01:02

but you’ll have to make a decision about what0:01:03 - 0:02:05 means.
operator >> to read from a stream. It’s probably easiest to read first into a
string, and then convert the string to aClockTime value.

9.3 Modify Program 9.4,readnums.cpp,so that all integers on a line are parsed and added to
total but nonintegers are ignored. You’ll need to change the type of the variablenumto
string . If you use the functionatoi , it will be difficult to determine when an integer
is read and when a noninteger string such as"apple" is read sinceatoi("apple")
returns zero. However, all valid integers in C++ begin with either a+, a - , or a digit
0–9.

9.4 Write a program that acts as a spell-checker. The program should prompt the user for a
filename and check each word in the file. Possible misspellings should be reported for
each line with a misspelled word, where the first line in a file is line number one. Print
the line number and the entire line, and use the caret symbol to “underline” the word as
shown below. Each line should appear only once in the output, with each misspelled
word in the line underlined.

20: This is a basic spell chekc program.
ˆˆˆˆˆ

31: There are more thngs in heven and earth,
ˆˆˆˆˆ ˆˆˆˆˆ

To tell if a word is misspelled, read a file of words from an on-line list of words (see
words.dat that comes with the files for this book.) This won’t be perfect because of
plurals and other endings that typically aren’t recorded in word lists, but the program will
be a start towards a functioning spell checker. Store the list of words in aStringSet
object and use the methodStringSet::find() to search for a match.
For extra credit, when a word ends with ’s’ and is judged as misspelled, look up the
word without the ’s’ to see if it’s a possible plural.

9.5 Write a program to generate junk mail (or spam, the electronic equivalent of junk mail).
The program should read two files.

A template file for the junk mail letter; seespam.dat below.
A data file of names, addresses, and other information used to fill in the template.

For each line of the data file a spam message should be generated. In each message,
one line of the template file should generate one line of output, with any entry<n> of
the template file filled in by thenth item in the line of the data file (where the first item
in a data file has number zero.)
At first you should write the junk letters tocout . However, the user should have the
option of creating an output file for each entry in the data file. The output files should

June 7, 1999 10:10 owltex Sheet number 68 Page number 443magentablack

9.6 Exercises 443

be named0.spm, 1.spm, and so on. Each output file has a.spm suffix, and the name of
the file is the number corresponding to the line in the data file that generated the spam
output.
A template file looks likespam.dat below.

Dear <0> <1>,

<0>, as you know, the <1> family name is one
of the few names to be treasured by family name experts.
The branch of the family in <4> is certainly one of
the best of the <1> families. <0>, your own family
in <3> is in the unique position to lead the world
of <1> families as we approach the year 2000.

For only $100.00, <0>, you can be be one of the
top <1>-family leaders.

A corresponding data file for this template follows.

John:Doe:26 Main St:Los Alamos:NM:jdoe@aol.com
Susan:Smith:103 Oak St:St. Louis:MO:sues@hotmail.com
Fred:O’Hare:22 Post Rd, #3:Apex:NC:froh@mindspring.com

The second line from this data file generates the following message, the linebreaks can
change depending on how you write the program.

Dear Susan Smith,

Susan, as you know, the Smith family name is one
of the few names to be treasured by family name experts.
The branch of the family in MO is certainly one of
the best of the Smith families. Susan, your own family
in St. Louis is in the unique position to lead the world
of Smith families as we approach the year 2000.

For only $100.00, Susan, you can be be one of the
top Smith-family leaders.

9.6 Write a program that reads a text file and creates a pig-latin version of the file. The output
(piglatin) file should have the same name as the input file, but with a.pig suffix added
so thatpoe.txt would be written aspoe.txt.pig (or, for extra credit, replace any
suffix with .pig). You can write lines to the output file in one of two ways:

Each output line corresponds to an input line, but each word on the output line is
the pig-latin form of the corresponding word on the input line.
Write at most 80 characters to each output line (or some other number of charac-
ters). Put as many words on a line as possible, without exceeding the 80-character
limit, and then start a new line.

The first method is easier, but the lines will be long because each word grows a suffix

June 7, 1999 10:10 owltex Sheet number 69 Page number 444magentablack

444 Chapter 9 Strings, Streams, and Operators

in its pig-latin form. The lines below could be translated as shown.

It was the best of times, it was the worst of times,
it was the age of wisdom, it was the age of foolishness

Here’s the translation, with end-of-word punctuation preserved, although the line breaks
are not preserved.

Itway asway ethay estbay ofway imestay, itway asway ethay
orstway ofway imestay, itway asway ethay ageway ofway
isdomway, itway asway ethay ageway ofway oolishnessfay

You’ll need to be careful if you want to preserve punctuation. As a first step, don’t worry
about punctuation at all. See the exercises in Chapter 4 for the definition of pig-latin
used in the example above.

9.7 Design, implement, and test a classRational for fractions, or rational numbers, like
2/3 and 7/11. Overload operators so that fractions can be added, subtracted, multiplied,
and divided. UseBigInt values for the (private state) numerator and denominator.
You should also write functions so that rational numbers can be printed. You’ll need to
write a normalizing function to reduce fractions to lowest terms (i.e., so that1

4 + 1
4 = 1

2).
See Euclid’s algorithm for finding greatest common divisors in the exercises of Chapter 5
for help with the normalizing function.
You’ll want to include at least three different constructors.

Rational r(2,3); // r represents 2/3
Rational t(3); // t represents 3/1
Rational s; // s represents 1/1

You’ll also need to decide what to do if the user uses 0 for the denominator since this
isn’t a valid fraction.

9.8 Design, implement, and test a class for complex numbers. A complex number has the
form a + b × i, wherei = √−1. Implement constructors fromdouble values and
from complex values. Overload arithmetic and output operators for complex numbers.

9.9 Design, implement, and test a classPoly for polynomials. A polynomial has the form
anx

n + an−1x
n−1 + · · · a1x + a0. For example:

(3x4 + 2x2 + x − 5) + (2x4 + 3x3 − 2x2 + 5) = (5x4 + 3x3 + x)

You’ll need to use a vector to store exponents and coefficients. You should implement a
constructor that takes a coefficient and an exponent as arguments so that you can write

Poly c = Poly(3,4) + Poly(2,2) + Poly(7,1) + Poly(-5,0);

To get the polynomial 3x4 + 2x2 + 7x − 5. You should overload arithmetic operators
+=, -= and+, - for addition and subtraction. You should overload*= to multiply
a polynomial by a constant: 3× (2x3 − 3x) = 6x3 − 9x.
Finally, you should include a member functionat , that evaluates a polynomial at a
specific value for x. For example

Poly c = Poly(4,2)+Poly(3,1)+Poly(5,0); // 4xˆ2 + 3x + 5

doubl e d = c.at(7); / / d = 232 = 4*7ˆ2 + 3*7 + 5

June 7, 1999 10:10 owltex Sheet number 70 Page number 445magentablack

9.6 Exercises 445

9.10Write a program that reads a file and generates an output file with the same words as the
input file, but with a maximum ofn characters per line, wheren is entered by the user.
The first version of the program should read words (white space delimited characters)
and put as many words on a line as possible, without exceedingn chars per line. In the
output file, each word on a line is separated from other words by one space. The file
transforms input as follows.

‘Well, I’ll eat it,’ said Alice, ‘and if it makes me
grow larger, I can reach the key; and if it makes me
grow smaller, I can creep under the door; so either way
I’ll get into the garden, and I don’t
care which happens!’

This is transformed as shown below forn = 30.

‘Well, I’ll eat it,’ said
Alice, ‘and if it makes me
grow larger, I can reach the
key; and if it makes me grow
smaller, I can creep under the
door; so either way I’ll get
into the garden, and I don’t
care which happens!’

Once this version works, the user should have the option of right-justifying each line.
Here the lines are padded with extra white space so that each line contains exactlyn

characters. Extra spaces should be inserted between words, starting at the left of the
line and inserting spaces between each pair of words until the line is justified. If adding
one space between each word isn’t enough to justify the line, continue adding spaces
until the line is justified.

‘Well, I’ll eat it,’ said
Alice, ‘and if it makes me
grow larger, I can reach the
key; and if it makes me grow
smaller, I can creep under the
door; so either way I’ll get
into the garden, and I don’t
care which happens!’

9.11 Write a program to play hangman. In hangman one player thinks of a word and the
other tries to guess the word by guessing one letter at a time. The guesser is allowed a
fixed number of missed letters, such as 6; if the word is not guessed before 6 misses,
the guesser loses. Traditionally each missed letter results in one more part being added
to the figure of a person being hanged, as shown in Figure 9.3. When the figure is
complete, the guesser loses. Sample output is shown after Figure 9.3.

June 7, 1999 10:10 owltex Sheet number 71 Page number 446magentablack

446 Chapter 9 Strings, Streams, and Operators

Figure 9.3 Slowly losing at hangman.

O U T P U T

prompt> hangman
misses left = 6 word = * * * * * * * * * *
enter a letter: e
misses left = 6 word = * * * E * * * * E *
enter a letter: a
misses left = 5 word = * * * E * * * * E *
enter a letter: i
misses left = 4 word = * * * E * * * * E *
enter a letter: r
misses left = 4 word = * * R E * * * * E *
enter a letter: o
misses left = 3 word = * * R E * * * * E *
enter a letter: n
misses left = 3 word = * * R E N * * * E N
enter a letter: t
misses left = 3 word = * T R E N * T * E N
enter a letter: l
misses left = 2 word = * T R E N * T * E N
enter a letter: u
misses left = 1 word = * T R E N * T * E N
enter a letter: p
YOU LOSE!!! The word is STRENGTHEN

Rather than use graphics (although if you have access to a graphics library, you should
try to use it), the program should tell the user how many misses are left and should print
a schematic representation of what letters have been guessed correctly. You should try
to design and implement a program that uses several classes. Some are suggested here,
but you’re free to develop scenarios, list nouns for classes and verbs for methods, and
develop your own classes.

classWordSource is the source of the secret word the user tries to guess. This
class at first could return the same word every time, but eventually it should read

June 7, 1999 10:10 owltex Sheet number 72 Page number 447magentablack

9.6 Exercises 447

a file (like a file of good hangman words or an on-line dictionary) and return one
of the words at random. The same word should not be chosen twice during one
run of the program.
classLetters represents the letters the user has guessed (and the unguessed
letters). The user might be shown a list of unguessed letters before each guess, or
might request such a list as an option. Guessing an already-guessed letter should
not count against the user. The case of a letter should not matter so that ’e’ and
’E’ are treated as the same letter.
classWord represents the word the user is trying to guess (it’s initialized from a
WordSource .) Instead of using string, this class encapsulates the word being
guessed. The classWord might have the following methods (and others).

Display writes the word with spaces or asterisks (or something else) for
unguessed letters. See the sample output for an example. This function could
write tocout or return a string.
ProcessChar process a character the user guesses. If the character is in the
word, it will be displayed by the next call ofDisplay . Perhaps this function
should return a boolean value indicating if the character is in the word.

classPainting (or Gallows for the macabre) is responsible for showing
progress in some format as the game progresses. This class might draw a picture,
simply display the number of misses and how many remain, or it might use a
completely different approach that’s not quite as gruesome as hanging someone
(be creative).

June 7, 1999 10:10 owltex Sheet number 21 Page number 448magentablack

448

June 7, 1999 10:10 owltex Sheet number 22 Page number 449magentablack

10Recursion, Lists, and
Matrices

Art, it seems to me, should simplify. That, indeed, is very nearly the whole of the higher artistic
process; finding what conventions of form and what detail one can do without and yet preserve
the spirit of the whole—so that all that one has suppressed and cut away is there to the reader’s

consciousness as much as if it were type on the page.
Willa Cather

On the Art of Fiction

In this chapter we focus onrecursion, a technique for structuring functions and classes
that helps solve self-referential problems. We’ll also study two classes that structure
data: a self-referential structure called alist and an extension of thetvector class,
called tmatrix , that representstwo-dimensional data. In studying these structures
we’ll also explore properties of objects in a program that relate to how and where the
objects can be accessed. We’ll see two important properties of objects:scope, where
the object can be accessed, andlifetime, the duration of an object during program
execution. We’ll see that recursive functions seem to “call themselves,” but they are
better understood as functions that solve problems whose solution can be expressed
by combining solutions to problems that are similar, but smaller. Some problems have
terse and comprehensible solutions expressed as recursive functions but have convoluted
nonrecursive solutions. Other problems seem to be suitable for recursive solution but
are better solved nonrecursively.

10.1 Recursive Functions
As a first example of a problem whose solution is elegantly expressed using recursion,
we turn to the problem of outputting an English version of an integer by printing each
digit’s spelled-out English equivalent. For example, 1053 should be output as “one
zero five three.” We solved this problem withdigits.cpp, Program 5.5, usingstring
concatenation. Now we limit ourselves to a solution using onlyint variables. To make
the problem simpler, we’ll initially limit the input to four-digit numbers. However, the
recursive solution will work for allint values.

10.1.1 Similar and Simpler Functions

When we solved this problem using strings, we concatenated digits to the front of a
string as it was built up from each digit in anint . To convert 123, we first concatenated
"three" to an empty string calleds . Then we concatenated"two" to the front of
s , forming "two three" . Concatenating"one" to the front ofs now yields the
desired string (seedigits.cpp, Program 5.5). Basically, we peeled the number’s digits

449

June 7, 1999 10:10 owltex Sheet number 23 Page number 450 magentablack

450 Chapter 10 Recursion, Lists, and Matrices

from the right, concatenating them to the string from the left. Since we aren’t using
string functions, we must rewrite the program to print string literals for each digit of
an int . This is done indigits2.cpp,Program 10.1.

Program 10.1 digits2.cpp

#include <iostream>
using namespace std;
#include "prompt.h"

// prelude to recursion: print English form of each digit
// in an integer: 123 -> "one two three"

void PrintDigit(int num)
// precondition: 0 <= num < 10
// postcondition: prints english equivalent, e.g., 1->one,...9->nine
{

if (0 == num) cout << "zero";
else if (1 == num) cout << "one";
else if (2 == num) cout << "two";
else if (3 == num) cout << "three";
else if (4 == num) cout << "four";
else if (5 == num) cout << "five";
else if (6 == num) cout << "six";
else if (7 == num) cout << "seven";
else if (8 == num) cout << "eight";
else if (9 == num) cout << "nine";
else cout << "?";

}

void PrintOne(long number)
// precondition: 0 <= number < 10
// postcondition: prints English equivalent of number
{

if (0 <= number && number < 10)
{ PrintDigit(number);
}

}

void PrintTwo(long int number)
// precondition: 10 <= number < 100
// postcondition: prints English equivalent of number
{

if (10 <= number && number < 100)
{ PrintOne(number / 10);

cout << " ";
PrintDigit(number % 10);

}
}

void PrintThree(long int number)
// precondition: 100 <= number < 1000
// postcondition: prints English equivalent of number

June 7, 1999 10:10 owltex Sheet number 24 Page number 451magentablack

10.1 Recursive Functions 451

{
if (100 <= number && number < 1000)
{ PrintTwo(number / 10);

cout << " ";
PrintDigit(number % 10);

}
}

void PrintFour(long int number)
// precondition: 1000 <= number < 10,000
// postcondition: prints English equivalent of number
{

if (1000 <= number && number < 10000)
{ PrintThree(number / 10);

cout << " ";
PrintDigit(number % 10);

}
}

int main()
{

int number = PromptRange("enter an integer",1000,9999);
PrintFour(number);
cout << endl;

return 0;
} digits2.cpp

O U T P U T
prompt> digits2
enter an integer between 1000 and 9999: 8732
eight seven three two
prompt> digits2
enter an integer between 1000 and 9999: 7003
seven zero zero three
prompt> digits2
enter an integer between 1000 and 9999: 1000
one zero zero zero

The functionPrintFour prints a four-digit number. We know how to peel the
last digit from a number using the modulus and division operators,%and / . In dig-
its2.cpp,a four-digit number is printed by printing the first three digits using the function
PrintThree , then printing the final digit using the functionPrintDigit . For exam-
ple, to print 1357 we first print 135, which is1357/10 , by callingPrintThree , and
then print"seven" , the last digit of 1357 obtained using1357%10. Printing a three-
digit number is a similar process: first print a two-digit number by callingPrintTwo ,

June 7, 1999 10:10 owltex Sheet number 25 Page number 452 magentablack

452 Chapter 10 Recursion, Lists, and Matrices

and then print the last digit. For example, to print 135 we first print 13, which is
135/10 , and then print"five" , which is 135%10. Continuing with this pattern
we callPrintOne andPrintDigit to print a two-digit number. Finally, to print a
one-digit number we simply print the only digit.

The code indigits2.cppshould offend your emerging sense of programming style.
Each of the functionsPrintFour , PrintThree , andPrintTwo are virtually identi-
cal except for the name of the function,PrintXXXX , that each one calls
(e.g.,PrintThree calls PrintTwo). We can combine the similar code in all the
PrintXXXX functions. Rather than using four separate functions, each one processing
a certain range of numbers, we can rewrite the nearly identical functions as a single
functionPrint . This is shown indigits3.cpp, Program 10.2.

Program 10.2 digits3.cpp

#include <iostream>
using namespace std;
#include "prompt.h"

// recursion: print English form of each digit
// in an integer: 123 -> "one two three"

void PrintDigit(int num)
// precondition: 0 <= num < 10
// postcondition: prints english equivalent, e.g., 1->one,...9->nine
{

if (0 == num) cout << "zero";
else if (1 == num) cout << "one";
else if (2 == num) cout << "two";
else if (3 == num) cout << "three";
else if (4 == num) cout << "four";
else if (5 == num) cout << "five";
else if (6 == num) cout << "six";
else if (7 == num) cout << "seven";
else if (8 == num) cout << "eight";
else if (9 == num) cout << "nine";
else cout << "?";

}

void Print(long int number)
// precondition: 0 <= number
// postcondition: prints English equivalent of number
{

if (0 <= number && number < 10)
{ PrintDigit(int(number));
}
else
{ Print(number / 10);

cout << " ";
PrintDigit(int(number % 10));

}
}

June 7, 1999 10:10 owltex Sheet number 26 Page number 453magentablack

10.1 Recursive Functions 453

int main()
{

long number = PromptRange("enter an integer",0L,1000000L);
Print(number);
cout << endl;

return 0;
} digits3.cpp

O U T P U T

prompt> digits3
enter an integer between 1 and 1000000: 13
one three
prompt> digits3
enter an integer between 1 and 1000000: 7
seven
prompt> digits3
enter an integer between 1 and 1000000: 170604
one seven zero six zero four

The if statement inPrint from digits3.cppcorresponds to the equivalentif in
the functionPrintOne from the previous program,digits2.cpp.A number in the range
0–9 is simply printed by callingPrintDigit . In all other cases, the code in the body
of theelse statement inPrint from digits3.cpp,Program 10.2, is the same code in
the functions fromdigits2.cpp,Program 10.1.

Although you may think that the functionPrint is calling itself indigits3.cpp,it
is not. As shown in Figure 10.1, four separate functions namedPrint are called when
the user enters 1478. These functions are identical except for the value of the parameter
number stored in each function. The firstPrint , shown in the upper-left corner of
Figure 10.1, receives the argument 1478 and stores this value innumber . Since the
value of number is greater than 10, theelse statements are executed. A function
Print is called with the argument1478 / 10 , which is 147. This is not the same
function as in the upper left, but another version of the functionPrint , in essence a
clone function of Print , except that the value ofnumber is different. Altogether
there are four clones of thePrint function, each with its own parameternumber . The
last clone called (lower-right corner of Figure 10.1) does not generate anotherPrint
call, since the value ofnumber is between 0 and 9. Theif statement is executed,
and the functionPrintDigit is called with the argument 1. It’s important to realize
that this is the first call ofPrintDigit , so the first digit printed is “one.” Although
each clone executes the statementPrintDigit(number % 10) , this statement is
executed only after the recursive clone function call toPrint . Each clone waits for
control to return from the recursive call, except for the last function, which doesn’t make

June 7, 1999 10:10 owltex Sheet number 27 Page number 454magentablack

454 Chapter 10 Recursion, Lists, and Matrices

number number1478 147

Print(1478)

From main()

PrintDigit(8);

PrintDigit(4);

Print(1)

Print(147)

Print(14)

PrintDigit(7);

PrintDigit(1);

number number 114

Figure 10.1 Recursively printing digits.

a recursive call. The first clone called is the last clone to print a digit, so the last digit
printed is1478 % 10, which is 8. This means the last word printed is “eight.”

You’ll need to develop two skills to understand recursive functions.

1. The ability to reason about a recursive function so that you can determine what
the function does.

2. The ability to think recursively so that you can write recursive functions to solve
problems.

Developing the second skill is more difficult than the first, but practice with reasoning
about recursive functions will help with both skills.

10.1.2 General Rules for Recursion

When you write a loop, you reason about when the loop will stop executing so that
you don’t write an infinite loop. You must take the same care when writing recursive
functions to avoid an infinite succession of recursively called clones. Each clone uses
space, so you won’t be able to actually generate an infinite number of clones, but you
can easily use up all the memory in your computing environment if you’re not careful.
To avoid an infinite chain of recursive calls, each recursive function must include a
base casethat does not make a recursive call. The base case inPrint of digits3.cpp,
Program 10.2, is a single-digit number identified by this test:

June 7, 1999 10:10 owltex Sheet number 28 Page number 455magentablack

10.1 Recursive Functions 455

if (0 <= number && number < 10)

A function’s base case is usually determined by finding a value, or a set of values, that
does not require much work to compute. We’ll look at a recursive version of the function
to raise a number to a power that we studied in Section 5.1.7.

If you’re asked to calculate 38, you could multiply 3×3×3×3×3×3×3×3. You
could also calculate 34 = 81 and then calculate 81×81 = 6561, since 38 = 34×34. The
second method uses far fewer multiplications to calculatean than the first. The method
is summarized in the following (repeated from Section 5.1.7.)

an =
{ 1 if n = 0

an/2 × an/2 if n is even
a × an/2 × an/2 if n is odd (note thatn/2 truncates to an integer)

(10.1)

For example, to calculate 411 using this method, we first calculate 411/2 = 45 = 1024
and then multiply 4× 1024× 1024 = 4,194,304. The base case requires no power
calculation and no recursion. The base case in the formula corresponds to an exponent
of zero. For nonzero exponents, the recursion comes from the calculation ofan/2 in the
formula. We’ll write a functionPower with two parameters: one for the basea and one
for the exponentn in calculatingan. Note that there is one recursive call and the value
returned by the call is stored in a local variablesemi :

double Power(double base, int expo)
// precondition: expo >= 0
// postcondition: returns baseˆexpo
{

if (0 == expo)
{ return 1.0; // correct for zeroth power
}
else
{ double semi = Power(base,expo/2);

if (exp o % 2 == 0) // even exponent
{ return semi*semi;
}
else // odd exponent
{ return base*semi*semi;
}

}
}

The calculation of 235 usingPower(2,35) generates seven clonePower functions
with expo values 35, 17, 8, 4, 2, 1, 0. Since the recursive call usesexpo/2 as the value
of the second argument, the total number of recursive calls is limited by how many times
the original argument can be divided in half.

The seven clones are shown in Figure 10.2, where the value ofexpo can be used
to determine the sequence of recursive calls. The result of each clone’s one recursive
call is stored in the calling function’s local variablesemi . The value ofsemi is used
to calculate the returned result. Just as each iteration of a loop body changes values so

June 7, 1999 10:10 owltex Sheet number 29 Page number 456magentablack

456 Chapter 10 Recursion, Lists, and Matrices

base = 2, expo = 4

find 2^17 find 2^8 find 2^4

find 2^2 find 2^1 find 2^0

return 2*result*resultreturn 2*result*result return result*result

return result*result return 2*result*result return 1

base = 2, expo = 1 base = 2, expo = 0

base = 2, expo = 17 base = 2, expo = 8

base = 2, expo = 2
Return 4 Return 2 Return 1

Return 16Return 256

int result = Power(2,35);
base = 2, expo = 35

Return 34359738368 Return 131072

return result*result

Figure 10.2 Recursively calculating 235.

that the loop test eventually becomes false and the loop terminates, each recursive call
should get closer to the base case. This ensures that the chain of recursively called clones
will eventually stop. In general, recursive functions are built from calling similar, but
simpler functions. The similarity yields recursion; the simplicity moves toward the base
case.

Program Tip 10.1: Recursive functions must make recursive calls that
are similar to the original call, but simpler than the original call.

1. Identify a base case that does not make any recursive calls. Each call should make
progress towards reaching the base case; this ensures termination since the function
will end.

2. Solve the problem by making recursive calls that are similar, but simpler, (i.e., that
move towards the base case). The similarity ensures that the recursion works, you’ll
be solving a similar problem.

10.1.3 Infinite Recursion

You must guard against writing functions that result in infinite recursion, that is, functions
that generate a potentially endless number of recursive calls. When you forget a base
case, infinite recursion results, as shown inrecdepth.cpp,Program 10.3. The output for
Program 10.3 came from a Pentium PC with 256 megabytes of memory using Metrowerks
Codewarrior; it shows that 36,977 recursive calls are made before memory is exhausted.

June 7, 1999 10:10 owltex Sheet number 30 Page number 457magentablack

10.1 Recursive Functions 457

Program 10.3 recdepth.cpp

#include<iostream>
using namespace std;

// Owen Astrachan
// illustrates problems with "infinite" recursion

void
Recur(int depth)
{

cout << depth << endl;
Recur(depth+1);

}

int main()
{

Recur(0);
return 0;

} recdepth.cpp

O U T P U T

prompt> recdepth
0
1

some output removed

36977
36977
Unhandled exception: c00000fd

The maximum number of clones, or recursive calls, is limited by the memory of
the computer used and depends on certain settings of the programming environment.
For example, when I used g++ on a Linux machine with 32 megabytes of memory the
program crashed with a segmentation fault after 698,911 calls.1 Using Visual C++ 6.0
yields an exception, with the program halting, after 11,740 calls. As a programmer you
must be careful when writing recursive functions. You should always identify a base
case that does not make any recursive calls.

1The recursive call inRecur is an example oftail recursion. In a tail recursive function the last
statement executed is a recursive call. Smart compilers can turn tail recursive functions into looping
functions automatically, thus saving memory.

June 7, 1999 10:10 owltex Sheet number 31 Page number 458magentablack

458 Chapter 10 Recursion, Lists, and Matrices

code

chapter2 chapter4 chapter3prompt.h dice.h

pizza.cpppts.cpphello.cpp bday.cpp isleap.cpp fly.cpp fahr.cpp gfly.cpp

Figure 10.3 Hierarchy of directories and files.

You may study methods in more advanced courses that involve changing a recursive
function to a nonrecursive function. This is often a difficult task. Sometimes, however, it
is possible to write a simple nonrecursive version of a recursive function. Nevertheless,
some functions are much more easily written using recursion; we’ll study examples of
these functions in the next section.

10.2 Recursion and Directories

In this section we’ll use recursion to solve problems that cannot be solved without recur-
sion unless auxiliary data structures are used. The recursive functions find information
about files and directories stored on disk. Almost all computers have an operating sys-
tem in which directories help organize the many files you create and use. For example,
you may have a directory for each of the computer courses you have taken, a directory
for the electronic mail you receive, and a directory for your home page on the World
Wide Web. Using directories to organize files makes it easier for you to find a specific
file. Directories contain files as well assubdirectories,which can also contain files and
subdirectories. For example, the hierarchical arrangement of directories enables you
to have acourses directory in which you have subdirectories for English, computer
science, biology, and political science courses. A diagram of some of my directories
and files for this book is shown in Figure 10.3. Directories are shown as file folders, and
files are shown as rectangles.

In this section we investigate classes that use recursion to process directory hier-
archies. For example, we will develop a program that mimics what some operating
systems do (and some don’t) in determining how much space files use on disk. We will
also develop a program that scans a hierarchy of directories to find a file whose name
you remember but whose location you have forgotten.

June 7, 1999 10:10 owltex Sheet number 32 Page number 459magentablack

10.2 Recursion and Directories 459

10.2.1 Classes forTraversing Directories

Program 10.4,files.cpp,prompts the user for the name of a directory and then prints
all the files in that directory. This kind of listing is often needed when opening files
from within a word processor; you must be able to type or click on the name of the file
you want to edit. The variabledir is a classDirStream object. TheDirStream
class supports iteration usingInit , HasMore , Next , andCurrent similarly to other
classes, (e.g., the classWordStreamIterator from maxword.cpp,Program 6.11
and the classStringSetIterator from setdemo.cpp, Program 6.14).

Program 10.4 files.cpp

#include <iostream>

#include <iomanip>

#include <string>

using namespace std;

#include "directory.h"

#include "prompt.h"

// illustrates use of the DirStream and DirEntry classes

int main()

{

DirStream dir; // directory information

DirEntry entry; // one entry from a directory

int num = 0; // each file is numbered in output

string name = PromptString("enter name of directory: ");

dir.open(name);

if (dir.fail())

{ cerr << "could not open directory " << name << endl;

exit(1);

}

for(dir.Init(); dir.HasMore(); dir.Next())

{ entry = dir.Current();

num++;

cout << "(" << setw(3) << num << ") " << setw(12) << entry.Name() << "\t";

if (! entry.IsDir())

{ cout << entry.Size();

}

cout << endl;

}

return 0;

} files.cpp

June 7, 1999 10:10 owltex Sheet number 33 Page number 460magentablack

460 Chapter 10 Recursion, Lists, and Matrices

O U T P U T

prompt> files
enter name of directory: c:\book\mcgraw
(1) .
(2) ..
(3) design.pdf 246489
(4) designspecs.pdf 60876
(5) fixreview 24481
(6) hromcik.doc 41472
(7) hsreviews 59797
(8) notes 305
(9) photo 1488
(10) schedule.xls 17408
(11) tapestry 420692
(12) tapsurv.SIT 15836
prompt> files
enter name of ..\chap22
could not open directory ..\chap22

The member functionDirStream::Current() returns aDirEntry object.
Repeated calls ofCurrent , in conjunction with the iterating functionsHasMore
andNext , return each entry in the directory. These directory entries are either files or
subdirectories. Infiles.cpp,the member functionDirEntry::IsDir() differentiates
files from directories, returning true when theDirEntry object is a directory and false
otherwise. DirEntry::Size() returns the size, in bytes, of a file. On Windows
machines this is zero for directories, on Linux/Unix machines directories have nonzero
sizes. The filename. (a single period) represents the current directory. The filename
.. (a double period) represents the parent directory. This convention is followed by
many operating systems. The member functions for the classDirEntry and the class
DirStream are given indirectory.h, Program G.11 in How to G.

The header file,directory.h,2 that contains declarations for the classesDirEntry
andDirStream , is provided on-line with the code provided with this book.

10.2.2 Recursion and DirectoryTraversal

Program 10.4,files.cpp,prints all the files in a given directory. Some applications require
lists of subdirectories, and the files within the subdirectories, as well. For example, to
calculate the total amount of disk space used by all files and directories, a program
must accumulate the sum of file sizes in all subdirectories. We’ll modifyfiles.cpp,
Program 10.4, so that it prints both files and subdirectories (and files and subdirectories
of the subdirectories, and so on). As a first step, we’ll move thefor loop that iterates

2On some 16-bit systems the file may be nameddirectry.h.

June 7, 1999 10:10 owltex Sheet number 34 Page number 461 magentablack

10.2 Recursion and Directories 461

chap1 chap2 chap3

tapestry

finalbigpic.epschapter1.tex

hello.cpp bday.cpp oldmac.cpp

oldmac.eps

progs progs

gfly.cpp pizza.cpp macinput.cpp

library

prompt.hdice.h dice.cpp

book.tex

chapter2.tex chapter3.tex

Figure 10.4 Files and subdirectories used in run of subdir.cpp, Program 10.5.

over all the files in a directory into a functionProcessDir . The final program is
subdir.cpp,Program 10.5. Figure 10.4 contains a diagram of the files and subdirectories
that generate the sample run.3

Program 10.5 subdir.cpp

#include <iostream>
#include <iomanip>
#include <string>
using namespace std;

#include "directory.h"
#include "prompt.h"

// print all entries in a directory (uses recursion)

void Tab(int count)
// postcondition: count tabs printed to cout
{

int k;
for(k=0 ; k < count; k++)
{cout << "\t";
}

}

3The suffixes in Figure 10.4 represent different kinds of files:.cpp for C++ source code,.tex for
LATEX files (a document-processing system),.eps for PostScript files, and so on.

June 7, 1999 10:10 owltex Sheet number 35 Page number 462magentablack

462 Chapter 10 Recursion, Lists, and Matrices

void ProcessDir(const string & path, int tabCount)

// precondition: path specifies pathname to a directory

// tabCount specifies how many tabs for printing

// postcondition: all files and subdirectories in directory ’path’

// printed, subdirectories tabbed over 1 more than parent

{

DirStream indir(path);

DirEntry entry;

int num = 0; // number of files in this directory

for(indir.Init(); indir.HasMore(); indir.Next())

{ entry = indir.Current(); // either file or subdirectory

// don’t process self: ".", or parent directory: ".."

if (entry.Name() != "." && entry.Name() != "..")

{ num++;

Tab(tabCount);

cout << "(" << setw(3)<< num << ")" << "\t" << entry.Name() << endl;

if (entry.IsDir()) // process subdir

{ ProcessDir(entry.Path(),tabCount+1);

}

}

}

}

int main()

{

string dirname = PromptString("enter directory name ");

ProcessDir(dirname,0);

return 0;

} subdir.cpp

The files in a subdirectory are indented and numbered after the name of the subdirec-
tory is printed. For example, the subdirectory namedchap2 contains one subdirectory,
progs , and two files,chapter2.tex andoldmac.eps . The subdirectoryprogs
of chap2 contains three files:hello.cpp , bday.cpp , andoldmac.cpp . The
directory tapestry , whose name is entered when the program is run, contains four
subdirectories:chap1 , chap2 , chap3 , and library , and one file:book.tex .
Notice that the files in a subdirectory are numbered starting from one. We cannot con-
trol the order in which files and subdirectories are processed using theDirStream
iterating functionsInit , Next , andCurrent . For example, the operating system
may scan the files alphabetically, ordered by date of creation, or in some random order.
However, you can print the files in any order by storing them in a vector and sorting by
different criteria.

June 7, 1999 10:10 owltex Sheet number 36 Page number 463magentablack

10.2 Recursion and Directories 463

O U T P U T

prompt> subdir
enter directory name tapestry
(1) book.tex
(2) chap1

(1) chapter1.tex
(2) finalbigpic.eps

(3) chap2
(1) chapter2.tex
(2) oldmac.eps
(3) progs

(1) bday.cpp
(2) hello.cpp
(3) oldmac.cpp

(4) chap3
(1) chapter3.tex
(2) progs

(1) gfly.cpp
(2) macinput.cpp
(3) pizza.cpp

(5) library
(1) prompt.h
(2) dice.cpp
(3) dice.h

We’ll investigate the functionProcessDir from subdir.cppin detail. One key to
the recursion is an understanding of how a complete filename is specified in hierarchical
file systems. Most systems specify a complete filename by including the directories
and subdirectories that lead to the file. This sequence of subdirectories is called the
file’s pathname. The subdirectories that are pathname components are separated by
different delimiters in different operating systems. For example, in UNIX the separator
is a forward slash, so the pathname togfly.cpp shown in the output run ofsubdir.cpp
is tapestry/chap3/progs/gfly.cpp . On Windows computers the separator is
a backslash, so the pathname istapestry \chap3 \progs \gfly.cpp . The string
used as a separator is specified by the constantDIR_SEPARATORin directory.h,. The
last component in a path is a file’s name; it’s returned byDirEntry::Name . The
entire path, including the name, is returned byDirEntry::Path . Both of these
member functions are used insubdir.cpp: one to print the name, and one to recurse on
a subdirectory since the entire path is needed to specify a directory.

Thefor loop that iterates over directory entries in the functionProcessDir is sim-
ilar to the loop used infiles.cpp,Program 10.4. However, when the information stored
in the DirEntry object entry represents a directory, the functionProcessDir

June 7, 1999 10:10 owltex Sheet number 37 Page number 464magentablack

464 Chapter 10 Recursion, Lists, and Matrices

makes a recursive using the pathname for the subdirectory. For example, the call
ProcessDir("tapestry",0) directly generates four recursive calls for the subdi-
rectorieschap2 , chap1 , chap3 , andlibrary , as diagrammed in Figure 10.4. The
pathname for the subdirectorychap3 is obtained directly from theDirEntry object
entry , but it can also be formed from the expression

path + DIR_SEPARATOR + entry.Name()

where, for example,path is "tapestry" andentry.Name() is "chap3" . The
value oftabCount is calculated from the expressiontabCount+1 so that the argu-
ments for the recursive call are

ProcessDir("tapestry/chap3",1);

This recursive call will, in turn, generate a recursive call for the subdirectoryprogs .
Examine the output run ofsubdir.cppon the directorytapestry , diagrammed

in Figure 10.5. Each clone of the functionProcessDir is shown as a figure. The
call ProcessDir(dirname,0) from main is shown in the upper-left corner of Fig-
ure 10.5 asProcessDir("tapestry",0) ; dirname has the value"tapestry" .
Each recursive clone ofProcessDir has its own formal parameterspath andtabCount
and its own local variablesindir , entry , andnum. Each recursive clone will print
all the files in the subdirectory specified by the clone’spath parameter. For example,
the four clones generated by calls from the upper-left clone ofProcessDir are shown
with numvalues 1, 2, 3, and 5. Whennum is 4, the filebook.tex is printed as shown
in the output fromsubdir.cpp.

As shown in the output of the program, the files and subdirectories intapestry
are processed byNext andCurrent in the following order.

1. chap2

2. chap1

3. chap3

4. book.tex

5. library

The first file/subdirectory printed and processed is(1) chap2 . The number 1 is the
value of local variablenum shown in the stick figure in the upper left corner. The
files/subdirectories ofchap2 are shown indented one level. The indentation level is
determined by the value of parametertabCount , which is 1 because of the recursive
call of ProcessDir :

ProcessDir(entry.Path(),tabCount+1);

The value passed as the second parameter istabCount+1 , which in this case is0+1=1 .
Because the value passed is always one more than the current value, each recursive call
results in one more level of indentation. The output ofsubdir.cppshows that theprogs
subdirectory is the second entry printed in thechap2 directory. The first entry printed
is chapter2.tex . The recursive call generated byprogs , shown in Figure 10.5 as

June 7, 1999 10:10 owltex Sheet number 38 Page number 465magentablack

10.2 Recursion and Directories 465

"tapestry"

0

path

tabCount

1num

ProcessDir("tapestry\chap1",1)

ProcessDir("tapestry\chap3",1)

ProcessDir("tapestry\library",1)

num 5

num 2

num 3

ProcessDir("tapestry",0);

ProcessDir("tapestry\chap2",1)

ProcessDir("tapestry\chap3\progs",2)

2

path

tabCount

num

"tapestry\chap3\progs"

2

path

tabCount

num

"tapestry\chap2\progs"

path

tabCount

num

"tapestry\chap3"

1

path

tabCount

num

1

"tapestry\chap1"

"tapestry\chap2"

1

2

path

tabCount

num

0

0

0

0

0

path

tabCount

num

"tapestry\library"

1

ProcessDir("tapestry\chap2\progs",2)

Figure 10.5 Recursive calls/clones for run of subdir.cpp, Program 10.5.

the callProcessDir("tapestry \chap2 \progs",2) , shows thatnum has the
value two when the call is made reflecting thatprogs is printed as the second entry
underchap2 : (2) progs .

Like all functions, the recursively called functions communicate only via passed
parameters. There is nothing magic or different in the case of recursively called functions;
each function just happens to have the same name as the function that calls it.

June 7, 1999 10:10 owltex Sheet number 39 Page number 466magentablack

466 Chapter 10 Recursion, Lists, and Matrices

10.2.3 Properties of Recursive Functions

At most, three clones of functionProcessDir exist at one time, as shown in Fig-
ure 10.5. The three clones at the top of the figure exist at the same time (withpath val-
ues of"tapestry" , "tapestry \chap2" , and"tapestry \chap2 \progs").
When the recursive call that processes thechap2 \progs subdirectory finishes execut-
ing, the clone withpath parameter"tapestry \chap2" still has one more entry to
process:oldmac.eps (see the output). Then this clone finishes executing, and only the
first version ofProcessDir , invoked by the callProcessDir("tapestry",0) ,
exists.

A recursive call for thechap1 subdirectory is then made. When the clone invoked
by the callProcessDir("tapestry \chap1",1) finishes executing, a recursive
call is made for thechap3 subdirectory. This, in turn, makes a recursive call for the
chap3 \progs subdirectory. Note that at this point the value ofnum for the original
ProcessDir is 3, as shown in Figure 10.5. Finally, after printing(4) book.tex ,
the subdirectorylibrary generates the final recursive call; the value ofnum is 5 as
shown.

10.1 Write a function based onPrint in digits3.cpp, Program 10.2, that prints thePause to Reflect

base two representation of a number. The number 17 in base 2 is 10001 since
17 = 24+20. Just as 5467 in base 10 means 5×104+4×103+6×101+7×100,
so does 10110 in base 2 mean 1× 24 + 0 × 23 + 1 × 22 + 1 × 21 + 0 × 20.

10.2 The recursivePower function makes the recursive call as follows, and squares
the return value.

double semi = Power(base,expo/2);
..
return semi*semi;

It’s possible to square base in the argument to the recursive call and just return the
result as follows.

double semi = Power(base*base,expo/2);
...
return semi;

Explain why these are equivalent. Which do you think is better? Does your answer
change ifBigInt values are used instead ofdouble values? How can you test
your answers?

June 7, 1999 10:10 owltex Sheet number 40 Page number 467magentablack

10.3 Comparing Recursion and Iteration 467

10.3 Based on the output generated bysubdir.cpp,Program 10.5 for the directory
tapestry , what would be the output of the programfiles.cpp,Program 10.4
if run on tapestry ? (Make up numbers for file size; it’s the names of the files
that are important in this question.)

10.4 Why is theif statement

if (entry.Name() != "." \&\& entry.Name() != "..")

used insubdir.cppnecessary? Describe what would happen if the comparison
with "." were removed, but the other comparison remained. What would happen
if the comparison with".." were removed (but the other remained)?

10.5 How can you modifysubdir.cppto print a list of every file (starting from a directory
whose name the user enters) whose size is larger than a number the user enters?

10.6 How can you modifysubdir.cppto print the name of every file containing a word,
in either upper or lower case, that the user enters.

10.7 Describe how the output ofsubdir.cppwill change if the expressiontabCount+1
in the recursive call is replaced withtabCount+2 .

10.8 If the call of Tab and thecout << ... statement in functionProcessDir
of subdir.cppare movedafter the if (entry.IsDir()) statement, how will
the output change (e.g., if the directorytapestry is used for input)?

10.3 Comparing Recursion and Iteration
As an apprentice software engineer and computer scientist you must learn to judge when
recursion is the right tool for a programming task. We’ve already seen that recursion is
indispensable when traversing directories. As an apprentice, you should learn part of
the programming folklore of recursion. We’ll use two common examples to investigate
tradeoffs in implementing functions recursively and iteratively.

10.3.1 The Factorial Function

In fact.cpp,Program 5.2, the functionFactorial computes thefactorial of a number
wheren! = 1 × 2 × · · · × n. A loop accumulated the product of the firstn numbers.
An alternative version of the factorial function is defined mathematically using this
definition:

n! =
{

1 if n = 0
n × (n − 1)! otherwise

(10.2)

According to the definition, 6! = 6× 5!. What, then, is to be done about 5!? According
to the definition, it is 5× 4!. This process continues until 1! = 1 × 0! and 0! = 1 by
definition. The method of defining a function in terms of itself is called aninductive

June 7, 1999 10:10 owltex Sheet number 41 Page number 468 magentablack

468 Chapter 10 Recursion, Lists, and Matrices

definition in mathematics and leads naturally to a recursive implementation. The base
case of 0! = 1 is essential since it stops a potentially infinite chain of recursive calls. As
we noted in the first section of this chapter, the base case is often a case that requires
little or no computation, such as the calculation of zero factorial, which, by definition, is
one. Recursive and iterative versions of the factorial function are included and tested in
facttest.cpp,Program 10.6. Statements are included to check if the values returned by
the recursive and iterative functions are different, but the values returned are always the
same when I run the program.

Program 10.6 facttest.cpp

#include <iostream>
using namespace std;
#include "ctimer.h"
#include "prompt.h"
#include "bigint.h"

BigInt RecFactorial(int num)
// precondition: 0 <= num
// postcondition: returns num! (num factorial)
{

if (0 == num)
{ return 1;
}
else
{ return num ∗ RecFactorial(num −1);
}

}

BigInt Factorial(int num)
// precondition: 0 <= num
// postcondition: returns num! (num factorial)
{

BigInt product = 1;
int count;
for(count=1; count <= num; count++)
{ product ∗= count;
}
return product;

}

int main()
{

CTimer rtimer,itimer;
long j,k;
BigInt rval,ival;
long iters = PromptRange("enter # of iterations",1L,1000000L);
int limit = PromptRange("upper limit on factorial",10,100);

for(k=0 ; k < iters; k++) // compute factorials specified # of times
{ for(j=0; j <= limit; j++)

{ rtimer.Start(); // time recursive version

June 7, 1999 10:10 owltex Sheet number 42 Page number 469magentablack

10.3 Comparing Recursion and Iteration 469

num 5 4num num 3

num 2num 1num 0

RecFactorial(5)

RecFactorial(4) RecFactorial(3)

RecFactorial(1)RecFactrial(0)

RecFactorial(2)

Return 5 * ___ = 120
Return 4 * ___ = 24 Return 3 * ___ = 6

Return 1 * ___ = 1

Return 2 * ___ = 2

Return 1

Figure 10.6 Recursive calls of RecFactorial(6) .

rval = RecFactorial(j);

rtimer.Stop();

itimer.Start(); // time iterative version

ival = Factorial(j);

itimer.Stop();

if (rval != ival) // note any differences

{ cout << "calls differ for " << j << endl;

cout << "recursiv e = " << rval << " iterativ e = " << ival << endl;

}

}

}

cout << iters << " recursive trials " << rtimer.CumulativeTime() << endl;

cout << iters << " iterative trials " << itimer.CumulativeTime() << endl;

return 0;

} facttest.cpp

The recursive functionRecFactorial is similar to the inductive definition of
factorial given earlier. You will get better at understanding recursive functions as you
gain more experience, but two ideas are helpful. (Seectimer.h, Program G.5 in How
to G for information on the classCTimer used to time execution of program segments.)

To compute 5!, six clones of the factorial function are needed as shown in Fig-
ure 10.6. The first call, frommain , is shown in the upper left asRecFactorial(5) .
The recursive calls are shown as solid arrows. The value passed to parameternum
is shown in each clone. The return value is calculated by the expressionnum *
RecFactorial(num-1) ; this is shown by the dashed lines. For example, the last
clone called generates no recursive calls and returns 1. This value is used to calculate
1 × 1 so that 1 is returned from the clone with parameternum == 1. Each returned

June 7, 1999 10:10 owltex Sheet number 43 Page number 470magentablack

470 Chapter 10 Recursion, Lists, and Matrices

value is plugged into the expressionnum * RecFactorial(num-1) as the value
of the recursive call, finally yielding 5× 24 == 120, which is returned tomain .

O U T P U T

Runs on a Pentium II 300Mhz running Windows NT
prompt> facttest
enter # of iterations between 1 and 1000000: 1000
upper limit on factorial between 10 and 100: 20
1000 recursive trials 6.2
1000 iterative trials 4.816
prompt> facttest
enter # of iterations between 1 and 1000000: 1000
upper limit on factorial between 10 and 100: 30
1000 recursive trials 24.807
1000 iterative trials 22.581

using int rather than BigInt

prompt> facttest
enter # of iterations between 1 and 1000000: 10000
upper limit on factorial between 10 and 100: 20
10000 recursive trials 0.791
10000 iterative trials 0.691

Runs on a Sparc Ultra 30 with 384 megabytes of memory
prompt> facttest
enter # of iterations between 1 and 1000000: 10000
upper limit on factorial between 10 and 100: 20
10000 recursive trials 4.28
10000 iterative trials 1.9

Two things will help you understand recursion, but practice in thinking recursively
is the best way to gain understanding.

Trace each recursive call by drawing clones or other diagrams that show each
recursive function call, the function’s variables and parameters, and the value
returned.

Believe the recursion works and verify that that returned value is used correctly.

June 7, 1999 10:10 owltex Sheet number 44 Page number 471magentablack

10.3 Comparing Recursion and Iteration 471

ProgramTip 10.2: Believe the recursion works. This means that youassume
that the recursive call works correctly, and you examine the code to see that the result of
the recursive call isusedcorrectly. For example, in calculating 4!, you assume that the
call to calculate 3! yields the correct result: 6. The statement that uses this result

return num * RecFactorial(num-1);

will then return 4× 6, the value ofnum times the result of the recursive call. This is the
correct answer for 4!.

ProgramTip 10.3: Trace the recursive calls to see that the clones produce
the correct results. This can be a tedious task, but some people like the assurance
of understanding precisely how the recursively called functions work together. (A trace
is shown in Figure 10.6 for the computation of 5!). In many examples of recursion that
you’ll see, tracing all the calls will be difficult to impossible because there will be so many
of them. It’s often helpful to trace the last callbeforethe base case is reached, and to
verify that the base case return value works with the last call.

Based on the sample runs, which of the recursive and iterative functions is best? The
answer is—as it is so often—“it depends.” It depends on (at least) how many times
the factorial function will be called, it depends on what kind of computer is used, and
it depends on what compiler is used. When run on a Pentium computer, the difference
between the two versions is 0.1 seconds for 200,000 calls withint values as shown
in the output. The difference is greater forBigInt values. The differences on a Sun
UltraSparc computer are much more pronounced since that computer doesn’t process
recursion very well.

10.3.2 Fibonacci Numbers

Fibonacci numbers are integral in many areas of mathematics and computer science.
These numbers occur in nature as well [PL90]. For example, the scales on pineapples
are grouped in Fibonacci numbers. In [Emm93], Fibonacci numbers are cited as the
conscious basis of works by the composers Bartok and Stockhausen. Knuth [Knu97]
describes the mathematical constantφ = 1

2(1 + √
5) as “intimately connected with the

Fibonacci numbers,” and the ratio ofφ to 1 is “said to be the most pleasing proportion
aesthetically, and this opinion is confirmed from the standpoint of computer program-
ming aesthetics as well.” The first 16 Fibonacci numbers are given below; this sequence
originated in 1202 with Leonardo Fibonacci, whom Knuth calls “by far the greatest
European mathematician before the Renaissance.”

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

In general, each number in this sequence is the sum of the two numbers before it; the first
two Fibonacci numbers are the exception to this rule. In keeping with tradition in C++

June 7, 1999 10:10 owltex Sheet number 45 Page number 472 magentablack

472 Chapter 10 Recursion, Lists, and Matrices

numbering schemes, the first Fibonacci number isF(0); that is, we start numbering from
zero rather than one. This leads to the inductive or recursive definition of the Fibonacci
numbers:

F(n) =
{

1 if n = 0 orn = 1
F(n − 1) + F(n − 2) otherwise

(10.3)

As is the case with the recursive definition of factorial, the recursive definition of the
Fibonacci numbers can be translated almost verbatim into a C++ function. The function
RecFib is shown infibtest.cpp,Program 10.7. The functionFib computes Fibonacci
numbers iteratively. The difference in this case between the recursive and iterative
functions is much more pronounced than it was for the factorial function. Note that
F(30) = 1,346,269.

Program 10.7 fibtest.cpp

#include <iostream>
using namespace std;
#include "ctimer.h"
#include "prompt.h"

// Illustrates "bad" recursion for computing Fibonacci numbers

const int FIB_LIMIT = 20; // largest fib # calculated

long RecFib(int n)
// precondition: 0 <= n
// postcondition: returns the n-th Fibonacci number
{

if (0 == n || 1 == n)
{ return 1;
}
else
{ return RecFib(n −1) + RecFib(n −2);
}

}

long Fib(int n)
// precondition: 0 <= n
// postcondition: returns the n-th Fibonacci number
{

long first=1, second=1, temp;
int k;
for(k=0 ; k < n; k++)
{ temp = first;

first = second;
second = temp + second;

}
return first;

}

int main()

June 7, 1999 10:10 owltex Sheet number 46 Page number 473magentablack

10.3 Comparing Recursion and Iteration 473

{
CTimer rtimer,itimer;
int j;
long k;
long ival,rval;
long iters = PromptRange("enter # of iterations",1L,100000L);
int limit = PromptRange("n, for n-th Fibonacci ",1,30);

for(k = 0 ; k < iters; k++)
{ for(j=0; j <= limit; j++)

{ rtimer.Start();
rval = RecFib(j);
rtimer.Stop();
itimer.Start();
ival = Fib(j);
itimer.Stop();
if (ival != rval)
{ cout << "calls differ for " << j << endl;

cout << "recursiv e = " << ival << " iterativ e = " << rval << endl;
}

}
}
cout << iters << " recursive trials " << rtimer.CumulativeTime() << endl;
cout << iters << " iterative trials " << itimer.CumulativeTime() << endl;
return 0;

} fibtest.cpp

O U T P U T

Run on a Pentium II 300Mhz running Windows NT
prompt> fibtest
enter # of iterations between 1 and 100000: 100
n, for n-th Fibonacci between 1 and 30: 30
100 recursive trials 49.932
100 iterative trials 0.02

Run on a Pentium 100Mhz running Linux
prompt> fibtest
enter # of iterations between 1 and 100000: 100
n, for n-th Fibonacci between 1 and 30: 30
100 recursive trials 205.5
100 iterative trials 0.0

The granularity of the timing doesn’t accurately reflect the iterative function; 10,000
calls of the iterative function take about 1.1 seconds to computeF(30). Extrapolating
the result of 49.932 seconds for 100 trials of the recursive function shows that 100,000
iterations would take 49,932 seconds, or nearly 13 hours, for what is done in about 10

June 7, 1999 10:10 owltex Sheet number 47 Page number 474magentablack

474 Chapter 10 Recursion, Lists, and Matrices

6

5 4

1

2 1 1 0 01 01

0

2 2 1 2 1 1 03

3 3 24

RecFib(6)

Figure 10.7 Recursive calls of RecFib(6) , the number in each box is the value of the parameter num.

seconds using the iterative function. What are the differences between calculatingn! and
F(n) that cause such a disparity in the timings of the recursive and iterative versions?
For example, is the time due to the recursive depth (number of clones)? As we will see,
the depth of recursive calls is not what causes problems here. Only 30 clones exist at
one time to calculateF(30). However, the total number of clones (or recursive calls) is
2,692,637. This huge number of calls is illustrated in Figure 10.7 for the calculation of
F(6), which requires a total of 25 recursive calls.

If you examine Figure 10.7 carefully, you’ll see that the same recursive call is made
many times. For example,F(1) is calculated eight times. Since the computer is not
programmed to remember a number previously calculated, when the callF(6) generates
calls F(5) andF(4), the result ofF(4) is not stored anywhere. When the calculation
of F(5) generatesF(4) andF(3), the entire sequence of calls forF(4) is made again.
The iterative functionFib in fibtest.cppis fast because it makes roughlyn additions
to calculateF(n); the number of additions islinear. In contrast, the recursive function
makes anexponentialnumber of additions. In this case the speed of the machine is not
so important, and the recursive function ismuchslower than the iterative function.

In later courses you may study methods that will permit you to determine when a
recursive function should be used. For now, you should know that recursion is often very
useful, as with the directory searching functions, and sometimes is very bad, as with the
recursive Fibonacci function.

10.3.3 Permutation Generation

A permutation is a re-arrangement. In mathematics, a permutation of a list ofnnumbers
like (1,2,3) is any one of then! different orderings of the numbers. For example, all
orderings of the numbers 1–3 follow.

June 7, 1999 10:10 owltex Sheet number 48 Page number 475magentablack

10.3 Comparing Recursion and Iteration 475

1 2 3
1 3 2
2 1 3
2 3 1
3 1 2
3 2 1

Permutations are used in a branch of computer science calledcombinatorics, and also
in statistics, social sciences, and mathematics. As we’ll see, generating permutations
recursively uses a technique calledbacktracking that can be applied to solve many
different problems.

We’ll develop a recursive function for generating all the permutations of the elements
in a vector. The function will print all permutations, but we’ll discuss how to process
the permutations in other ways. We’ll follow the two guidelines from Program Tip 10.1
in developing our recursive function. First we’ll identify a base case, a case that is easy
to compute and that won’t make any recursive calls. We also have to identify why it’s
the base case and use that to focus on the second guideline: what part of the problem
will get smaller with each recursive call, thus eventually getting to the base case? Most
recursive problems are parameterized by some notion of size. In each recursive call
the size decreases, eventually reaching the base case. Indigits3.cpp, Program 10.2, the
size of the problem is the number of digits in the number being converted to English. In
traversing directories the size is the the number of subdirectories in a directory; eventually
a directory with no subdirectories must be found. In computing factorial, the numbern

for whichn! is computed is the size of the problem.
The permutation problem is parameterized by the size of the vector being permuted.

A vector with no elements, or with only one element, is very easy to permute in all ways.
If this is the base case, we’ll need to work on transforming the problem of permuting
ann-element vector into a problem that permutes a smaller-sized vector. If you look at
the list of the six different permutations of(1,2,3) you may see that the permutations
can be divided into three groups of two permutations. In each group the first number
stays the same and the other elements are permuted in all ways. This will work for a
4-element list too. The first element can take one of four values. For each of the four
values, permute the remaining three in all possible ways. The first six of twenty-four
permutations of(1,2,3,4) are shown below. The four is fixed and the rest of the
vector is permuted in all ways as a 3-element vector.

4 1 2 3
4 1 3 2
4 2 1 3
4 2 3 1
4 3 1 2
4 3 2 1

It’s actually tricky to develop a recursive solution thinking about the problem this way
because the simpler problem, one of permuting the rest of the vector, isn’t the same
kind of problem as what we start with. We start with a vector ofn-elements, and the
subproblem is to permute everything except the first element. But this subproblem

June 7, 1999 10:10 owltex Sheet number 49 Page number 476magentablack

476 Chapter 10 Recursion, Lists, and Matrices

doesn’t involve a vector, it involves a part of the vector. We’ll adopt an approach that
is often useful in recursive problems, we’ll think of the problem in a different way that
is more easily reducible to a simpler case. Note that in permuting(1,2,3,4) when
the first two elements are fixed, say(4,1) , the rest of the elements are permuted in all
possible ways. We’ll use the idea of fixing the firstk elements in a vector, those with
indexes 0. . . k−1 in a vector. We’ll permute the other elements, with indexesk . . . n−1,
in all possible ways. The base case that’s easily solved is when alln elements are fixed,
there are no more elements to permute. Initially no elements are fixed. This leads to the
two functions whose headers follow.

void PermuteHelper(tvector<int>& list, int n);
// pre: first n elements of list are fixed and won’t change
// post: elements n..list.size()-1 are permuted in
// all possible ways, list is in original order

void Permute(tvector<int>& list)
// post: elements of list permuted in all possible ways
{

PermuteHelper(list,0);
}

Users will call Permute , the functionPermuteHelper exists only to make the
recursion simple to code. In a class,PermuteHelper would be a private helper
function, not accessible to the user.

Developing PermuteHelper . We’ve already decided that the base case, in which
all elements are fixed so thatn == list.size() , results in printing the vector. What
about the recursive calls? The vector element with indexn is the left-most element that
changes since elements with indexes 0. . . n−1 are fixed. Elementlist[n] must take
on all values from the remaining, unfixed elements, and then all permutations should
be generated. For example, to permute(5,3,1,4,2) , with one element fixed (index
zero), we’ll let the index one element take on each of the unfixed values. This is shown
below, where thex indicates where the 3, originally with index one, is swapped to bring
each unfixed element into the index one slot. The 3 originally in the index one slot
is swapped into slots with indexes two, three, and four to generate each recursive call.
It’s swapped back after the recursive call to restore the vector as it was, satisfying the
postcondition.

5 ___ ___ ___ ___
5 _3_ ___ ___ ___
5 _1_ _x_ ___ ___
5 _4_ ___ _x_ ___
5 _2_ ___ ___ _x_

This leads to the function below.

void PermuteHelper(tvector<int>& list, int n);

June 7, 1999 10:10 owltex Sheet number 50 Page number 477 magentablack

10.3 Comparing Recursion and Iteration 477

// pre: first n elements of list are fixed and won’t change
// post: elements n..list.size()-1 are permuted in
// all possible ways, list is in original order
{

int len = list.size();
int k;
if (n == len) // all elements fixed, print
{ Print(list);
}
else
{ for(k=n ; k < len; k++)

{ Swap(list[n],list[k]);
PermuteHelper(list,n+1);
Swap(list[n],list[k]);

}
}

}

This prints all the permutations. If instead of printing, you wanted to pass the per-
muted vector to a function for processing, you’d have to change the call ofPrint in
PermuteHelper . Alternatively, you could develop a method for iterating over the
permutations, one at a time. The classPermuter does this (see How to G for details.)
A Permuter object is constructed from a vector, and then iterates over the vector re-
turning permutations in alphabetic or lexicographic order. If aPermuter is initialized
with the vector(4,3,2,1) , then the first two vectors returned byCurrent will be
(4,3,2,1) and(1,2,3,4) since aPermuter wraps to the first vector alphabeti-
cally after the list one. APermuter uses onlyint vectors, but as Program10.8, shows,
an int vector can be used to index any other vector effectively permuting any kind of
vector.

Program 10.8 usepermuter.cpp

#include <iostream>
#include <string>
using namespace std;

#include "tvector.h"
#include "permuter.h"

int main()
{

tvector<int> list;
tvector<string> slist;
string names[] = {"first", "second", "third"};
int k;
for(k=0 ; k < 3; k++)
{ list.push_back(k);

slist.push_back(names[k]);

June 7, 1999 10:10 owltex Sheet number 51 Page number 478magentablack

478 Chapter 10 Recursion, Lists, and Matrices

}
Permuter p(list);
for(p.Init(); p.HasMore(); p.Next())
{ p.Current(list);

for(k=0 ; k < list.size(); k++)
{ cout << list[k] << " ";
}
cout << endl;

}
for(p.Init(); p.HasMore(); p.Next())
{ p.Current(list);

for(k=0 ; k < list.size(); k++)
{ cout << slist[list[k]] << " ";
}
cout << endl;

}
return 0;

} usepermuter.cpp

O U T P U T

prompt> usepermuter
0 1 2
0 2 1
1 0 2
1 2 0
2 0 1
2 1 0
first second third
first third second
second first third
second third first
third first second
third second first

10.4 Scope and Lifetime
In this section we’ll discuss methods that are used to alter the lifetime of a variable in
a class or program and the scope of declaration. We’ll use two simple examples that
extend the computation of Fibonacci numbers fromfibtest.cpp,Program 10.7, and then
use these examples as a springboard to explore general principles of lifetime and scope.
We touched on scope in Section 5.3; the scope of a declaration determines where in a
function, class, or program the declaration can be used.Lifetimerefers to the duration
of storage associated with a variable. To be precise, scope is a property of a name or

June 7, 1999 10:10 owltex Sheet number 52 Page number 479magentablack

10.4 Scope and Lifetime 479

identifier (e.g., of a variable, function, or class) that determines where in a program the
identifier can be used. Lifetime is a property of the storage or memory associated with
an object.

10.4.1 GlobalVariables

Suppose we want to calculate exactly how many times the functionRecFib is called to
computeRecFib(30) in fibtest.cpp,Program 10.7. We can increment a counter in the
body ofRecFib , but we need to print the value of the counter inmain when the initial
call of RecFib returns. Theglobal variable gFibCalls in recfib.cpp,Program 10.9,
keeps this count. The scope of a global variable is an entire program as opposed to a local
variable that can be accessed only within the function in which the variable is defined.
In C++ a global variable hasfile scopesince it is accessible in all functions defined in
the file in which the global variable appears.

Program 10.9 recfib.cpp

#include <iostream>

using namespace std;

#include "prompt.h"

// Illustrates "bad" recursion for computing Fibonacci numbers

// and a global variable to count # function calls

int gFibCalls = 0;

long RecFib(int n)

// precondition: 0 <= n

// postcondition: returns the n-th Fibonacci number

{

gFibCalls++;

if (0 == n || 1 == n)

{ return 1;

}

else

{ return RecFib(n −1) + RecFib(n −2);

}

}

int main()

{

int num = PromptRange("compute Fibonacci #",1,40);

cout << "Fibonacc i # " << num << " = " << RecFib(num) << endl;

cout << "total # function call s = " << gFibCalls << endl;

return 0;

} recfib.cpp

June 7, 1999 10:10 owltex Sheet number 53 Page number 480magentablack

480 Chapter 10 Recursion, Lists, and Matrices

O U T P U T

prompt> recfib
compute Fibonacci # between 1 and 40: 10
Fibonacci # 10 = 89
total # function calls = 177
prompt> recfib
compute Fibonacci # between 1 and 40: 20
Fibonacci # 20 = 10946
total # function calls = 21891
prompt> recfib
compute Fibonacci # between 1 and 40: 30
Fibonacci # 30 = 1346269
total # function calls = 2692537

I use the prefixg to differentiate global variables from other variables. Global
variables are declared outside of any function, usually at the beginning of a file. Unlike
local variables, global variables are automatically initialized to zero unless a different
initialization is specified when the variable is defined. There are rare occasions when
global variables must be used, as withgFibCalls in recfib.cpp.However, using many
global variables in a large program quickly leads to maintenance headaches because it
is difficult to keep track of what identifiers have been used. In particular, it’s possible
for a global declaration to be hidden orshadowedby a local declaration. For example,
suppose you want to implement the member functionPoint::tostring . The class
Point has two private instance variablesx andy , both are doubles.

The functionstostring in strutils.h, Program G.8 (see How to G) convert ints and
doubles to strings, so you might write:

string Point::tostring() const
{

return "("+ tostring(x) + " , " + tostring(y) +")";
}

Unfortunately, this will not compile. The compiler treats the calls oftostring , that
are intended as calls of the free, or global functions instrutils.h , as recursive
calls with arguments that do not match the formal parameter list. The member function
Point::tostring shadows the global, free functions.

We can fix this problem using the scope resolution operator:: . Applied to an
identifier, :: references a global object (or function) so we can write the function as
follows:

string Point::tostring() const
{

return "("+ ::tostring(x) + " , " + ::tostring(y) +")";
}

June 7, 1999 10:10 owltex Sheet number 54 Page number 481magentablack

10.4 Scope and Lifetime 481

10.4.2 Hidden Identifiers

Even nonglobal identifiers can be shadowed, as illustrated inscope.cpp,Program 10.10.
Because the braces,{}, that delimit function bodies and compound statements cannot
overlap, there is always a scope “closest” to an identifier’s declaration. It is possible for
an identifier to be reused within anested scope.A scope is nested in another when the
braces that define the scope occur within another set of braces. When a variable is used,
it may seem unclear in which scope the variable is declared, but the “nearest” definition
is the one used.

The variablefirst defined within the scope of theif statement is accessible only
within the if statement. Assignments tofirst within the statement do not affect
the variablefirst defined at the beginning ofmain , as shown in the output where
first is printed as 4, 8, 16, and 32 except for the indented values, which showfirst
within the if statement. It is also apparent from the output that the value ofsecond
defined inmain is not affected by assignments tosecond in the while loop since
these assignments are made to a variable defined within the loop. Schematically the
scopes are illustrated in Figure 10.8, in which a variable is known within the innermost
box in which it appears. The variablesecond defined within thewhile loop shadows
the variable defined at the top of the functionmain . In general, shadowing leads to
unexpected, although well-defined, behavior.

ProgramTip 10.4: Avoid using identifiers with the same name in nested
scopes. Hidden and shadowed identifiers lead to programs that are difficult to understand
and ultimately lead to errors.

main

int first,second;

while

if

int second;

int first;

Figure 10.8 Boxing to illustrate scope in Program 10.10

June 7, 1999 10:10 owltex Sheet number 55 Page number 482magentablack

482 Chapter 10 Recursion, Lists, and Matrices

Program 10.10 scope.cpp

#include <iostream>

using namespace std;

// illustrates scope

int main()

{

int first = 2;

int second = 0;

while (first < 20)

{ int second = first ∗ 2; // shadows previous second

cout << "\tsecon d = " << second << endl;

first ∗= 2;

if (first > 10)

{ int first = second; // shadows previous first

first = first/10;

cout << "\tfirs t = " << first << endl;

}

cout << "firs t = " << first << endl;

}

cout << "secon d = " << second << endl;

return 0;

} scope.cpp

O U T P U T

prompt> scope
second = 4

first = 4
second = 8

first = 8
second = 16
first = 1

first = 16
second = 32
first = 3

first = 32
second = 0

June 7, 1999 10:10 owltex Sheet number 56 Page number 483 magentablack

10.4 Scope and Lifetime 483

10.4.3 Static Definitions

Global variables maintain their value throughout the execution of a program; they exist
for the duration of the program. In contrast, a local variable defined in a function is
constructed anew each time the function is called. We can change the lifetime of a local
variable so that the variable maintains its value throughout a program’s execution by
using the wordstatic as a modifier when the variable is defined. This is illustrated in
recfib2.cpp,Program 10.11. A statictvector is defined to keep track of recursive
calls so that the same recursive call is never made more than once. For example, the
first call of RecFib(4) results in recursive calls ofRecFib(3) andRecFib(2) .
When these values are calculated, the values are stored in thetvector storage so
that the values can be retrieved, for example, whenRecFib(2) is called again. The
key idea is that a recursive call is made once. All subsequent recursive calls with the
same argument are evaluated by retrieving the stored value fromstorage rather than
by making a recursive call. Notice how many fewer calls are made compared to the
calculations ofrecfib.cpp,Program 10.9.

Program 10.11 recfib2.cpp

#include <iostream>
using namespace std;
#include "tvector.h"
#include "prompt.h"

// Illustrates "bad" recursion for computing Fibonacci numbers
// but made better using a static vector for storing values

int gFibCalls = 0;
const int FIB_LIMIT = 40;

long RecFib(int n)
// precondition: 0 <= n
// postcondition: returns the n-th Fibonacci number
{

static tvector<int> storage(FIB_LIMIT+1,0);

gFibCalls++;
if (0 == n || 1 == n)
{ return 1;
}
else if (storage[n] == 0)
{ storage[n] = RecFib(n −1) + RecFib(n −2);

return storage[n];
}
else
{ return storage[n];
}

}

int main()
{

June 7, 1999 10:10 owltex Sheet number 57 Page number 484magentablack

484 Chapter 10 Recursion, Lists, and Matrices

int num = PromptRange("compute Fibonacci #",1,FIB_LIMIT);

cout << "Fibonacc i # " << num << " = " << RecFib(num) << endl;

cout << "total # function call s = " << gFibCalls << endl;

return 0;

} recfib2.cpp

Like global variables, static local variables are automatically initialized to zero. How-
ever, it is a good idea to make initializations explicit. Static variables are constructed and
initialized when a program first executes,not when a function is first called. The vari-
ablestorage must be static inrecfib2.cpp, or the values stored will not be maintained
over all recursive calls. For recursive functions likeRecFib , only one static variable
is defined for all the recursive clones. The variablestorage is local toRecFib but
maintains its values for the duration of the programrecfib2.cpp.

O U T P U T

prompt> recfib2
compute Fibonacci # between 1 and 40: 10
Fibonacci # 10 = 89
total # function calls = 19
prompt> recfib2
compute Fibonacci # between 1 and 40: 20
Fibonacci # 20 = 10946
total # function calls = 39
prompt> recfib2
compute Fibonacci # between 1 and 40: 30
Fibonacci # 30 = 1346269
total # function calls = 59

10.4.4 Static or ClassVariables and Functions

Just as it’s possible for a static variable to have a lifetime for the duration of a program,
maintaining its value over many function calls, astatic class variablemaintains its value
over many object definitions. A static class variable actually exists outside of any object,
it’s part of a class rather than an object. Instaticdemo.cpp, the static variableourCount
is incremented each time aPair object is constructed. It’s value is the number ofPair
objects constructed in an entire program execution.

June 7, 1999 10:10 owltex Sheet number 58 Page number 485magentablack

10.4 Scope and Lifetime 485

Program 10.12 staticdemo.cpp

#include <iostream>
using namespace std;
#include "prompt.h"

struct Pair
{

int x, y;
Pair(int a, int b)

: x(a), y(b)
{ ourCount++;}

static int ourCount;
};

int Pair::ourCount = 0;

int main()
{

Pair p(0,0);
int k,limit = PromptRange("number of pairs? ",1,20000);
for(k=0 ; k < limit; k++)
{ Pair p(k,2 ∗k);
}
cout << "# pairs create d = " << Pair::ourCount << endl;
return 0;

} staticdemo.cpp

O U T P U T

prompt> static
number of pairs? between 1 and 20000: 1000
pairs created = 1001

prompt> static
number of pairs? between 1 and 20000: 5000
pairs created = 5001

As shown, static class variables must be initialized outside the class declaration.
Static variables are defined beforemain begins to execute. A static variable or function
can be accessed using dot notation as though it were an instance variable or member
function. Instaticdemo.cppthe last output line could printp.ourCount . However,
since static variables belong to a class rather than an object, it’s possible to access them

June 7, 1999 10:10 owltex Sheet number 59 Page number 486magentablack

486 Chapter 10 Recursion, Lists, and Matrices

using the class name and the scope resolution operator as shown. The prefixour signifies
that the variable belongs to all objects, not to any particular object.

10.9 The code segment shown below illustrates shadowing. Describe an input sequencePause to Reflect

that causes the wordsBanana yellow Banana red Apple to be printed
(one per line).

string last = "Apple";
string word;
while (cin >> word && word != last)
{ string last = "Banana";

cout << last < < " " << word << endl;
}
cout << last << endl;

Describe an input sequence that causes the single wordApple to be printed. If
the definition oflast within thewhile loop is removed, what input sequence
generatesBanana yellow Banana red Apple ?

10.10 In the code fragment in the previous problem, if the definition oflast before
thewhile loop is removed, will the segment compile? Why?

10.11 Describe how to use a static vector in a function to compute factorial to avoid
computingn! if it has been computed before.

10.12 In staticdemo.cpp, if p.ourCount is used instead ofPair::ourCount what
variablep is accessed? If twoPair variablesp andq are defined before the loop,
and the only statement in the loop is

p = q;

What will the output of the program be?

10.5 Case Study: Lists and the Class Clist

The programming language Lisp, and related languages like Scheme, have a long history
of providing elegant and useful solutions to a wide variety of problems. Lisp was one
of the first languages; its development began in 1958 and it was running on computers
by 1960. Today Lisp is still used extensively, has an object-oriented extension, and is
used in programming the text editor Emacs which I used to write this book. The basic
structure in Lisp is alist. In this section we’ll use a Lisp-like list class4 calledCList to
explore recursion and an elegant solution to representing polynomials.

4It’s Lisp-like in that programmers don’t worry about memory management and cannot change a list
once the list is created. It’s not Lisp-like in that in this chapter list elements must be the same type.

June 7, 1999 10:10 owltex Sheet number 60 Page number 487magentablack

10.5 Case Study: Lists and the Class Clist 487

10.5.1 What Is a CList Object?

The classCList is similar to the classtvector in that it’s a homogeneous aggregate:
each element of a list has the same type. It differs in two ways:

CList collections do not support random access; accessing the first element takes
less time than accessing the second, and accessing thenth element takesn-times
longer than accessing the first element.

A CList collection isimmutable. Once a list is created, it cannot be changed.
You can’t change an element of a list and you can’t add an element to an existing
list. Instead, you can create new lists. The C inCList stands for constant since
lists cannot change once created.

There are two ways to create aCList object. Defining aCList object creates an
empty list, one with no elements. The functioncons is used to create a new list from a
first element and an existing list. The programlistdemo.cpp, Program 10.13 shows how
cons is used to create lists from old lists.5

Program 10.13 listdemo.cpp

#include <iostream>
#include <string>
using namespace std;
#include "clist.h"

void Display(const CList<string>& list)
// post: list displayed on one line, comma separated
{

cout << "siz e = " << list.Size() << ": " << list.Printer(",") << endl;
}
int main()
{

CList<string> s1, s2, s3, s4, s5; // create empty lists
s2 = cons(string("tomato"),s1);
s3 = cons(string("carrot"),s2);
s4 = cons(string("celery"),s3);
s5 = cons(string("peapod"),s3);

Display(s1); Display(s1.Tail()); cout << "—" << endl;
Display(s2); Display(s2.Tail()); cout << "—" << endl;
Display(s3); Display(s3.Tail()); cout << "—" << endl;
Display(s4); Display(s4.Tail()); cout << "—" << endl;
Display(s5); Display(s5.Tail()); cout << "—" << endl;
return 0;

} listdemo.cpp

5The explicit use ofstring as a constructor for the literal"carrot" , for example, is required in
some compilers because of how templates are instantiated.

June 7, 1999 10:10 owltex Sheet number 61 Page number 488magentablack

488 Chapter 10 Recursion, Lists, and Matrices

A CList is divided into two parts: theHead which is a string in a list of strings,
an int in a list of ints, and so on; and theTail , which is anotherCList , but without the
first element (theHead). The functioncons makes a new list by creating a new head
and using an existing tail.

O U T P U T

prompt> listdemo
size = 0:
size = 0:

size = 1: tomato
size = 0:

size = 2: carrot,tomato
size = 1: tomato

size = 3: celery,carrot,tomato
size = 2: carrot,tomato

size = 3: peapod,carrot,tomato
size = 2: carrot,tomato

Figure 10.9 is a diagram of the five lists fromlistdemo.cpp. The listss4 ands5
share the same tail. All the lists except for the emptys1 share the list value"tomato" ,
which is at the head ofs2 , is the tail ofs3 , and is part ofs4 ands5 as well.

The methodCList::Printer acts like an I/O manipulator. The separator/delimiter
argument toPrinter separates each item in the list being inserted onto the stream, so
commas appear between each list element as shown. If no parameter is used, that is,
list.Printer() , then each list item appears on a separate line, the separator is the
newline character’ \n’ . It’s possible to insert a list directly on a stream. For the list
s4 in listdemo.cpp, the call below generates the output shown with parentheses at the
beginning and end of the output and commas separating each list element.

cout << "lis t = " << s4 << " size = " << s4.Size() << endl;

O U T P U T

list = (celery, carrot, tomato) size = 3

June 7, 1999 10:10 owltex Sheet number 62 Page number 489magentablack

10.5 Case Study: Lists and the Class Clist 489

s2s1 s4s3

"tomato" "celery""carrot"

s5

empty

Tail()

Head()

"peapod"

Figure 10.9 Diagram of five CList objects showing structure sharing.

10.5.2 Tail-ing Down a list

We can easily write a free function version ofCList::Size as shown in Program 10.14.
The first, recursive version is emblematic of manyCList functions. The empty list is
the base case, and the simpler recursive call results from using a list’s tail which has one
fewer element than the list. The iterative version uses the associatedCListIterator
class; it’s slightly more cumbersome than the recursive version.

Program 10.14 listsize.cpp

int Size(const CList<string> & list)

// post: returns # elements in list

{

if (list.IsEmpty()) return 0;

retur n 1 + Size(list.Tail());

}

int Size(const CList<string> & list)

// post: returns # elements in list

{

CListIterator<string> iter(list);

int count = 0;

for(iter.Init(); iter.HasMore(); iter.Next())

{ count++;

}

return count;

} listsize.cpp

June 7, 1999 10:10 owltex Sheet number 63 Page number 490magentablack

490 Chapter 10 Recursion, Lists, and Matrices

Maurice Wilkes (b. 1913)

Maurice Wilkes is one of the elder statesmen of computer science. He was a peer
of Alan Turing and worked in England on the EDSAC computer. Wilkes was

awarded the second Turing award
in 1967.

In work written in 1955 and pub-
lished in 1956 [Wil56], Wilkes of-
fers advice for team programming
projects. It is interesting that the
advice still seems to hold 40 years
later. “It is very desirable that all
the programmers in the group
should make use of the same, or
substantially the same, methods.
Not only does this facilitate com-
munication and cooperation
between the members of the group,
but it also enables their individual

experience more readily to be absorbed into the accumulated experience of the
group as a whole …the group should be organized to produce, on a common plan,
the input routines, basic library subroutines, and error-diagnosis subroutines …it
will be much easier, once they are prepared, for an individual programmer to make
use of them rather than to set about designing a system of his own.” Wilkes won-
ders where computer science fits—whether it is more closely tied to mathematics
or to engineering [Wil95]:

Many students who are attracted to a practical career find mathematics
uncongenial and difficult; certainly it is not the most popular part of an
engineering course for the majority of students. Admittedly, mathematics
trains people to reason, but reasoning in real life is not of a mathematical
kind. Physics is a far better training in this respect. The truth may be that
computer science does not by itself constitute a sufficiently broad education,
and that it is better studied in combination with one of the physical sciences
or with one of the older branches of engineering.

Wilkes pioneered many of the ideas in current computer architectures including
microprogramming and cache memories. In 1951 he published the first book on
computer programming. About object-oriented programming he says:

[Object-oriented programming is] in my view, the most important
development in programming languages that has taken place for a long
time. Object-oriented programming languages may still be described as
being in a state of evolution. No completely satisfactory language in this
category is yet available.

For more information see [Wil87, Wil95, Wil56].

June 7, 1999 10:10 owltex Sheet number 64 Page number 491magentablack

10.5 Case Study: Lists and the Class Clist 491

10.5.3 Cons-ing Up a List

To see the benefits of recursion, we’ll look atreadlist.cpp, Program 10.15. The program
reads words from a file and uses a standard list technique ofcons-ing up a list by
assigning thecons return-value to the list that’s the argument tocons . Since the last
word read is the last word cons-ed to the front, the list is in reverse order.

We’d like to have a version ofRead that returns a list of words in the same order in
which they’re read. To do this efficiently (usingcons) we’ll need to think recursively.
We’ll recursively read from a stream using the following ideas.

1. If there are no words in the stream we’ll return an empty list; this is the base case
of the recursion.

2. Otherwise, we’ll make a recursive call. We must decide what the arguments in the
call are and how to process the returned result. To get closer to the base case of
no words in the stream, we’ll read a word. The resulting stream will be “shorter,”
and closer to the base case because it contains fewer words. What do we do with
the result returned from the recursion?

Program 10.15 readlist.cpp

#include <iostream>
#include <string>
#include <fstream>
using namespace std;

#include "clist.h"
#include "prompt.h"

CList<string> Read(istream& input)
// post: returns list, order of words reversed from input
{

CList<string> result;
string word;
while (input >> word)
{ result = cons(word,result);
}
return result;

}
int main()
{

string filename= PromptString("filename ");
ifstream input(filename.c_str());
StringList list = Read(input);
cout << "# word s = " << list.Size() << endl;
cout << "words: firs t = " << list.Head()

<< ", last = " << list.Last() << endl;
return 0;

} readlist.cpp

June 7, 1999 10:10 owltex Sheet number 65 Page number 492magentablack

492 Chapter 10 Recursion, Lists, and Matrices

O U T P U T

prompt> readlist
filename melville.txt
words = 14353
words: first = death, last = Bartleby,

prompt> readlist
filename poe.txt
words = 2324
words: first = requiescat!, last = The

In developing the recursive function, think about what the postcondition must be. We
want the words to be in the same order in which they’re read. Combined with the base
case this is what we have so far.

CList<string> Read(istream& input)
// post: returns list, order of words same as in input
{

string word;
if (input >> word)
{

// ??? must develop this code
}
else
{ return Clist<string>(); // an empty list
}

Note that a temporary, or anonymous variable (see Section 7.4.1) is returned by con-
structing aCList<string> object. The following code is equivalent, but uses a
named variable.

...
else
{ CList<string> temp;

return temp;
}

In the recursive case, the recursive call will satisfy the postcondition. Remember that
you must believe the recursion will work (see Program Tip 10.2.) What can you do
with the returned result? What does it represent? The returned result represents a list
of words except for the word just read, andthe order in list is the same as the order in
input according to the postcondition. This means you simplycons the word read to

June 7, 1999 10:10 owltex Sheet number 66 Page number 493 magentablack

10.5 Case Study: Lists and the Class Clist 493

what’s returned by the recursive call. If we use this function, the output ofreadlist.cpp
changes.

CList<string> Read(istream& input)
// post: returns list, order of words same as in input
{

string word;
if (input >> word)
{ return cons(word,Read(input));
}
return CList<string>();

}

O U T P U T

prompt> readlist
filename melville.txt
words = 14353
first word = Bartleby, last word = death.

prompt> readlist
filename poe.txt
words = 2324
first word = The last word = requiescat!

10.5.4 Append, Reverse, and Auxiliary Functions

In this section we’ll look at one more list function,append , which adds a new element to
the end of a list. Since we cannot change a list, a new element isn’t really added. Instead,
appending an element to a list creates a new list that’s a copy of the old list, but with a
new element added to the end. This is fundamentally different thancons . Whencons
creates a new list by adding an element to the front of a list, all the list storage, except
that used by the new element at the front, is shared between the lists as diagrammed in
Figure 10.9. Whenappend is used, no storage can be shared. Program 10.16 illustrates
the differences. The class, or static, functionConsCalls reports how much memory
has been allocated by theCList class.

Program 10.16 listappend.cpp

#include <iostream>
using namespace std;
#include "clist.h"

June 7, 1999 10:10 owltex Sheet number 67 Page number 494magentablack

494 Chapter 10 Recursion, Lists, and Matrices

int main()

{

CList<int> list,list2;

int k;

for(k=7; k >=0; k −−)

{ list = cons(k,list);

}

cout << list.Printer(",") << endl;

cout << "memor y = " << CList<int>::ConsCalls() << endl;

for(k=0 ; k < 8; k++)

{ list2 = append(k,list2);

}

cout << list.Printer(",") << endl;

cout << "memor y = " << CList<int>::ConsCalls() << endl;

return 0;

} listappend.cpp

O U T P U T

prompt> listappend
0,1,2,3,4,5,6,7
memory = 8
0,1,2,3,4,5,6,7
memory = 44

To create a list of eight elements usingcons requires only eight list elements.
However, usingappend requires 36 elements (44 - 8 = 36,note that 1+ . . . + 8 = 36.)
Essentially, creating an eight-element list usingappend requires creating a one-element
list, a two-element list, a three-element list, and so on until the eight element list is created.
So althoughappend is a useful function, it’s an expensive function to use.

ProgramTip 10.5: Don’t worry about efficiency until you know that you
need to. If you can easily solve a list problem usingappend , then it’s the right tool to
use until you determine that its inefficiencies make a difference.

Suppose, for example, that you need to reverse a list. A natural recursive solution
using append can be derived as follows.

1. The base case, as it is with many list functions, is an empty list. The reverse of an
empty list is an empty list, so no recursion is needed.

June 7, 1999 10:10 owltex Sheet number 68 Page number 495magentablack

10.5 Case Study: Lists and the Class Clist 495

Table 10.1 Reversing a list using an auxiliary reversed-so-far list.

list being reversed list reversed-so-far

(1,2,3,4) ()
(2,3,4) (1)
(3,4) (2,1)
(4) (3,2,1)
() (4,3,2,1)

2. Most recursive list functions recurse on a list’s tail. If we’ve successfully reversed
the tail (remember, believe in the recursion) how can we reverse the entire list?
Appending the head of the list to the reversed tail yields the reverse of the entire
list.

This reasoning leads to the following function.

CList<string> Reverse(const CList<string>& list)
{

if (list.IsEmpty()) return list;
return append(list.Head(),Reverse(list.Tail()));

}

This solution is terse and elegant, but it’s expensive in time and memory. Reversing an
n-element list requires calling appendn times and a total of 1+2+· · ·+n = n(n+1)/2
allocated list elements. We’d like to develop a reversing algorithm usingcons , but if you
think about the recursion for a while, you’ll see that it’s not straightforward to develop.

We’ll use a common technique of accumulating the reversed result in another list
variable. We’ll use two parameters in the reversing function:

The list being reversed. The function recurses on this list, using the standard
technique of using the list’s tail as the recursive argument.

The list that’s the reversed list so far. Initially this list is empty since nothing has
been reversed. When there’s one element left in the list being reversed, all the
other elements from the original list will be in this reversed-so-far list, and will be
in reverse order.

Table 10.1 shows what we want the relationship between these two lists to be if we start
with a list (1,2,3,4) .

The insight of using the auxiliary reversed-so-far list enables us to usecons to
build the reversed list. We can add the head/first element from the list being reversed
to the front of the reversed-so-far list making progress towards the base case. We’ll
call the auxiliary, two-parameter reversing function from a single parameter function so
that client code can create a reversed list without knowing about the second parameter.
Two reversing functions,Reverse and Reverse2 , are shown in Program 10.17.
Reverse2 uses the auxiliary function. The output shows the number of list elements

June 7, 1999 10:10 owltex Sheet number 69 Page number 496magentablack

496 Chapter 10 Recursion, Lists, and Matrices

allocated when both functions are called. In this program we use an aliasStringList
for CList<string> . We’ll discuss the syntax for the alias after the program.

Program 10.17 listreverse.cpp

#include <iostream>
#include <string>
using namespace std;
#include "clist.h"

StringList RevAux(StringList list, StringList sofar)
// pre: list = (a_0, a_1, ..., a_(n-1))
// post: returns (a_(n-1), ..., a_1, a_0, sofar)
{

if (list.IsEmpty()) return sofar;
return RevAux(list.Tail(), cons(list.Head(),sofar));

}
StringList Reverse2(StringList list)
// pre: list = (a_0, a-1, ..., a_(n-1))
// post: return (a_(n-1), ... a_1, a_0)
{

return RevAux(list,StringList());
}
StringList Reverse(StringList list)
// pre: list = (a_0, a-1, ..., a_(n-1))
// post: return (a_(n-1), ... a_1, a_0)
{

if (list.IsEmpty()) return list;
return append(list.Head(),Reverse(list.Tail()));

}
void Print(StringList list)
{

cout << list.Printer(",") << endl;
cout << "# cons call s = " << StringList::ConsCalls() << endl << endl;

}

int main()
{

StringList spices,spices2;

spices = cons(string("paprika"), cons(string("cayenne"),
cons(string("chili"), cons(string("turmeric"),

cons(string("pepper"), StringList())))));
spices2 = cons(string("curry"), cons(string("coriander"),

cons(string("cumin"), spices)));
Print(spices);
Print(spices2);
Print(Reverse(spices));
Print(Reverse2(spices));
return 0;

} listreverse.cpp

June 7, 1999 10:10 owltex Sheet number 70 Page number 497magentablack

10.5 Case Study: Lists and the Class Clist 497

O U T P U T

prompt> listreverse
paprika,cayenne,chili,turmeric,pepper
cons calls = 5

curry,coriander,cumin,paprika,cayenne,chili,turmeric,pepper
cons calls = 8

pepper,turmeric,chili,cayenne,paprika
cons calls = 23

pepper,turmeric,chili,cayenne,paprika
cons calls = 28

Using the nameCList<string> each time we want to define a variable or
declare a parameter leads to lots of typing and code that’s hard to read. Using an
alias, implemented in C++ using atypedef, makes code simpler to read and can make
some modifications easier. The header fileclist.h, Program G.12 in How to G intro-
duces the typedefsStringList andStringListIterator . A typedef is a

Syntax: typedef

typedef CList<string> StringList;
typedef BigInt Integer;

convenience, but the alias introduced
often helps in reading and under-
standing code. For example, you
might use the new nameInteger ,
as shown in the syntax diagram. You
can use the nameInteger like a

type, but change it later toint and recompile your program to update all uses of
Integer . Complicated declarations are often easier to understand with a typedef. For
example, the definitionCList<CList<string>> list will not compile, because
the compiler misinterprets the>> as the insertion operator; you must include a space,
as inCList<CList<string> > list . Using a typedef can make this simpler:
CList<StringList> list .

10.13 In listdemo.cpp, Program 10.13, how will the output change if the call belowPause to Reflect

(where X is 1,2,3,4)

Display(sX.Tail());

is changed in all five places it occurs to the following

Display(sX.Tail().Tail());

June 7, 1999 10:10 owltex Sheet number 71 Page number 498magentablack

498 Chapter 10 Recursion, Lists, and Matrices

10.14 In the initialization ofspices in Program 10.17,listreverse.cpp, the final argu-
ment in the constructor isStringList() . Why is this argument used? Can it
be replaced byspices ? Can it be replaced byStringList::EMPTY ?

10.15 If the following statement is added as the last statement inmain in readlist.cpp,
Program 10.15, what values are printed for each of the runs shown in the output
box?

cout << "# cons calls = "
<< CList<string>::ConsCalls() << endl;

Suppose the call tocons in thewhile loop of the functionRead is replaced by
a call toappend . What values are printed by theConsCalls() statement?

10.16 Write a nonrecursive function that reverses a list using aCListIterator and
cons . Use the same idea that’s used in the recursive function, define a variable
sofar and maintain the invariant:sofar is the reverse of all the elements already
processed. The loop test should be:

while (! list.IsEmpty())

10.17 Write a functionappend that appends one list to another. Conceptually, the call
below yields the list(1,2,3,4,5,6) .

append((1,2,3), (4,5,6))

The function should cons as many elements as there are in parameterlhs .

CList<int> append(const CList<int>& lhs,
const CList<int>& rhs)

// pre: lhs = (a1,a2,...,an), rhs = (b1,b2,...bm)
// post: returns list (a1,a2,...,an,b1,b2,..,bm)

10.18 Write a functionFlatten that creates one list from a list of lists. For example,
the first list below is flattened into the second.

(("apple", "cherry"),
("big", "little", "tiny"),
("november"))

("apple", "cherry", "big", "little", "tiny", "november")

StringList Flatten(CList<StringList> list)
// post: return a flattened form of list

June 7, 1999 10:10 owltex Sheet number 72 Page number 499magentablack

10.5 Case Study: Lists and the Class Clist 499

10.19 Consider the functionCreate that follows. What’s printed by the statement
callingCreate ?

cout << Create(5).Printer(",") << endl;

You’ll need to think carefully about what’s going on here and review what happens
when a list is inserted onto an output stream (seelistdemo.cpp, Program 10.13).

typedef CList<int> IntList;
CList<IntList> Create(int n)
{

CList<IntList> result;
int j,k;
for(j=0 ; j < n; j++)
{ IntList nlist;

for(k=j; k >= 0; k--)
{ nlist = cons(k,nlist);
}

result = cons(nlist,result);
}
return result;

}

10.5.5 Polynomials Implemented with Lists

The classCList is simple to use and motivates recursion since many list functions are
more easily implemented recursively than iteratively. But what good is the class other
than as something to study? In general, when should we think about using aCList
object rather than atvector object? Atvector can grow to accommodate more
elements, supports random access, and allows its elements to change. ACList cannot
be changed, is grown by creating new lists, and access is sequential. Lists provide
efficient representations ofsparse structures. For example, consider the polynomial
2x7 + 4x3 + 6x2 + 8. For the moment we’ll consider just the exponents and ignore the
coefficients. Conceptually the polynomial’s exponents are(7, 3, 2, 0) . Should
these be stored as a list or a vector? As with many questions, the answer is “it depends.”

It depends on what operations we’ll perform on polynomials. Suppose that we want
to add 5x4 + 3x3 + x to the polynomial. Again using exponents we have(7, 3, 2,
0) + (4, 3, 1) . The result (again without coefficients) is(7, 4, 3, 2, 1,
0) since the resulting polynomial is 2x7 + 5x4 + 7x3 + 6x2 + x + 8. To add a term
like 5x4 to a polynomial requires shifting the terms of the polynomial to make room for
the new term if we keep the terms in order, sorted by exponent. Keeping terms in order
is a good idea because it will make arithmetic on polynomials much simpler. However,
shifting vector elements is expensive. If we use vectors, we might choose to represent
2x7 + 4x3 + 6x2 + 8 with coefficients as(2, 0, 0, 0, 4, 6, 0, 8) giving the
coefficient for every term, where the position in the vector determines the exponent. This
structure makes addition very simple. For example,(2x7+4x3+6x2+8)+(5x4+3x3+x)

is realized with vectors as follows:

June 7, 1999 10:10 owltex Sheet number 73 Page number 500magentablack

500 Chapter 10 Recursion, Lists, and Matrices

(2, 0, 0, 0, 4, 6, 0, 8)
+ (5, 3, 0, 1, 0)

(2, 0, 0, 5, 7, 6, 1, 8)

which is the result 2x7+5x4+7x3+6x2+x+8. This representation is very inefficient in
its use of storage for the polynomial 7x100+ 2x + 1. In general, polynomials are sparse
because not every exponent between 0 and the degree of the polynomial is typically
represented by a nonzero coefficient.6

10.5.6 CList and Sparse, Sequential Structures

Using CList objects to represent polynomials lets us represent sparse polynomials
simply. Since most polynomials are accessed sequentially, processing each term of the
polynomial in order, vectors don’t supply an advantage since their principal strength is
random access. As we’ll see,CList representations of polynomials are efficient and
easy to use in programs.

Program 10.18 polydemo.cpp

#include <iostream>

using namespace std;

#include "poly.h"

// simple demo of polynomials

int main()

{

Poly p1, p2, p3;

p1 = Poly(5,7) + Poly(4,2) + Poly(3,1) + Poly(2,0);

p2 = Poly(3,5) + Poly(2,4) + Poly(3,2);

cout << "p1 = " << p1 << endl;

cout << "p2 = " << p2 << endl;

cout << "su m = " << p1+p2 << endl;

cout << "p3 = " << p3 << endl;

return 0;

}
polydemo.cpp

6The degree of a polynomial is the largest exponent.

June 7, 1999 10:10 owltex Sheet number 74 Page number 501 magentablack

10.5 Case Study: Lists and the Class Clist 501

O U T P U T

prompt> polydemo
p1 = 5xˆ7 + 4xˆ2 + 3x + 2
p2 = 3xˆ5 + 2xˆ4 + 3xˆ2
sum = 5xˆ7 + 3xˆ5 + 2xˆ4 + 7xˆ2 + 3x + 2
p3 = 0

Polynomials are created in four ways:

1. The default constructor creates the constant zero.

2. A single term polynomialaxn is created byPoly p(a,n);

3. Polynomials can be added together to create new polynomials.

4. A polynomial can be multiplied by a constant to create a new polynomial.

The polynomial class is largely awrapper class around aCList<Pair> object
where aPair is simply a struct with a coefficient and an exponent. For details on the
implementation seepoly.h, Program G.13 in How to G. APoly object has a leading
term, obtained viaPoly::Head and all the other terms, obtained viaPoly::Tail .
Accessor functions supply the degree and leading coefficient of a polynomial as shown in
the functionMonoMult of polymult.cpp, Program 10.19. The program also shows how
to evaluate a polynomial at a point, how to multiply by a constant, the static function
Poly::TermsAllocated which reports memory usage for polynomials, and the
static constantPoly::ZERO which represents the constant 0.

Program 10.19 polymult.cpp

#include <iostream>
using namespace std;

#include "poly.h"

Poly MonoMult(const Poly& mono, const Poly& rhs)
// pre: mono is a single term (monomial)
// post: return mono ∗rhs
// if mono is a polynomial, returns mono.Head() ∗rhs
{

if (rhs.IsPoly())
{ return Poly(mono.leadingCoeff() ∗rhs.leadingCoeff(),

mono.degree() + rhs.degree()) + MonoMult(mono,rhs.Tail());
}
return Poly::ZERO; // base case accumulated properly

}

int main()

June 7, 1999 10:10 owltex Sheet number 75 Page number 502magentablack

502 Chapter 10 Recursion, Lists, and Matrices

{
Poly p1,p2,p3,p4;
double x;
cout << "value of x ";
cin >> x;

p1 = Poly(3,2) + Poly(4,1) + Poly(−3,0);
p2 = Poly(4,2) + Poly(3,1) + Poly(2,0);
p3 = Poly(5,3);

cout << "p1 at " << x << ", " << p1.at(x) << "\ t : " << p1 << endl;
cout << "p2 at " << x << ", " << p2.at(x) << "\ t : " << p2<< endl;
cout << "p3 at " << x << ", " << p3.at(x) << "\ t : " << p3 << endl;
p4 = MonoMult(p3,p1);
cout << "p4 at " << x << ", " << p4.at(x) << "\ t : " << p4 << endl;
cout << "5p4 at " << x << ", " << (5 ∗p4).at(x) << "\ t : " << 5 ∗p4 << endl;

cout << "total # terms use d = " << Poly::TermsAllocated() << endl;
return 0;

} polymult.cpp

O U T P U T

prompt> polymult
value of x 3
p1 at 3, 36 : 3xˆ2 + 4x + -3
p2 at 3, 47 : 4xˆ2 + 3x + 2
p3 at 3, 135 : 5xˆ3
p4 at 3, 4860 : 15xˆ5 + 20xˆ4 + -15xˆ3
5p4 at 3, 24300 : 75xˆ5 + 100xˆ4 + -75xˆ3
total # terms used = 25

More details of the implementation are provided in How to G, but we’ll reproduce
the private section of the classPoly and mention three important points of the imple-
mentation.

class Poly
{

...

private:
struct Pair // this is the (a,b) in axˆb
{ double coeff;

int expo;
Pair() : coeff(0.0), expo(0) { }
Pair(double c, int e) : coeff(c), expo(e) { }

June 7, 1999 10:10 owltex Sheet number 76 Page number 503magentablack

10.5 Case Study: Lists and the Class Clist 503

};
typedef CList<Pair> Polist;
typedef CListIterator<Pair> PolistIterator;
static bool ourInitialized;

Poly(Polist p); // poly from list of terms, helper
Polist myPoly; // the list of terms

};

The structPair that represents a coefficient and an exponent is declared in the
private section ofPoly . It’s used only in the implementation of polynomials. In
general, it’s possible to declare structs and classes inside other classes.

A private constructor is declared for creating a polynomial from aCList<Pair>
object, though the aliasPolist is used for theCList<Pair> object . Client
programs don’t need to know that a list is being used, so the constructor should not
be accessible to clients, but it’s useful in implementing other member functions.

(This is advanced, it’s fine to ignore it.) The static variableourInitialized
will be false until the program is run. ThenPoly::ZERO will be constructed, cre-
ating a zero polynomial and making the value ofourInitialized true. Then,
every time a client calls the defaultPoly constructor, the objectPoly::ZERO
will be used. This means if 10,000 zero polynomials are created, only one cons
call is actually made—see Program 10.20,polycount.cpp.

Program 10.20 polycount.cpp

#include <iostream>
using namespace std;
#include "poly.h"

int main()
{

int k;
for(k=0 ; k < 1000; k++)
{ Poly p;
}
cout << "# terms create d = " << Poly::TermsAllocated() << endl;

for(k=0 ; k < 1000; k++)
{ Poly p(3,4);
}
cout << "# terms create d = " << Poly::TermsAllocated() << endl;

return 0;
} polycount.cpp

June 7, 1999 10:10 owltex Sheet number 77 Page number 504magentablack

504 Chapter 10 Recursion, Lists, and Matrices

O U T P U T

prompt> polycount
terms created = 1
terms created = 1001

10.6 The class tmatrix

A vector is a one-dimensional structure; an index accesses an element of the array by
ranging from zero to one less than the number of elements stored. In some applications
two-dimensional arrays are necessary. For example, the pixels on a computer screen are
usually identified by a row and column position. Mileage tables that provide distances
between cities on a road map also use two dimensions. Positions of pieces in a chess
game are usually given by specifying a row and a column.

10.6.1 A Simple tmatrix Program

A two-dimensional array is sometimes called amatrix (the plural is matrices). The
Cartesian(x, y) coordinate system uses two dimensions to specify a point in the plane.
The system of latitude and longitude uses two dimensions to specify a location on the
earth. Two-dimensional vectors, as we will implement them using the classtmatrix ,
use row and column indices to specify an entry of the matrix. The programmatdemo.cpp,
Program 10.21, defines a matrix, fills it with the equivalent of a multiplication table, and
prints the matrix.

As with tvector variables, the type used to define the element stored in each
matrix cell can be any built-in type or any programmer-defined type that has a de-
fault (parameterless) constructor. If atmatrix is defined with the default constructor,

Syntax: tmatrix definition

tmatrix< Type> mat;
tmatrix< Type> mat(row, col);
tmatrix< Type> mat(row, col, fillvalue);

the matrix has zero rows and
columns. In that case the mem-
ber functionresize should
be used to set the number of
rows and columns. The first
parameter in a constructor or
with resize is the number

of rows, the second parameter is the number of columns. Rows and columns are num-
bered starting with zero as withtvector variables. A third parameter can be used
to provide initial values for all the cells of a matrix just as a second parameter pro-
vides values forcharCounts in letters.cpp,Program 8.3. For example, the defini-
tion tmatrix<double> chart(3,5,1.0); defines a three-by-five matrix of 15
double s, all initialized to 1.0.

Complete documentation for thetmatrix class is found in the header filetmatrix.h,
see How to G for details.

June 7, 1999 10:10 owltex Sheet number 78 Page number 505magentablack

10.6 The class tmatrix 505

Program 10.21 matdemo.cpp

#include <iostream>

#include <string>

#include <iomanip> // for setw

using namespace std;

#include "tmatrix.h"

// demonstrate class tmatrix

template <class T>

void Print(const tmatrix<T>& mat)

{

int j,k;

int rows = mat.numrows(), cols = mat.numcols();

for(j=0 ; j < rows; j++)

{ for(k=0 ; k < cols; k++)

{ cout << setw(4) << mat[j][k];

}

cout << endl;

}

}

int main()

{

int rows, cols,j,k;

cout << "row col dimensions: ";

cin >> rows >> cols;

tmatrix<int> mat(rows,cols);

for(j=0 ; j < rows; j++) // fill matrix

{ for(k=0 ; k < cols; k++)

{ mat[j][k] = (j+1) ∗(k+1);

}

}

Print(mat);

return 0;

} matdemo.cpp

June 7, 1999 10:10 owltex Sheet number 79 Page number 506 magentablack

506 Chapter 10 Recursion, Lists, and Matrices

O U T P U T

prompt> matdemo
row col dimensions: 3 5

1 2 3 4 5
2 4 6 8 10
3 6 9 12 15

prompt> matdemo
row col dimensions: 7 4

1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16
5 10 15 20
6 12 18 24
7 14 21 28

10.6.2 Case Study: Finding Blobs

In this section we’ll use thetmatrix class to assist in looking for organisms on the kinds
of slides used under microscopes. Of course we’ll be using a simulated slide, but the
algorithm and design techniques could be used if we were guiding a digital microscope,
radiological CT scan or MRI, or a graphics-painting program. We’ll use a character-
based picture, but a similar class based on the graphics library documented in How to H
is included in the exercises from this chapter. Slides will be represented by a charac-
ter bitmap, using the classCharBitMap declared incharbitmap.h. Program 10.22
illustrates most of the bitmap class.

Program 10.22 bitmapdemo.cpp

#include <iostream>
using namespace std;
#include "charbitmap.h"
#include "prompt.h"
#include "randgen.h"

int main()
{

int rows, cols;
cout << "enter row col size ";
cin >> rows >> cols;
CharBitMap bmap(rows,cols);
int pixelCount = PromptRange("# pixels on ",1,rows ∗cols);

June 7, 1999 10:10 owltex Sheet number 80 Page number 507magentablack

10.6 The class tmatrix 507

int k;
RandGen gen;
for(k=0 ; k < pixelCount; k++)
{ bmap.SetPixel(gen.RandInt(0,rows −1),gen.RandInt(0,cols −1),CharBitMap::black);
}
bmap.Display(cout);
return 0;

} bitmapdemo.cpp

The pixels in aCharBitMap object can have valuesCharBitMap::white and
CharBitMap::black , the identifiersblack and white are class enum values.
CharBitMap pixel coordinates are the same astmatrix coordinates, ranging from
zero to one less than the number of rows or columns.

O U T P U T

prompt> bitmapdemo
enter row col size 10 50
pixels on between 1 and 750: 200
+--+
| *** ** * *** ** * * *** * * |
| * * * ** * * *** ** ** * *|
| * * ** * * * * *** * * ** ** |
|* * * *** * * * * * *** ** * |
|* * * * * ** * **** * * |
|* * * * *** ** * * * |
|*** * * * * * ** * * ***** *** |
| * * * * ** *** * * * *** |
| * * *** * * *** * * * ** * * * ** |
| * * * * * * *** * * |
+--+

We want to identify organisms on the slide. We’ll define an organism to be a group
of adjacent, black pixels where adjacent means connected horizontally or vertically. In
the diagram below, there is a 14-pixel organism on the left; a 2-pixel organism in the
middle, and a 5-pixel organism on the right.

*** * * *
***** * * * *

** * * *
**** * **

The other asterisks in the diagram can be considered 1-pixel organisms or random noise.
The middle organism is only a 2-pixel organism because diagonally adjacent pixels are
not considered to be part of the same organism.

June 7, 1999 10:10 owltex Sheet number 81 Page number 508magentablack

508 Chapter 10 Recursion, Lists, and Matrices

We want to design a class that counts the organisms in aCharBitMap object. The
minimal size of an organism will be specified by the user; organisms smaller than this
size will be considered noise. In the exercises we’ll explore changing the definition of
an organism to include diagonally adjacent cells, so we’ll design the program to make
extensions or modifications as simple as possible. In our initial design we’ll need only
two member functions other than a constructor in the classBlobs .7

1. A function Blobs::Display to display blobs.

2. A functionBlobs::FindBlobs to which we pass a bitmap and a minimal size.

The FindBlobs function does all the work of finding the organisms/blobs, setting
up for a subsequent call ofDisplay , and returning the number of organisms found.
We’ll need some private, helper functions that do most of the work needed to implement
FindBlobs . Helper functions are useful in general, but are particularly helpful when
using recursion. Often, the method called by the client does not have the correct prototype
for a recursive call or requires some initializing bookkeeping that’s not appropriate in
every recursive call. The method called by the client code can perform the initialization
and then call the recursive helping function.

Program Tip 10.6: Many member functions that use a recursive algo-
rithm are most easily implemented by calling a recursive, private helper
function. The public method can set up bookkeeping and sometimes pass private data
as an argument to the initial call of the recursive helper method. The bookkeeping should
only be done once, and the private data are not available for clients to pass as arguments.

The recursive algorithm for finding an organism can be visualized by thinking of the
recursive clones as scouts, sent out by an initial blob-counter to report on adjacent pixels
and whether the adjacent pixels are part of the blob being counted.
Find a blob containing pixel (x,y), return size of blob

If (x,y) isn’t black, it’s not part of a blob, stop and return zero

Otherwise, (x,y) is part of a blob, send out blob-counting scouts/clones, accumulate
results reported back

Four clones are sent, one in each direction
Each clone reports how many pixels it found that are part of the blob
Each clone covers its tracks so that its work won’t be duplicated by other clones

Each call that finds a black pixel accumulates the results of the four clones and returns
this result plus one for the found black pixel. If you believe that the clones work correctly
(see Program Tip 10.2) then the correct result will be returned assuming each clone can
cover its tracks.

It’s essential that each clone marks where it has been so that clones sent out later don’t

7We’ll use “blobs” rather than “organism” because it’s more fun to say “blobs.”

June 7, 1999 10:10 owltex Sheet number 82 Page number 509 magentablack

10.6 The class tmatrix 509

count pixels that have already been counted. We’ll implement this marking mechanism
by using an int matrix. Initially we’ll use values for black and white that won’t be used as
blob-marking values. When we mark blobs, we’ll use a different int value for each blob
that’s found. The recursive, helper functionBlobFill in blobs.cpp, Program 10.23
does all the work. Before looking at the implementation, we’ll discuss the interface and
how BlobFill is called. In the calls below, the instance variablemyBlobCount is
the value of how many blobs have been found so far. The int constantsPIXEL_ON and
PIXEL_OFF are used to initialize theBlob grid based on values from theCharBitMap
parameter passed toFindBlob .

int Blobs::BlobFill(int row, int col,
int lookFor, int fillWith)

// spec: look for blob with pixel-value ’lookFor’,
// color in this blob using ’fillWith’ value,
// return size of blob
// post: returns size of blob at (row,col) and ‘‘colors’’
// blob so that it won’t be counted again
//

Keeping this specification in mind,BlobFill is called as follows. IfBlobFill
reports a blob whose size is more than the minimal being searched for, the number of
blobs is incremented; otherwise, the blob doesn’t count. If the blob doesn’t count, it
must be erased since theBlobFill call and its clones may have marked the too-small
blob.

// j and k range over all row, column values
if (BlobFill(j,k, PIXEL_ON, myBlobCount+1)) > minSize)
{ myBlobCount++;
}
else // too small, erase
{ BlobFill(j,k, myBlobCount+1, PIXEL_OFF);
}

When a too-small blob is erased, thelookFor value is the same as thefillWith
value from the call toBlobFill that just reported the too-small value.

Program 10.23 blobs.cpp

#include <iostream>
#include <iomanip>
using namespace std;
#include "tmatrix.h"
#include "randgen.h"
#include "prompt.h"
#include "charbitmap.h"

// find blobs in a two-dimensional grid/bitmap

June 7, 1999 10:10 owltex Sheet number 83 Page number 510 magentablack

510 Chapter 10 Recursion, Lists, and Matrices

class Blobs
{

public:

Blobs();
int FindBlobs(const CharBitMap& cbm, int minSize);
void Display(ostream& out) const;

private:

tmatrix<int> myGrid;
int myBlobCount;

int BlobFill(int row, int col,int lookFor, int fillWith);
void Initialize(const CharBitMap& cbm);

static int PIXEL_OFF, PIXEL_ON;
};

int Blobs::PIXEL_OFF = 0;
int Blobs::PIXEL_ON = −1;

Blobs::Blobs()
: myBlobCount(0)

{
// grid is empty

}

void Blobs::Display(ostream& out) const
// post: display the blobs
{

int j,k;
int rows = myGrid.numrows();
int cols = myGrid.numcols();
for(j=0 ; j < rows; j++)
{ for(k=0 ; k < cols; k++)

{ char ch = '.';
if (myGrid[j][k] > PIXEL_OFF)
{ ch = char ('0' + myGrid[j][k]);
}
out << ch;;

}
out << endl;

}
}

int Blobs::FindBlobs(const CharBitMap& cbm, int minSize)
// post: return # blobs whose size > minSize
{

int j,k;
myGrid.resize(cbm.Rows(), cbm.Cols());
Initialize(cbm);
int rows = myGrid.numrows();
int cols = myGrid.numcols();
for(j=0 ; j < rows; j++)

June 7, 1999 10:10 owltex Sheet number 84 Page number 511 magentablack

10.6 The class tmatrix 511

{ for(k=0 ; k < cols; k++)
{ if (myGrid[j][k] == PIXEL_ON)

{ if (BlobFill(j,k,PIXEL_ON,myBlobCount+1) > minSize)
{ myBlobCount++;
}
else
{ BlobFill(j,k,myBlobCount+1,PIXEL_OFF); // erase it
}

}
}

}
return myBlobCount;

}

void Blobs::Initialize(const CharBitMap& cbm)
// post: myGrid initialized from cbm
{

int j,k;
int rows = myGrid.numrows();
int cols = myGrid.numcols();
for(j=0 ; j < rows; j++)
{ for(k=0 ; k < cols; k++)

{ if (cbm.GetPixel(j,k) == CharBitMap::black)
{ myGrid[j][k] = PIXEL_ON;
}
else
{ myGrid[j][k] = PIXEL_OFF;
}

}
}
myBlobCount = 0; // no blobs yet

}

int Blobs::BlobFill(int row, int col, int lookFor, int fillWith)
// spec: look for blob with pixel-value ’lookFor’, color in this
// blob using ’fillWith’ value and return size of blob
// post: returns size of blob at (row,col) and “colors”
// blob so that it won’t be counted again
{

static int rowoffset[] = { −1,+1,0,0 }; // north,south,east,west
static int coloffset[] = { 0,0,+1, −1 };
const int NBR_COUNT = 4;

if (0 <= row && row < myGrid.numrows() &&
0 <= col && col < myGrid.numcols())

{
if (myGrid[row][col] != lookFor) // not part of this blob
{ return 0;
}

// we found a blob element, color it and its neighbors
myGrid[row][col] = fillWith;
int k,r,c;
int size = 1; // count this pixel, add connected counts
for(k=0 ; k < NBR_COUNT; k++)

June 7, 1999 10:10 owltex Sheet number 85 Page number 512magentablack

512 Chapter 10 Recursion, Lists, and Matrices

{ r = row + rowoffset[k];

c = col + coloffset[k];

size += BlobFill(r,c,lookFor,fillWith);

}

return size;

}

return 0; // not on grid, not part of blob

}

int main()

{

int rows, cols;

cout << "enter row col size ";

cin >> rows >> cols;

CharBitMap bmap(rows,cols);

int k;

RandGen gen;

Blobs blobber;

int pixelCount = PromptRange("# pixels on: ",1,rows ∗cols);

for(k=0 ; k < pixelCount; k++)

{ bmap.SetPixel(gen.RandInt(0,rows −1),gen.RandInt(0,cols −1),

CharBitMap::black);

}

bmap.Display(cout);

int bsize;

int blobCount;

do

{ bsize = PromptRange("blob size (0 to exit) ",0,50);

if (bsize != 0)

{ blobCount = blobber.FindBlobs(bmap,bsize);

blobber.Display(cout);

cout << endl << "# blob s = " << blobCount << endl;

}

} while (bsize > 0);

return 0;

} blobs.cpp

June 7, 1999 10:10 owltex Sheet number 86 Page number 513magentablack

10.6 The class tmatrix 513

O U T P U T

prompt> blobs
enter row col size 10 50
pixels on: between 1 and 500: 200
+--+
| * * * * * ** * * *** * ** **|
| * * * * * * ** ** * * * |
|* ** ** *** * * ** *** * |
|** ** * * * * * *** ** * * |
| ** * * * * * ** *** *** |
|* ****** * * * * * ** * |
| * ** * ** * * * * *** * |
|**** ** * * * **** ** ** |
|* * ** **** ** * * * * |
| * * ** ******** * * * *** ** * * * * |
+--+

output continued→

O U T P U T

blob size (0 to exit) between 0 and 50: 10
...............................111................
..............................11.1................
.................................1.11.............
.................................111..............
................................111...............
..................................1...............
...................2..............................
................22.2..............................
................2222..............................
...........22222222...............................

blobs = 2

output continued→

June 7, 1999 10:10 owltex Sheet number 87 Page number 514magentablack

514 Chapter 10 Recursion, Lists, and Matrices

O U T P U T

blob size (0 to exit) between 0 and 50: 5
...............................111......22........
..............................11.1......2.........
.................................1.11...222.......
.................................111..............
.........3......................111...............
.........333333...................1...............
.4.................5...............6.6............
4444............55.5..............6666............
4...............5555..............6...............
...........55555555...............................

blobs = 6
blob size (0 to exit) between 0 and 50: 0

10.20 Write the functionRowSumthat returns the sum of the entries in one row of aPause to Reflect

matrix and the functionColSum that returns the sum of the entries in one column
of a matrix.

int RowSum(const tmatrix<int>& m, int r)
// pre: 0 <= r < m.numrows()
// post: returns sum of numbers in row r

int ColSum(const tmatrix<int>& m, int c)
// pre: 0 <= c < m.numcols()
// post: returns sum of numbers in column c

10.21 A magic squareis a square matrix whose rows, columns, and main diagonals all
sum to the same number. A 3× 3 magic square follows.

6 1 8
7 5 3
2 9 4

Write a boolean-valued functionIsMagic that returns true if it’s square matrix
parameter is magic and false otherwise. Call the functionsRowSumandColSum
from the previous exercise.

10.22 The code inbitmapdemo.cpp, Program 10.22 prompts the user for the number of
pixels to turn on. In fact, fewer than this number will be on in almost every run
of the program. Why, and how can you change the code to ensure that exactly
pixelCount pixels are on?

June 7, 1999 10:10 owltex Sheet number 88 Page number 515magentablack

10.7 Chapter Review 515

10.23 It’s possible to change three lines inBlobs::BlobFill so that diagonally
adjacent pixels are considered part of an organism. What are the three lines and
how should they be changed?

10.24 In anN × N bitmap, what is the big-Oh complexity ofBlobs::FindBlobs ?
Base your answer on the number of pixels that are examined or changed by the
function.

10.25 Suppose you want to add the capability of reading in a bitmap from data stored in
a file. Where’s the right place to add this capability and why? Consider additions
to CharBitMap , to Blobs , or writing another class or function.

10.26 The classBlobs counts blobs and prints them, but there’s no way for clients to
access the blobs either individually or collectively. Develop two ways to allow
client programs to access individual blobs, (i.e., to get a collection of (x,y) pairs
that make up a blob by calling appropriateBlob member functions). Consider
using vectors or lists. The classPoint from point.h, Program G.10 may help.

10.27 Discuss how to add features to the classBlob so that client code can find the size
of the largest blob (an int value). Develop two methods, one that runs inO(N2)

time for anN × N bitmap and one that runs inO(T BP) time where TBP is the
total number of blob pixels.

10.7 Chapter Review
In this chapter we discussed recursion, a useful programming technique that can be
misused. A recursive function does not “call itself,” but calls a clone function, an
identical copy of itself. Each recursively called function has its own parameters and its
own local variables. We also covered variable scope and lifetime. A variable’s scope is
the part of the program in which the variable can be accessed. A variable’s lifetime is how
long the variable exists. The classCList is useful for representing sparse structures
and lists of objects. The classtmatrix is like a two-dimensional vector.

Important topics covered include:

Recursion is an alternative to iteration using loops. Recursive functions iterate by
making recursive calls.

Recursively called functions use memory; there is a limit on the number of recursive
calls or recursively called functions. This limit depends on the amount of memory
in the computer.

Some problems are naturally solved with recursive functions and would be difficult
to solve using loops.

Some functions should not be coded recursively. One example is computing Fi-
bonacci numbers.

Recursive functions are often divided into two cases: a base case that does not
involve a recursive call and a recursive case that makes a recursive call. The

June 7, 1999 10:10 owltex Sheet number 89 Page number 516magentablack

516 Chapter 10 Recursion, Lists, and Matrices

recursive call should get closer to the base case so that there are a finite number of
recursive calls.

A variable’s scope determines in which part of the program the variable can be
accessed. Variables can be defined globally, accessible in all functions, or locally,
accessible in the function in which the variable is defined.

Variables can be defined within the braces,{ and}; this means a variable’s scope
can be restricted to any compound statement, (e.g., accessible only within a loop).

The scope resolution operator,:: , is used to access global variables when the
variable identifier is shadowed by a local variable.

Static variables maintain values throughout program execution, unlike nonstatic
variables, whose lifetime is for the duration of the function in which the variable
is defined.

Static class variables belong to a class rather than to an object. Class variables
are useful for keeping track of statistics involving all objects, (e.g., counting the
number of objects created).

The classCList represents immutable lists. A list is homogeneous, all elements
are the same type. Lists are created usingcons and processed, usually recursively,
usingHead andTail .

The classCList represents sparse structures efficiently. Representing polynomi-
als provides one example.

Two-dimensional vectors, or matrices, are useful for representing and manipulating
data. We use atmatrix class for two-dimensional arrays.

Member functions that call for recursion are often most easily implemented using
a private, helper function.

10.8 Exercises

10.1 An integer is printed with commas inserted in the proper positions similarly to the way
in which digits in English are printed indigits3.cpp, Program 10.2. That is, to print the
number 12345678 as 12,345,678, the 678 cannot be printed untilafter the preceding
part of the number is printed. Write a recursive functionPrintWithCommas that
will print its BigInt parameter with commas inserted properly. The outline of the
function is

if (number < 1000)
print normally, no commas needed

else
recursively print the number

without the last three digits
print a comma and the last three digits

You’ll need to be careful with leading zeroes to ensure, for example, that the number
12,003 is printed properly. Write the function nonrecursively also by creating a string
from theBigInt value and then printing the string appropriately with commas.

June 7, 1999 10:10 owltex Sheet number 90 Page number 517magentablack

10.8 Exercises 517

Modify the recursive function to return a string equivalent of theBigInt , but with
commas properly inserted.

10.2 Modify Program 10.5,subdir.cpp,so that instead of printing the names of all files and
subdirectories, the size of each subdirectory is calculated, returned, and printed. Use
the member functionDirEntry::Size() to calculate the size (usually expressed
in bytes) of each file. Print the size of each subdirectory in a format that makes it
easy to determine where large files might be found. Donot print the names of every
file; just print the names of the subdirectories and the size of all the files within the
subdirectory.

10.3 Pascal’s triangle can be used to calculate the number of different ways of choosingk
items fromn different items. The first seven rows of Pascal’s triangle are

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

If we useCn
k to represent the number of ways of choosingk items fromn, thenCn

0 = 1
andCn

n = 1 as shown in the outside edges of the triangle. For values ofk other than
0 andn, the following relationship holds.

Cn
k = Cn−1

k−1 + Cn−1
k (10.4)

Viewed in the triangle, each entry other than the outside 1’s is equal to the two entries
in the row above it diagonally up and to the left and right. For example,

C5
2 = 10 = (C4

1 + C4
2) = (4 + 6)

Write a functionChoose,with two parametersn andk, that returns the number of
ways thatk items can be chosen fromn. Use this function to print the first 15 rows of
Pascal’s triangle.

10.4 Repeat the previous exercise, but try to develop a mechanism for storing the results of
each recursive call using a static local variable so that no calculation is made more than
once. This is tricky usingtvector variables, but it is possible if you can develop
a method for calculating a unique index for each pair of values used in the recursive
calls. Alternatively, you can also use atmatrix .

10.5 The valueCn
k can also be computed using the factorial function and this equation:

Cn
k = n!

k! · (n − k)! (10.5)

Write two versions of a function to compute the value ofCn
k , one based on the facto-

rial function (where factorial is computed iteratively,not recursively) and one based
on the recursive definition in the previous exercise. Time how long it takes to com-
pute different values ofCn

k . UseBigInt values and computeCn
k for large values

of k andn.

June 7, 1999 10:10 owltex Sheet number 91 Page number 518magentablack

518 Chapter 10 Recursion, Lists, and Matrices

10.6 Implement multiplication of polynomials. For example,

(x3 + 2x2 + 3) × (2x2 + x − 2) = 2x5 + 5x4 + 2x2 + 3x − 6

You should use the functionMonoMult frompolymult.cpp, Program 10.19 as a helper
function. Use this function to implement polynomial exponentation so that you can
calculate(x2 + 3x + 4)3 efficiently.

10.7 The functionPoly::at for evaluating polynomials is implemented inefficiently.
Evaluatingx100+ 3x99+ 5 is done by raisingx100, then adding the result of 3x99, then
adding 5. It would be more efficiently calculated using(x99 + 3)x + 5. In general this
method of evaluating a polynomial is calledHorner’s Rule:

anx
n + an−1x

n−1 + · · · + a1x + a + 0 =
(. . . ((anx + an−1)x + · · · + a1)x + a0

The coefficient of the largest exponent,an, is multiplied by x. Thenan−1 is added
and the result multiplied by x; thenan−2 is added and the result multiplied by x
and so on. The simplest way to implement Horner’s rule for evaluating polynomials
requires a nonsparse representation, i.e., all coefficients, including zero coefficients,
are needed. Write a function to produce a nonsparse representation of a polynomial.
You won’t be able to use a polynomial itself since the addition of polynomials with
zero coefficients is ignored byoperator += for polynomials. Instead, you’ll need
to create aCList<int> object storing exponents and aCList<double> object
storing coefficients; or you can create a list storing exponents and coefficients by
declaring a struct likePair used in the implementation ofPoly . Use this to evaluate
a polynomial using Horner’s rule and see if this method is more efficient in practice.

10.8 The towers of Hanoi puzzle is traditionally studied in computer science courses. The
roots of the puzzle are apparently found in the Far East, where a tower of golden disks
is said to be used by monks. The puzzle consists of three pegs and a set of disks that
fit over the pegs. Each disk is a different size. Initially the disks are on one peg, with
the smallest disk on top, the largest on the bottom, and the disks arranged in increasing
order. The object is to move the disks, one at a time, to another peg. No disk can be
placed on a smaller disk.
If four disks are used and all disks are initially on the leftmost peg, numbered1 in Fig-
ure 10.10, the following sequence of disk moves shows how to reach the configuration
of disks shown. A move is indicated by the pegs involved since the topmost disk is
always moved.

Move 1 to 3
Move 1 to 2
Move 3 to 2

To finish moving all the disks from the left peg to the middle peg, the top disk is moved
from 1 to 3, then (recursively) the disks are moved from peg 2 to peg 3. The largest
disk is then moved from peg 1 to peg 2. Finally (and recursively), the disks from peg
3 are moved to peg 2. Pegs are numbered 1, 2, and 3. To move 7 disks from peg 1
to peg 2, the function callHanoi(1,2,3,7) is used. To move these seven disks,
two recursive calls are necessary:Hanoi(1,3,2,6) , which moves six disks from
peg 1 to peg 3, with peg 2 as the auxiliary peg; followed by a nonrecursive move of
the largest disk from peg 1 to peg 2; followed by a recursiveHanoi(3,2,1,6) to
move the six disks from peg 3 to peg 2, with the now empty peg 1 as the auxiliary peg.

June 7, 1999 10:10 owltex Sheet number 92 Page number 519magentablack

10.8 Exercises 519

1 2 3

�
�

�
�
�

�
�
�

�
�

�

�
�

�
�
�

�
�

�

�
�

�
�

�
�

�

Figure 10.10 The Towers of Hanoi.

Write the functionHanoi . The base case, and the single-disk case, should print the
peg moves. For example, the output for a 4-disk tower follows.

O U T P U T

prompt> hanoi
number of disks: between 0 and 30: 4
move from 1 to 3
move from 1 to 2
move from 3 to 2
move from 1 to 3
move from 2 to 1
move from 2 to 3
move from 1 to 3
move from 1 to 2
move from 3 to 2
move from 3 to 1
move from 2 to 1
move from 3 to 2
move from 1 to 3
move from 1 to 2
move from 3 to 2

Consider a functionHanoi using the following prototype.

void Hanoi(int from, int to, int aux, int numDisks)
// pre: top numDisks-1 disks on ’from’ peg
// are all smaller than top disk on
// ’aux’ peg
// post: top numDisks disks moved from
// ’from’ peg to ’to’ peg

June 7, 1999 10:10 owltex Sheet number 93 Page number 520magentablack

520 Chapter 10 Recursion, Lists, and Matrices

10.9 Modify thehanoi.cppprogram from the previous exercise to time how long it takes for
different numbers of disks from 1 to 25. Comment out (put// before each statement)
the statements that print disk moves so that the number of recursive calls is timed.
Use a global variable that is incremented each timeHanoi executes. Print the value
of this variable for each number of disks so that the total number of disk moves is
printed, along with the time it takes to move the disks. This can lead to a new measure
of computer performance:DIPS, for “disks per second.”

10.10A square matrixa is symmetric ifa[j][k] == a[k][j] for all values of j and
k ; that is, the matrix is symmetric with respect to the main diagonal from (0,0) to
(n − 1, n − 1) for ann × n matrix. Write abool -valued function that returns true if
its matrix parameter is symmetric and false otherwise.

10.11TheN -queens problem has a long history in mathematics and computer science. The
problem is posed in two ways:

CanN queens be placed on anN × N chess board so that no two queens attack
each other?
How many ways canN queens be placed on anN × N board so that no two
queens attack each other?

In chess, queens attack each other if they’re on the same row, the same column, or the
same diagonal. The sample output below shows one way to place eight queens so that
no two attack each other.

O U T P U T
prompt> nqueens
size of board: between 2 and 12: 8
X.......
......X.
....X...
.......X
.X......
...X....
.....X..
..X.....

Solving theN -queens problem uses an algorithmic technique calledbacktracking
that’s related to the method used for generating permutations recursively in Sec-
tion 10.3.3. The general idea of backtracking is to make a tentative attempt to solve
a problem and then proceed recursively. If the tentative attempt fails, it is undone or
backtrackedand the next way of solving the problem is tried.
In theN -queens problem, we try to place a queen in each column. When the back-
tracking function is called, queens are successfully placed in columns 0 throughcol ,
and the function tries to place a queen in columncol+1 . There areN possible ways
to place a queen, one for each row, and each one is tried in succession. If a queen

June 7, 1999 10:10 owltex Sheet number 94 Page number 521 magentablack

10.8 Exercises 521

can be placed in the row, it is placed and a recursive call for the next column tries to
complete the solution. If the recursive call fails, the just-placed queen is “un-placed”,
or removed, and the next row tried for a placement. If all rows fail, the function fails.
The backtrackingcomes when the function undoes an attempt that doesn’t yield a
solution. A partial class declaration for solving theN -queens problem is given below.
Complete the class and then modify it to return the total number of solutions rather
than just printing the first solution found.

Program 10.24 nqueenpartial.cpp

class Queens
{

public:
Queens(int size);
bool Solve(); // return true if solvable
void Print(ostream& out) const; // print the last board

private:
// helper functions
bool NoQueensAttackingAt(int r, int c) const;
bool SolveAtCol(int col);

tmatrix<bool> myBoard; // the board
};

bool Queens::NoQueensAttackingAt(int r, int c) const
// post: return true if row clear and diagonals crossing at
// (row,col) clear

bool Queens::Solve()
// post: return true if n queens can be placed
{

return SolveAtCol(0);
}

bool Queens::SolveAtCol(int col)
// pre: queens placed at columns 0,1,...,col-1
// post: returns true if queen can be placed in column col
// if col == size of board, then n queens are placed
{

int k;
int rows = myBoard.numrows();
if (col == rows) return true; // N queens placed
for(k=0 ; k < rows; k++)
{ if (NoQueensAttackingAt(k,col)) // can place here?

{ myBoard[k][col] = true; // try it
if (SolveAtCol(col+1)) // recurse
{ return true;
}
myBoard[k][col] = false; // backtrack

}
}
return false;

}

June 7, 1999 10:10 owltex Sheet number 95 Page number 522magentablack

522 Chapter 10 Recursion, Lists, and Matrices

int main()
{

int size = PromptRange("size of board: ",2,12);
Queens nq(size);
if (nq.Solve())
{ nq.Print(cout);
}
else
{ cout << "no solution found" << endl;
}
return 0;

} nqueenpartial.cpp

10.12An image can be represented as a 2-dimensional matrix of pixels, each of which can
be off (white) or on (black). Color and gray-scale images can be represented using
multivalued pixels; for example, numbers from 0 to 255 can represent different shades
of gray. Abitmap is a two-dimensional matrix of 0s and 1s, where 0 corresponds to
an off pixel and 1 corresponds to an on pixel. Instead of using the classCharBitMap
for example, the following matrix of ints represents a bitmap that represents a 9× 8
picture of a< sign.

0 0 0 0 0 1 1 0
0 0 0 0 1 1 0 0
0 0 0 1 1 0 0 0
0 0 1 1 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0

You can use the classCharBitMap used in Program 10.22,bitmapdemo.cpp, or you
can create a new version of the class for use with the graphics package in How to H.
Write a client program that provides the use with a menu of choices for manipulating
an image.

Read an image from a file
Write an image to a file
Invert the current image (change black to white and vice versa)
Enlarge an image
Enhance the image using median filtering (described below)

Enlarging an Image. A bitmap image can be enlarged by expanding it horizontally,
vertically, or in both directions. Expanding an image in place (i.e., without using an
auxiliary array) requires some planning. In Figure 10.11 an image is shown partially
expanded by three vertically, and by two horizontally. By beginning the expansion in
the lower right corner as shown, the image can be expanded in place—that iswithout
the use of an auxiliary array or bitmap.
Enhancing an Image.Sometimes an image can be “noisy” because of the way in

June 7, 1999 10:10 owltex Sheet number 96 Page number 523magentablack

10.8 Exercises 523

0

0

0

1

1

1

1

0

0

1

0

1 0

0

0

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

Figure 10.11 Enlarging a bitmap image.

which it is transmitted; for example, a TV picture may have static or “snow.” Image
enhancement is a method that takes out noise by changing pixel values according to
the values of the neighboring pixels. You should use a method of enhancement based
on setting a pixel to the median value of those in its “neighborhood.” Figure 10.12
shows a 3-neighborhood and a 5-neighborhood of the middle pixel whose value is 28.
Usingmedian filtering, the 28 in the middle is replaced by the median of the values
in its neighborhood. The nine values in the 3-neighborhood are (10 10 12 25 25 28 28
32 32). The median, or middle, value is 25—there are four values above 25 and four
values below 25. The values in the 5-neighborhood are (10 10 10 10 10 10 12 12 12
18 18 18 25 25 25 25 25 25 32 32 32 32 32 32 32), and again the median value is 25,
because there are 12 values above and 12 values below 25. The easiest way to find the
median of a list of values is to sort them and take the middle element.
Pixels near the border of an image don’t have “complete” neighborhoods. These pixels
are replaced by the median of the partial neighborhood that is completely on the grid
of pixels. One way of thinking about this is to take, for example, a 3× 3 grid and
slide it over an image so that every pixel is centered in the grid. Each pixel is replaced
by the median of the pixels of the image that are contained in the sliding grid. This

28

28

10

10

25 32

12 28

25

32

32 32 32

2525

25 10

1010

10 12 12

12

25 25

32 32

10

18

18

18

10

32 32

3-neighborhood 5-neighborhood

Figure 10.12 Neighborhoods for median filtering.

June 7, 1999 10:10 owltex Sheet number 97 Page number 524magentablack

524 Chapter 10 Recursion, Lists, and Matrices

Figure 10.13 Median filtering of a noisy image.

requires using an extra array to store the median values, which are then copied back to
the original image when the median filtering has finished. This is necessary so that the
pixels are replaced by median values from the original image, not from the partially
reconstructed and filtered image.
Applying a 3× 3 median filter to the image on the left in Figure 10.13 results in the
image on the right (these images look better on the screen than they do on paper).

June 7, 1999 10:10 owltex Sheet number 21 Page number 525magentablack

11Sorting, Templates, and
Generic Programming

No transcendent ability is required in order to make useful discoveries in science; the edifice of
science needs its masons, bricklayers, and common labourers as well as its foremen,

master-builders, and architects. In art nothing worth doing can be done without genius; in
science even a very moderate capacity can contribute to a supreme achievement.

Bertrand Russell
Mysticism and Logic

Many human activities require collections of items to be put into some particular order.
The post office sorts mail by ZIP code for efficient delivery; telephone books are sorted
by name to facilitate finding phone numbers; and hands of cards are sorted by suit to
make it easier to go fish.Sorting is a task performed well by computers; the study of
different methods of sorting is also intrinsically interesting from a theoretical standpoint.
In Chapter 8 we saw how fast binary search is, but binary search requires a sorted list
as well as random access. In this chapter we’ll study different sorting algorithms and
methods for comparing these algorithms. We’ll extend the idea of conforming interfaces
we studied in Chapter 7 (see Section 7.2) and see how conforming interfaces are used in
template classes and functions. We’ll study sorting from a theoretical perspective, but
we’ll also emphasize techniques for making sorting and other algorithmic programming
more efficient in practice usinggeneric programming andfunction objects.

11.1 Sorting an Array
There are several elementary sorting algorithms, details of which can be found in books
on algorithms; Knuth [Knu98b] is an encyclopedic reference. Some of the elementary
algorithms are much better than others, both in terms of performance and in terms of
ease of coding. Contrary to what some books on computer programming claim, there are
large differences between these elementary algorithms. In addition, these elementary
algorithms are more than good enough for sorting reasonably large vectors,1 provided
that the good elementary algorithms are used.

In particular, there are three “classic” simple sorting algorithms. Each of these sorts
is a quadratic algorithm. We’ll define quadratic more carefully later, but quadratic
algorithms behave like a quadratic curvey = x2 in mathematics: if a vector of 1000
elements is sorted in 4 seconds, a vector of 2000 elements will be sorted in 16 seconds
using a quadratic algorithm. We’ll study sorting algorithms that are more efficient than
these quadratic sorts, but the quadratic sorts are a good place to start.

The three basic sorting algorithms are:

1What is “reasonably large”? The answer, as it often is, is “It depends”—on the kind of element sorted,
the kind of computer being used, and on how fast “pretty fast” is.

525

June 7, 1999 10:10 owltex Sheet number 22 Page number 526magentablack

526 Chapter 11 Sorting,Templates, and Generic Programming

Selection sort

Insertion sort

Bubble sort

We’ll develop selection sort in this section. You’ve already seen insertion sort in Sec-
tion 8.3.4 where an element is inserted into an already-sorted vector and the vector is
kept in sorted order. However, a few words are needed about bubble sort.

ProgramTip 11.1: Under no circumstances should you use bubble sort.
Bubble sort is the slowest of the elementary sorts, for reasons we’ll explore as an exercise.
Bubble sort is worth knowing about only so that you can tell your friends what a poor sort
it is. Although interesting from a theoretical perspective, bubble sort has no practical use
in programming on a computer with a single processor.

11.1.1 Selection Sort

The basic algorithm behind selection sort is quite simple and is similar to the method
used in shuffling tracks of a CD explored and programmed inshuffle.cpp,Program 8.4.
To sort from smallest to largest in a vector namedA, the following method is used:

1. Find the smallest entry inA. Swap it with the first elementA[0] . Now the smallest
entry is in the first location of the vector.

2. Considering only vector locationsA[1] , A[2] , A[3] , …; find the smallest of
these and swap it withA[1] . Now the first two entries ofA are in order.

3. Continue this process by finding the smallest element of the remaining vector
elements and swapping it appropriately.

This algorithm is outlined in code the functionSelectSort of Program 11.1 which
sorts anint vector. Each time through the loop in the functionSelectSort , the index
of the smallest entry of those not yet in place (fromk to the end of the vector) is determined
by calling the functionMinIndex . This function (which will be shown shortly) returns
the index, or location, of the smallest element, which is then stored/swapped into location
k . This process is diagrammed in Figure 11.1. The shaded boxes represent vector
elements that are in their final position. Although only five elements are shaded in the
last “snapshot,” if five out of six elements are in the correct position, the sixth element
must be in the correct position as well.

June 7, 1999 10:10 owltex Sheet number 23 Page number 527magentablack

11.1 Sorting an Array 527

4223 18 7 57 38

4218 23 57 38

MinIndex = 3 Swap(a[0],a[3]);

MinIndex = 1 Swap(a[1],a[1]);

MinIndex = 3 Swap(a[2],a[3]);

MinIndex = 5 Swap(a[3],a[5]);

57 MinIndex = 5 Swap(a[4],a[5]);

42

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

7

4218 23 57 387

2318 42 57 387

2318 38 427

2318 38 577

Figure 11.1 Selection sort.

Program 11.1 selectsort1.cpp

#include "tvector.h"
int MinIndex(tvector<int> & a, int first, int last);
// precondition: 0 <= first, first <= last
// postcondition: returns k such that a[k] <= a[j], j in [first..last]
// i.e., index of minimal element in a

void Swap(int & a, int & b);
// postcondition: a and b interchanged/swapped

void SelectSort(tvector<int> & a)
// precondition: a contains a.size() elements
// postcondition: elements of a are sorted in non-decreasing order
{

int k, index, numElts = a.size();

// invariant: a[0]..a[k-1] in final position
for(k=0 ; k < numElts − 1; k+=1)
{ index = MinIndex(a,k,numElts − 1); // find min element

Swap(a[k],a[index]);
}

} selectsort1.cpp

Each time the loop testk < numElts - 1 is evaluated, the statement “elements
a[0]..a[k-1] are in their final position” is true. Recall that any statement that is
true each time a loop test is evaluated is called aloop invariant. In this case the statement

June 7, 1999 10:10 owltex Sheet number 24 Page number 528magentablack

528 Chapter 11 Sorting,Templates, and Generic Programming

is true because the first time the loop test is evaluated, the range 0 …k-1 is [0 …−1],
which is an empty range, consisting of no vector elements. As shown in Figure 11.1, the
shaded vector elements indicate that the statement holds after each iteration of the loop.
The final time the loop test is evaluated, the value ofk will be numElts - 1 , the last
valid vector index. Since the statement holds (it holds each time the test is evaluated),
the vector must be sorted. The functionMinIndex is straightforward to write:

int MinIndex(const tvector<int> & a, int first, int last)
// pre: 0 <= first, first <= last
// post: returns index of minimal element in a[first..last]
{

int smallIndex = first;
int k;
for(k=first+1; k <= last; k++)
{ if (a[k] < a[smallIndex])

{ smallIndex = k;
}

}
return smallIndex;

}

MinIndex finds the minimal element in an array; it’s similar to code discussed in
Section 6.4 for finding largest and smallest values. The first location of the vectora is
the initial value ofsmallIndex , then all other locations are examined. If a smaller
entry is found, the value ofsmallIndex is changed to record the location of the new
smallest item.

Program 11.2 selectsort2.cpp

void SelectSort(tvector<int> & a)
// pre: a contains a.size() elements
// post: elements of a are sorted in non-decreasing order
{

int j,k,temp,minIndex,numElts = a.size();

// invariant: a[0]..a[k-1] in final position
for(k=0 ; k < numElts − 1; k++)
{ minIndex = k; // minimal element index

for(j=k+1 ; j < numElts; j++)
{ if (a[j] < a[minIndex])

{ minIndex = j; // new min, store index
}

}
temp = a[k]; // swap min and k-th elements
a[k] = a[minIndex];
a[minIndex] = temp;

}
} selectsort2.cpp

June 7, 1999 10:10 owltex Sheet number 25 Page number 529magentablack

11.1 Sorting an Array 529

The functionMinIndex , combined withSwap andSelectSort , yields a com-
plete implementation of selection sort. Sometimes it’s convenient to have all the code in
one function rather than spread over three functions. This is certainly possible and leads
to the code shown inselectsort2.cpp,Program 11.2. However, as you develop code, it’s
often easier to test and debug when separate functions are used. This allows each piece
of code to be tested separately.

The code in Program 11.2 works well for sorting a vector of numbers, but what about
sorting vectors of strings or some other kind of element? If two vector elements can
be compared, then the vector can be sorted based on such comparisons. A vector of
strings can be sorted using the same code provided in the functionSelectSort ; the
only difference in the functions is the type of the first parameter and the type of the local
variabletemp , as follows:

void SelectSort(tvector<string> & a)
// pre: a contains a.size() elements
// post: elements of a are sorted in nondecreasing order
{

int j, k, minIndex, numElts = a.size();
string temp;

// code here doesn’t change
}

Both this function andSelectSort in selectsort2.cppcould be used in the same
program since the parameter lists are different. In previous chapters we overloaded the
+ operator so that we could use it both to add numbers and to concatenate strings. We’ve
also used the functiontostring fromstrutils.h(see How to G) to convert both doubles
and ints to strings; there are two functions with the same name but different parameters.
In the same way, we can overload function names. Different functions with the same
name can be used in the same program provided that the parameter lists of the functions
are different. In these examples the functionSort is overloaded using three different

Syntax: Function overloading

void Sort(tvector<string>& a);
void Sort(tvector<double>& a);
void Sort(tvector<int>& a);
int DoStuff(int a, int b);
int DoStuff(int a, int b, int c);

kinds of vectors.DoStuff is over-
loaded, since there are two versions
with different parameter lists. The
names of the parameters do not mat-
ter; only the types of the parameters
are important in resolving which
overloaded function is actually
called. It isnot possible, for ex-
ample, to use the two versions of

FindRoots below in the same program, because the parameter lists are the same. The
different return types are not sufficient to distinguish the functions:

int FindRoots(double one, double two);
double FindRoots(double first, double second);

June 7, 1999 10:10 owltex Sheet number 26 Page number 530magentablack

530 Chapter 11 Sorting,Templates, and Generic Programming

Shafi Goldwasser (b. 1958)

Shafi Goldwasser is Professor of Computer Science at MIT. She works in the area
of computer science known astheory, but her work has practical implications in
the area of secure cryptographic protocols—methods that ensure that information
can be reliably transmitted between two parties without electronic eavesdropping.
In particular, she is interested in using randomness in designing algorithms. She
was awarded the first Gödel prize in theoretical computer science for her work. So-
calledrandomized algorithmsinvolve (simulated) coin flips in making decisions.
In [Wei94] a randomized method of giving quizzes is described. Suppose a teacher
wants to ensure that students do a take-home quiz, but does not want to grade
quizzes every day. A teacher can give out quizzes in one class, then in the next
class flip a coin to determine whether the quizzes are handed in. In the long run,
this results in quizzes being graded 50 percent of the time, but students will need
to do all the quizzes. Goldwasser is a coinventor ofzero-knowledge interactive
proof protocols. This mouthful is described in [Har92] as follows:

Suppose Alice wants to convince Bob that she knows a certain secret, but
she does not want Bob to end up knowing the secret himself. This sounds
impossible: How do you convince someone that you know, say, what color
tie the president of the United States is wearing right now, without somehow
divulging that priceless piece of information to the other person or to some
third party?

Using zero-knowledge interactive proofs it is possible to do this. The same
concepts make it possible to develop smart cards that would let people be admitted
to a secure environment without letting anyone know exactly who has entered. In
some colleges, cards are used to gain admittance to dormitories. Smart cards could
be used to gain admittance without allowing student movement to be tracked.

Goldwasser has this to say about choosing what area to work in:

Choosing a research area, like most things in life, is not the same as solving
an optimization problem. Work on what you like, what feels right. I know of
no other way to end up doing creative work.

For more information see [EL94].

11.1.2 Insertion Sort

We’ve already discussed the code for insertion sort and used it instocks2.cpp, a program
discussed in Section 8.3.4; the code is shown in that section. The invariant for selection
sort states that elements with indexes 0..k − 1 are in their final position. In contrast, the
insertion sort invariant states that elements with indexes 0..k − 1 are sorted relative to
each other, but are not (necessarily) in their final position. Program 11.3 shows the code
for insertion sort and Figure 11.2 shows a vector being sorted during each iteration of

June 7, 1999 10:10 owltex Sheet number 27 Page number 531 magentablack

11.1 Sorting an Array 531

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

0 1 2 3 4 5

loc = 4

loc = 0

loc = 2

loc = 1

loc = 0

loc = 3

hold = 18

hold = 23

hold = 42

hold = 7

hold = 57

hold = 38

Original vector

18 42 7 57 38

3823 57

2318

18 23 42 57

18 23 42

7 57 384223

421823 7 57 38

18 7

42 57 38

7

7

Figure 11.2 Insertion sort.

the outer for loop.
To re-establish the invariant, the inner while loop shifts elements until the location

wherehold (originally a[k]) belongs is determined. Ifhold is already in its correct
position relative to the elements that precede it, that is, it’s larger than the element to
its left, then the inner while loop doesn’t iterate at all. This is illustrated in Figure 11.2
whenhold has the values 23, 42, and 57. In those cases no vector elements are shifted.
Whenhold has the value 7, all the elements that precede it in the vector are larger, so
all are shifted and the element 7 is stored in first (index zero) vector location. Although
the outer loops in Program 11.2 and Program 11.3 iterate the same number of times, it’s
possible for the inner loop of insertion sort (Program 11.3) to iterate fewer times than
the corresponding inner loop of selection sort (Program 11.2.)

Program 11.3 insertsort.cpp

void InsertSort(tvector<string> & a)
// precondition: a contains a.size() elements
// postcondition: elements of a are sorted in non-decreasing order

June 7, 1999 10:10 owltex Sheet number 28 Page number 532 magentablack

532 Chapter 11 Sorting, Templates, and Generic Programming

{
int k,loc, numElts = a.size();

// invariant: a[0]..a[k-1] sorted
for(k=1 ; k < numElts; k++)
{ string hold = a[k]; // insert this element

loc = k; // location for insertion

// shift elements to make room for hold/a[k]
while (0 < loc && hold < a[loc −1])
{ a[loc] = a[loc −1];

loc −−;
}
a[loc] = hold;

}
} insertsort.cpp

We’ll discuss why both insertion sort and selection sort are called quadratic sorts in
more detail in Section 11.4. However, the graph of execution times for the quadratic
sorts given in Figure 11.3 provides a clue; the shape of each curve is quadratic. These
timings are from a single run oftimequadsorts.cpp, Program 11.4, shown below. For
more accurate empirical results you would need to run the program with different vectors,
that is, for more than one trial at each vector size. A more thorough empirical analysis
of sorts is explored in the exercises for this chapter.

Program 11.4 timequadsorts.cpp

#include <iostream>
#include <string>
using namespace std;
#include "ctimer.h"
#include "tvector.h"
#include "sortall.h"
#include "randgen.h"
#include "prompt.h"

// compare running times of quadratic sorts

void Shuffle(tvector<int> & a, int count)
// precondition: a has space for count elements
// postcondition: a contains 0..count-1 randomly shuffled
{

RandGen gen; // for random # generator
int randIndex,k;

// fill with valuesl 0..count-1
for(k=0 ; k < count; k++)
{ a[k] = k;
}
// choose random index from k..count-1 and interchange with k
for(k=0 ; k < count − 1; k++)
{ randIndex = gen.RandInt(k,count −1); // random index

June 7, 1999 10:10 owltex Sheet number 29 Page number 533 magentablack

11.1 Sorting an Array 533

0

2

4

6

8

10

12

14

16

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e
(s

ec
on

ds
)

Number of elements

"Insertion"
"Selection"

"Bubble"

Figure 11.3 Execution times for quadratic sorts of int vectors on a Pentium II/300 running
Windows NT.

Swap(a,k,randIndex); // swap in sortall.h
}

}

int main()
{

int size,minSize,maxSize,incr; // sort minSize, minSize+incr, ... maxSize
CTimer timer;

cout << "min and max size of vector: ";
cin >> minSize >> maxSize;
incr = PromptRange("increment in vector size",1,1000);

cout << endl << "n\tinsert\tselect\tbubble" << endl << endl;
for(size=minSize; size <= maxSize; size += incr)
{ tvector<int> copy(size), original(size);

cout << size << "\t";
Shuffle(original,size);

copy = original; // sort using insertion sort
timer.Start();

June 7, 1999 10:10 owltex Sheet number 30 Page number 534magentablack

534 Chapter 11 Sorting,Templates, and Generic Programming

InsertSort(copy,copy.size());
timer.Stop();
cout << timer.ElapsedTime() << "\t";

copy = original; // sort using selection sort
timer.Start();
SelectSort(copy,copy.size());
timer.Stop();
cout << timer.ElapsedTime() << "\t";

copy = original; // sort using bubble sort
timer.Start();
BubbleSort(copy,copy.size());
timer.Stop();
cout << timer.ElapsedTime() << endl;

}
return 0;

} timequadsorts.cpp

O U T P U T

prompt> timequadsorts
min and max size of vector: 1000 10000
increment in vector size between 1 and 1000: 1000

n insert select bubble

1000 0.04 0.1 0.14
2000 0.2 0.381 0.571
3000 0.44 0.871 1.282
4000 0.811 1.553 2.273
5000 1.232 2.423 3.585
6000 1.773 3.525 5.188
7000 2.433 4.817 7.12
8000 3.195 6.299 9.313
9000 4.006 7.982 11.736
10000 4.958 9.864 14.501

11.1 What changes are necessary in Program 11.2,selectsort2.cpp,so that the vectorPause to Reflect

a is sorted into decreasing order rather than into increasing order? For example,
why is it a good idea to change the name of the identifierminIndex , although
the names of variables don’t influence how a program executes?

11.2 Why is k < numElts - 1 the test of the outerfor loop in the selection sort
code instead ofk < numElts ? Could the test be changed to the latter?

June 7, 1999 10:10 owltex Sheet number 31 Page number 535magentablack

11.2 Function Templates 535

11.3 How many swaps are made when selection sort is used to sort ann-element vec-
tor? How many times is the statementif (a[j] < a[minIndex]) executed
when selection sort is used to sort a 5-element vector, a 10-element vector, and an
n-element vector?

11.4 How can you use the sorting functions to “sort” a number so that it’s digits are in
increasing order? For example, 7216 becomes 1267 when sorted. Describe what
to do and then write a function that sorts a number (you can call one of the sorting
functions from this section if that helps.)

11.5 If insertion sort is used to sort a vector that’s already sorted, how many times is
the statementa[loc] = a[loc-1]; executed?

11.6 If the vectorcounts from Program 8.3,letters.cpp, is passed to the function
SelectSort , why won’t the output of the program be correct?

11.7 In the output fromtimequadsorts.cpp, Program 11.4 the ratio of the timings when
the size of the vector doubles from 4000 elements to 8000 is given in Table 11.1.

Table 11.1 Timing Quadratic Sorts

Sort 4000 elts. 8000 elts. ratio
insertion 0.811 3.195 3.939
select 1.553 6.299 4.056
bubble 3.585 9.313 4.097

Assuming the ratio holds consistently (rounded to 4) how long will it take each
quadratic algorithm to sort a vector of 16,000 elements? 32,000 elements? 1,000,000
elements?

11.2 FunctionTemplates
Although it is possible to overload a function name, the sorting functions in the previous
sections are not ideal candidates for function overloading. If we write a separate function
to use selection sort with a vector of ints, a vector of strings, and a vector of doubles
the code that would appear in each function is nearly identical. The only differences in
the code would be in the definition of the variabletemp and in the kind oftvector
passed to the function. Consider what might happen if a more efficient sorting algorithm
is required. The code in each of the three functions must be removed, and the code for
the more efficient algorithm inserted. Maintaining three versions of the function makes
it much more likely that errors will eventually creep into the code, because it is difficult
to ensure that whenever a modification is made to one sorting function, it is made to all
of the sorting functions (see Program Tip. 4.1.)

Fortunately, a mechanism exists in C++ that allows code to be reused rather than
replicated. We have already used this mechanism behind the scenes in the implementa-
tion of thetvector class and theCList class.

June 7, 1999 10:10 owltex Sheet number 32 Page number 536 magentablack

536 Chapter 11 Sorting, Templates, and Generic Programming

A function template, sometimes called atemplated function, can be used when dif-
ferent types are part of the parameter list and the types conform to an interface used
in the function body. For example, to sort a vector of a typeT using selection sort
we must be able to compare values of typeT using the relationaloperator < since
that’s how elements are compared. We wouldn’t expect to be able to sortDice ob-
jects since they’re not comparable using relational operators. We should be able to sort
ClockTime objects (seeclockt.h, Program 9.9 in How to G) since they’re comparable
usingoperator < . The sorting functions require objects that conform to an interface
of being comparable usingoperator < . A templated function allows us to capture
this interface in code so that we can write one function that works with any type that
can be compared. We’ll study templates in detail, building towards them with a series
of examples.

11.2.1 Printing a tvector with a FunctionTemplate

Program 11.5,sortwlen.cppreads a files and tracks all words and word lengths. Both
words and lengths are sorted using the templated functionSelectSort from sor-
tall.h. A templated functionPrint that prints both string and int vectors is shown in
sortwlen.cpp.

Program 11.5 sortwlen.cpp

#include <iostream>
#include <fstream>
#include <string>
using namespace std;
#include "tvector.h"
#include "prompt.h"
#include "sortall.h"

// illustrates templates, read words, sort words, print words

template <class Type>
void Print(const tvector<Type>& list, int first, int last)
// post: list[first]..list[last] printed, one per line
{

int k;
for(k=first; k <= last; k++)
{ cout << list[k] << endl;
}

}

int main()
{

tvector<string> wordList;
tvector<int> lengthList;
string filename = PromptString("filename: ");
string word;
ifstream input(filename.c_str());

June 7, 1999 10:10 owltex Sheet number 33 Page number 537magentablack

11.2 Function Templates 537

while (input >> word)

{ wordList.push_back(word);

lengthList.push_back(word.length());

}

SelectSort(wordList,wordList.size());

SelectSort(lengthList,lengthList.size());

Print(wordList,wordList.size() −5,wordList.size() −1);

Print(lengthList,lengthList.size() −5,lengthList.size() −1);

return 0;

} sortwlen.cpp

O U T P U T

prompt > sortwlen
filename: poe.txt
your
your
your
your
your
16
16
18
18
19

Just as not all types of vectors can be sorted, not all types of vectors can be printed.
The functionPrint in sortwlen.cppexpects a vector whose type conforms to the in-
terface of being insertable onto a stream usingoperator << . Consider an attempt to
print a vector of vectors.

tvector<tvector<int> > ivlist;
ivlist.push_back(lengthList);
Print(ivlist,0,1);

The first two lines compile without trouble, but the attempt to passivlist to Print
fails because the typetvector<int> does not conform to the expected interface: there
is no overloadedoperator << for tvector<int> objects. The error messages
generated by different compilers vary from informative to incomprehensible.

June 7, 1999 10:10 owltex Sheet number 34 Page number 538magentablack

538 Chapter 11 Sorting,Templates, and Generic Programming

The error message from Visual C++ 6.0 is very informative.

sortwlen.cpp(17) : error C2679: binary ’<<’ : no operator
defined which takes a right-hand operand of type
’const class tvector<int>’

The error message from the Metrowerks Codewarrior compiler is less informative.

Error : illegal operand __
sortwlen.cpp line 17 { cout << list[k] << endl;

The error message from the Linux g++ compiler is informative, though difficult to
comprehend.

‘void Print<tvector<int>>(const class
tvector<tvector<int> >&)’: sortwlen.cpp:17:
no match for ‘_IO_ostream_withassign
& << const tvector<int> &’

In general, a call of a templated function fails if the type of argument passed can’t be
used in the function because the expected conforming interface doesn’t apply. What that
means in the example ofPrint is spelled out clearly by the error messages: the type
const tvector<int> can’t be inserted onto a stream and stream insertion using
operator << is the interface expected of vector elements whenPrint is called.

One reason the error messages can be hard to understand is that the compilercatches
the error and indicates its source in the templated function: line 17 in the example of
Print above (see the error message). However, the erroris causedby a call of the
templated function, what’s termed the template functioninstantiation, and you must
determine what call or instantiation causes the error. In a small program this can be
straightforward, but in a large program you may not even be aware that a function (or
class) is templated. Since the error messages don’t show the call, finding the real source
can be difficult.

ProgramTip 11.2: If the compiler indicates an error in a templated func-
tion or class, look carefully at the error message and try to find the tem-
plate instantiation that causes the problem. The instantiation that causes the
problem may be difficult to find, but searching for the name of the class or function in
which the error occurs using automated Find/Search capabilities may help.

June 7, 1999 10:10 owltex Sheet number 35 Page number 539 magentablack

11.2 Function Templates 539

A function is declared as a templated function when it is preceded by the word
template followed by an angle bracket delimited list of class identifiers that serve as
type parameters. At least one of the type parameters must be used in the function’s
parameter list. Any name can be the template parameter, such asType , T, andU as

Syntax: FunctionTemplate

template <class T> void doIt(T& t);

template <class Type>
Type minElt(const tvector<Type>) ;

template <class T, class U>
void doThat(CList<T> t, CList<U> u);

shown in the syntax diagram.
This name can be used for the
return type, as the type (or part
of a type) in the parameter list,
or as the type of a local vari-
able in the function body. It
is possible to have more than
one template class parameter.
The functiondoThat in the
syntax box has two template

parameters,T andU. DoThat could be called as follows:

doThat(cons(3,CList<int>()),
cons(string("help"),CList<string>()));

Here the template parameterT is bound to or unified with the typeint , and the
template typeU is bound tostring . If the template instantiation succeeds, all uses of
T andU in the body of the functiondoThat will be supported by the typesint and
string , respectively.

11.2.2 FunctionTemplates and Iterators

We’ve seen many different iterator classes:WordStreamIterator for iterating
over each word in a file,CListIterator for iterating over the contents of a list,
RandomWalk for iterating over a simulated random walk, and evenPermuter for
generating permutations of an int vector. Because all these classes adhere to the same
naming convention for the iterating methods, namelyInit , HasMore , Next , and
Current , we can use the iterators in a general way in templated functions.

We’ll use a simple example to illustrate how a templated function can count the
number of elements in any iterator. We’re not using this example because it’s powerful,
but it’s the first step towards a very powerful technique of writing and using templated
functions and classes.

The functionCountIter in Program 11.6,countiter.cpp, counts the number of
elements in an iterator. We’ll call the function in two ways: to count the number of
words in a file and to calculaten! by generating every permutation of ann-element
vector and counting the number of permutations. Counting words in a file this way is
reasonably efficient; calculatingn! is not efficient at all.

Program 11.6 countiter.cpp

#include <iostream>
#include <string>

June 7, 1999 10:10 owltex Sheet number 36 Page number 540magentablack

540 Chapter 11 Sorting,Templates, and Generic Programming

using namespace std;

#include "permuter.h"
#include "worditer.h"
#include "tvector.h"
#include "prompt.h"

template <class Type>
int CountIter(Type& it)
{

int count = 0;
for(it.Init(); it.HasMore(); it.Next())
{ count++;
}
return count;

}

int main()
{

string filename = PromptString("filename: ");
int k,num = PromptRange("factorial: ",1,8);
tvector<int> vec;
WordStreamIterator witer;

for(k=0 ; k < num; k++)
{ vec.push_back(k);
}
witer.Open(filename);

cout << "# word s = " << CountIter(witer) << endl;
cout << num << " factoria l = " << CountIter(Permuter(vec)) << endl;

return 0;
} countiter.cpp

O U T P U T

prompt> countiter
filename: poe.txt
factorial: between 1 and 8: 6
words = 2324
6 factorial = 720

The parameterit used in the functionCountIter must conform to the iterator
interface we use in this book. The variableit is used as an object that supports methods
Init , HasMore , andNext . Since the functionCurrent isn’t used inCountIter ,
we could pass an object toCountIter that has a method namedGetCurrent instead
of Current . Since there is no callit.Current() , Current is not part of the

June 7, 1999 10:10 owltex Sheet number 37 Page number 541magentablack

11.2 Function Templates 541

interface that the compiler expects to find when processing an argument passed in a call
to CountIter .2

The methodCurrent is used inUniqueStrings in Program 11.7 to count the
number of unique strings in an iterator. We use it to determine the number of different
strings in a file, and in a list constructed from the words in the file.

Program 11.7 uniqueiter.cpp

#include <iostream>
#include <string>
using namespace std;

#include "clist.h"
#include "worditer.h"
#include "stringset.h"
#include "prompt.h"

template <class Type>
int UniqueStrings(Type& iter)
// post: return # unique strings in iter
{

StringSet uni;
for(iter.Init(); iter.HasMore(); iter.Next())
{ uni.insert(iter.Current());
}
return uni.size();

}

int main()
{

string filename = PromptString("filename: ");
WordStreamIterator witer;
witer.Open(filename);
CList<string> slist;

for(witer.Init(); witer.HasMore(); witer.Next())
{ slist = cons(witer.Current(),slist);
}

cout << "unique from WordIterator = "
<< UniqueStrings(witer) << endl;

cout << "unique from CList = "
<< UniqueStrings(CListIterator<string>(slist)) << endl;

return 0;
} uniqueiter.cpp

2The functionPermuter::Current is avoid function; it returns a vector as a reference parameter.
It doesn’t have the same interface as otherCurrent functions which aren’t void, but return a value.

June 7, 1999 10:10 owltex Sheet number 38 Page number 542magentablack

542 Chapter 11 Sorting,Templates, and Generic Programming

O U T P U T

prompt> uniqueiter.cpp
filename: poe.txt
unique from WordIterator = 1039
unique from CList = 1039

prompt> uniqueiter.cpp
filename: hamlet.txt
unique from WordIterator = 7807
unique from CList = 7807

Although only standard iterator methods are used with parameteriter , the object
returned byiter.Current() is inserted into aStringSet . This means that any
iterator passed toUniqueStrings must conform to the expected interface of returning
a string value fromCurrent . For example, if we try to pass an iterator in which
Current returns an int, as in the call below that uses aCListIterator for an int
list, an error message will be generated by the compiler when it tries to instantiate the
templated function.

cout << UniqueStrings(
CListIterator<int>(CList<int>::EMPTY)

) << endl;

The error message generated by Visual C++ 6.0 is reasonably informative in telling us
where to look for a problem.

itertempdemo.cpp(16) : error C2664: ’insert’ :
cannot convert parameter 1 from ’int’ to
’const class std::basic_string<char,struct
std::char_traits<char>,class std::allocator<char> > &’

The call toinsert fails and the error message says something about converting an
int to something related to a “basic_string ”. The basic_string class is used
to implement the standard classstring ; the classbasic_string is templated to
make it simpler to change from an underlying use ofchar to a type that uses Unicode,
for example. This is a great idea in practice, but leads to error messages that are very
difficult to understand if you don’t know that identifierstring is actually a typedef for
a complicated templated class.3

3The actual typedef forstring is typedef basic_string<char, char_traits<char>,
allocator<char> > string; which isn’t worth trying to understand completely.

June 7, 1999 10:10 owltex Sheet number 39 Page number 543magentablack

11.3 Function Objects 543

ProgramTip 11.3: The name string is actually a typedef for a templated
class called basic_string , and the template instantiation is somewhat
complicated. If you see an error message that you can’t understand, generated by
either the compiler or a debugger, look carefully to see if the error is about the class
basic_string ; such errors are almost always caused by a problem withstring
objects or functions.

The function templates we’ve seen for sorting, printing, and iterating are powerful
because they generalize an interface. Using function templates we can write functions
that use an interface without knowing what class will actually be used to satisfy the
interface. We’ll explore an important use of templated functions in the Section 11.3
where we’ll see how it’s possible to sort by different criteria with one function.

11.2.3 FunctionTemplates, Reuse, and Code Bloat

Function templates help avoid duplicated code since a templated function is written
once, but can be instantiated many times. The template functionPrint in sortwlen.cpp,
Program 11.5 is not compiled into object code as other functions and classes are when the
program is compiled. Instead, whenPrint is instantiated, the compiler generates object
code for the specific instantiation. If a templated function is never called/instantiated
in a program, then it doesn’t generate any code. A nontemplated function is always
compiled into code regardless of whether it’s called. The wordtemplatemakes sense
here; a templated function works as a function-generator, generating different versions
of the function when the template is instantiated. However, different code is generated
each time the function is instantiated with a different type. For example, if the templated
Print function is called from three different statements using int vectors, two statements
using string vectors, and one statement using Date vectors, then three different functions
will be instantiated and emit compiled object code: one each for int, string, and Date.

ProgramTip 11.4: Function templates can generate larger than expected
object files when they’re instantiated with several types in the same pro-
gram. A function template saves programmer resources and time since one function
is written and maintained rather than several. However, a function template can lead to
code bloatwhere a program is very large because of the number of template instantia-
tions. Smart compilers may be able to do some code sharing, but code bloat can be a real
problem.

11.3 Function Objects
In the programsortwlen.cpp, Program 11.5 we used a templated functionSelectSort
to sort vectors of strings and ints. The vector of strings was sorted alphabetically.

June 7, 1999 10:10 owltex Sheet number 40 Page number 544magentablack

544 Chapter 11 Sorting,Templates, and Generic Programming

Suppose we need to generate a list of words in order by length of word, with shortest
words like “a” coming first, and longer words like “acknowledgement” coming last. We
can certainly do this by changing the comparison of vector elements to use a string’s
length. In the functionSelectSort , for example, we would change the comparison:

if (a[j] < a[minIndex])

to a comparison using string lengths.

if (a[j].length() < a[minIndex].length())

This solution does not generalize to other sorting methods. We may want to sort in
reverse order, “zebra” before “aardvark”; or to ignore case when sorting so that “Zebra”
comes after “aardvark” instead of before it as it does when ASCII values are used to
compare letters. We can, of course, implement any of these sorts by modifying the code,
but in general we don’t want to modify existing code, we want to re-use and extend it.

ProgramTip 11.5: Classes, functions, and code should be open for exten-
sion, but closed to modification. This is called the open-closed principle.
This design heuristic will be easier to realize when we’ve studied templates and inher-

itance (see Chapter 13.) Ideally we want to adapt programs without breaking existing
applications, so modifying code isn’t a good idea if it can be avoided.

In all these different sorts, we want to change the method used for comparing vector
elements. Ideally we’d like to make the comparison method a parameter to the sort
functions so that we can pass different comparisons to sort by different criteria. We’ve
already discussed how vector elements must conform to the expected interface of being
comparable using the relationaloperator < if the sorting functions insortall.h
are used. We need to extend the conforming interface in some way so that in addition to
usingoperator < , a parameter is used to compare elements. Since all objects we’ve
passed are instances of classes or built-in types, we need to encapsulate a comparison
function in a class, and pass an object that’s an instance of a class. A class that encap-
sulates a function is called afunction object or a functor . We’ll use functors to sort on
several criteria.4

11.3.1 The Function Object Comparer

In the language C, there is no classstring . Instead, special arrays of characters are
used to represent strings. We won’t study these kinds of strings, but we’ll use the same
convention in creating a class to compare objects that’s used in C to compare strings. Just
as certain method names are expected with any iterators used in this book (by convention)

4In this section we’ll use classes with a function namedcompare to sort. In more advanced uses
of C++, functors use an overloadedoperator() so that an object can be used syntactically like a
function, (e.g., foo(x) might be an object namedfoo with an overloadedoperator() applied to
x). My experience is that using an overloaded function application operator is hard for beginning
programmers to understand, so I’ll use named functions likecompare instead.

June 7, 1999 10:10 owltex Sheet number 41 Page number 545 magentablack

11.3 Function Objects 545

and with iterators used by templated functions likeUniqueStrings in Program 11.7,
uniqueiter.cpp(enforced by the compiler), we’ll expect any class that encapsulates a
comparison function to use the namecompare for the function. We’ll use this name in
writing sorting functions and we’ll expect functions with the name to conform to specific
behavior. If a client uses a class with a name other thancompare , the program will not
compile, because the templated sorting function will fail to be instantiated. However, if
a client uses the namecompare , but doesn’t adhere to the behavior convention we’ll
discuss, the program will compile and run, but the vector that results from calling a sort
with such a function object will most likely not be in the order the client expects. Using
a conforming interface is an example ofgeneric programming which [Aus98] says is
a “set of requirements on data types.”

The sorting functions expect the conforming interface ofStrLenComp::compare
below. The method isconst since no state is modified — there is no state.

class StrLenComp
{

public:
int compare(const string& a, const string& b) const
// post: return -1/+1/0 as a.length() < b.length()
{

if (a.length() < b.length()) return -1;
if (a.length() > b.length()) return 1;
return 0;

}
};

The conforming interface is illustrated by the function prototype: it is aconst function,
returns anint , and expects two const-reference parameters that have the same type
(which is string in the example above). The expected behavior is based on determining
how a compares tob. Any function object used with the sorts in this book must have
the following behavior.

if a is less thanb then−1 is returned

if a is greater thanb then +1 is returned

otherwise,a == b and 0 is returned.

As shown inStrLenComp::compare , the meaning of “less than” is completely
determined by returning−1, similarly for “greater than” and a return value of+1.
Program 11.8 shows how this function object sorts by word length.

Program 11.8 strlensort.cpp

#include <iostream>
#include <string>
#include <fstream>
using namespace std;

June 7, 1999 10:10 owltex Sheet number 42 Page number 546magentablack

546 Chapter 11 Sorting,Templates, and Generic Programming

#include "tvector.h"
#include "sortall.h"
#include "prompt.h"

class StrLenComp
{

public:
int compare(const string& a, const string& b) const
// post: return -1/+1/0 as a.length() < b.length()
{

if (a.length() < b.length()) return −1;
if (a.length() > b.length()) return 1;
return 0;

}
};
int main()
{

string word, filename = PromptString("filename: ");
tvector<string> wvec;
StrLenComp slencomp;
int k;
ifstream input(filename.c_str());

while (input >> word)
{ wvec.push_back(word);
}
InsertSort(wvec, wvec.size(), slencomp);

for(k=0 ; k < 5; k++)
{ cout << wvec[k] << endl;
}
cout << "——-" << endl << "last words" << endl;
cout << "——-" << endl;
for(k=wvec.size() −5; k < wvec.size(); k++)
{ cout << wvec[k] << endl;
}
return 0;

} strlensort.cpp

The sorts declared insortall.hand implemented insortall.cpphave two forms: one
that expects a comparison function object as the third parameter and one that uses
operator < so doesn’t require the third parameter. The headers for the two versions
of InsertSort are reproduced below.

template <class Type>
void InsertSort(tvector<Type> & a, int size);
// post: a[0] <= a[1] <= ... <= a[size-1]

template <class Type, class Comparer>
void InsertSort(tvector<Type> & a, int size,

const Comparer & comp);
// post: first size entries sorted by criteria in comp

June 7, 1999 10:10 owltex Sheet number 43 Page number 547 magentablack

11.3 Function Objects 547

The third parameter to the function has a type specified by the second template parameter
Comparer . Any object can be passed as the third parameter if it has a method named
compare . In the code from Program 11.8 the typeStrLenComp is bound to the type
Comparer when the templated functionInsertSort is instantiated.

O U T P U T

prompt> strlensort
filename: twain.txt
a
I
I
I
a

last words

shoulder--so--at
discouraged-like,
indifferent-like,
shoulders--so--like
"One--two--three-git!"

As another example, suppose we want to sort a vector of stocks, where the struct
Stock from stocks.cpp, Program 8.6 is used to store stock information (seestock.hin
on-line materials or Program 8.6 for details, or Program 11.9 below). We might want to
sort by the symbol of the stock, the price of the stock, or the volume of shares traded.
If we were the implementers of the class we could overload the relationaloperator
< for Stock objects, but not in three different ways. In many cases, we’ll be client
programmers, using classes we purchase “off-the-shelf” for creating software. We won’t
have access to implementations so using function objects provides a good solution to the
problem of sorting a class whose implementation we cannot access, and sorting by more
than one criteria. Insortstocks.cpp, Program 11.9, we sort a vector of stocks by two
different criteria: price and shares traded. We’ve used a struct for the comparer objects,
but a class in which thecompare function is public works just as well.

Program 11.9 sortstocks.cpp

#include <iostream>

#include <fstream>

#include <string>

#include <iomanip>

using namespace std;

June 7, 1999 10:10 owltex Sheet number 44 Page number 548 magentablack

548 Chapter 11 Sorting, Templates, and Generic Programming

#include "tvector.h"
#include "strutils.h" // for atoi and atof
#include "prompt.h"
#include "sortall.h"
#include "stock.h"

struct PriceComparer // compares using price
{

int compare(const Stock& lhs, const Stock& rhs) const
{ if (lhs.price < rhs.price) return −1;

if (lhs.price > rhs.price) return +1;
return 0;

}
};
struct VolumeComparer // compares using volume of shares traded
{

int compare(const Stock& lhs, const Stock& rhs) const
{ if (lhs.shares < rhs.shares) return −1;

if (lhs.shares > rhs.shares) return +1;
return 0;

}
};

void Read(tvector<Stock>& list, const string& filename)
// post: stocks from filename read into list
{

ifstream input(filename.c_str());
string symbol, exchange, price, shares;
while (input >> symbol >> exchange >> price >> shares)
{ list.push_back(Stock(symbol,exchange,atof(price),atoi(shares)));
}

}

Print(const tvector<Stock>& list, ostream& out)
// post: stocks in list printed to out, one per line
{

int k,len = list.size();
out.precision(3); // show 3 decimal places
out.setf(ios::fixed);
for(k=0 ; k < len; k++)
{ out << list[k].symbol << "\t" << list[k].exchange << "\t"

<< setw(8) << list[k].price << "\t" << setw(12)
<< list[k].shares << endl;

}
}
int main()
{

string filesymbol = PromptString("stock file ");
tvector<Stock> stocks;
Read(stocks,filesymbol);
Print(stocks,cout);
cout << endl << "—-" << endl << "# stocks: " << stocks.size() << endl;
cout << "—-sorted by price—-" << endl;
InsertSort(stocks,stocks.size(), PriceComparer());

June 7, 1999 10:10 owltex Sheet number 45 Page number 549magentablack

11.3 Function Objects 549

Print(stocks,cout);

cout << "—-sorted by volume—-" << endl;

InsertSort(stocks,stocks.size(), VolumeComparer());

Print(stocks,cout);

return 0;

} sortstocks.cpp

O U T P U T

prompt> sortstocks
filename: stocksmall.dat
KO N 50.500 735000
DIS N 64.125 282200
ABPCA T 5.688 49700
NSCP T 42.813 385900
F N 32.125 798900

stocks: 5
----sorted by price----
ABPCA T 5.688 49700
F N 32.125 798900
NSCP T 42.813 385900
KO N 50.500 735000
DIS N 64.125 282200
----sorted by volume----
ABPCA T 5.688 49700
DIS N 64.125 282200
NSCP T 42.813 385900
KO N 50.500 735000
F N 32.125 798900

11.3.2 Predicate Function Objects

As a final example, we’ll consider the problem of finding all the files in a directory that
are larger than a size specified by the user or that were last modified recently, (e.g., within
three days of today). We’ll use a function templated on three different arguments: every
entry (one template parameter) in an iterator (another template parameter) is checked and
those entries that satisfy a criterion (the last template parameter) are stored in a vector.

June 7, 1999 10:10 owltex Sheet number 46 Page number 550 magentablack

550 Chapter 11 Sorting, Templates, and Generic Programming

template <class Iter, class Pred, class Kind>
void IterToVectorIf(Iter& it, const Pred& p, tvector<Kind>& list)
// post: all items in Iter that satisfy Pred are added to list
{

for(it.Init(); it.HasMore(); it.Next())
{ if (p.Satisfies(it.Current()))

{ list.push_back(it.Current());
}

}
}

The parameterit is used as in iterator in the function body, so we could pass a
DirStream object or aCListIterator object among the many kinds of itera-
tors we’ve studied. Sinceit has typeIter , when the function is instantiated/called,
the first argument should be an iterator type. The second parameter of the function,p, has
typePred . If you look at the function body, you’ll see that the only use ofp is in theif
statement. The object passed as a second parameter top must have a member function
namedSatisfies that returns abool value for the template instantiation to work
correctly. Finally, the third parameter to the function is a vector that storesKind ele-
ments. Elements are stored in the vector by callingpush_back with it.Current()
as an argument. The vector passed as the third argument toIterToVectorIf must
store the same type of object returned by the iterator passed as the first argument. I ran
the program on May 16, 1999 which should help explain the output.

Program 11.10 dirvecfun.cpp

#include <iostream>
#include <fstream>
#include <string>
#include <iomanip>
using namespace std;
#include "directory.h"
#include "prompt.h"
#include "tvector.h"

// illustrates templated functions, function objects

// find large files
struct SizePred // satisfies if DirEntry::Size() >= size
{

SizePred(int size)
: mySize(size)

{}
bool Satisfies(const DirEntry& de) const
{

return de.Size() >= mySize;
}
int mySize;

};

June 7, 1999 10:10 owltex Sheet number 47 Page number 551 magentablack

11.3 Function Objects 551

// find recent files
struct DatePred // satisfies if DirEntry::GetDate() >= date
{

DatePred(const Date& d)
: myDate(d)

{ }
bool Satisfies(const DirEntry& de) const
{

return !de.IsDir() && de.GetDate() >= myDate;
}
Date myDate;

};

void Print(const tvector<DirEntry>& list)
// post: all entries in list printed, one per line
{

int k;
DirEntry de;
for(k=0 ; k < list.size(); k++)
{ de = list[k];

cout << setw(10) << de.Size() << "\t" << setw(12)
<< de.Name() << "\t" << de.GetDate() << endl;

}
cout << "—\n# entrie s = " << list.size() << endl;

};

template <class Iter, class Pred, class Kind>
void IterToVectorIf(Iter& it, const Pred& p, tvector<Kind>& list)
// post: all items in Iter that satisfy Pred are added to list
{

for(it.Init(); it.HasMore(); it.Next())
{ if (p.Satisfies(it.Current()))

{ list.push_back(it.Current());
}

}
}

int main()
{

Date today;
string dirname = PromptString("directory ");
int size = PromptRange("min file size",1,300000);
int before = PromptRange("# days before today",0,300);

DatePred datePred(today −before); // find files within before days of today
SizePred sizePred(size); // find files larger than size
DirStream dirs(dirname); // iterate over directory entries
tvector<DirEntry> dirvec; // store satisfying entries here

IterToVectorIf(dirs,datePred,dirvec);
cout << "date satisfying" << endl << "—" << endl;
Print(dirvec);

dirvec.resize(0); // remove old entries

June 7, 1999 10:10 owltex Sheet number 48 Page number 552magentablack

552 Chapter 11 Sorting,Templates, and Generic Programming

cout << endl << "size satisfying"<< endl << "—" << endl;

IterToVectorIf(dirs,sizePred,dirvec);

Print(dirvec);

return 0;

} dirvecfun.cpp

O U T P U T

prompt> dirvecfun
directory c:\book\ed2\code
min file size between 1 and 300000: 50000
days before today between 0 and 300: 0
date satisfying

4267 directory.cpp May 16 1999
4814 directory.h May 16 1999
2251 dirvecfun.cpp May 16 1999
2316 nqueens.cpp May 16 1999

entries = 4

size satisfying

99991 foot.exe April 14 1999
64408 mult.exe March 10 1999
53760 mult.opt March 31 1999

165658 tap.zip April 21 1999
111163 tcwdef.csm April 14 1999

entries = 5

The structsSizePred andDatePred are calledpredicatesbecause they’re used
as boolean function objects. We use the method nameSatisfies from a term from
mathematical logic, but it makes sense that the predicate function object returns true for
eachDirEntry object satisfying the criteria specified by the class.

Program Tip 11.6: A function object specifies a parameterized policy.
Functions that implement algorithms like sorting, but allow function object parameters
to specifypolicy, such as how to compare elements, are more general than functions that
hardwire the policy in code.

June 7, 1999 10:10 owltex Sheet number 49 Page number 553magentablack

11.4 Analyzing Sorts 553

11.8 If the function Print from sortwlen.cpp, Program 11.5 is passed a vector ofPause to Reflect

DirEntry objects as follows, the call toPrint will fail.

tvector<DirEntry> dirvec;
// store values in dirvec
Print(dirvec,0,dirvec.size()-1);

Why does this template instantiation fail? What can you do to make it succeed?

11.9 Show how to prompt the user for the name of a directory and callCountIter
from countiter.cpp, Program 11.6 to count the number of files and subdirectories
in the directory whose name the user enters.

11.10 Write a function object that can be used to sort strings without being sensitive to
case, so that"ZeBrA" == "zebra" and so that"Zebra" > "aardvark" .

11.11 Write three function objects that could be used in sorting a vector ofDirEntry
objects ordered by three criteria: alphabetically, by name of file, in order of
increasing size, or in order by the date the files were last modified (useGetDate).

11.12 Suppose you want to useIterToVectorIf to store every file and subdirectory
accessed by aDirStream object into a vector. Write a predicate function object
that always returns true so that everyDirEntry object will be stored in the vector.
(see Program 11.10,dirvecfun.cpp.)

11.13 Write a templated function that reverses the elements stored in a vector so that
the first element is swapped with the last, the second element is swapped with the
second to last, and so on (make sure you don’t undo the swaps; stop when the
vector is reversed). Do not use extra storage; swap the elements in place.

11.14 Write a function modeled afterIterToVecIf , but with a different name:
IterToVecFilter . The function stores every element accessed by an iter-
ator in a vector, but the elements are filtered or changed first. The function could
be used to read strings from a file, but convert the strings to lowercase. The code
below could do this with the right class and function implementations.

string filename = PromptString("filename: ");
WordStreamIterator wstream;
tvector<string> words;
wstream.Open(filename);
LowerCaseConverter lcConverter;
IterToVecFilter(wstream,lcConverter,words);
// all entries in words are in lower case

11.4 Analyzing Sorts
Using function objects we can sort by different criteria, but what sorting algorithms
should we use? In this section we’ll discuss techniques for classifying algorithms in

June 7, 1999 10:10 owltex Sheet number 50 Page number 554magentablack

554 Chapter 11 Sorting,Templates, and Generic Programming

general, and sorting algorithms in particular, as to how much time and memory the
algorithms require.

We discussed several quadratic sorts in Section 11.1 and discussed selection sort and
insertion sort in some detail. Which of these is the best sort? As with many questions
about algorithms and programming decisions, the answer is, “It depends”5—on the size
of the vector being sorted, on the type of each vector element, on how critical a fast
sort is in a given program, and many other characteristics of the application in which
sorting is used. You might, for example, compare different sorting algorithms by timing
the sorts using a computer. The programtimequadsorts.cpp,Program 11.4, uses the
templated sorting functions fromsortall.hProgram G.14 (see How to G), to time three
sorting algorithms. The graph in Figure 11.3 provides times for these sorts.

Although the timings are different, the curves have the same shape. The timings
might also be different if selection sort were implemented differently; as by another
programmer. However, the general shapes of the curves would not be different, since the
shape is a fundamental property of the algorithm rather than of the computer being used,
the compiler, or the coding details. The shape of the curve is calledquadratic, because it
is generated by curves of the familyy = ax2 (wherea is a constant). To see (informally)
why the shape is quadratic, we will count the number of comparisons between vector
elements needed to sort anN-element vector. Vector elements are compared by theif
statement in the innerfor loop of functionSelectSort (see Program 11.2.)

if (a[j] < a[minIndex])
{ minIndex = j; // new smallest item, remember where
}

We’ll first consider a 10-element vector, then use these results to generalize to anN-
element vector. The outerfor loop (with k as the loop index) iterates nine times for a
10-element vector, becausek has the values 0, 1, 2, . . . , 8. Whenk = 0, the inner loop
iterates fromj = 1 to j < 10, so theif statement is executed nine times. Sincek is
incremented by 1 each time, theif statement will be executed 45 times, since the inner
loop iterates nine times, then eight times, and so on:

9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 9(10)

2
= 45 (11.1)

The sum is computed from a formula for the sum of the firstN integers; the sum
is N(N + 1)/2. To sort a 100-element vector, the number of comparisons needed is
99(100)/2 = 4,950. Generalizing, to sort anN-element vector, the number of compar-
isons is calculated by summing the firstN − 1 integers:

(N − 1)(N)

2
= N2 − N

2
= N2

2
− N

2
(11.2)

This is a quadratic, which at least partially explains the shape of the curves in Figure 11.3.
We can verify this analysis experimentally using a a templated classSortWrapper
(accessible insortbench.h) that keeps track of how many times sorted elements are

5Note that the right answer isneverbubble sort.

June 7, 1999 10:10 owltex Sheet number 51 Page number 555magentablack

11.4 Analyzing Sorts 555

compared and assigned. We’ve discussed comparisons; assignments arise when vector
elements are swapped. The classSortWrapper is used in Program 11.11.

Program 11.11 checkselect.cpp

#include <iostream>

#include <string>

#include <fstream>

using namespace std;

#include "sortbench.h"

#include "sortall.h"

#include "prompt.h"

int main()

{

typedef SortWrapper<string> Wstring;

string word, filename = PromptString("filename:");

ifstream input(filename.c_str());

tvector<Wstring>list;

while (input >> word)

{ list.push_back(Wstring(word));

}

cout << "# words read =\t " << list.size() << endl;

Wstring::clear(); // clear push_back assigns

SelectSort(list,list.size());

cout << "# compares\ t = " << Wstring::compareCount() << endl;

cout << "# assigns\ t = " << Wstring::assignCount() << endl;

return 0;

} checkselect.cpp

O U T P U T

prompt> checkselect
filename: poe.txt
words read = 2324
compares = 2699326
assigns = 4646

The number of comparisons is 2323× 2324/2 which matches the formula in Equa-
tion 11.2 exactly. The number of assignments is exactly 2(N − 1) for an N -element
vector because a swap requires two assignments and one construction, for example, for
strings:

June 7, 1999 10:10 owltex Sheet number 52 Page number 556magentablack

556 Chapter 11 Sorting,Templates, and Generic Programming

void Swap(string& x, string& y)
{

string temp = x; // construction, not assignment
x = y; // assignment
y = temp; // assignment

}

In general, when there areN elements there will beN − 1 swaps and 3(N − 1) data
movements (assignments and constructions). Before analyzing other sorts, we need to
develop some terminology to make the discussion simpler.

11.4.1 O Notation

When the execution time of an algorithm can be described by a family of curves, computer
scientists useO notation to describe the general shape of the curves. For a quadratic
family, the expression used isO(N2). It is useful to think of theO as standing for
order, since the general shape of a curve provides an approximationon the order of
the expression rather than an exact analysis. For example, the number of comparisons
used by selection sort isO(N2), but more precisely is(N2/2) − (N/2). Since we are
interested in the general shape rather than the precise curve, coefficients like 13.5 and
lower-order terms with smaller exponents likeN , which don’t affect the general shape
of a quadratic curve, are not used inO notation.

In later courses you may learn a formal definition that involves calculating limits, but
the idea of a family of curves defined by the general shape of a curve is enough for our
purposes. To differentiate between other notations for analyzing algorithms, the term
big-Oh is used forO notation (to differentiate from little-oh, for example).

Algorithms like sequential search (Table 8.1) that are linear are described asO(N)

algorithms using big-Oh notation. This indicates, for example, that to search a vector of
N elements requires examining nearly all the elements. Again, this describes the shape
of the curve, not the precise timing, which will differ depending on the compiler, the
computer, and the coding. Binary search, which requires far fewer comparisons than
sequential search, is anO(logN) algorithm, as discussed in Section 8.3.7.

Table 11.2 provides data for comparing the running times of algorithms whose run-
ning times orcomplexitiesare given by different big-Oh expressions. The data are for
a (hypothetical) computer that executes one million operations per second.

11.4.2 Worst Case and Average Case

When we useO-notation, we’re trying to classify an algorithm’s running time, or some-
times the amount of memory it uses. Some algorithms behave differently depending
on the input. For example, when searching sequentially for an element in a vector, we
might find the element in the first location, in the middle location, or we might not find it
after examining all locations. How can we classify sequential search when the behavior
is different depending on the item searched for? Typically, computer scientists use two
methods to analyze an algorithm:worst caseandaverage case. The worst case analysis
is based on inputs to an algorithm that take the most time or use the most memory. In

June 7, 1999 10:10 owltex Sheet number 53 Page number 557magentablack

11.4 Analyzing Sorts 557

Table 11.2 Comparing big-Oh expressions on a computer that executes one million
instructions per second

Running time (seconds)
N O(logN) O(N) O(N logN) O(N2)

10 0.000003 0.00001 0.000033 0.0001
100 0.000007 0.00010 0.000664 0.1000

1,000 0.000010 0.00100 0.010000 1.0
10,000 0.000013 0.01000 0.132900 1.7 min

100,000 0.000017 0.10000 1.661000 2.78 hours
1,000,000 0.000020 1.0 19.9 11.6 days

1,000,000,000 0.000030 16.7 min 8.3 hours 318 centuries

sequential search, for example, the worst case occurs when the element searched for
isn’t found; every vector element is examined. It’s more difficult to define average case,
and if you continue your studies of computer science you’ll encounter different ways
of defining average. In this book I’ll use average case very informally, to mean what
happens with most kinds of input, not the worst and not the best. To get an idea of what
average case means we’ll consider sequential search again. In anN -element vector there
areN + 1 different ways for a sequential search algorithm to terminate:

The item searched for is found in one ofN different locations.

The item searched for is not found.

If we look at the total number of vector items examined for every possible case when the
search is successful we’ll be able to apply Equation 11.2 again to get the total number of
comparisons asN(N +1)/2. Since there areN different ways to terminate successfully,
we can argue that the average number of elements examined is

N(N + 1)/2

N
= (N + 1)

2
(11.3)

This is stillO(N), so sequential search isO(N) in both the worst and average case.

11.4.3 Analyzing Insertion Sort

The code for insertion sort ininsertsort.cpp, Program 11.3 shows that the outer for loop
executesN − 1 times for anN -element vector sincek varies from 1 toN − 1. The
number of times the inner while loop executes depends on the order of the elements and
the value ofloc after the while loop as shown in Figure 11.2. In the worst case, the
vector is in reverse order and the inner loop will executek times. The total number of
times the body of the inner while loop executes is(N − 1)N/2 using Equation 11.2
since we’re summing the firstN − 1 numbers. There is one assignment each time the
inner loop executes, and one assignment after the loop. The total number of assignments
is (N − 1)N/2 + N which is O(N2) and exactlyN(N + 1)/2. There is one vector

June 7, 1999 10:10 owltex Sheet number 54 Page number 558 magentablack

558 Chapter 11 Sorting, Templates, and Generic Programming

comparison each time the inner loop executes and one comparison of0 < loc . We’ll
count only the vector comparison since although the comparison to see that the index
loc is valid affects the execution time, it is independent of the kind of element being
sorted. There are a total then of(N − 1)N/2 comparisons in the worst case.

In the best case, when the vector is already sorted, the inner loop body is never
executed. There will beO(N) comparisons andO(N) assignments, which is about
as good as we can expect since we have to examine every vector element simply to
determine if the vector is sorted.

We can argue informally that on average the inner loop executesk/2 times since the
worst case isk and the best case is zero. The algorithm is still anO(N2) algorithm, but
the number of comparisons will be fewer than selection sort. This is why the timings in
Figure 11.3 show insertion sort as faster than selection sort—it won’t be faster always, but
on average it is. We can verify some of these results experimentally with Program 11.12,
checkinsert.cpp.

Program 11.12 checkinsert.cpp

#include <iostream>
#include <string>
#include <fstream>
using namespace std;

#include "sortbench.h"
#include "sortall.h"
#include "prompt.h"
#include "tvector.h"

typedef SortWrapper<string> Wstring;

struct ReverseComparer // for sorting in reverse alphabetical order
{

int compare(const Wstring& lhs, const Wstring& rhs) const
{ if (lhs < rhs) return +1;

if (rhs < lhs) return −1;
return 0;

}
};

int main()
{

string word, filename = PromptString("filename:");
ifstream input(filename.c_str());
tvector<Wstring>list;

while (input >> word)
{ list.push_back(Wstring(word));
}
cout << "# words read =\t " << list.size() << endl;

Wstring::clear(); // clear push_back assigns

June 7, 1999 10:10 owltex Sheet number 55 Page number 559magentablack

11.5 Quicksort 559

InsertSort(list,list.size());
cout << "# compares\ t = " << Wstring::compareCount() << endl;
cout << "# assigns\ t = " << Wstring::assignCount() << endl;

Wstring::clear();
cout << endl << "sorting a sorted vector" << endl;
InsertSort(list,list.size());
cout << "# compares\ t = " << Wstring::compareCount() << endl;
cout << "# assigns\ t = " << Wstring::assignCount() << endl;

InsertSort(list,list.size(),ReverseComparer());
Wstring::clear();
cout << endl << "sorting a reverse-sorted vector" << endl;
InsertSort(list,list.size());
cout << "# compares\ t = " << Wstring::compareCount() << endl;
cout << "# assigns\ t = " << Wstring::assignCount() << endl;

return 0;
} checkinsert.cpp

O U T P U T

prompt> checkinsert
filename: poe.txt
words read = 2324
compares = 1339264
assigns = 1339269

sorting a sorted vector
compares = 2323
assigns = 2323

sorting a reverse-sorted vector
compares = 2673287
assigns = 2674325

11.5 Quicksort
The graph in Figure 11.3 suggests that selection sort and bubble sort are bothO(N2)

sorts.6 In this section we’ll study a more efficient sort calledquicksort. Quicksort is a
recursive, three-step process.

6To be precise, the graph does not prove that bubble sort is anO(N2) sort; it provides evidence of this.
To prove it more formally would require analyzing the number of comparisons.

June 7, 1999 10:10 owltex Sheet number 56 Page number 560magentablack

560 Chapter 11 Sorting,Templates, and Generic Programming

25
27

18

20

19

25
31

33

27

Pivot

Pivot

3129

33

2722

25

25

24

20 18

22

24
29

31

29

332525

22

24

18

2019

31

31

19
31

Figure 11.4 Quicksort.

1. A pivot element of the vector being sorted is chosen. Elements of the vector are
rearranged so that elements less than or equal to the pivot are moved before the
pivot. Elements greater than the pivot are moved after the pivot. This is called the
partition step.

2. Quicksort (recursively) the elements before the pivot.

3. Quicksort (recursively) the elements after the pivot.

The partition step bears an explanation; we’ll discuss the algorithm pictured in Fig-
ure 11.4.

Suppose a group of people must arrange themselves in order by age, so that the
people are lined up, with the youngest person to the left and the oldest person to the
right. One person is designated as the pivot person. All people younger than the pivot
person stand to left of the pivot person and all people older than the pivot person stand
to the right of the pivot. In the first step, the 27-year-old woman is designated as the
pivot. All younger people move to the pivot’s left (from our point of view); all older
people move to the pivot’s right. It is imperative to note at this point that the 27-year-old
womanwill not move again! In general, after the rearrangement takes place, the pivot
person (or vector element) is in the correct order relative to the other people (elements).
Also, people to the left of the pivot always stay to the left.

June 7, 1999 10:10 owltex Sheet number 57 Page number 561magentablack

11.5 Quicksort 561

After this rearrangement, a recursive step takes place. The people to the left of the
27-year-old pivot must now sort themselves. Once again, the first step is to partition the
group of seven people. A pivot is chosen—in this case, the 22-year-old woman. All
people younger move to the pivot’s left, and all people older move to the pivot’s right.
The group that moves to the right (two 25-year-olds and a 24-year-old) are now located
between the two people who are in their final positions. To continue the process, the
group of three (20, 18, and 19 years old) would sort themselves. When this group is
done, the group of 25-, 25-, and 24-year-olds would sort themselves. At this point, the
entire group to the left of the original 27-year-old pivot is sorted. Now the group to the
right of this pivot must be recursively sorted.

The code for quicksort is very short and reflects the three steps outlined above:
partition and recurse twice. Since the recursive calls specify a range in the original
vector, we’ll use a function with parameters for the left and right indexes of the part
of the vector being sorted. For example, to sort ann-elementint vectora, the call
Quick(a,0,n-1) works, whereQuick is

void Quick(tvector<int>& a,int first,int last)
// postcondition: a[first] <= ... <= a[last]
{

int piv;
if (first < last)
{ piv = Pivot(a,first,last);

Quick(a,first,piv-1);
Quick(a,piv+1,last);

}
}

The three statements in theif block correspond to the three parts of quicksort. The
functionPivot rearranges the elements ofa between positionsfirst andlast and
returns the index of the pivot element. This index is then used recursively to sort the
elements to the left of the pivot (in the range[first … piv-1]) and the elements
to the right of the pivot (in the range[piv+1 … last]).

11.5.1 The Partition/Pivot Function

There are many different ways to implement the partition function. All these methods
are linear, orO(N), whereN is the number of elements rearranged. We’ll use a partition
method described in [Ben86] that is simple to remember and that can be developed using
invariants.

The diagrams in Figure 11.5 show the sequence of steps used in partitioning the ele-
ments of a vector between (and including) locationsfirst andlast . Understanding
the second diagram in the sequence is the key to being able to reproduce the code. The
second diagram describes an invariant of thefor loop that partitions thetvector .

The for loop examines each vector element between locationsfirst and last
once; this ensures that the loop is linear, orO(N), for partitioningN elements. The
loop has the following form, where the element with indexfirst is chosen as the pivot
element:

June 7, 1999 10:10 owltex Sheet number 58 Page number 562magentablack

562 Chapter 11 Sorting,Templates, and Generic Programming

if (a[k] <= piv)
{
 p++;
 Swap(a[k],a[p])
}

elements <= X elements >= XX

Pivot

Pivot

First

First

First

First Last

Last

Last

Last

X

X

<= X ???

<= X

> X

> X

> X<= X

kp

p

X

Desired properties of vector, partitioned around pivot

After several iterations, partially re-arranged, more elements to process

All elements processed

Final configuration after swapping first element into pivot location

}
Swap(a[p],a[first]);

return p;

Figure 11.5 Partitioning for Quicksort.

for(k=first+1; k <= last; k++)
{ if (a[k] <= a[first])

{ p++;
swap(a[k], a[p])

}
}

As indicated by the question marks “??? ” in Figure 11.5, the value ofa[k] relative to
the pivot is not known. Ifa[k] is less than or equal to the pivot, it belongs in the first
part of the vector. Ifa[k] is greater than the pivot, it belongs in the second part of the
vector (where it already is!). Theif statement in Figure 11.5 comparesa[k] to the
pivot and then reestablishes the picture as true, so that the picture represents an invariant
(true each time the loop test is evaluated).

This works because whenp is incremented, it becomes the index of an element
larger than the pivot, as shown in the diagram. The statementSwap(a[k],a[p])
interchanges an element less than or equal to the pivot,a[k] , and an element greater
than the pivot,a[p] . This informal reasoning should help convince you that the picture
shown is an invariant and that it leads to a correct partition function. One more step is
necessary, however; the invariant needs to be established as true the first time the loop
test is evaluated. In this situation, the part of the vector labeled??? represents the entire
vector, because none of the elements have been examined.

June 7, 1999 10:10 owltex Sheet number 59 Page number 563magentablack

11.5 Quicksort 563

The first element is arbitrarily chosen as the pivot element. Settingk = first+1
makesk the index of the leftmost unknown element, the??? section, as shown in the
diagram. Settingp = first makesp the index of the rightmost element that is known
to be less than or equal to the pivot, because in this case only the element with index
first is known to be less than or equal to the pivot—it is equal to the pivot, because
it is the pivot.

The last step is to swap the pivot element, which isa[first] , into the location
indexed by the variablep. This is shown in the final stage of the diagram in Figure 11.5.

The partition function, combined with the three-step recursive function for quick-
sort just outlined, yields a complete sorting routine that is included as part ofsortall.h,
Program G.14. We can change the call ofSelectSort to QuickSort in timequad-
sorts.cpp, Program 11.4 and remove the call toBubbleSort to compare quicksort
and insertion sort. We’ll call the renamed programtimequicksort.cpp, and won’t show
a listing since it doesn’t change much from the original program.

O U T P U T

prompt> timequicksort
min and max size of vector: 6000 20000
increment in vector size between 1 and 10000: 2000

n insert quick

6000 1.792 0.03
8000 3.185 0.04
10000 5.177 0.05
12000 7.331 0.06
14000 10.075 0.07
16000 13.009 0.09
18000 16.604 0.101
20000 20.52 0.11

You can see from the sample runs that quicksort ismuchfaster than insertion sort. If
we extrapolate the data for insertion sort to a 300,000 element vector, we can approximate
the time as 4660 seconds. The ratio 300,000/10,000 = 30 shows that the execution time
jumps by a factor of 900 from 10,000 to 300,000 since insertion sort is anO(N2) sort.
Multiplying 5.177× 900= 4659.3, we determine that insertion sort takes a little more
than 1 hour and 17 minutes to sort a 300,000 element vector. Removing the call to
InsertSort so the program executes more quickly, we find thatQuickSort takes
2.16 seconds to sort a 300,000 element vector. That’s quick.

June 7, 1999 10:10 owltex Sheet number 60 Page number 564magentablack

564 Chapter 11 Sorting,Templates, and Generic Programming

11.5.2 Analysis of Quicksort

With the limited analysis tools we have, a formal analysis of quicksort that provides a
big-Oh expression of its running time is difficult. The choice of the pivot element in the
partition step plays a crucial role in how well the method works. Suppose, for example,
that in Figure 11.4 the first person chosen for the pivot is the 18-year-old person. All
the people younger than this person move to the person’s left; all the older people move
to the person’s right. In this case there are no younger people. This means that the two
subgroups that would be sorted recursively are not the same size. If a “bad” partition
continues to be chosen in the recursively sorted groups, quicksort degenerates into a
slower, quadratic sort. On the other hand, if the pivot is chosen so that each subgroup is
roughly the same size (i.e., half the size of the group being partitioned) then quicksort
works very quickly.7

Since the partition algorithm is linear, orO(N), for anN-element vector, thecom-
putational complexity, or running time, of quicksort depends on how many partitions
are needed. In the best case the pivot element divides the vector being sorted into two
equal parts. A more sophisticated analysis than we have the tools for shows that in the
average case the vector is still divided approximately in half. If you examine the code for
Quick below carefully, and assume that the value ofpiv is roughly in the middle, then
you can reason about the sizes of the vector segments sorted with each pair of recursive
calls.

void Quick(tvector<int>& a,int first,int last)
// postcondition: a[first] <= ... <= a[last]
{

int piv;
if (first < last)
{ piv = Pivot(a,first,last);

Quick(a,first,piv-1);
Quick(a,piv+1,last);

}
}

If Quick is first called with a 1000-element vector, a “good” pivot generates two recur-
sive calls on 500-element vectors.8 The number of elements being sorted is 2× 500=
1000. Each of the 500-element vectors generates two recursive calls on 250-element
vectors. Since there are two 500-element vectors, each generating two recursive calls,
the number of elements being sorted is 4× 250= 1000. This continues with four 250-
element vectors each generating two calls on 125-element vectors, but the total number
of elements being sorted is still 8× 125= 1000. Every group of recursive calls yields a
total of 1000 elements to sort, but the size of the vectors being sorted decreases. Even-
tually there will be 500 2-element vectors. Each of these will generate two recursive
calls, but these recursive calls are the base case of a one- or zero-element vector. With

7It’s not an accident that C.A.R. Hoare named the sort quicksort.
8Aperfect partition will yield one 499-element vector and one 500-element vector since the pivot element
doesn’t move. We’ll ignore this difference and treat each vector as a 500-element vector.

June 7, 1999 10:10 owltex Sheet number 61 Page number 565magentablack

11.5 Quicksort 565

each group of recursive calls, there are 1000 elements to sort. For anN -element vector
there will beN elements to partition and sort. Since we know that the partition code is
O(N), there isO(N) work done at each recursive stage.

How many recursive stages are there? As we saw in Section 8.3.7 the numberN can
be divided in half approximately log2 N times. Each group of recursive calls requires
O(N) work, and there are log2 N groups of calls. This makes quicksort anO(NlogN)

algorithm. We ignore the base 2 on the log becauselogbN/log2N is a constant, for
any value ofb. Since we ignore constants inO-notation, we ignore the base of the log.
However, in computer science nearly all uses of a logarithm function can be assumed to
use a base 2 log. Quicksort is anO(NlogN) algorithm in the average case, but not in the
worst case where we’ve noted that it’s anO(N2) algorithm. If we choose the first element
as the pivot, then a sorted vector generates the worst case. It’s possible to choose the
partition in such a way that the worst case becomes extremely unlikely, but there are other
sorts that are alwaysO(N logN) even in the worst case. Nevertheless, quicksort is not
hard to code, and its performance is extremely good in general. In the implementation
of QuickSort in sortall.cpp, the median (or middle) of the first, middle, and last
vector elements is chosen as the pivot. This makesQuickSort very fast except in
degenerate cases that are unlikely in practice, though still possible. Implementations of
two otherO(NlogN) sorts,MergeSort andHeapSort , are accessible fromsortall.h.
These sorts have goodO(NlogN) worst-case behavior, so if you must guarantee good
performance, use one of them. Merge sort is particularly simple to implement for lists
and we’ll explore this in an exercise.

11.15 Why are the average and worst cases of selection sort the same, whereas thesePause to Reflect

cases are different for insertion sort?

11.16 In the output ofcheckinsert.cpp, Program 11.12, the worst case for insertion sort,
sorting a vector that’s in reverse order, yields 2,673,287 comparisons for a vector
with 2,324 elements. However,(2323× 2324)/2 = 2, 699, 326. Explain this
discrepancy (hint: are all the words in the vector unique?)

11.17 The timings for insertion sort are better than for selection sort in Figure 11.3.
Selection sort will likely be better if strings are sorted rather than ints (int vec-
tors were used in Figure 11.3.) IfDirEntry objects are sorted the difference
will be more pronounced, selection sort timings will not change much between
ints, strings, andDirEntry objects, but insertion sort timings will get worse.
What properties of the sorts and the objects being sorted could account for these
observations?

11.18 If we sort a 100,000 element int vector using quicksort, where all the ints are in
the range[0 . . . 100], the sort will take a very long time. This is true because the
partition diagrammed in Figure 11.5 cannot result in two equal parts of the vectors;
the execution will be similar to what happens with quick sort when a bad pivot
is chosen. If the range of numbers is changed to[0 . . . 50, 000] the performance
gets better. Why?

June 7, 1999 10:10 owltex Sheet number 62 Page number 566magentablack

566 Chapter 11 Sorting,Templates, and Generic Programming

nonzeros examined ?????

nonZeroIndex k

Figure 11.6 Removing zeroes from an array/vector.

11.19 The implementation of quicksort insortall.cppuses a different stopping criterion
than the one described in Section 11.5. The code presented there made recursive
calls until the size of the vector being sorted was one or zero; that is, the base case
was determined byif (first < last) . Instead, the function below is used,
whereCUTOFFis 30.

void Quick(tvector<int>& a,int first,int last)
// postcondition: a[first] <= ... <= a[last]
{

if (last - first > CUTOFF)
{ int piv = Pivot(a,first,last);

Quick(a,first,piv-1);
Quick(a,piv+1,last);

}
else
{ Insert(a,first,last); // call insertion sort
}

}

This speeds up the execution of quicksort. Why?

11.20 Write a function that removes all the zeros from a vector of integers, leaving the
relative order of the nonzero elements unchanged, without using an extra vector.
The function should run in linear time, or have complexityO(N) for anN-element
vector.

void RemoveZeros(tvector<int> & list, int & numElts)
// postcondition: zeros removed from list,
// numElt s = # elts in list

If you’re having trouble, use the picture in Figure 11.6 as an invariant. The idea is
that the elements in the first part of the vector are nonzero elements. The elements
in the section “??? ” have yet to be examined (the other elements have been
examined and are either zeros or copies of elements moved into the first section.)
If the kth element is zero, it is left alone. If it is nonzero, it must be moved into
the first section.

June 7, 1999 10:10 owltex Sheet number 63 Page number 567magentablack

11.6 Chapter Review 567

11.21 After a vector of words read from a file is sorted, identical words are adjacent to
each other. Write a function to remove copies of identical words, leaving only
one occurrence of the words that occur more than once. The function should have
complexityO(N), whereN is the number of words in the original vector (stored
in the file). Don’t use two loops. Use one loop and think carefully about the right
invariant. Try to draw a picture similar to the one used in the previous exercise.

11.22 Binary search requires a sorted vector. The most efficient sorts areO(N logN),
binary search isO(logN), and sequential search isO(N). If you have to search
anN element vector that’s unsorted, when does it make sense to sort the vector
and use binary search rather than to use sequential search?

11.6 Chapter Review
We discussed sorting, generic programming, templated functions, function objects, and
algorithm analysis including O-notation. Two quadratic sorts: insertion sort and se-
lection sort, are fast enough to use for moderately sized data. For larger data sets an
O(N logN) sort like quicksort may be more appropriate. Functions that implement
sorts are often implemented as templated functions so they can be used with vectors of
any type, such as int, string, double,Date , and so on. A second template parameter can
be used to specify a sorting policy, (e.g., to sort in reverse order or to ignore the case
of words). This parameter is usually a function object: an object used like a function
in code. Using big-Oh expressions allows us to discuss algorithm efficiency without
referring to specific computers. O-notation also lets us hide some details by ignoring
low-order terms and constants so that 3N2, 4N2 +2N andN2 are allO(N2) algorithms.

Topics covered include the following:

Selection sort, anO(n2) sort that works fast on small-sized vectors (where small
is relative).

Insertion sort is anotherO(n2) sort that works well on nearly sorted data.

Bubble sort is anO(n2) sort that should rarely be used. Its performance is much
worse, in almost all situations, than that of selection sort or insertion sort.

Overloaded functions permit the same name to be used for different functions if
the parameter lists of the functions differ.

Templated functions are used for functions that represent a pattern, or template,
for constructing other functions. Templated functions are often used instead of
overloading to minimize code duplication.

Function objects encapsulate functions so that the functions can be passed as
policy arguments; that is, so that clients can specify how to compare elements
being sorted.

O-notation, or big-Oh, is used to analyze and compare different algorithms.O-
notation provides a convenient way of comparing algorithms, as opposed to im-
plementations of algorithms on particular computers.

The sum of the firstn numbers, 1+ 2 + · · · + n, is n(n + 1)/2.

June 7, 1999 10:10 owltex Sheet number 64 Page number 568magentablack

568 Chapter 11 Sorting,Templates, and Generic Programming

Quicksort is a very fast sort,O(n logn) in the average case. In the worst case,
quicksort isO(n2).

11.7 Exercises
11.1 Implementbogosortfrom Chapter 1 using a function that shuffles the elements of a

vector until they’re sorted. Test the function onn-element vectors (for smalln) and
graph the results showing average time to sort over several runs.

11.2 You may have seen the word game Jumble in your newspaper. In Jumble the letters
in a word are mixed up, and the reader must try to guess what the word is (there are
actually four words in a Jumble game, and a short phrase whose letters have to be
obtained from the four words after they are solved). For example,neicmais iceman,
andcignahis aching.
Jumbles are easy for computers to solve with access to a list of words. Two words are
anagrams of each other if they contain the same letters. For example,horseandshore
are anagrams.
Write a program that reads a file of words and finds all anagrams. You can modify this
program to facilitate Jumble-solving. Use the declaration below to store a “Jumble
word”.

struct Jumble
{

string word; // regular word, "horse"
string normal; // sorted/normalized, "ehors"
Jumble(const string& s); // constructor(s)

};

Each English word read from a file is stored along with a sorted version of the letters
in the word in aJumble struct. For example, storehorsetogether withehors. To
find the English word corresponding to a jumbled word likecignah , sort the letters
in the jumbled word yieldingacghin , then look up the sorted word by comparing it
to everyJumble word’s normal field. It’s easiest to overloadoperator == to
comparenormal fields, then you can write code like this:

string word;
cout << "enter word to de-jumble";
cin >> word;
Jumble jword(word);
// look up jword in a vector<Jumble>

A word with anagrams will have more than one Jumble solution. You should sort
a vector of words by using the sorted word as the key, then use binary search when
looking up the jumbled word. You can overloadoperator < for the structJumble ,
or pass a function object that compares thenormal field of twoJumble objects when
sorting.
You should write two programs, one to find all the anagrams in a file of words and one
to allow a user to interactively search for Jumble solutions.

11.3 Write a program based ondirvecfun.cpp, Program 11.10. ReplaceIterToVectorIf

June 7, 1999 10:10 owltex Sheet number 65 Page number 569magentablack

11.7 Exercises 569

with a function IterToListIf that returns aCList object rather than a vector
object.

11.4 Write a program based ondirvecfun.cpp, Program 11.10, specifically on the function
IterToVectorIf , but specialized to the classDirStream . The program should
allow the client to implement Predicate function objects and apply them to an entire
directory hierarchy, not just to a top-level directory (see the run of the Program 11.10).
The client should be able to specify a directory in aDirStream object and get back a
vector of every file that matches some Predicate function object’sSatisfies criteria
that’s contained in the specified directory or in any subdirectory reachable from the
specified directory.
Users of the program should have the option of printing the returned files sorted by
several criteria: date last modified, alphabetically, or size of file.

11.5 In Exercise 7 of Chapter 6 an algorithm was given for calculating the variance and
standard deviation of a set of numbers. Other statistical measures include themean
or average, themodeor most frequently occurring value, and themedian or middle
value.
Write a class or function that finds these three statistical values for atvector of
double values. The median can be calculated by sorting the values and finding the
middle value. If the number of values is even, the median value can be defined as
either the average of the two values in the middle or the smaller of the two. Sorting the
values can also help determine the mode, but you may decide to calculate the mode in
some other manner.

11.6 The bubble sort algorithm sorts the elements in a vector by makingN passes over a
vector ofN items. On each pass, adjacent elements are compared, and if the element
on the left (smaller index) is greater it is swapped with its neighbor. In this manner the
largest element “bubbles” to the end of the vector. On the next pass, adjacent elements
are compared again, but the pass stops one short of the end. On each pass, bubbling
stops one position earlier than the pass before until all the elements are sorted. The
following code implements this idea.

template <class Type>
void BubbleSort(tvector<Type> & a, int n)
// precondition : n = # of elements in a
// postcondition: a is sorted
// note: this is a dog of a sort
{

int j,k;
for(j=n-1 ; j > 0; j--)
{ // find largest element in 0..k, move to a[j]

for(k=0 ; k < j; k++)
{ if (a[k+1] < a[k])

{ Swap(a[k],a[k+1]);
}

}
}

}

June 7, 1999 10:10 owltex Sheet number 66 Page number 570magentablack

570 Chapter 11 Sorting,Templates, and Generic Programming

Bubble sort can be “improved” by stopping if no values are swapped on some pass,9

meaning that the elements are in order. Add abool flag variable to the preceding
code so that the loops stop when no bubbling is necessary. Then time this function and
compare it to the otherO(n2) sorts: selection sort and insertion sort.

11.7 Write a function that implements insertion sort onCList objects. First test the function
on lists of strings. When you’ve verified that it works, template the function and try it
with lists of other types, e.g.,int . Since aCList object cannot change, you’ll have
to create a new sorted list from the original. The general idea is to insert one element
at a time from the original list into a new list that’s kept sorted. The new list contains
those elements moved from the original list processed so far. It’s easiest to implement
the function recursively. You may also find it helpful to implement a helper function:

CList<string> addInOrder(const string& s,
CList<string>& list)

// pre: list is sorted
// post: return a new list, original with s added,
// and the new list is sorted

Instrument the sort in a test program that prints the results fromCList::ConsCalls .
Graph the number of calls as a function of the size of the list being sorted.

11.8 Merge sort is anotherO(N logN) sort (like quicksort), although unlike quicksort,
merge sort isO(N logN) in the worst case. The general algorithm for merge sort
consists of two steps to sort aCList list of N items.

Recursively sort the first half and the second half of the list. To do this you’ll
need to create two half-lists: one that’s a copy of the first half of aCList and
the other which is the second half of theCList . This means you’ll have to cons
up a list ofN/2 elements given anN element list. The otherN/2 element list
is just the second half of the original list.
Merge the two sorted halves together. The key idea is that merging two sorted
lists together, creating a sorted list, can be done efficiently inO(N) time if both
sorted lists haveO(N) elements. The two sorted lists are scanned from left to
right, and the smaller element is copied into the list that’s the merge of the two.

Write two functions that together implement merge sort forCList lists.

CList<string>
merge(const CList<string>& a, const CList<string>& b);
// pre: a and b are sorted
// post: return a new list that’s sorted,
// containing all elements from a and b

CList<string> mergesort(CList<string> list);
// post: return a sorted version of list using mergesort

9This improvement can make a difference for almost-sorted data, but it does not mitigate the generally
atrocious performance of this sort.

June 7, 1999 10:10 owltex Sheet number 21 Page number 571magentablack

12Dynamic Data, Lists, and
Class Templates

Something deeply hidden had to be behind things.
Albert Einstein

autobiographical handwritten note, The Einstein Letter That Started It All
NY Times Magazine, August 2, 1964, Ralph E. Lapp

Although tvector variables can be resized and increase (or decrease) in capacity,
excess storage is often allocated when vectors are used. Since vectors typically double
in size when grown, memory will be wasted unless all vector cells are used. For example,
consider a program that counts how many times each of the 3,124 unique words in the
file melville.txt (Bartleby, the Scrivener) occurs by storing the words in a vector
usingpush_back . The vector grows in size from 0 to 2, to 4, 8, 16, … 4,096 elements.
Since the automatic resizing operation throws out the old vector after copying elements
into a new vector, a total of 2+ 4+ · · · + 2048= 4, 094 elements are thrown out while
4096− 3124= 972 elements in the final vector are unused. Although thetvector
class takes the necessary step to reclaim the storage thrown away, some applications
require more precise memory allocation. We’ve also studied an example of a sparse
polynomial class (see Programs 10.18 and 10.19) that was more efficiently implemented
using aCList collection of terms than atvector collection. In this chapter we’ll
study a data structure called alinked list which provides an alternative to using vectors.
We’ll also study howpointers, which are used in implementing linked lists and trees,
expand the kinds of programs we can write. Pointers are essential in working with
large object-oriented programs in C++ and in exploiting inheritance which we’ll cover
in Chapter 13. However, once we use pointers, we have to be careful in designing classes
to avoid problems we haven’t faced before.

12.1 Pointers as Indirect References

12.1.1 What is a Pointer?

We’ll cover three basic uses of pointers in this chapter.

1. Pointers are indirect references that permit resources to be shared among different
objects. For example, several random walkers could share an object that records
all their positions, or shows the positions graphically. Without pointers it’s not
possible to share an object and to change which object is shared among all the
walkers.

2. Pointers let code allocate memorydynamically, on an as-needed basis during
program execution rather than when the program is compiled. The programmer

571

June 7, 1999 10:10 owltex Sheet number 22 Page number 572 magentablack

572 Chapter 12 Dynamic Data, Lists, and Class Templates

controls the lifetime of dynamically allocated memory unlike thestatically allo-
cated memory we’ve used so far. Here static is used as the opposite of dynamic, not
to mean allocating static variables as discussed in Section 10.4.3. The variables
we’ve used so far have a lifetime determined by the variable’s scope.1

3. Pointers are the basis for implementing linked data structures which are used in
many applications. We’ll see how linked lists are the basis for the implementation
of the classCList and how they are used to implement a set class similar to
StringSet .

At a basic level, a pointer stores anaddressin computer memory. More abstractly,
a pointer refers to something indirectly. If you look uppointer in the index of this book,
you’ll see a reference, or “pointer,” to this page. Forwarding addresses also serve as
indirect references. Suppose someone named Dave Reed lives at 104 Oak Street. If
Dave moves, he’ll leave a forwarding address with the post office. If he moves to 351
Coot Lane, then mail addressed to him at 104 Oak Street will be delivered, with some
delay, using the forwarding address. The forwarding address is a pointer, or indirect
reference, to Dave’s new address.

Program 12.1,pointerdemo.cpp, shows how pointers are defined anddereferenced.
A pointer variable is defined when an asterisk‘*’ appears between a type/class name
and a variable name. A pointer is an address, but it’s an address of a specific type of
object, such asDice , Date , int , or any other built-in or class type. Just asint
x; defines variable x with no value, a pointer has no value unless one is assigned.

Syntax: Pointers

Date * d; // points to garbage
Date * d = new Date();
Date * d2 = d;
Date next = *d + 1;
int month = d->Month();

We’ll allow pointers to point to (or
reference) objects in two ways: allo-
cating an object usingnew or shar-
ing objects between pointers. The
new operator returns a pointer to an
object created on theheap; we’ll say
more about this later. We can also
assign one pointer value to another
as shown withd andd2 . To access

the object pointed to by a pointerp, the expression*p is used, where* is thederefer-
enceoperator. To select a member function in an object pointed to byp we’ll use the
selectoroperator-> and writep->Function() . The selector operator is shorthand
for writing (*p).Function() , where dereferencingp yields an object on which the
methodFunction is invoked.

Program 12.1 pointerdemo.cpp

#include <iostream>
using namespace std;
#include "tvector.h"
#include "date.h"

1For example, the lifetime of a variable declared locally in a function is the duration of the function.
See Section 10.4 for details.

June 7, 1999 10:10 owltex Sheet number 23 Page number 573magentablack

12.1 Pointers as Indirect References 573

#include "dice.h"

// basic pointer demo

int main()
{

Date today;
Date ∗ nextDay = new Date(today+1);
Date ∗ prevDay = new Date(today −1);

cout << "today\t\t tomorrow\t\yesterday" << endl;
cout << today << "\t" << nextDay << "\t" << prevDay << endl;
cout << today << "\t" << ∗nextDay << "\t" << ∗prevDay << endl;

nextDay = prevDay;
cout << today << "\t" << ∗nextDay << "\t" << ∗prevDay << endl;
∗prevDay += 2;
cout << today << "\t" << ∗nextDay << "\t" << ∗prevDay << endl;
cout << today << "\t" << nextDay << "\t" << prevDay << endl;

cout << endl << "k\tsides\troll\tcount" << endl <<endl;
const int DICE_COUNT = 6;
tvector<Dice ∗> dice(DICE_COUNT);
int k;
for(k=0 ; k < DICE_COUNT; k++)
{ dice[k] = new Dice(2 ∗k+1);
}
for(k=0 ; k < DICE_COUNT; k++)
{ cout << k << "\t" << dice[k] −>NumSides() << "\t"

<< dice[k] −>Roll() << "\t";
cout << dice[k] −>NumRolls() << endl;

}
return 0;

} pointerdemo.cpp

Memory addresses in C++ are typically shown using the base 16, orhexadecimal,
number system, where the lettera corresponds to 10,b to 11, and so forth, withf
corresponding to 15. Don’t worry about trying to understand hexadecimal notation;
you can think of addresses as having values like “101 Main Street.” The important
relationship is that the value of a pointer is an address. In the output from Program 12.1,
the printed values of the pointersnextDay andprevDay are the addresses of what
each points to in memory. When the pointers are dereferenced, for example, in the
expression*nextDay , the object being pointed to, aDate , is printed.

I ran Program 12.1 on May 18, 1999. The first line of output shows thatnextDay
andprevDay point to different objects since the addresses printed are different. The
last line of Date output shows that these pointers refer to the same object since the
addresses are the same. Since the two pointers refer to the same object, when that object
is incremented by two in the statement*prevDay += 2 , what happens to the value
of *nextDay ? Since*nextDay is “the object pointed to bynextDay ” 2, and this

2I pronounce*nextDay as “star nextDay.” Sometimes I say “the object pointed to bynextDay ” to
be precise.

June 7, 1999 10:10 owltex Sheet number 24 Page number 574magentablack

574 Chapter 12 Dynamic Data, Lists, and Class Templates

object is the same object as*prevDay , the statement*prevDay += 2 affects what
nextDay points to as well.

O U T P U T

prompt> pointerdemo
today tomorrow yesterday
May 18 1999 0x00142a10 0x00142a20
May 18 1999 May 19 1999 May 17 1999
May 18 1999 May 17 1999 May 17 1999
May 18 1999 May 19 1999 May 19 1999
May 18 1999 0x00142a20 0x00142a20

k sides roll count

0 1 1 1
1 3 2 1
2 5 3 1
3 7 4 1
4 9 3 1
5 11 5 1

The second part of the program creates a vector ofDice pointers and rolls each of the
Dice objects once. Recall that it’s not possible to create atvector<Dice> variable
because there is no defaultDice constructor. However, a vector of Dicepointerscan
be created as shown in Figure 12.1.

When the vector is defined, the six pointers do not have specific values, they point
at “garbage.” The word “garbage” means the value of a pointer may be something like
6 or it may be something like 0xffde2000; we don’t know if the value is a valid mem-
ory location. We create a separateDice object on the heap for each vector pointer to

tvector<Dice *> dice(6); after calling new six times

Figure 12.1 A vector of pointers to Dice objects.

June 7, 1999 10:10 owltex Sheet number 25 Page number 575magentablack

12.1 Pointers as Indirect References 575

reference, eachDice object with a different number of sides as shown in the code and
the output. The selector operator-> accesses the member functions of each pointed-to
Dice object. I pronounced->NumRolls() as “d arrow NumRolls”, but sometimes
I say “the NumRolls method of the object pointed to by d.” The latter pronuncia-
tion makes the pointer/pointed-to difference very clear. A few programmers prefer to
write (*d).NumRolls() . The dot operator‘.’ has higher precedence than the
dereference operator‘*’ , so parentheses are needed in the expression(*d).Roll() .
Otherwise, the expression*d.Roll() results in an attempt to dereference theRoll()
function ofd. This would fail for two reasons:

d is not a class object, so a dot can’t follow it.

Roll() is not a pointer, so it can’t be dereferenced (assuming thatd.Roll()
made syntactic sense).

Most programmers prefer-> , the selector operator which is typed using the minus
sign followed by the greater-than sign. It’s easier to read and typep->foo() than
(*p).foo() .

12.1.2 Heap Objects

The variablestoday , nextDay , andprevDay are defined in the functionmain of
Program 12.1. The memory for these variables is associated with the function. In
general, variables defined in a function are constructed when the function is called and
cease to exist when the function exits. These variables are calledautomatic variables
since the memory for them is automatically allocated when the function is called and
de-allocated when the function exits. Sometimes the termstack variable is used and
memory is said to be “allocated on the runtime stack” for variables defined in a function.

In contrast, memory allocated by callingnew is obtained dynamically when the
new statement executes, not automatically. The memory initialized bynew is allo-
cated from theheap, sometimes called thefreestore. Objects constructed on the heap
last until the program specifically de-allocates them (usingdelete, which we’ll dis-
cuss in Section 12.1.7) unlike automatic variables which are de-allocated automatically
when they go out of scope. If the class/type allocated bynew uses a constructor, then

Syntax:The new operator

Thin g * t = new Thing;
Thin g * t = new Thing();
Thin g * t = new Thing(parameters);

arguments must be provided if the
constructor requires them as shown
in the vector ofDice pointers of
Program 12.1. A constructor with
no parameters does not require paren-
theses so thatDate * d = new
Date; creates an object represent-

ing today that’s pointed to byd. Parentheses may be used, the statementDate * d
= new Date(); creates the same kind object. I’ll use parentheses even when no
parameters are passed to the constructor.

In this book I’ll use pointers only to point to objects on the heap. In C++ it’s possible
for objects to point to memory on the stack as well. Invariably this leads to problems

June 7, 1999 10:10 owltex Sheet number 26 Page number 576magentablack

576 Chapter 12 Dynamic Data, Lists, and Class Templates

because memory on the stack “goes away” when a scope ends. A pointer to stack memory
that is out-of-scope will eventually cause problems if the pointer is dereferenced. To
help you read programs written by others, I’ll show how theaddress-ofoperator& is
used to get the address of stack variables, but it’s a good idea to stay away from the
address-of operator until you’re a reasonably accomplished programmer.

int main()
{

Date * d = new Date(); // d points to today
Date * d2 = new Date(*d+1); // d2 points to tomorrow
Date * d3; // d3 points to garbage
if (*d < *d2)
{ Date yday(*d-1); // yesterday, all my troubles ...

d3 = &yday; // d3 points to yesterday
cout << "yesterday " << *d3 << endl;

}
cout << *d3 < < " " << *d << " " << *d2 << endl;
return 0;

}

If I run this program on May 15, 1999, the output will be unpredictable:

O U T P U T

yesterday May 14 1999
????? May 15 1999 May 16 1999

The code is problematic:d3 points to an object that doesn’t exist. The address-of
operator& applied toyday returns the address ofyday . This works as intended in the
body of theif statement, but the variableyday doesn’t exist after the body of theif
statement executes. This means thatd3 points to a nonexistent object, what’s printed
depends on a number of unknown factors including how the compiler works and how
the operating system behaves. The program may produce what’s expected the first time
it runs, but not the second.

ProgramTip 12.1: Memory referenced by a pointer should be allocated
from the heap. Using the address-of operator to obtain the address of memory allocated
on the stack will eventually lead to problems if that memory goes out of scope. Tracking
down this kind of error is difficult because the error often manifests itself differently
on different runs of the program and sometimes occurs in code unrelated to where the
address-of operator is used.

June 7, 1999 10:10 owltex Sheet number 27 Page number 577magentablack

12.1 Pointers as Indirect References 577

12.1 Write code that defines twoDice pointers, allocates one 8-sidedDice objectPause to Reflect

using new that both point to, and then rolls theDice twice, once with each
pointer.

12.2 Write a code fragment that defines a vectordicevec of 30 pointers toDice ob-
jects, initializesdicevec[k] to point to a(k+1)-sided die (so thatdicevec[0]
is a one-sided die anddicevec[29] is a 30-sided die), and then rolls the dice
object pointed to bydicevec[k] k times.

12.3 Write a code fragment that creates a vectordatevec of pointers toDate objects.
There should be as many pointers as there are days in the month the code is
executed, (e.g., if run in April there should be 30 pointers, if run in May there
should be 31 pointers). Initializedatevec[k] to point to an object representing
the (k + 1)st day of the month, sodatevec[0] is the first day of the month.
Print each day by looping over all the vector elements.

12.4 Write a function that returns a pointer to aDate object that represents exactly
one year from the date the function is executed.

12.5 Consider the following functionMakeDie that returns a pointer to a dice object.

Dice * MakeDie(int n)
// post: return pointer to n-sided Dice object
{

Dice nSided(n);
return &nSided;

}

Explain why this function can cause problems in code. In particular, the code
below may print 6, 4, or some unknown value.

Dice * cube = MakeDie(6);
Dice * tetra = MakeDie(4);
cout << cube->NumSides() << endl;

When compiled under Linux/g++, the code generates a warning “address of local
variable ’nSided’ returned”.

12.6 In the worst case, selection sort makesO(N2) comparisons andO(N) swaps and
assignments to sort anN -element vector of strings. Insertion sort makesO(N2)

comparisons andO(N2) object assignments. If vectors of pointers to strings are
sorted rather than vectors of strings, insertion sort may speed up, while selection
sort slows down. Explain these observations, think about how comparisons are
made (how does the code change) and how objects are swapped/assigned. The
change in execution time is less noticeable ifint vectors are sorted (compared
to int * vectors) and more noticeable if vectors of largeBigInt objects are
sorted (compared toBigInt * vectors).

June 7, 1999 10:10 owltex Sheet number 28 Page number 578 magentablack

578 Chapter 12 Dynamic Data, Lists, and Class Templates

12.7 Suppose that the following definition is made:

tvector<tvector<int> *> v(10);

so thatv[0] is a pointer to a vector of integers. The following code fragment
makesv[0] point to a vector of 100 integers, all equal to 2.

v[0] = new tvector<int>(100,2);

Sincev[0] points to a vector of 100 integers, how is an element of this 100-integer
vector indexed? Write a loop to print all elements of the 100-element vector.

12.8 What do you think happens if thenew operator is called, but there is no memory
on the heap? How could this happen in a program?

12.9 If a vector of pointers to strings is sorted usingoperator < to compare the
pointers, the output will be based on the addresses of the strings, (i.e.,a[0]
will be the string with the lowest numerical address in memory). Complete the
function objectStrPtrCompare to sortvector<string *> a so that the
strings pointed to will be in alphabetical order.

struct StrPtrCompare
{

int compare(string * lhs, string * rhs)
{

// fill in code here
}

};

12.1.3 Sharing Objects

In this section we’ll see how pointers make it possible to share an object. In all the classes
we’ve used so far, the instance variables in one object are independent from the instance
variables in any another object. Suppose that we want to create several random walk
objects (see Programs 7.10 and 7.12), but keep in one vector a record of the positions
visited by all the walkers. We’d like to share the vector among all the random walkers,
but without pointers we cannot do this. We’ll illustrate the problem with a more simple
toy example before developing a solution for the posed problem with random walkers.

Program 12.2 shows what happens when twoKid objects try to share aToy . The
situation we’d like to have is illustrated in Figure 12.2. The figure and the program
output show what actually happens.

Program 12.2 sharetoy.cpp

#include <iostream>
#include <string>

June 7, 1999 10:10 owltex Sheet number 29 Page number 579 magentablack

12.1 Pointers as Indirect References 579

choo-choo

katieerich

choo-choochoo-choo

erich katie

choo-choo

Figure 12.2 Sharing without pointers. On the left what we want: objects erich and katie to share a toy. On
the right what we have: three copies of a toy, no sharing.

using namespace std;

// references and pointers for sharing, a prelude

class Toy // kids play with toys
{

public:
Toy(const string& name);
void Play(); // prints a message
void BecomeBroken(); // the toy becomes broken

private:
string myName;
bool myIsWorking;

};

class Kid
{

public:
Kid(const string& name, Toy& toy);
void Play(); // plays with own toy

private:
string myName;
Toy myToy;

};

Toy::Toy(const string& name)
: myName(name), myIsWorking(true)

{ }

void Toy::Play()
// post: toy is played with, message printed
{

if (myIsWorking)
{ cout << "this " << myName << " is so fun :-)" << endl;
}

June 7, 1999 10:10 owltex Sheet number 30 Page number 580magentablack

580 Chapter 12 Dynamic Data, Lists, and Class Templates

else

{ cout << "this " << myName << " is broken :-(" << endl;

}

}

void Toy::BecomeBroken()

// post: toy is broken

{

myIsWorking = false;

cout << endl << "oops, this " << myName << " just broke" << endl << endl;

}

Kid::Kid(const string& name,Toy& toy)

: myName(name), myToy(toy)

{ }

void Kid::Play()

// post: kid plays and talks about it

{

cout << "My name is " << myName << ", ";

myToy.Play();

}

int main()

{

Toy plaything("choo-choo train");

Kid erich("erich", plaything);

Kid katie("katie", plaything);

erich.Play(); katie.Play();

plaything.BecomeBroken(); // the toy is now broken

erich.Play(); katie.Play();

return 0;

} sharetoy.cpp

Although theToy objectplaything is broken inmain , the kids continue to enjoy
a working toy. The problem is that the instance variablemyToy in each kid is acopy
of the toy defined inmain . When we assign one variable to another, we don’t expect
the variables to share anything. In other words, we expect the output of the following
statements to be “hello world,” not “hello hello.”

strin g a = "world";
strin g b = a;
a = "hello ";
cout << a << b << endl;

June 7, 1999 10:10 owltex Sheet number 31 Page number 581magentablack

12.1 Pointers as Indirect References 581

O U T P U T

prompt> sharetoy
My name is erich, this choo-choo train is so fun :-)
My name is katie, this choo-choo train is so fun :-)

oops, this choo-choo train just broke

My name is erich, this choo-choo train is so fun :-)
My name is katie, this choo-choo train is so fun :-)

If we want the instance variablemyToy to reference memory (a toy) allocated else-
where, such as inmain , we have two choices: use a reference variable or use a pointer.

12.1.4 ReferenceVariables

We can achieve the desired behavior by adding one character to the code in Program 12.2.
If we change the declaration ofToy myToy to Toy& myToy the output changes as
follows.

O U T P U T

prompt> sharetoy
My name is erich, this choo-choo train is so fun :-)
My name is katie, this choo-choo train is so fun :-)

oops, this choo-choo train just broke

My name is erich, this choo-choo train is broken :-(
My name is katie, this choo-choo train is broken :-(

Just as a reference parameter is an alias for memory allocated elsewhere, a reference
variable refers to memory allocated elsewhere. In Program 12.2, makingmyToy a
reference variable avoids creating a copy whenmyToy is initialized in theKid initializer
list. Instance variables that are referencesmustbe constructed and initialized using an
initializer list, not in the body of the class constructor. Once a reference variable is
constructed, it cannot be re-assigned to. In Program 12.2,sharetoy.cpp, this means that
a Kid object cannot change toys; it’s impossible to add new member functions that
change the toy a kid uses for play.

June 7, 1999 10:10 owltex Sheet number 32 Page number 582magentablack

582 Chapter 12 Dynamic Data, Lists, and Class Templates

12.1.5 Pointers for Sharing

In some situations we’d like to change the object being shared, that is, change the toy
shared in Program 12.2. Furthermore, it’s not possible to have vectors of references in
C++ so we must turn to pointers. Using pointers for sharing allows a shared object to be
changed and makes it possible to use a vector to share many objects.

We’ll develop a program for several walkers to record their movements with a
WalkRecorder object shared among the walkers. We’ll keep the example simple
to illustrate the concept and to highlight a problem that arises frequently when several
interdependent classes are used in the same program. The problem arises when classA
uses classB andvice versa. This interdependency can create compilation problems if
you don’t design the class interfaces properly and write the header files with care. We’ll
discuss the design of the walker program, then the problems with interdependencies, then
we’ll show the program implementation that addresses the interdependency problems.

We’ll use two classes in the program:

The classWalker simulates a one-dimensional walker recording the walk with a
WalkRecorder object.

The classWalkRecorder records a walker’s position. A walker is passed to the
recorder and the recorder then queries the walker to get its position to record it.

To record a walk, each walker must know about aWalkRecorder object. We’ll
design theWalker class so that each walker object maintains a pointer to the recorder
that’s recording the walker’s movements. It will be possible to share a recorder among
several walkers or to give each walker a separate recorder object. In designing the classes
and programs we must consider at least three questions.

A WalkRecorder records a walker. Who is responsible for passing the walker?
How is the walker passed to theWalkRecorder ?

Where areWalker andWalkRecorder objects created? Inmain ? Does a
walker create its own recorder?

How is the data recorded by aWalkRecorder displayed?

To keep the program simple we’ll create all the objects inmain . In a more complex
program you might create a class in charge of object creation. We’ll create a recorder,
then pass the recorder to eachWalker object when theWalker is created, but we’ll
also design a method for changing a walker’s recorder.

Since a walker knows its recorder, we’d like the walker to ask the recorder to make a
record of the walker itself. Each walker can pass itself to its recorder using the reserved
word this which every object has as a pointer to itself. A variable namedfoo in main
might be known as the parameterfirstFoo in a function to which it’s passed as an
argument. In general, objects have different names in different places in a program.
However, in C++ every object uses the identifierthis as its own name. Becausethis
is a pointer,*this is the way an object identifies itself since “star this” is also “the
object pointed to by this” which is itself!

June 7, 1999 10:10 owltex Sheet number 33 Page number 583 magentablack

12.1 Pointers as Indirect References 583

Walker(rec)

Walk(steps)

new

rec rec2

main

T
i
m
e

Print(cout)

ChangeRecorder(rec2)

Position

Record(*this)

Walker WalkRecorder

Figure 12.3 Interaction diagram for the classes Walker and WalkRecorder showing a
recorder being shared and changed.

Finally, the code inmain will ask a recorder to print the data the recorder has kept
track of. Again, in a more complex program we might provide member functions for
retrieving the data, but for now we’ll be content with printing the recorded data.

A first draft of the two classes is shown in Program 12.3. The interactions between
these classes and themain of Program 12.4,frogwalk3.cppare shown in theinteraction
diagram in Figure 12.3. As a program executes, time increases from the top of the
diagram to the bottom. Arrows indicate when one class (or program segment) calls
another, and the method used to make the call. The dashed line at the top of the diagram
indicates an indirect call of a constructor vianew.

12.1.6 Interdependencies,Class Declarations,and Header Files

We’re ready to start implementing the classes. Although the final programfrogwalk3.cpp
shows everything in one file, we’ll discuss the class declarations and definitions assuming
that separate .h and .cpp files are used. A high-level first pass yieldsWalker on the
right andWalkRecorder on the left.

Program 12.3 walkdesign.cpp

#infdef _WALKRECORDER_H #ifndef _WALKER_H
#define _WALKRECORDER_H #define _WALKER_H

#include "walker.h" #include "walkrecorder.h"

June 7, 1999 10:10 owltex Sheet number 34 Page number 584magentablack

584 Chapter 12 Dynamic Data, Lists, and Class Templates

class WalkRecorder class Walker
{ {

public: public:
WalkRecorder(); Walker(WalkRecorder ∗ wrec);
void Record(const Walker& walker); void Walk(int steps);
void Print(ostream& out) const; int Position() const;

private: void ChangeRecorder(WalkRecorder ∗ wrec);
tmatrix<int> myRecord private:

}; int myPosition;
WalkRecorder ∗ myRecorder;

}; walkdesign.cpp

This design won’t compile when we create the main program that includes both
header files. Remember that the preprocessor (see Section 7.2.3) literally cuts and pastes
a .h file when a#include is processed, and that include files that are included by an
include file are also cut-and-pasted (and include files that they include and so on.) This
is why the#ifndef _CLASSNAME_H appears at the top of each include file. Without
this, consider the following main program that includes both classes.

#include "walker.h"
#include "walkrecorder.h"
int main()
{

// ...
return 0;

}

Since walker includes walkrecorder which includes walker which includes … there
would be an infinite chain of cut-and-paste includes without the protecting#ifndef
statements. These protecting statements do stop an infinite chain of includes, but there’s
a different problem.

The line #include"walker.h" appears inwalkrecorder.h(as simulated and
shown inwalkdesign.cpp, Program 12.3) because the classWalker is used as a param-
eter inWalkRecorder::Record . Similarly the classWalkRecorder is a param-
eter in twoWalker methods. However, if the main program above is used, where the
first include is#include "walker.h" , then the preprocessor creates the following
compilation unit.

class WalkRecorder
{

...
};
class Walker
{

...
};
// more code here

The classes appear in the order shown, withWalkRecorder first, because the prepro-
cessor first processeswalker.h. The first line in this header file is another#include so

June 7, 1999 10:10 owltex Sheet number 35 Page number 585magentablack

12.1 Pointers as Indirect References 585

this include forwalkrecorder.his processed before the declaration of the classWalker
is read by the preprocessor. The include file inwalkrecorder.hisn’t a problem, it’s not
preprocessed because of the#ifndef protection, but the classWalkRecorder does
appear first when the compiler is called after the preprocessor finishes.

The compiler stops at the declaration of the methodWalkRecorder::Record
because the compiler hasn’t yet seen the classWalker , so it doesn’t know anything
about the parameter! How can this problem be fixed? This problem is fixable, but only
because the classes make reference to each other in the class declarations using only
references or pointers to the other class. The compiler doesn’t need to know the names
of Walker member functions or how big aWalker object is to compile the header file
for WalkRecorder . Similarly, the header file forWalker can be compiled without
knowing the details ofWalkRecorder . Suppose, however, that the instance variable
myRecorder isn’t a pointer, but is declared as follows.

WalkRecorder myRecorder;

With this declaration we won’t be able to share recorders since aWalker object’s
recorder will be a copy (see Program 12.2). In addition, the compiler must know how
much memory aWalkRecorder requires (the sum of the sizes of its instance variables)
to compile this declaration. Because all pointers and references are basically aliases or
indirect references to memory allocated elsewhere, all pointers and references use the
same amount of memory, regardless of the type of object being pointed to or referenced. If
the class declaration in a header file uses another class with only pointers or references,
it’s possible to create aforward reference to the class being used. Forwalker.h the
forward reference ofWalkRecorder looks like this.

class WalkRecorder;
class Walker
{

public:
Walker(WalkRecorder* wrec);

void Walk(int steps);
int Position() const;
void ChangeRecorder(WalkRecorder* wrec);

private:
int myPosition;
WalkRecorder * myRecorder;

};

Now the preprocessor won’t have any problems. The compiler parses the forward ref-
erence ofWalkRecorder as a class whose declaration will be supplied later. Later is
good enough since the compiler doesn’t need to know the names ofWalkRecorder
methods nor how big aWalkRecorder object is to compile theWalker declaration.

June 7, 1999 10:10 owltex Sheet number 36 Page number 586 magentablack

586 Chapter 12 Dynamic Data, Lists, and Class Templates

In the implementation file,walker.cpp, you’ll need to write

#include "walkrecorder.h"

since the implementation ofWalker::Walk callsmyRecorder->Record as shown
in the interaction diagram Figure 12.3. This isn’t a problem though because the header
files don’t include each other, they’re simply included in a .cpp file as needed. The com-
plete Program 12.4 shows forward declarations, class declarations and implementations.
A run follows the program listing.

ProgramTip 12.2: Use forward references rather than #includes when-
ever possible in a header file. If a classFoo uses a classThing andThing objects
appear only as pointers or references in parameters and instance variables, then the header
file foo.h should useclass Thing; as a forward reference rather than#include
"thing.h" .

Program 12.4 frogwalk3.cpp

#include <iostream>
#include <fstream>
#include <string>
using namespace std;

#include "prompt.h"
#include "tvector.h"
#include "randgen.h"
#include "dice.h"

class Walker;
class WalkRecorder
{

public:
WalkRecorder();
void Record(const Walker& walker);
void Print(ostream& out) const;

private:
static int MAX;
tvector<int> myRecord;
int myBeyondCount;

};

class Walker
{

public:
Walker(WalkRecorder ∗ wrec);

void Walk(int steps);

June 7, 1999 10:10 owltex Sheet number 37 Page number 587 magentablack

12.1 Pointers as Indirect References 587

int Position() const;
void ChangeRecorder(WalkRecorder ∗ wrec);

private:
int myPosition;
WalkRecorder ∗ myRecorder;

};

int WalkRecorder::MAX = 100;

WalkRecorder::WalkRecorder()
: myRecord(2 ∗MAX+1,0), myBeyondCount(0)

{
// record -MAX..MAX, all zero

}

void WalkRecorder::Record(const Walker& walker)
{

int pos = walker.Position();
if (fabs(pos) > MAX)
{ myBeyondCount++;
}
else
{ myRecord[pos+MAX]++;
}

}

void WalkRecorder::Print(ostream& out) const
{

int lowIndex= −1,highIndex=0,k;
for(k=0 ; k < 2 ∗MAX+1; k++)
{ if (myRecord[k] != 0)

{ if (lowIndex == −1) lowIndex = k;
highIndex = k;

}
}
if (lowIndex == −1)
{ out << " no steps taken" << endl;

return;
}
for(k=lowIndex; k <= highIndex; k++)
{ cout << k −MAX << "\t" << myRecord[k] << endl;
}
cout << endl << "beyond boundarie s = " << myBeyondCount << endl;

}

Walker::Walker(WalkRecorder ∗ wrec)
: myPosition(0), myRecorder(wrec)

{

}

void Walker::Walk(int steps)
{

Dice d(2);

June 7, 1999 10:10 owltex Sheet number 38 Page number 588magentablack

588 Chapter 12 Dynamic Data, Lists, and Class Templates

int k;

for(k=0 ; k < steps; k++)

{ if (d.Roll() == 1)

{ myPosition++;

}

else

{ myPosition −−;

}

myRecorder −>Record(∗this);

}

}

int Walker::Position() const

{

return myPosition;

}

void Walker::ChangeRecorder(WalkRecorder ∗ wrec)

{

myRecorder = wrec;

}

int main()

{

WalkRecorder ∗ rec = new WalkRecorder();

WalkRecorder ∗ rec2 = new WalkRecorder();

Walker w1(rec);

Walker w2(rec);

int steps = PromptRange("how many steps ",1,10000);

w1.Walk(steps);

w2.Walk(steps);

rec −>Print(cout);

cout << endl << "another walk" << endl << endl;

w1.ChangeRecorder(rec2);

w2.ChangeRecorder(rec2);

w1.Walk(steps);

w2.Walk(steps);

rec2 −>Print(cout);

return 0;

} frogwalk3.cpp

June 7, 1999 10:10 owltex Sheet number 39 Page number 589magentablack

12.1 Pointers as Indirect References 589

O U T P U T

prompt> frogwalk3

how many steps between 1 and 10000: 20
-6 1
-5 2
-4 3
-3 5
-2 7
-1 7
0 5
1 6
2 4

beyond boundaries = 0

another walk

-1 1
0 2
1 5
2 7
3 6
4 6
5 5
6 4
7 3
8 1

beyond boundaries = 0

12.1.7 Delete and Destructors

Whenever a program allocates memory from the freestore (heap) usingnew, the memory
should eventually be returned to the freestore usingdeletewhen the memory is no longer
needed. For example, at the end ofmain in Program 12.4 we could add the two lines
shown here.

int main()
{

WalkRecorder * rec = new WalkRecorder();
WalkRecorder * rec2 = new WalkRecorder();

June 7, 1999 10:10 owltex Sheet number 40 Page number 590magentablack

590 Chapter 12 Dynamic Data, Lists, and Class Templates

...
delete rec;
delete rec2;
return 0;

}

Returning theWalkRecorder objects referenced by pointersrec and rec2 to the
heap isn’t really necessary here since all memory used by a program is reclaimed by the
system when the program terminates. Thedelete operator returns memory allocated
by new; it takes a pointer as an argument. Although the argument to delete is a pointer,

Syntax:The delete operator

delete ptr;

an object is returned to the heap, not the
pointer used in the statement whendelete
is called. The pointer must point to an object
allocated bynew or an error will occur. If

you delete a stack object, for example, the system may think the object came from the
heap and will be reused in a subsequent call ofnew.

This almost always causes trouble in a program. Similarly, you should not delete an
object twice since the system’s bookkeeping may think the object is free twice, but there
is only one object, not two.

Date * dptr = new Date(); // today
delete dptr; // ok, reclaim memory
delete dptr; // trouble, reclaimed twice

Deleting an objectdoes notchange the value of the pointer to the object, but the pointer
is now referencing memory that is no longer valid having been returned to the freestore.
It is also an error to dereference a pointer immediately after the object it points to has
been deleted:

Date * dptr = new Date(); // today
delete dptr; // ok, reclaim memory
Date tomorrow(*dptr + 1); // trouble, *dptr doesn’t exist

The code above may seem to work when you run it, but this style of programming will
eventually lead to an error that’s very difficult to track down. Some programmers assign
the special pointer value zero to a pointer after deleting the object it points to.

Date * dptr = new Date(); // today
delete dptr; // ok, reclaim memory
dptr = 0; // errors easier to find
delete dptr; // ok, no memory
Date tomorrow(*dptr + 1); // immediate error caused

A pointer with the value zero is called anull pointer . In C++ you can writep = NULL
wherep is a pointer, but the identifierNULL is not a reserved word, it’s a preprocessor
macro defined in the standard header file<cstddef> which is almost always included
by some other standard header file. It’s better to use zero since no header files are
needed. Dereferencing a null pointer causes an immediate error, a segmentation fault on

June 7, 1999 10:10 owltex Sheet number 41 Page number 591magentablack

12.1 Pointers as Indirect References 591

Unix/Linux systems, a general protection fault or unhandled exception on other systems.
Immediate errors are good because you can almost always find the cause of the error
using a symbolic debugger. It is not an error to delete a null pointer, so assigning zero
to a pointer after deleting the object it points to is a reasonable defensive programming
strategy.

In general you should try to return memory no longer needed to the heap or it’s
possible your program will eventually use up all the memory available. Consider the
following code.

Date today;
Date * dptr;
while (true)
{

int month = PromptString("enter month (0 to exit)", 0,12);
if (month == 0) break;
dptr = new Date(1,month,today.Year());
MakeCalendar(*dptr);
// should call delete dptr here, but forgot

}

Each time the loop iterates aDate object is allocated from the heap. The next time the
loop iterates, the previousDate object is lost; there is no pointer referencing it so it
has become inaccessible. If the loop executes 10,000 times then 10,000Date objects
will have been allocated and remain unusable. In some languages, like Java, memory
that is no longer accessible is automatically reclaimed using a technique calledgarbage
collection. In standard C++ environments there is no automatic garbage collection,
programmers are responsible for it.

Program Tip 12.3: Deleting objects is a good idea, but deleting improp-
erly will cause problems in your program. You can’t, for example, delete an
object twice without eventually causing problems. Nor can you delete an object that
wasn’t allocated usingnew without causing problems. When you’re developing a pro-
gram, adddelete code only when you know your program is working correctly so that
any error due to improper deletes can be found without looking at other code.

The Destructor Member Function. Just as a constructor is called automatically when an
object is defined; a special member function called thedestructor is called automatically
when an object goes out of scope.3 When an class object allocates memory, the object
should be responsible for deleting the memory. If the memory is referenced by an
instance variable it cannot be deleted until the object is no longer needed. The destructor
will be called either when the program deletes the object usingdelete or when the
object goes out of scope and isn’t accessible. For any class namedThing , a member

3You can think ofgoing out of scopeas becoming undefined to contrast with definition and the constructor.

June 7, 1999 10:10 owltex Sheet number 42 Page number 592magentablack

592 Chapter 12 Dynamic Data, Lists, and Class Templates

function named̃ Thing is the classdestructor. We’ll discuss destructors in more
detail in Section 12.10

12.10 Assume that a reference instance variableToy& myToy is used in the classKidPause to Reflect

as described in Section 12.1.4. The functionMakeKid returns a pointer to aKid
object as follows.

Kid * MakeKid()
{

Toy block("wooden block");
Kid * kptr = new Kid("alex",block);
return kptr;

}

Explain why the object pointed to and returned byMakeKid will cause problems.

12.11 If the instance variablemyToy is changed to a pointer, how do the member
functions of the classKid change?

class Kid
{

...
private:

Toy * myToy;
};

12.12 Write declarations and implementations of all methods of a modifiedKid class.
EachKid creates his/her own toy allocated from the heap and stores a pointer to
the toy. Three methods are added:GetToy , ShareFrom , andUnshare . The
functions are used as follows.

Kid robert("robert"); // creates his own toy
Kid laura("laura"); // creates her own toy
laura.Play(); // play with own toy
robert.Play();

robert.ShareFrom(laura); // robert shares laura’s toy
robert.Play(); // with laura’s toy
robert.Unshare();
robert.Play(); // with robert’s original toy

The functionGetToy is called in the implementation ofShareFrom . Can
GetToy be private?

June 7, 1999 10:10 owltex Sheet number 43 Page number 593magentablack

12.1 Pointers as Indirect References 593

12.13 Using forward references (see Program Tip 12.2) rather than#include state-
ments can save on preprocessor time and make it less necessary to recompile a
client program when classes the client uses are changed. Consider the program
fragment in the previous exercise that shows twoKid objects playing. Explain
why it is necessary to have#include "kid.h" in the program above, but it is
not necessary to have#include"toy.h" . Explain whyclass Toy can be a
forward reference inkid.hbut why#include "toy.h" is needed inkid.cpp.
Finally, explain why the client code above doesnot need to be compiled if the
implementation ofToy changes, but whykid.cppwill need to be recompiled, and
why the program must be relinked.

12.14 Create an interaction diagram for the code fragment above in which twoKid
objects play and share a toy. Showmain , Kid , andToy . Include details about
when/where objects are created and when/where all member functions are called.

12.15 Design a classToyChest that holds several pointers to toy objects.Kid s should
be able to get toys from the chest and put toys back in the chest. Consider at least
two ways to have toys added to the chest: when constructed the chest creates its
own toys; and aKid can add a toy to a chest that originated in a different toy
chest. You’ll need to think carefully about the design so that a toy can be shared
among kids playing with it, but reside in only one toy chest.

12.16 If a Kid allocates his/her own toy from the heap, who is responsible for deleting
the toy?

12.17 In frogwalk3.cpp, Program 12.4, a new recorder is attached to theWalker objects
in main . Write a new member functionWalkRecorder::Clear() that clears
a recorder’s memory. Show how to use this new function to achieve the same effect
of frogwalk3.cpp, but using only one recorder that’s cleared rather than using two
recorders.

12.18 When should theWalkRecorder objects infrogwalk3.cppbe deleted?

12.19 How can the classWalkRecorder be changed to track every position, not just
those between-MAX andMAX?

12.20 What is the purpose of the loop inWalkRecorder::Print ? Why is the value
of lowIndex compared to−1?

12.21 Write code to create a vector of 100 pointers toDice objects, makinga[k]
point to a(2k + 1)-sidedDice . Roll eachDice 1000 times, then delete all the
objects.

June 7, 1999 10:10 owltex Sheet number 44 Page number 594magentablack

594 Chapter 12 Dynamic Data, Lists, and Class Templates

Alan Perlis (1922–1990)

In 1966 Alan Perlis became the first recipient of the Turing award. The award
was given for his work in programming language design. In 1965 he estab-

lished the first gradu-
ate program in com-
puter science at what
was then the Carnegie
Institute of Technol-
ogy and is now
Carnegie-Mellon Uni-
versity.

In [AS96], Perlis
is quoted with some
important advice to
novices and experts in
computer science:“I
think that it’s extraor-
dinarily important

that we in computer science keep fun in computing. … I hope the field of computer
science never loses its sense of fun. … What’s in your hands, I think and hope, is
intelligence: the ability to see the machine as more than when you were first led
up to it, that you can make it more.”

In his Turing award address, Perlis looked ahead to parallel and distributed com-
putation, a field that has been growing steadily and receiving increased attention in
recent years. He also talked of the intellectual foundation of programming, from
Turing’s work to the languages LISP and ALGOL, which have had a profound
impact on programming language design.

In [AS96] he writes about programming:

To appreciate programming as an intellectual activity in its own right you
must turn to computer programming; you must read and write computer
programs—many of them. It doesn’t matter much what the programs are
about or what applications they serve. What does matter is how well they
perform and how smoothly they fit with other programs in the creation of
still greater programs.

A list of Perlis epigrams has been gathered; these include:

Most people find the concept of programming obvious, but the doing
impossible.

Once you understand how to write a program, get someone else to write it.

The best book on programming for the layman isAlice in Wonderland; but
that’s because it’s the best book on anything for the layman.

For more information see [Per87]

June 7, 1999 10:10 owltex Sheet number 45 Page number 595magentablack

12.2 Linked Lists 595

"I" "learn" "to" "code"

"I" "learn" "to" "code"

Node * list;

tvector<string> vlist(4);

Figure 12.4 Comparing vectors and linked lists.

12.2 Linked Lists

A linked list stores a sequence of items as does a vector. However, vectors support
random access to any element: the time needed to accessa[5] is the same as the time
needed to accessa[100] whena is atvector . In contrast, items that are stored near
the front of a linked list are accessed more quickly than items near the end of a linked list.
This is analogous to how the songs, or tracks, on a cassette tape are arranged. Accessing
the fifth song requires skipping over the first four, and songs near the end of the tape take
longer to access than songs near the front. Arrays are more like compact discs; it’s as
easy to play the last track of a CD as it is the first because CD players provide random
access to the tracks.

Like any recording tape, linked lists permit new items to be “spliced” into the middle
of a list. In the same way that tapes can become longer by splicing in new segments of
tape and can be made shorter by cutting out segments of tape, linked lists can have items
added and deleted from any location in the list without shifting other items in the list. In
some sense, pointers link together the different items of a list in the same way that glue
or tape is used to splice segments of magnetic tape.

If a vector contains 100 items, the items must be allocated contiguously in memory.
When linked lists are used, the different items (these items are usually callednodesin
contrast with the cells of a vector) donot need to be allocated contiguously. Each node
of a linked list has a pointer to the node that follows it; these pointers are the “tape”
used to splice nodes together. Figure 12.4 shows a linked list and an array that store the
same values. The last node of a list usually points to0 (NULL) so that a program can
determine when the last node has been reached. This is diagrammed in Figure 12.4 with
the symbol for an electrical ground, three vertical bars.

Abstractly, a linked list is very similar to aCList object, and in fact linked lists
are used to implement theCList class. A linked list has a first node, like the Head
of a CList . The first node points to all the other nodes in the linked list, specifically
to the first of these other nodes. The other nodes are like the Tail of aCList object.
More concretely, a node in a linked list contains the information stored in the node, and

June 7, 1999 10:10 owltex Sheet number 46 Page number 596 magentablack

596 Chapter 12 Dynamic Data, Lists, and Class Templates

a pointer to the next node in the list. In C++ a node storing a string is declared like this:

struct Node
{

string info;
Node * next;

};

The info field of thestruct stores information, in this case a string. Thenext
field stores a pointer to the next node in the list. This declaration is self-referential: the
declaration forNode includes a pointer to a node. This is fine because a pointer can be
declared without knowing completely how much memory the thing it points to uses as
we saw in Section 12.1.6. It would be illegal, for example, to declareNode as

struct Node
{

string info;
Node next;

};

Here thenext field isn’t a pointer, but aNode. This declaration is circular and will be
rejected by the compiler. The g++ compiler generates an error message (in a program
namedfoo.cpp):

foo.cpp:4: field ‘next’ has incomplete type

When the compiler parses the declaration fornext , the declaration for thestruct
Node is not yet complete. The declaration can be incomplete for a pointer to aNode to
be used, but not for aNode.

Program 12.5,strlink.cpp, shows how atvector and a linked list are initialized
to contain the four strings “I,” “learn,” “to,” “code.” Atvector of strings is stored in
the variablevec and a linked list based on thestruct Node is pointed to by a pointer
variablefirst . When you write code that uses linked lists you’ll need to maintain a
pointer to the first node in the list. Often, you’ll need to maintain a pointer to the last
node to make it easier to add a node at the end of the list. You could write code to find the
last node by starting at the beginning and traversing the list until the last node is found
(the next field of the last node points to0). It’s much faster, however, to maintain
pointers to both the first and last nodes. Only one pointer, to the first node of a list, is
maintained instrlink.cpp .

Program 12.5 strlink.cpp

#include <iostream>
#include <string>
using namespace std;
#include "tvector.h"

// compare linked list construction to vector construction

June 7, 1999 10:10 owltex Sheet number 47 Page number 597magentablack

12.2 Linked Lists 597

struct Node
{

string info;
Node ∗ next;
Node(const string& s, Node ∗ link)

: info(s),
next(link)

{ }
};

void Print(Node ∗ list);
void Print(const tvector<string> & list);

int main()
{

Node ∗ first=0; // initially no nodes in list
Node ∗ temp=0; // initialize to 0 for defensive programming
int k;
tvector<string> vec;
string storage[] = {"I", "learn", "to", "code"};

for(k=0 ; k < 4; k++)
{ vec.push_back(storage[k]);

temp = new Node(storage[k],first); // new node before first
first = temp; // make first point at new node

}
cout << "vector:\t\t";
Print(vec);
cout << "linked list:\t";
Print(first);
return 0;

}

void Print(Node ∗ list)
// pre: list is 0-terminated (last node’s next field is 0)
// post: all info fields of list printed on one line
{

Node ∗ temp;
for(temp = list; temp != 0; temp = temp −>next)
{ cout << temp −>info << " ";
}
cout << endl;

}

void Print(const tvector<string> & list)
// pre: list contains list.size() entries
// post: all elements printed on one line
{

int k;
for(k=0 ; k < list.size(); k++)
{ cout << list[k] << " ";
}
cout << endl;

}

June 7, 1999 10:10 owltex Sheet number 48 Page number 598magentablack

598 Chapter 12 Dynamic Data, Lists, and Class Templates

strlink.cpp

O U T P U T

prompt> strlink
vector: I learn to code
linked list: code to learn I

12.2.1 Creating Nodes with Linked Lists

The values stored in the built-in arraystorage are used to initialize the vectorvec
and the linked list pointed to byfirst . Since new values are added to the front of the
list, the values are in reverse order from those stored in the vector as the output shows.
To add new nodes at the end of the list requires maintaining a pointer to the last node.
This is straightforward except for a fencepost problem of creating the first node. As
we’ll see, it’s easy to add or splice-in a new node after another node. Initially there are
no nodes, so there’s no last node to add a new node after. We’ll need special case code
to deal with this fencepost problem or we’ll need to use a header node as discussed in
Section 12.2.6.

ProgramTip 12.4: Creating a linked list often requires special-case code
to manage the creation of the first node since this node is the only node
that doesn’t follow another node. Sometimes creating a dummy first node (called
a header node) avoids lots of special-case code.

Since there’s a constructor for the structNode, it’s simple to create a new node and
initialize its fields. If there were no constructor we’d need three statements to allocate
and initialize a node.

temp = new Node(); // create new node
temp->info = storage[k]; // store info
temp->next = first; // point at first node of list

The two statements creating the node and ensuring thatfirst points at the new node
can be combined into a single statement.

first = new Node(storage[k],first); // new first node

The “old” value offirst is used to construct the node, so the new node points at the
old first node. The pointer to the newly created node is returned bynew, and the pointer
value is assigned to first creating a new first node. This statement mirrors exactly the
use ofcons with a CList object for adding a new node to the front of a list.

June 7, 1999 10:10 owltex Sheet number 49 Page number 599magentablack

12.2 Linked Lists 599

CList<string> list;
list = cons(string("apple"), list);

12.2.2 Iterating over a Linked List

The for loop that prints all the nodes of the linked list in the functionPrint of
Program 12.5,strlink.cpp, is the standard method for looping over all nodes of a linked
list. If list points at the first node, we write:

Node * temp;
for(temp = list; temp != 0; temp = temp->next)
{

// process *temp
}

The statementtemp = temp->next advances the pointertemp so that it points at
the next node, (e.g., at the second node if it used to point to the first node). When the loop
finishes,temp is zero, orNULL. Becauselist is passed by value toPrint , changes
to list don’t affect the argument passed. Since the parameter is a copy, we don’t need
the temporary pointer and could write the following loop instead.

for(; list != 0; list=list->next)
{ cout << list->info << " ";
}

There’s no initialization in thefor loop becauselist points at the first node.
Many programmers prefer to use awhile loop for iterating over a list.

while (list != 0)
{ // process *list

list = list->next;
};

There’s nothing inherently wrong with using the temporary pointer, and we’ll see that a
temporary pointer is often required in a class-based use of linked lists.
Of coursePrint can be written recursively too.

void Print(Node * list)
{

if (list != 0)
{ cout << list->info << " ";

Print(list->next);
}

}

The recursive function doesn’t insert anendl onto the stream. This would be done in
the client code that calls the recursivePrint .

June 7, 1999 10:10 owltex Sheet number 50 Page number 600magentablack

600 Chapter 12 Dynamic Data, Lists, and Class Templates

Program Tip 12.5: When a node-pointer is passed by value, changes to
the pointer cannot affect the pointer passed as an argument, but changes
can be made to the object pointed to; these changes have an effect on
the node. The distinction here is between the pointer, which is passed by value, and
the node, which isn’t really passed, but the pointer to the node can be used to change the
node. In other words,list = NULL doesn’t affect a pointer parameterlist passed
by value, but*list = ... does affect the object pointed to.

12.2.3 Adding a Last Node to a Linked List

We’ll discuss modifications tostrlink.cppthat add new nodes to the end of the list instead
of the front. We’ll use a pointer namedlast that always points to the last node of the
list being constructed, so the statement “last points to last node in linked list” is a loop
invariant. Since the invariant must be true the first time thefor loop test is evaluated,
we must create a last node before the loop. Initializinglast = 0 doesnot create a
node, so we must create a node before the loop. We have two choices in creating an
initial node.

Store data in the node so that the initial last node is also the initial first node storing
"I" in Program 12.5. This is the approach used in the program fragment below.
Since we use the same loop for creating nodes and vector elements, we would need
to add a value to the vector before the loop too.

Create a dummy, also called a header, node that does not store data, but is used so
that even the first node in a list has a node before it. With a header node, every
node in the list has a predecessor node (the header node isn’t considered part of
the list.)

The formation of the linked list at each iteration of the loop is diagrammed in Fig-
ure 12.5. Note that after each loop iteration the variablelast points to the last node of
the linked list. The variablefirst , initialized before the loop because of the fencepost
problem, never moves and always points to the first node of the linked list.

Node * first = 0;
Node * last = 0;
last = first = new Node(storage[0],0); // last is first
for(k=1 ; k < 4; k++)
{ last->next = new Node(storage[k],0); // new last node

last = last->next; // update last
}

12.2.4 Deleting Nodes in a Linked List

The nodes allocated in Program 12.5,strlink.cpp, are not deleted. We’ll write a function
DeleteNodes to delete all the nodes in a linked list whose first node is passed to the

June 7, 1999 10:10 owltex Sheet number 51 Page number 601magentablack

12.2 Linked Lists 601

"I" "to"

 Node * first;

 Node * last;

"learn"

"I"

"I" "learn"

 Node * first;

 Node * last;

"to"

"I" "learn"

 Node * first;

 Node * last;

After k = 1, list has two elementsBefore loop, create first node

After k = 2, list has three elements

After k = 3, list has four elements

 Node * first;

 Node * last;

"code"

Figure 12.5 Building a linked list by adding a last node.

function. Deleting nodes in a linked list requires careful coding. We’ll use recursion
in DeleteNodes because it’s much easier than writing a loop. As with all recursive
functions, some base case must be identified. When linked lists are used, the base case is
usually the empty list (typically a NULL/zero pointer) although sometimes a one-node
list can be used as a base case.

void DeleteNodes(Node * list)
// post: all nodes in list are deleted
{

if (list != 0)
{ DeleteNodes(list->next); // delete after me

delete list; // delete first node
}

}

If you believe that the recursion handles all nodes after the first node, then the function
works as intended since after deleting all the other nodes, the first-node is returned to
the freestore. Writing an iterative version of this function requires a temporary pointer
as illustrated in Figure 12.6.

June 7, 1999 10:10 owltex Sheet number 52 Page number 602magentablack

602 Chapter 12 Dynamic Data, Lists, and Class Templates

list

Node * temp = list->next;

delete list;

list = temp;

Figure 12.6 Deleting the first node of a linked list.

Since the first node will be deleted, we must initialize a temporary pointertemp
to point to the second node. After deleting the first node, the pointerlist can be
reassigned to point to the second node whose value was saved intemp .

void DeleteNodes(Node * list)
// post: all nodes in list are deleted
{

Node * temp;
while (list != 0)
{ temp = list->next; // remember next node in list

delete list; // first node gone
list = temp; // new first node

}
}

At first, you might think that a temporary pointer isn’t necessary and that the following
code can be used to delete the first node pointed to bylist :

delete list;
list = list->next;

There is a problem with this code: you can’t be sure what happens to the node pointed to
by list after the deletion. Once deleted, the node is garbage and may be reclaimed by
some other program or some other part of the system. Some programming environments
may explicitly fill all deleted storage with garbage. In these cases, dereferencinglist
using list->next can result in a bad dereference, causing the program to abort.
Although your code has not done anything with the storage thatlist used to point to,
which was just deleted, you cannot be sure that the node still exists or that thenext
field has the same value. You must use a temporary variable.

12.2.5 Splicing Nodes into a Linked List

One of the primary advantages of using a linked list instead of a vector is the ability to
add new nodes to the middle of a list without shifting the other nodes. To add a new

June 7, 1999 10:10 owltex Sheet number 53 Page number 603 magentablack

12.2 Linked Lists 603

value to a sorted vector we must shift the vector elements to make room for the new
element. No shifting is required to add a new node to a sorted linked list so that the list
remains sorted. Program 12.6 shows a functionAddInOrder that inserts a new string
into a sorted linked list of strings keeping the list sorted. We’ll discuss several different
implementations ofAddInOrder .

Program 12.6 orderedlist.cpp

#include <iostream>
#include <fstream>
#include <string>
using namespace std;
#include "prompt.h"

// read words in a file, store in order in a linked list

struct Node
{

string info;
Node ∗ next;
Node(const string& s, Node ∗ link)

: info(s), next(link)
{ }

};

Node∗ AddInOrder(Node ∗ list, const string& s)
// pre: list is sorted
// post: add s to list, keep list sorted, return new list with s in it
{

Node ∗ first = list; // hang onto first node

// if new node is first, handle this case and return
if (first == 0 || s < first −>info)
{ return new Node(s,first);
}

// assert: s >= list->info
while (list −>next != 0 && list −>next −>info < s)
{ list = list −>next;
}
// assert: s >= list->info an d s < list->next->info (conceptually)

list −>next = new Node(s,list −>next);
return first;

}

void Print(Node ∗ list)
{

for(; list != 0; list=list −>next)
{ cout << list −>info << endl;
}

}

June 7, 1999 10:10 owltex Sheet number 54 Page number 604magentablack

604 Chapter 12 Dynamic Data, Lists, and Class Templates

list

wptr

"elephant"

"cow" "giraffe"

wptr->next = list->next;

list->next = wptr;

Figure 12.7 Adding a new node to a sorted linked list.

int main()
{

Node ∗ list = 0; // empty
string word, filename = PromptString("filename: ");
ifstream input(filename.c_str());
while (input >> word)
{ list = AddInOrder(list,word);
}
Print(list);
return 0;

} orderedlist.cpp

O U T P U T

prompt> poe.txt
!ugh!-ugh!
A
2321 words not shown
your

To add a new node in order using iteration we must maintain a pointer to the node
before where the new node goes. In Figure 12.7 a new node containing"elephant"
is added to a sorted linked list. In the diagram, the new node is pointed to bywptr and
the node is added after the"cow" node pointed to bylist . To search for the location
to add the new node we must look one node ahead. For example, we don’t know that
"elephant" goes after"cow" until we know"giraffe" follows cow. If "dog"
follows "cow" , we need to keep searching.

A recursive version of the functionAddInOrder from Program 12.6 is simpler
than the iterative version. Note that the base case is also handled in the original version
of AddInOrder .

June 7, 1999 10:10 owltex Sheet number 55 Page number 605magentablack

12.2 Linked Lists 605

Node* AddInOrder(Node* list, const string& s)
// pre: list is sorted
// post: add s to list, keep list sorted, return new list
{

if (list == 0 | | s < list->info) // new node goes first
{ return new Node(s,list);
}
list->next = AddInOrder(list->next,s);
return list;

}

The base case handles an empty list or a list in which all strings are greater than the
string being added. The order of the boolean tests is important. If the test fors <
list->info is made first, the test will cause an error whenlist == 0 since a
NULL/zero pointer will be dereferenced.

Program Tip 12.6: Every pointer dereference should be guarded either
explicitly by a check that the pointer is not NULL/zero or implicitly by
documenting and reasoning that the pointer cannot be zero. Each time
you write code of the formlist->data_member you should either checklist !=
0 before the dereference or be able to show with formal reasoning thatlist cannot be
NULL/zero.

We can change the functionAddInOrder so thatlist is passed by reference. It may
be harder to see that this function is correct.

void AddInOrder(Node* & list, const string& s)
// pre: list is sorted
// post: add s to list, keep list sorted
{

if (list == 0 | | s < list->info) // new node goes first
{ list = new Node(s,list);
}
else
{ AddInOrder(list->next,s);
}

}

Two observations may help you see that this version ofAddInOrder works correctly.

1. The base case correctly changeslist when the list is empty or when the new
node belongs before all other nodes. The base case creates a node that points to
the old first node and makeslist point to the new node. Sincelist is passed
by reference, the change is propagated back to the calling statement.

2. In each recursive call, the argumentlist->next is passed by reference. This

June 7, 1999 10:10 owltex Sheet number 56 Page number 606magentablack

606 Chapter 12 Dynamic Data, Lists, and Class Templates

means that each clone called recursively uses the namelist as an alias for some
next field of the linked list being processed.

You may need to think carefully about the second observation, but it brings up a key
point about creating new nodes and adding them to a linked list.

Program Tip 12.7: Code that adds a new node to a list must assign a
value to some next field or the new node will not be linked into the
list. Similarly, removing a node from a list also requires an assignment to
some next field. When recursion is used, thenext field can be an argument passed
recursively. The required assignment to anext field can be implemented by a recursive
assignment to a parameter that is a reference to anext field.

12.2.6 Doubly and Circularly Linked Lists, Header Nodes

Header Nodes. The special case code for adding a new node to the end of a list we saw
in Sect. 12.2.3 can be avoided if we use adummy or headernode. Using a header node
also makes it simpler to remove nodes from a list. A header node ensures that every
node in the list has a predecessor. The first node in the linked list is preceded by the
header node which isn’t considered part of the list.

Node * list = 0; // traditional empty list
Node * header = new Node(); // dummy/header node

Program 12.7 listremove.cpp

void Remove(Node ∗ header, const string& key)
// post: all nodes containing key removed from list/header
{

Node ∗ before = header;
Node ∗ list = header −>next; // first "real node"

// invariant: list = before->next, key doesn’t appear in header->..->before
while (list != 0)
{ if (list −>info == key)

{ before −>next = list −>next; // link around
delete list;
list = before −>next; // invariant maintained

}
else // invariant maintained
{ before = list;

list = list −>next;
}

}
} listremove.cpp

June 7, 1999 10:10 owltex Sheet number 57 Page number 607magentablack

12.2 Linked Lists 607

Since the header node is never changed, and all list accesses go through the header,
list functions can change the contents in a list without passing the list by reference. You’ll
need to think carefully about this code to see that it’s correct; the invariant should help.
Initially no nodes have been examined and the invariant is true. Each time through the
loop one of two cases occurs:

The node being examined,list , doesn’t containkey . In this case bothbefore
andlist are advanced.

We need to remove a node containingkey . The node before the key-node is
linked around the key-node node. We can’t advancebefore since the code
hasn’t examined the node that now comes afterbefore .

Writing Remove iteratively without a header node is difficult to do correctly. It’s much
simpler to implementRemove recursively. In the following function we assume there
is no header node; note thatlist is passed by reference since it changes.

void Remove(Nod e * & list, const string& key)
// post: all nodes containing key removed from list (no header)
{

if (list != 0)
{ Remove(list->next,key);

if (list->info == key)
{ Node * temp = list;

list = list->next;
delete temp;

}
}

}

Doubly and Circularly Linked Lists. Linked lists are sequential structures, most opera-
tions traverse the list front to back. Some applications require traversal in two directions:
from back-to-front as well as front-to-back. For example, a text-editor normally allows
the user to move the cursor forward and backward. Implementing a simple editor using
a linked list is not difficult if we usedoubly linked list . In a doubly linked list each node
maintains pointers to the node before it in the list as well as to the node after it. This
requires one additional data member in the node struct. A diagram of a doubly linked
list is shown in Figure 12.8. We’ll explore code for manipulating doubly linked lists in
the exercises.

In the modified version of Program 12.5,strlink.cpp, which we studied in Sec-
tion 12.2.3, we maintained pointers to both the first and last nodes of a linked list. When
both pointers are needed, it’s a common convention to use acircularly linked list .
In a circularly linked list the last node of the list points back to the first node instead
of pointing to NULL/zero. By keeping only a pointer to the last node of a circularly
linked list we can find the first node very simply:last->next is the first node. In a
circularly linked list with only one node, the last node points to itself since the first node
is the last node. The following function counts the nodes in a circularly linked list.

June 7, 1999 10:10 owltex Sheet number 58 Page number 608magentablack

608 Chapter 12 Dynamic Data, Lists, and Class Templates

"orange""apple"

"apple" "orange"

Figure 12.8 Doubly linked list and circular doubly linked list

int Count(Node * list)
// pre: list is circularly linked, list points to last node
// post: return # nodes in list
{

if (list == 0) return 0; // special case
int count = 0; // # nodes
Node * first = list->next;
while (first != list)
{ count++;

first = first->next;
}
return count + 1; // count the last node too

}

Figure 12.8 shows a doubly linked list that’s also a circularly linked list. The last
node points back at the first node, and the first node points at the last node.

12.22 Write a functionCount that counts the number of nodes in a linked list. WritePause to Reflect

the function recursively and with awhile loop.

12.23 Write a functionClone that returns a copy of its list parameter (assume it’s a
linked list of strings.)

Node * Clone(Node * list)
// post: return copy of list

It’s easiest to write this function recursively, especially if you take advantage of
theNode constructor.

June 7, 1999 10:10 owltex Sheet number 59 Page number 609magentablack

12.2 Linked Lists 609

12.24 Write a function that returns a pointer to the Node of a linked list that has the
minimal value in the list (assume a list of strings and that minimal means first
alphabetically.)

Node * FindMin(Node * list)
// post: return pointer to minimal node,
// return 0 if list is empty

12.25 Describe the effects of the functionChange that follows.

void Change(Node * list)
{

while (list && list->next)
{ Node * temp = list->next;

list->next = list->next->next;
list = list->next;
delete temp;

}
}

12.26 Describe the effects of the functionChop, wherelist is a linked list storing
int values:

void Chop(Nod e * & list)
{

if (list != 0)
{ Chop(list->next);

if (list->inf o % 2 == 0)
{ list = list->next;
}

}
}

12.27 Write the functionCreateList with header as shown.CreateList creates
a linked list ofn integers where the first node contains 1 and the last node contains
n. The callPrint(CreateList(5)) should print 1 2 3 4 5,wherePrint is
from strlink.cpp, Program 12.5.

Node * CreateList(int n)
// pre: 0 < n
// post: creates list 1->2->...->n
// an n node list in which node k contains the int k

June 7, 1999 10:10 owltex Sheet number 60 Page number 610magentablack

610 Chapter 12 Dynamic Data, Lists, and Class Templates

12.28 Write the functionGaussList with header as shown. The function calls
Print(GaussList(4)) should print 1 2 2 3 3 3 4 4 4 4.

Node * GaussList(int n)
// pre: 0 < n
// post: returns sorted list, in which
// k occurs k times, 1 <= k <= n

12.29 Write a functionReverse that reverses the order of the nodes in a linked list.
Reverse the list by changing pointers, not by swappinginfo fields.

void Reverse(Nod e * & list)
// precondition: list = (a b c ... d)
// postcondition: list = (d .. . c b a), list is reversed.

12.30 Write a nonrecursive version of the functionRemove from Section 12.2.6 where
the list doesn’t have a header node.

12.31 Write either an iterative or recursive version ofRemove that works with doubly
linked lists. Assume the list has a header and a tail node where the tail is an
extra node at the end of the list serving as sentinel node so that every node has a
successor node.

12.32 Write functionsAddAtFront andAddAtBack that add new nodes to the front
and back, respectively, of a circularly linked list.

12.33 Write a function that doubles a linked list by duplicating each node; that is, the
list (a b c d) is changed to (a a b b c c d d). Use the header shown, wherelist
is not passed by reference. (Hint: it’s probably easier to write this recursively.)

void DoubleList(Node * list)
// precondition: list = (a b c d)
// postcondition: list = (a a b b c c d d)

12.3 ATemplated Class for Sets

To show how linked lists are used in implementing classes we’ll develop a class imple-
menting sets similar toStringSet (see Section 6.5), but capable of storing elements of
any kind, not just strings. Like classestvector andCList , the class we design will be
templated so that it can represent sets of any type, not just sets of strings. We’ll develop
a testing program that illustrates how pointers used as instance variables in objects do
not always behave as expected.

June 7, 1999 10:10 owltex Sheet number 61 Page number 611magentablack

12.3 A Templated Class for Sets 611

Program Tip 12.8: When developing a templated class, develop a non-
templated version of the class first. Test and debug the nontemplated
version first, then implement the templated class. Develop, test, and debug
simple programs whose inevitable errors may be easier to find than those in more complex
programs.

A set class based on linked lists will not be very efficient, but will eventually lead to
a very efficient class when you study another kind of linked structure called a tree.

12.3.1 Sets of Strings With Linked Lists

We’ll implement a class for representing sets of strings, test and debug the class, then
use the tested class as the basis for a templated set class. We’ll implement the same
methods used in the classStringSet (see Program G.7 in How to G) which makes
the analysis phase of development simple.

Since we know that searching in a linked list ofN elements is anO(N) operation,
most of the set functions will beO(N) since they require determining if a string is in the
set. The functions we’ll implement, their descriptions, and their complexities are given
in Table 12.1.

Table 12.1 Operations for sets of strings implemented using linked lists. Complexities are for a
set with O(N) elements.

operation description complexity
construct make an empty set O(1)

insert add s to set O(N)

erase remove s from set O(N)

clear make set empty O(1)

contains search for s in set O(N)

size number of elements in set O(1)

All the O(N) operations require searching for an element in the set. For example,
we’ll add a new element at the front of a linked list which is aconstant timeor O(1)

operation. However, we must first determine that the element is not already in the set
before adding it. The expressionO(1) is used for an operation whose complexity does
not depend on the size of the problem being measured, in this case on the number of
elements in the set. Ourclear function will actually beO(N), but we’ll explore a
constant time version in the exercises.

We’ll create a singly linked list with a header node and add new nodes to the front
of the list. We’ll use the same declarations for member function found instringset.h,
Program G.7. Keeping in mind the advice from Programming Tip 9.5, we’ll implement
a constructor, a method to add elements to a set, and a method for printing the contents
of a set. Eventually we’ll want to implement an associated iterator class, but at first we’ll
simply write a set tocout , the standard output stream. Our first cut is shown below.

June 7, 1999 10:10 owltex Sheet number 62 Page number 612magentablack

612 Chapter 12 Dynamic Data, Lists, and Class Templates

class LinkStringSet
{

public:
LinkStringSet();
int size() const;
void print()const;
void insert(const string& s);

private:
struct Node
{ string info;

Node * next;
Node(const string& s, Node * link)

: info(s), next(link)
{ }

};
Node * myFirst; // header node
int mySize; // # elements in set

};

We’ve already developed code for inserting an element at the front of a linked list and for
printing a linked list. We’ll need to search for a string before inserting it, but sequential
search in a list is nearly identical to sequential search in a vector, so we don’t anticipate
any difficulties. We’ll implement all these methods, test them, then turn to implementing
other methods. We won’t show the complete test program for these functions, but after
testing them thoroughly we can add new methods, knowing any bugs will be in the
new methods or in the interactions between the new methods and the already debugged
methods.

12.3.2 Searching, Clearing, Helper Functions

We’ve already written the code forLinkStringSet::contains since we searched
the linked list before inserting a new node at the front. We’d like to reuse this code since
we know duplicating code will inevitably lead to a maintenance headache (see Program
Tip 4.1). Thinking ahead to the member functionerase we see that we’ll need to search
the list to implement that function as well. We’d like to write a private, helper function
(see Program Tip 7.14) but what should be the interface of the helper function?

contains returns a boolean value; we need to know if the element is in the set.

insert can usecontains directly; the location of the element isn’t needed
since we’re adding a new node to the front.

erase removes a node; we need a pointer to the node before the removed node
to erase and link around the removed node.

If we used a doubly linked list, the private searching function could return a pointer to
the node containing the string being searched for. To remove a node from a singly linked
list a pointer to the node being removed won’t help; we need a pointer to the nodebefore

June 7, 1999 10:10 owltex Sheet number 63 Page number 613magentablack

12.3 A Templated Class for Sets 613

the node being removed to unsplice the removed node and link around it. We’ll write a
helper functionfindNode as follows.

Node * LinkStringSet::findNode(const string& s) const
// post: returns pointer to node before s
// returns NULL/0 if !contains(s)

We can usefindNode to implementcontains andinsert very easily. Recall that
myFirst points to a header node so a new node is addedafter the header node.

bool LinkStringSet::contains(const string& s) const
// post: return true iff s in set
{

return findNode(s) != 0;
}
void LinkStringSet::insert(const string& s)
// post: if ! contains(s) then s is added to set
{

if (! contains(s))
{ myFirst->next = new Node(s,myFirst->next);

mySize++;
}

}

We’ll leave the implementation offindNode as an exercise, but the header we use
above failed to compile when we use itlinkstringset.cpp. Visual C++ generates the
following error message.

linkstringset.cpp(56):error C2501:
’Node’:missing decl-specifiers (more errors here)

The problem is that the declarationNode is only known within theLinkStringSet
declaration. We can useNode in parameter lists of member functions, and as the type
for a local variable in member function, because member functions “know” about all the
class declarations includingNode. However, the return type of a function is not part of
the function’s prototype (see the explanation on function overloading in Section 11.1.1)
so we must qualifyNode as follows.

LinkStringSet::Node *
LinkStringSet::findNode(const string& s) const
// post: returns pointer to node before s
// return NULL/0 if !contains(s)

If we use this helper function to implementcontains , and callcontains from
insert , we’ll need to testinsert again since its implementation has changed. Once
we’ve tested these functions we’ll implementerase .

June 7, 1999 10:10 owltex Sheet number 64 Page number 614magentablack

614 Chapter 12 Dynamic Data, Lists, and Class Templates

void LinkStringSet::erase(const string& s)
// post: ! contains(s), s is removed from set
{

Node * temp = findNode(s);
if (temp != 0)
{ Node * removal = temp->next; // remove this node

temp->next = removal->next; // link around
delete removal; // delete
mySize--;

}
}

After testing all the member functions we’ll turn to the problem of designing, imple-
menting, and testing an associated iterator class. We’ll see that the iterator class methods
are very simple to implement, but we’ll need to have the iterator access the linked list
that’s used to implement theLinkStringSet class.

12.3.3 Iterators and Friend Functions

We’d like to implement a classLinkStringSetIterator to access set elements
one at a time. The version ofPrint below shows the class used just like any of
the iterator classes we’ve studied so far since all the iterators we develop conform to
the same interface. We could easily make this a templated function to work with any
iterator as discussed in Section 11.2.2, but we’re concerned here with iterating over a
LinkStringSet .

void Print(const LinkStringSet& set)
{

LinkStringSetIterator it(set);
for(it.Init(); it.HasMore(); it.Next())
{ cout << it.Current() << endl;
}
cout << "siz e = " << set.size() << endl;

}

To access elements one at a time we have two choices.

Provide methods in the classLinkStringSet for accessing individual set ele-
ments, (i.e., strings stored in the underlying linked list).

Permit the associated iterator class to access the linked list, but not allow client
code to access individual elements.

We’ll adopt the second of these options. In general, acontainer class is acollection
of elements and should have an associated iterator class; the container class provides
access exclusively via the associated iterator. The container class and its iterator are
tightly coupled (see Program Tip. 6.8) and the iterator class will need to access the

June 7, 1999 10:10 owltex Sheet number 65 Page number 615magentablack

12.3 A Templated Class for Sets 615

private instance variables of the container class. Access to a class private section can
be granted by the class by declaring another class to be afriend . The classFoo grants

Syntax: Declaring friend s

class Foo
{

public:
friend class FooFriend;

private:
};

friend status to the classFooFriend
whose methods can access private data
and helper functions of aFoo object. A
declaration offriend status is made
by the class whose private data will be
accessed. It’s not possible for a class
to request friend status, only for a class
to grant friend status. In the iterator
class that follows, all the methods are

implemented inline within the class declaration to make it simpler to read the code.

Program 12.8 linkstringsetiterator.h

class LinkStringSetIterator

{

public:

LinkStringSetIterator(const LinkStringSet& lset)

: mySet(lset), myCurrent(0)

{ }

void Init()

{ myCurrent = mySet.myFirst −>next; // first node

}

bool HasMore() const

{ return myCurrent != 0;

}

string Current() const

{ return myCurrent −>info;

}

void Next()

{ myCurrent = myCurrent −>next;

}

private:

typedef LinkStringSet::Node Node;

const LinkStringSet& mySet;

Node ∗ myCurrent;

}; linkstringsetiterator.h

Each function consists of a single statement that is part of a typical linked list traver-
sal, (e.g., initialization, test, update, and process-element). An iterator is bound to a
particular set when the iterator is constructed. As shown, the set is stored as a refer-
ence instance variable. We use aconst reference so that we can iterate over con-
stant sets, for example, in the functionPrint we showed above to demonstrate the
LinkStringSetIterator class. More information on const-ness and iterators is
found in How to D.

June 7, 1999 10:10 owltex Sheet number 66 Page number 616 magentablack

616 Chapter 12 Dynamic Data, Lists, and Class Templates

12.3.4 InteractiveTesting

We now have both a set class and a friend iterator class. To test the classes we’ll use an
interactive testing program. The program is interactive because the user is given a menu
of choices and each choice tests one of theLinkStringSet member functions or uses
an iterator. The interactive nature allows us to test different cases that we anticipate might
cause problems. These include the following.

Adding the same element more than once

Deleting an element more than once

Deleting an element not in the set

Deleting all the elements then adding new elements

Clearing the set, adding elements, clearing again

The interactive program can stress the relationships between the member functions, but
it’s not designed to insert thousands of elements. Stressing the class with large input
sets is best done with anautomatic test program. We’ll use the interactive test program
testlinkset.cpp, Program 12.9. In a larger program, we would use one function for each
test case rather than incorporate the code within theswitch statement. In other words,
we would replace

case ’i’ :
word = PromptlnString("enter word : ");
set.insert(word);
break;

With a function call that handles the set insertion.

case ’i’:
DoInsert(set);
break;

The interactive test program shown here stresses only one set. After we’ve verified
that the set member functions work as expected, or after finding bugs in the functions
and fixing them, we’ll need to develop a program that uses more than one set to see if
problems arise when more than one set is used in the same program. Testing one class
is a difficult, time-consuming, but necessary process. Testing a larger program with
interacting classes is made simpler if each class is tested separately so that any bugs
found are more likely to be from the class interactions rather than from bugs within a
class.

Program Tip 12.9: Every class you develop should be developed with a
test suite of programs. You may want to include both automatic and interactive
programs in the test suite. More complex programs with interacting classes will be
developed with fewer errors if each individual class is tested separately.

June 7, 1999 10:10 owltex Sheet number 67 Page number 617 magentablack

12.3 A Templated Class for Sets 617

Program 12.9 testlinkset.cpp

#include <iostream>
#include <string>
#include <cctype> // for tolower
using namespace std;

#include "linkstringset.h"
#include "prompt.h"

void Print(const LinkStringSet& set)
{

LinkStringSetIterator it(set);
cout << "———-" << endl;
for(it.Init(); it.HasMore(); it.Next())
{ cout << it.Current() << endl;
}
cout << "———- siz e = " << set.size() << endl;

}

void Help()
{

cout << "(h)elp print help" << endl;
cout << "(i)insert word into set" << endl;
cout << "(c)lear set" << endl;
cout << "(e)rase word from set" << endl;
cout << "(p)rint the set and size" << endl;
cout << "(s)earch for word in set" << endl;
cout << "(q)uit program" << endl;
cout << "—" << endl;

}

void TestSet()
{

string word, commandLine;
LinkStringSet set;
char command = 'h';
while (command != 'q')
{ commandLine = PromptlnString("enter command : ");

if (commandLine == "")
{ command = 'h';
}
else
{ command = tolower(commandLine[0]);
}
switch (command)
{

case 'h' :
Help();
break;

case 'i' :
word = PromptlnString("enter word : ");

June 7, 1999 10:10 owltex Sheet number 68 Page number 618magentablack

618 Chapter 12 Dynamic Data, Lists, and Class Templates

set.insert(word);

break;

case 'c':

set.clear();

break;

case 'e':

word =PromptlnString("enter word : ");

set.erase(word);

break;

case 'p':

Print(set);

break;

case 's':

word = PromptlnString("enter word : ");

if (set.contains(word))

{ cout << word << " was found" << endl;

}

else

{ cout << word << " was NOT found" << endl;

}

case 'q':

break;

default:

cout << "unrecognized command" << endl;

break;

}

}

}

int main()

{

TestSet();

return 0;

} testlinkset.cpp

June 7, 1999 10:10 owltex Sheet number 69 Page number 619magentablack

12.3 A Templated Class for Sets 619

O U T P U T

prompt> testlinkset
enter command : h
(h)elp print help
(i)insert word into set
(c)lear set
(e)rase word from set
(p)rint the set and size
(s)earch for word in set
(q)uit program

enter command : i
enter word : apple
enter command : i
enter word : cherry
enter command : p

cherry
apple
---------- size = 2
enter command : i
enter word : apple
enter command : i
enter word : watermelon
enter command : p

watermelon
cherry
apple
---------- size = 3
enter command : s
enter word : cherry
cherry was found
enter command : s
enter word : grapefruit
grapefruit was NOT found
enter command : e
enter word : apple
enter command : p

watermelon
cherry
---------- size = 2

output continued

June 7, 1999 10:10 owltex Sheet number 70 Page number 620 magentablack

620 Chapter 12 Dynamic Data, Lists, and Class Templates

O U T P U T

enter command : c
enter command : p

---------- size = 0
enter command : i
enter word : cherry
enter command : p

cherry
---------- size = 1
enter command : q

12.3.5 Deep Copy, Assignment, and Destruction

After thorough testing with an interactive test program we turn to testing more than
one class in the same program. Since we’re developing a set class we might think about
operations we’d like to have that aren’t available in the simpleStringSet class we used
as the original model for this class. Typical set operations include union, intersection,
and set difference. Before turning to these operations we find a serious flaw in the
implementation revealed by the simple Program 12.10,linksetdemo.cpp. The program
shows that assigning one set to another results in what at first is unexpected behavior.
However, thinking back to Program 12.1,pointerdemo.cpp, the first program we studied
that uses pointers, the results make sense.

Program 12.10 linksetdemo.cpp

#include <iostream>
using namespace std;
#include "linkstringset.h"

// demo of string sets implemented with linked lists

void Print(const LinkStringSet& set)
{

LinkStringSetIterator it(set);
for(it.Init(); it.HasMore(); it.Next())
{ cout << "\t" << it.Current() << endl;
}
cout << "———- siz e = " << set.size() << endl;

}

June 7, 1999 10:10 owltex Sheet number 71 Page number 621magentablack

12.3 A Templated Class for Sets 621

int main()

{

LinkStringSet a,b;

a.insert("apple");

a.insert("cherry");

cout << "a : "; Print(a);

b = a;

cout << "b : "; Print(b);

a.clear();

cout << "a : "; Print(a);

cout << "b : "; Print(b);

return 0;

} linksetdemo.cpp

O U T P U T

prompt> linksetdemo
a : cherry

apple
---------- size = 2
b : cherry

apple
---------- size = 2
a : ---------- size = 0
b : ---------- size = 2

The first printed output for setsa andb is what we expect. However, after seta is
cleared, there is nothing in setb either, although its size is still two. The problem is that
executing the statementb = a results in copying the value of the pointera.myFirst
to b.myFirst . The value of the instance variablemySize is copied too, but that
doesn’t cause a problem. Each set has it’s own pointer, but both pointers reference the
same linked list as shown in Figure 12.9.

Since assignment of one class object to another simply copies the values of each
instance variable, the pointers are copied, but the linked lists they point to are not copied.
The calla.clear() removes all the nodes froma’s linked list, which are also the nodes
in b’s linked list. There’s nothing in the setb, though the value ofb.mySize is still two
since it’s not changed by callinga.clear() . When an instance variable points to an
object, we may want to copy the object pointed to, not just the pointer, when assigning
the class containing the pointer. Copying the object pointed to, and all the objects it may
point to, is called adeep copy. The default assignment in C++ simply copies pointers,
not objects, which is called ashallow copy. Before we used pointers we didn’t need to
worry about these differences because every class we’ve used behaves properly. Classes
that require deep copies, like thetvector class, implement the required deep copy

June 7, 1999 10:10 owltex Sheet number 72 Page number 622magentablack

622 Chapter 12 Dynamic Data, Lists, and Class Templates

"header"

"cherry" "pear" "apple"

a.myFirst;

b.myFirst;

Figure 12.9 Assignment without copying, shared lists.

functions. There are three member functions that must be implemented to generate a deep
copy properly: thecopy constructor, theassignment operator, and thedestructor.

When you design a class, you should aim for the behavior of the class to meet user
expectations. For classes likeLinkStringSet andtvector this means that users
should be able to assign objects to each other and pass parameters by value if necessary,
since the built-in types support these operations. We didn’t need to worry about deep
copies and shallow copies with theCList class because there are no operations that
change aCList object. Shared storage is only a problem when what’s stored changes.

The Copy Constructor. The copy constructor is a special constructor called when an
object is first defined and initialized from another object of the same type. For example,
consider defining several date objects.

Date today;
Date tomorrow(today+1); // calls copy constructor
Date yesterday(today-1); // calls copy constructor

yesterday = tomorrow; // calls assignment operator
Date weekago = today-7; // calls copy constructor

The objectstomorrow , yesterday , andweekago are each constructed and initial-
ized from anotherDate object. The assignmentyesterday = tomorrow doesn’t
call a copy constructor because the variableyesterday has already been defined. The
class copy constructor is called only when an object is first defined, not when it’s assigned
to or reinitialized in some other way.

Whenever an object is constructed from another object of the same type, a copy
constructor is used for the construction and initialization. If you examine theDate
class you won’t see a special constructor, because none is needed.

June 7, 1999 10:10 owltex Sheet number 73 Page number 623magentablack

12.3 A Templated Class for Sets 623

Every class has adefault copy constructorthat simply copies the value of each instance
variable from one object to another. If a shallow copy is acceptable, the default copy

Syntax: Copy Constructor

Foo::Foo(const Foo& f);
Foo::Foo(Foo& f);

constructor is sufficient. Since shal-
low copies are fine except when there is
shared storage, we only need to worry
about a copy constructor when there’s
a shared resource like an object pointed

to by an instance variable. Normally only the copy constructor from aconst object is
needed (the top one in the syntax diagram). On rare occasions the behavior of copying
from a nonconst object is different and both copy constructors are required.

To copy aLinkStringSet object we must initialize both instance variables
myFirst and mySize . In the copy constructor that follows, a header node is cre-
ated in the initializer list. Thenext field of the header node points to a copy of the
linked list that stores the elements of the parameterset . The copy is created by the
private helper functionclone . Since a copy of a list will be needed in both the assign-
ment operator and the copy constructor, the code to create the copy is factored out into
a helper function.

LinkStringSet::LinkStringSet(const LinkStringSet& set)
: myFirst(new Node("header",set.clone())),

mySize(set.size())
{

//initializer list makes deep copy
}

If you think carefully about the list copy, you’ll realize that the private functionclone
is being called by a different object than is making the clone. Private variables and
functions can be accessed by any object of the same class.

The Assignment Operator. The assignment operator is similar to the copy constructor
in making a deep copy, but the assignment operator is called to reinitialize an object that
has already been constructed. Because the object being assigned to already exists, some
extra bookkeeping is required that wasn’t necessary in the copy constructor.

After the assignmentb = a , b will represent a different set than it did before
the assignment. The nodes that were part of the old value ofb should be reclaimed,
(e.g., returned to the free store). Two additional requirements should be met by every
implementation of an assignment operator. Assignments can be chained together, (e.g.,

Syntax: Assignment Operator

const Foo&
Foo::operator = (const Foo& f);

a = b = c), so the assignment op-
erator must return a value. Since as-
signment is right associative, (e.g.,a =
(b = c);) the value of the object af-
ter assignment is returned. Users may

inadvertently writea = a . This can cause problems if not checked, so self-assignment
should be explicitly guarded in each assignment operator implementation.

The return statement of every assignment operator should be

return *this;

June 7, 1999 10:10 owltex Sheet number 74 Page number 624magentablack

624 Chapter 12 Dynamic Data, Lists, and Class Templates

since an object returns itself after assignment. We don’t want to return a copy, we want to
return the object itself, so the return type should be a reference, such asFoo&. Finally,
the reference should beconst to avoid allowing code like(a = b).clear() to
compile:

const LinkStringSet&
LinkStringSet::operator = (const LinkStringSet& set)
{

if (this != &set)
{ reclaimNodes(myFirst->next);

myFirst->next = set.clone();
mySize = set.size();

}
return *this;

}

To protect against self-assignment, an object checks that the object being assigned to,
itself, is different from the object being assigned,set in the operator above. We check
addresses because we want to guard against assigning the same object, not objects with
the same value.

strin g s = "hello";
strin g t = "hello";
s = t; // this is fine
s = s; // guard against weird behavior

The Destructor A local variable defined in a function is not accessible outside the func-
tion. The variable is constructed when the function begins execution, and may accumu-
late resources as the function executes. Ideally the resources will be reclaimed when
they’re not needed, which happens when the function returns in the case of a local
variable. Consider the variableset in the following code.

int CountUnique(ifstream& input)
//post: return # unique words in input
{

string word;
LinkStringSet set;
while (input >> word)
{ set.insert(word);
}
return set.size();

}

FunctionCountUnique correctly counts and returns the number of different or unique
words in the streaminput . What happens to the nodes allocated byset after the
function returns the size? Althoughset is no longer accessible afterCountUnique
returns, the linked list referenced byset.myFirst just before the function returns

June 7, 1999 10:10 owltex Sheet number 75 Page number 625magentablack

12.3 A Templated Class for Sets 625

will continue to exist after the function returns because the nodes are allocated from the
heap; their lifetime is the duration of the program unless the nodes are explicitly deleted.

The destructor member function is called automatically when an object goes out of
scope, (e.g., for the local variableset when the function above returns). The destructor
should take care of reclaiming any resource, particularly storage allocated bynew.

Syntax: Class Destructor

Foo:: ∼Foo();

The destructor has the same name as
the class it belongs to, but is preceded
by a tilde: ‘˜’ .4 When you first im-
plement a class, the destructor should

be a stub function. After you’ve debugged other member functions, implement the de-
structor to reclaim storage (or other resources). The advice in Program Tip 12.3 makes
particular sense when you’re implementing a destructor.

LinkStringSet::˜LinkStringSet()
{

reclaimNodes(myFirst);
myFirst = 0;

}

We can call the helper functionreclaimNodes that we used in the assignment op-
erator. Since nodes are reclaimed in both places it makes sense to factor out the
code into a helper function. In the implementation ofLinkStringSet we would
makereclaimNodes a stub function and implement it after debugging other member
functions.

Program Tip 12.10: When you implement one of the following three
member functions, it is normally an indication that you should implement
all three functions.

1. Copy constructor, for initializing an object based on another object of the same type.

2. Assignment operator=, for assigning a new value of the same type to an existing
object.

3. Destructor, for reclaiming resources allocated by an object during its lifetime, (e.g.,
memory allocated bynew).

12.3.6 ATemplatedVersion of LinkStringSet

With the string set class debugged, we’ll turn to creating a templated version of the class.
We’ll call the new classLinkSet and we’ll define variables of typeLinkSet<string>
andLinkSet<int> among the many kinds of sets we can create. Most of the changes
in creating a templated class are syntactic in nature. I copied the header filelinkstringset.h

4The tilde∼ is sometimes pronounced “twiddle,” but tilde is an acceptable pronunciation.

June 7, 1999 10:10 owltex Sheet number 76 Page number 626 magentablack

626 Chapter 12 Dynamic Data, Lists, and Class Templates

(accessible with the code that comes with this book) to the filelinkset.h. I automati-
cally replaced every occurrence ofstring with T, the identifier I used for the template
parameter. I replaced all occurrences ofLinkStringSet with LinkSet too. To
indicate the class is templated, I added the following line whose syntax is the same as
the declaration for creating a templated function as shown, for example, in Section 11.2.

template <class T>

The only other changes needed in the header file were for the iterator class. The
name had been changed toLinkSetIterator when I changed all occurrences of
LinkStringSet to LinkSet . I added the same template declaration before the
class that I used to indicate thatLinkSet was a templated class. Finally, I changed the
friend declaration inLinkSet as follows to indicate that the iterator class is templated.

friend class LinkSetIterator<T>;

The compiler needs information thatLinkSetIterator is a templated class to parse
this friend declaration, so I added the following forward declaration just before the class
LinkSet (see Program Tip 12.2 for reasons to use forward references).

template <class T> class LinkSetIterator;

In the iterator class declaration, all occurrences ofLinkSet must be replaced with
LinkSet<T> to indicate that the classLinkSet is templated. This yields the complete
declarationlinkset.h.

Program 12.11 linkset.h

#ifndef _LINKSET_H
#define _LINKSET_H

template <class T> class LinkSetIterator;

template <class T>
class LinkSet
{

public:
LinkSet();

// methods for deep copy
LinkSet(const LinkSet& set);
const LinkSet& operator =(const LinkSet& set);
∼LinkSet();

// accessors
bool contains(const T& s) const; // true iff s in set
int size() const; // # elements in set

// mutators
void insert(const T& s); // add to set
void erase(const T& s); // remove from set

June 7, 1999 10:10 owltex Sheet number 77 Page number 627magentablack

12.3 A Templated Class for Sets 627

void clear(); // delete all elements

friend class LinkSetIterator<T>;

private:

struct Node
{ T info;

Node ∗ next;
Node(const T& s, Node ∗ link)

: info(s), next(link)
{ }

};
Node ∗ findNode(const T& s) const; // helper
void reclaimNodes(Node ∗ ptr); // delete/reclaim
Node ∗ clone() const; // copy list

Node ∗ myFirst;
int mySize;

};

template <class T>
class LinkSetIterator
{

public:
LinkSetIterator(const LinkSet<T>& lset)

: mySet(lset),
myCurrent(0)

{ }

void Init()
{ myCurrent = mySet.myFirst −>next; // first node
}
bool HasMore() const
{ return myCurrent != 0;
}
T Current() const
{ return myCurrent −>info;
}
void Next()
{ myCurrent = myCurrent −>next;
}

private:
typedef LinkSet<T>::Node Node;
const LinkSet<T>& mySet;
Node ∗ myCurrent;

};

#include "linkset.cpp"

#endif linkset.h

Notice that the last line of the header file (before the#endif) is an include directive:

#include "linkset.cpp"

June 7, 1999 10:10 owltex Sheet number 78 Page number 628magentablack

628 Chapter 12 Dynamic Data, Lists, and Class Templates

Templated classes, like templated functions, are used to instantiate class code rather than
being class code (see Section 11.2.3.) When client code instantiates a templated class
by defining objects, the template class declarations are used to generate code for the
specific type used in the instantiation.

ListSet<string> sset;
ListSet<int> iset;
ListSet<Date> dset;
ListSet<int> iset2;

The four set definitions here generate code for three differentListSet instantiations:
one for int sets, one forDate sets, and one forstring sets. The compiler is smart
enough to instantiate theint set code only once even though two objects are defined
— only the first instantiation of a templated class actually creates code.

The compiler must be able to find definitions for the member functions of a tem-
plated classwhen the class is instantiated. This is a different process than is used for
nontemplated classes. When we create nontemplated class definitions, such as, as in
linkstringset.cppor date.cpp, the definitions can be compiled into object code that is
linked with client code to create an executable. It’s not possible to compile the defini-
tions inlinkset.cppbecause these definitions are not code, they’re used to generate code
when aListSet is instantiated. Because client programs typically include .h files that
specify interfaces, a templated-class interface file usually includes the corresponding
implementation or .cpp file as it does inlinkset.h, Program 12.11. The compiler then has
access to the template definitions so that they can be compiled into object code when
they’re instantiated by the client program.

Program Tip 12.11: The compiler must access both interface and im-
plementation when instantiating a templated class. Typically templated
classes are defined inline, within the class declaration, or separately in a
.cpp file that is included by the corresponding .h file. In either case the com-
piler has access to the template definitions when client code instantiates a templated class.
The C++ standard specifies that only those member functions that are called by a client
program are instantiated.

If a client program that usesListSet<int> objects calls onlyinsert andsize ,
but nevercontains , clear , or erase , then code for the functions not-called in the
client program willnot be instantiated by the compiler. The compiler tries to minimize
the code created so that the programmer is freed from that worry.

The LinkSet Implementation: linkset.cpp. The code inlinkset.cpp, Program 12.12,
highlights the massive syntactic ugliness of template-class member function definitions.
When you first read these definitions, try to ignore thetemplate <class T> that
precedes each method definition. This is the same syntax for declaring templated func-
tions we saw in Section 11.2, but reproduced once for each method. SinceLinkSet is

June 7, 1999 10:10 owltex Sheet number 79 Page number 629 magentablack

12.3 A Templated Class for Sets 629

a templated class, the class name that qualifies each method must somehow indicate the
template parameter. Instead of writing

int LinkSet::size() const

we must write

template <class T>
int LinkSet<T>::size() const

to indicate that the definition is for the classLinkSet templated on a type argumentT.
I createdlinkset.cppby copying the implementation filelinkstringset.cpp. I first

replaced every occurrence ofLinkStringSet with LinkSet<T> .5 I then replaced
every occurrence ofstring with T. Finally, I addedtemplate <class T> before
each member function.

Program 12.12 linkset.cpp

#include "linkset.h"

template <class T>
LinkSet<T>::LinkSet()

: myFirst(new Node(T(),0)),
mySize(0)

{
// header node created

}

template <class T>
bool LinkSet<T>::contains(const T& s) const
{

Node ∗ temp = findNode(s);
return temp != 0;

}
template <class T>
int LinkSet<T>::size() const
{

return mySize;
}
template <class T>
void LinkSet<T>::insert(const T& s)
{

if (! contains(s))
{ myFirst −>next = new Node(s,myFirst −>next);

mySize++;
}

}
template <class T>
void LinkSet<T>::erase(const T& s)

5This caused two problems with constructors sinceLinkSet<T>::LinkSet() is the default con-
structor, notLinkSet<T>::LinkSet<T>() ; and a a similar problem with the destructor name.

June 7, 1999 10:10 owltex Sheet number 80 Page number 630 magentablack

630 Chapter 12 Dynamic Data, Lists, and Class Templates

{
Node ∗ temp = findNode(s);
if (temp != 0)
{ Node ∗ removal = temp −>next;

temp −>next = removal −>next;
delete removal; // can we reuse this?
mySize −−;

}
}

template <class T>
void LinkSet<T>::reclaimNodes(Node ∗ ptr)
{

if (ptr != 0)
{ reclaimNodes(ptr −>next);

delete ptr;
}

}
template <class T>
void LinkSet<T>::clear()
{

reclaimNodes(myFirst −>next);
myFirst −>next = 0; // nothing in the set
mySize = 0;

}

template <class T>
LinkSet<T>::Node ∗ LinkSet<T>::findNode(const T& s) const
// post: returns pointer to node before s or NULL/0 if !contains(s)
{

Node ∗ list = myFirst; // list non-zero

while (list −>next != 0 && list −>next −>info != s)
{ list = list −>next;
}
if (list −>next == 0) return 0;
return list;

}

template <class T>
LinkSet<T>::LinkSet(const LinkSet<T>& set)

: myFirst(new Node(T(),set.clone())),
mySize(set.size())

{
// initializer list made deep copy

}
template <class T> const LinkSet<T>&
LinkSet<T>::operator = (const LinkSet<T>& set)
{

if (this != &set)
{ reclaimNodes(myFirst −>next);

myFirst −>next = set.clone();
mySize = set.size();

}
return ∗this;

June 7, 1999 10:10 owltex Sheet number 81 Page number 631magentablack

12.3 A Templated Class for Sets 631

}

template <class T>
LinkSet<T>:: ∼LinkSet()
{

reclaimNodes(myFirst);
myFirst = 0;

}
template <class T>
LinkSet<T>::Node ∗ LinkSet<T>::clone() const
{

Node front(T(),0); // node, not pointer, anchors copy
Node ∗ last = &front; // be wary of using address of operator!

Node ∗ temp = myFirst −>next;
while (temp != 0)
{ last −>next = new Node(temp −>info,0);

last = last −>next;
temp = temp −>next;

}
return front.next;

} linkset.cpp

When I first tested the templated class, I createdLinkSet<string> objects and used
the same testing programs that helped test the original nontemplatedLinkStringSet
class. Then I addedLinkSet<int> definitions and discovered two small prob-
lems that were simple to fix. The constructor definition for the nontemplated class
LinkStringSet follows.

LinkStringSet::LinkStringSet()
: myFirst(new Node("header",0)),

mySize(0)
{

// header node created
}

Using the cut-paste-and-change technique for creating a templated version generated
this constructor.

template <class T>
LinkSet<T>::LinkSet()

: myFirst(new Node("header",0)),
mySize(0)

{
// header node created

}

This definition works fine with a string set, but fails with an int set. Can you see why?
The problem is in the construction of the header node. The private structNode is
now templated, so it cannot be initialized with a string. Instead, we use the default

June 7, 1999 10:10 owltex Sheet number 82 Page number 632magentablack

632 Chapter 12 Dynamic Data, Lists, and Class Templates

constructor for the template typeT, written asT() as shown in eachNode construction
in linkset.cpp, Program 12.12.

Following the advice outlined in Program Tip 12.8 made it very easy to create the
templated class once the nontemplated class had been designed, implemented, debugged,
and tested. Because the syntax of templated classes is daunting at first, following this
advice is a good idea. It remains a good idea even after you have considerable experience
programming using C++.

12.34 In the implementation oflinkset.cpp , Program 12.12, the functionclonePause to Reflect

is a const function. Is this necessary? Is the function called somewhere on a
const set?

12.35 Why is the declaration ofNode in the set classes in the private section and not
in the public section?

12.36 Why is theLinkSet<T>::clear() function O(N) as implemented? Can
you think of a modification to the class that results in a constant timeO(1) imple-
mentation ofclear ? (Hint: put off deletion as long as possible.)

12.37 Suppose you’re forming the union of twoLinkStringSet objectsa andb.
The union is a new set containing all the elements in botha and b. If a has
10 elements andb has 100 elements, does the order in which elements from the
sets are inserted into the new set being constructed make a difference (i.e., should
elements from the small set be inserted before elements from the big set, orvice
versa)?

12.38 If sets are implemented using a sorted vector instead of a linked list so that
contains is anO(logN) operation using binary search, does the order in which
the union of two sets is done (see the previous question) make more of a difference?
Why?

12.39 The assignment operator returns a reference to the object just assigned to. If the
return type is a copy instead of a reference, (e.g.,LinkStringSet instead of
const LinkStringSet&), the copy constructor must be called to create the
copy. Why is a copy less than ideal?

12.40 In the final version ofclone in linkset.cpp, Program 12.12, a localNode named
front is defined, and the address offront assigned tolast . What’s the
purpose of the assignment and definition and what’s an alternative that avoids
using&, the address-of operator.

12.4 Chapter Review
In this chapter we discussed pointers. Pointers are indirect references, useful when data
need to be accessed in more than one way and when data must be allocated dynamically.
We discussed sharing objects between classes using reference variables and pointers. We

June 7, 1999 10:10 owltex Sheet number 83 Page number 633magentablack

12.4 Chapter Review 633

also discussed self-referential data structures called linked lists that have many applica-
tions. It’s possible to insert new elements into a linked list without shifting the existing
elements, making linked lists the method of choice for many sparse structures. We stud-
ied copy constructors, assignment operators, and destructors, three member functions
often required when instance variables point to objects on the heap. We also saw an
example of designing, implementing, and testing a templated class by starting with a
nontemplated class.

Topics covered include:

Variables have names, values, and addresses. The address of a variable can be
assigned to a pointer.

As part of defensive programming, make pointers point to objects allocated on the
heap usingnew, not to objects allocated on the stack.

Several operators are used to manipulate pointers:->, *, & , and operators
new, anddelete.

Pointers can be used for efficiency since atvector of pointers to strings requires
less space than atvector of strings, especially if thetvector is not full.

Thenew operator is used to allocate memory dynamically from the heap. Memory
can be allocated usingnew in conjunction with a constructor with arguments.

Pointers are dereferenced to find what they point to. Pointers can be assigned
values in four ways: usingnew, using& to take the address of existing storage
(not a good idea, in general), assigning the value of another pointer, and assigning
0 or NULL.

A destructor member function is called automatically when an object goes out of
scope. Any memory allocated usingnew during the lifetime of the object should
be freed usingdelete in the destructor.

Reference instance variables can be used to share an object among more than
one object. Reference instance variables must be initialized at construction; once
constructed and bound to an object, a reference variable cannot be bound to a
different object (unlike a pointer, for example.)

Pointers can be used to change the values of parameters indirectly. This is how
parameters are changed in C: addresses are passed rather than values. The indirect
addresses are used to change values.

Linked lists support splicing, or fast insertions and deletions (in contrast to vectors
in which items are often shifted during insertion and deletion). However, items
near the end of a linked list take more time to access than items near the front.

Recursive linked list functions (sometimes with pointers passed by reference) are
often shorter than an equivalent iterative version of the function.

A header node can be used when implementing linked lists to avoid lots of special-
case code, especially when deleting and inserting elements.

Doubly and circularly linked lists are alternatives to singly linked lists.

Classes can be templated so that they can be used to generate literally thousands
of different classes, just as templated functions represent thousands of functions.

June 7, 1999 10:10 owltex Sheet number 84 Page number 634magentablack

634 Chapter 12 Dynamic Data, Lists, and Class Templates

12.5 Exercises

12.1 Implement quicksort for linked lists. The partition function should divide a list into
two sublists, one containing values less than or equal to the pivot, the other containing
values greater than the pivot. Conceptually the partition function returns three things:

The pivot element (a node).
The list of items less than or equal to the pivot element.
The list of items greater than or equal to the pivot element.

Since you’ll need to join lists together after recursively sorting, you’ll need to think
carefully about how to develop the program. You might, for example, maintain pointers
to the first and last nodes of each list returned from the partition function. Alternatively,
you could maintain a pointer to the last node and make these lists circular.
When you’ve implemented the sort, develop a test program to verify that the original
list is sorted. Then time the sort using either randomly constructed large lists or by
reading words from a text file and sorting them. Consider writing a templated version
of the sort as well.

12.2 Develop an implementation of merge sort for linked lists. Merge sort is described in
the exercises of Chapter 11. Write two functions, one to merge two sorted lists and
one to implement the merge sort.

Node * merge(Node * lhs, Node * rhs)
// pre: lhs is sorted, rhs is sorted
// post: returns sorted list containing all nodes
// from lhs and rhs no new nodes are created,
// nodes are relinked, complexity is O(a + b),
// wher e a = # nodes in lhs , b = # nodes in rhs

void mergesort(Nod e * & list)
// post: list is sorted
// (re-arranging pointers, not copying values)

Write a program to test the sort on linked lists of strings. Then compare the runtime
of your sort with the time to copy the values from a list into a vector, sort the vector
using the merge sort code fromsortall.h, then copy the values back into the linked list.

12.3 TheJosephus problem(see [Knu98b]) is based on a “fair” method for designating one
person from a group ofN people. Assume that the people are arranged in a circle and
are numbered from 1 toN . If we count off every fourth person, removing a person
as we count them off, then the first person removed is number 4. The second person
removed is number 8, the third person removed is 5 (because the fourth person is no
longer in the circle), and so on. Write a program to print the order in which people are
removed from the circle givenN , the number of people, andM, the number used to
count off. The problem originates from a group determined to commit suicide rather
than surrender or be killed by the enemy. Consider using a doubly linked or a circularly
linked list as appropriate.

June 7, 1999 10:10 owltex Sheet number 85 Page number 635magentablack

12.5 Exercises 635

12.4 Write a program to automatically stress/test the classLinkStringSet or its tem-
plated equivalentLinkSet . The program should insert thousands of items, delete
thousands, and in general exercise each set method. For each test, develop a rationale
for why you’ve chosen the test as a way of stressing the implementation.
When you’ve developed the program, change the set implementation in the manner
described below and see if the change results in improved running times. You’ll need
to instrument your test program usingCTimer objects (seectimer.h, Program G.5, in
How to G) to judge if the implementation is more efficient.
The current set implementations “reclaims” nodes by deleting them when one set is
assigned to another or when a set object’s destructor is called. Instead of deleting
nodes, add the reclaimed nodes to astatic classlinked list of free nodes.

// in linkset.h
template <class T>
class LinkSet
{

...

private:

static Node * ourFreeList;
};

// in linkset.cpp
template <class T> LinkSet<T>::Node *
LinkSet<T>::ourFreeList = 0; // initially empty

The idea is that there is one linked list shared by allLinkSet<T> objects — recall
that a static class variable is shared by all objects (see Section 10.4.3). When nodes
are reclaimed, they are added to the front of the static, shared linked list. When nodes
are needed, (i.e., during insertion), the shared linked list of free nodes is used as a
source of nodes beforenew is called. Nodes are allocated usingnew only if there are
no nodes on the list pointed to byourFreeList .
Implement this change and time the program to see if it’s more efficient to maintain a
free list of nodes than to use the system freestore.

12.5 In Section 10.5.5 a class for representing polynomials was developed. The class used
a CList list to store terms. Reimplement the class using linked lists. You’ll need to
implement a copy constructor, an assignment operator, and a destructor that were not
needed in the original implementation of the classPoly . Shallow copies were fine
in that implementation because it’s not possible to change aCList object, only to
create a new object. The new implementation should create copies of polynomials as
needed, but change a polynomial, for example, whenoperator += is used to add
a term to a polynomial.
Test the program and compare its performance to the original implementation. You’ll
need to develop automated testing functions that stress the polynomial class by creating
huge polynomials, adding them, multiplying them, and so on.

12.6 Implement free functions for creating the union and intersection of twoLinkSet<T>
objects. The union of two sets is denoteda ∪ b, it is a set containing all the elements

June 7, 1999 10:10 owltex Sheet number 86 Page number 636magentablack

636 Chapter 12 Dynamic Data, Lists, and Class Templates

in eithera or b. The intersection of two sets is denoteda ∩ b; it is a set containing
those elements that are common to botha and tob.

LinkSet<string> a, b, c, d;
// fill a and b with values

c = union(a,b); // c is the union of a and b
d = intersect(a,b); // d is the intersection of a and b

When you’ve tested these functions, overloadoperator + for union andoperator
* for intersection. This means you should also implement overloaded operators+=
and*= (see the guidelines for overloading operators in Section 9.4 or How to E).

12.7 Write a program to implement akid/toy simulation. A file stores information about
available toys in a format specific to this problem.

wooden blocks : sturdy
choo-choo train : sturdy
bucket and shovel : durable
talking doll : sturdy
hothot wheels : durable
wickets, mallets, and croquet balls : durable
nose glasses : flimsy
mr. zucchini head : flimsy

There are least three categories of toy: sturdy, durable, and flimsy. These categories
indicate how long a toy can be played with before it breaks and must be fixed. Toys
don’t wear out in this model, they can be fixed many times and last forever. All
discussions are in “play units,” which can be thought of as hours. A sturdy toy breaks
2% of the time it’s played with, a durable toy breaks 15% of the time, and a flimsy toy
breaks 45% of the time. We’ll interpret this as a probability, so each hour (play unit) a
sturdy toy is played with, there’s a 2 in 100chance it will break. Broken toys require
time to repair: sturdy toys can be fixed in one hour, durable toys in two hours, and
flimsy toys in four hours.
The program should read a data file and construct atoy chestfrom which toys are
borrowed to be played with. Kids use toys. The number of kids in a simulation is
specified when the simulation begins. During one step of the simulation, each kid
takes a turn playing with his/her toy. At the next step, the order in which kids take
turns changes; the order should be shuffled using a shuffling function like the one in
shuffle.cpp, Program 8.4. The number of steps in the simulation is specified when the
simulation begins.
When a toy breaks, it must be placed back in the toy chest and remain there until it is
fixed. A kid putting a toy in the chest takes a new toy out of the chest. If there are no
toys in the chest, the kid picks another kid at random and shares that kid’s toy. The toy
is shared until it breaks or until one of the kids gets bored with the toy. A toy can be
shared among everyone, there’s no limit, but each time a kid plays with a toy counts
as a “play unit.” Kids like flimsy toys, so they get bored less often with flimsy toys
than they do with sturdy toys. After playing with a toy, a kid trades the toy in for a
new toy (or for sharing someone’s toy) if bored. A kid gets bored after playing with
the same toy forn play units/hours, wheren = 2 for sturdy toys,n = 3 for durable
toys, andn = 4 for flimsy toys.

June 7, 1999 10:10 owltex Sheet number 87 Page number 637 magentablack

12.5 Exercises 637

12.8 Boggle is a game of finding words by connecting letters on a two-dimensional grid.
Design and implement a program to find all the words on a grid based on structuring
data using sets as described in this exercise. The output of some of the words that
begin with ‘a’ found on a randomly generated board is shown below. For each word,
a list of the positions in which the letters of the word appear on the board is shown
(positions give row and column indexes using matrix coordinates: (0,0) is the upper
left corner).

O U T P U T

prompt> wordgame
board size between 3 and 8: 7

g n t b s h z
d s w u u d r
e n u a a i a
z z m e b e a
u a t y r i y
i y n e v p a
d s o s r t o

file of words: gamewords
abet (2, 4) (3, 4) (3, 3) (4, 2)
aid (4, 1) (5, 0) (6, 0)
air (5, 6) (4, 5) (4, 4)
airy (5, 6) (4, 5) (4, 4) (4, 3)
amaze (2, 3) (3, 2) (4, 1) (3, 1) (2, 0)
amuse (4, 1) (3, 2) (2, 2) (1, 1) (2, 0)
more words found ...

Letters are considered adjacent if they touch horizontally, vertically, or diagonally (see
the output for examples). Once a grid position is used in forming a word, the position
cannot be used again in the same word.
There are many ways to find all the words; the method suggested here uses sets and
is relatively straightforward to implement, though certainly not trivial. Part of a class
WordGamedeclaration is shown aswordgame.h

Program 12.13 wordgame.h

#ifndef _WORDGAME_H
#define _WORDGAME_H

#include <string>
using namespace std;
#include "point.h"
#include "tvector.h"
#include "linkset.h"

June 7, 1999 10:10 owltex Sheet number 88 Page number 638 magentablack

638 Chapter 12 Dynamic Data, Lists, and Class Templates

class WordGame
{

public:
WordGame(int size); // max grid size
void MakeBoard(); // create a grid of letters

// is a word on the board? one version returns locations
bool OnBoard(const string& s);
bool OnBoard(const string& s, tvector<Point>& locations);

// other functions

private:
typedef LinkSet<Point> PointSet;
typedef LinkSetIterator<Point> PointSetIterator;

tmatrix<char> myBoard;
tvector<PointSet> myLetterLocs;
PointSet myVisited;

bool IsAdjacent(const Point& p, const Point& q);
bool OnBoardAt(const string& s, const Point& p,

tvector<Point>& locs);
}; wordgame.h

The instance variablemyLetterLocs is the key to the program. It’s a vector of
26 sets, each set stores positions (positions are recorded using the structPoint from
point.h, Program G.10). The value ofmyLetterLocs[0] is the set of locations at
which the letter d‘’a’ appears on the board. Similarly,myLetterLocs[1] records
all locations of the letter ‘b’, and so on. These sets are initialized when the board
is constructed. The private helper functionOnBoardAt works usingbacktracking,
discussed in the exercises from Chapter 11. You must determine how this function
works and implement the other functions to find all words in a file of words.

Program 12.14 wordgame.cpp

bool Boggle::OnBoardAt(const string& s, const Point& p, tvector<Point>& locs)
// post: return true iff string s can be found on the board
// beginning at location p (s[0] found at p, s[1] at a location
// adjacent to p, and so on). If found, locs stores the locations
// of the word, locations are added using push_back
{

if (s.length() == 0) return true; // all letters done, found the word

PointSet ps = myLetterLocs['z' − s[0]]; // set of eligible letters
PointSetIterator psi(ps); // try all locations
for(psi.Init(); psi.HasMore(); psi.Next())
{ Point nextp = psi.Current();

if (IsAdjacent(p,nextp) && ! myVisited.contains(nextp))
{ myVisited.insert(nextp);

locs.push_back(nextp);
if (OnBoardAt(s.substr(1,s.length() −1),nextp,locs))

June 7, 1999 10:10 owltex Sheet number 89 Page number 639magentablack

12.5 Exercises 639

{ return true;
}
locs.pop_back();
myVisited.erase(nextp);

}
}
return false; // tried all locations, word not on board

} wordgame.cpp

12.9 A stack is a data structure sometimes called aLIFO structure, for “last in, first out.”
A stack is modeled by cars pulling into a driveway: the last car in is the first car out. In
a stack, only the last element stored in the stack is accessible. Rather than use insert,
remove, append, or delete, the vocabulary associated with stack operations is

push—add an item to the stack; the last item added is the only item accessible
by thetop operation.
top—return the topmost, or most recent, item pushed onto the stack; it’s an error
to request the top item of an empty stack.
pop—delete the topmost item from the stack; it’s an error to pop an empty stack.

For example, the sequencepush(3) , push(4) , pop , push(7) , push(8) yields
the stack (3,7,8) with 8 as the topmost element on the stack.
Stacks are commonly used to implement recursion, since the last function called is the
first function that finishes when a chain of recursive clones is called.
Write a (templated) class to implement stacks (or just implement stacks of integers).
In addition to member functionspush , pop , andtop , you should implementsize
(returns number of elements in stack),clear (makes a stack empty), andisEmpty
(determines if the stack is empty). Use either a vector or a linked list to store the values
in the stack. Write a test program to test your stack implementation.
After you’ve tested theStack class, use it to evaluatepostfix expressions. A postfix
expression consists of two values followed by an operator. For example:3 5 + is
equal to 8. However, the values can also be postfix expressions, so the following
expression is legal.

3 5 + 4 8 * + 6 *

This expression can be thought of as parenthesized, where each parenthesized subex-
pression is a postfix expression.

(((3 5 +) (4 8 *) +) 6 *)

However, it’s easy to evaluate a postfix expression from left to right by pushing values
onto a stack. Whenever an operator (+, *, etc.) is read, two values are popped from
the stack, the operation computed on these values, and the result pushed back onto the
stack. A legal postfix expression always leaves one number, the answer, on the stack.
Postfix expressions do not require parentheses;(6 + 3) × 2 is written in postfix as
6 3 + 2 ×. Write a function to read a postfix expression and evaluate it using a stack.

June 7, 1999 10:10 owltex Sheet number 21 Page number 640magentablack

640

June 7, 1999 10:10 owltex Sheet number 22 Page number 641magentablack

13Inheritance for
Object-Oriented Design

Instead of teaching people that O-O is a type of design, and giving them design principles,
people have taught that O-O is the use of a particular tool. We can write good or bad programs

with any tool. Unless we teach people how to design, the languages matter very little. The result
is that people do bad designs with these languages and get very little value from them.

David Parnas
personal note to Fred Brooks, inThe Mythical Man Month,Anniversary Edition

In this chapter we’ll exploreinheritance, one of the cornerstones of object-oriented
programming. Many experts in programming languages differentiate betweenobject-
basedprogramming, in which inheritance is not used, andobject-orientedprogramming,
in which inheritance is used. As you’ll see, inheritance makes it possible to reuse classes
in a completely different way from what we’ve seen to this point. The key aspect of
inheritance that we’ll explore is essentially changing class behavior without having
access to the class implementation. This kind of reuse allows companies to design class
tool kits for different applications, (e.g., for graphics, networking, or games), and for
clients to specialize these classes for their own purposes. The companies designing the
tool kits donot need to release their implementations, which can be an attractive feature
for those who do not want to release proprietary designs or code.

13.1 Essential Aspects of Inheritance

In Chapter 7 we designed and implemented Program 7.8,quiz.cpp, for giving students
different kinds of quizzes. We developed classes for two different kinds of quiz ques-
tions: an arithmetic quiz question about simple addition problems (see Program 7.6,
mathquest.h) and a geography quiz question about U.S. states and their capitals (see
capquest.h.) By using the same class name,Question , for both different kinds of
quiz question, we made it possible to reuse the same quiz program as well as the classes
Quiz andStudent defined in the quiz program.

However, to have different quizzes we had to change the preprocessor include di-
rective from#include "mathquest.h to #include "capquest.h" and re-
compile the program. In this chapter we’ll studyinheritance, a programming technique
that permits a common interface to beinheritedor reused by many classes. Client pro-
grams written to conform to the interface can be used with any of the interface-inheriting
classes. Programs do not, necessarily, need to be recompiled to use more than one of
the conforming classes. As we’ll see, several different quiz questions can be used in the
same program when we use inheritance.

641

June 7, 1999 10:10 owltex Sheet number 23 Page number 642magentablack

642 Chapter 13 Inheritance for Object-Oriented Design

13.1.1 The Inheritance Hierarchy for Streams

You’ve already used inheritance in many of the C++ programs you’ve written, although
you probably haven’t been explicitly aware of doing so. The stream hierarchy of classes
uses inheritance so that you can write a function with anistream parameter, but pass
as arguments,cin , an ifstream variable, or anistringstream variable. This
use of streams is shown instreaminherit.cpp, Program 13.1

Program 13.1 streaminherit.cpp

#include <iostream>
#include <fstream>
#include <sstream>
#include <string>
using namespace std;
#include "prompt.h"

// show stream inheritance

void doInput(istream& input)
// precondition: there are three strings to read in input
{

string s;
int k;
for(k=0 ; k < 3; k++)
{ input >> s;

cout << k << ".\t" << s << endl;
}
cout << endl;

}

int main()
{

string filename = PromptString("filename: ");
ifstream input(filename.c_str());
string firstline;
getline(input,firstline); // first line of input file
istringstream linestream(firstline); // stream bound to first line

cout << "first three words on first line are\n—–" << endl;
doInput(linestream);

cout << "first three words on second line are\n—" << endl;
doInput(input);

cout << "first three words from keyboard are\n—" << endl;
doInput(cin);
return 0;

}
streaminherit.cpp

June 7, 1999 10:10 owltex Sheet number 24 Page number 643magentablack

13.1 Essential Aspects of Inheritance 643

O U T P U T

prompt> poe.txt
first three words on first line are

0. The
1. Cask
2. of

first three words on second line are

0. Edgar
1. Allan
2. Poe

first three words from keyboard are

this is a test of reading from the keyboard
0. this
1. is
2. a

The code in the functiondoInput fromstreaminherit.cppuses only stream behavior that
is common to all input streams, (i.e., extraction usingoperator >>). Other common
stream behavior includes input usingget or getline and functionsclear , fail ,
andignore . By conforming to the common input stream interface, the code is more
general since it can be used with any input stream. This includes input stream classes that
aren’t yet written, but that when written will conform to the common stream interface
by using the inheritance mechanism discussed in this chapter. If the functiondoInput
used the stream functionseekg (see How to B) to reset the stream to the beginning, then
unexpected behavior will result whencin is passed since the standard input streamcin
is not aseekable input streamas areifstream and istringstream streams.1 If
doInput usesseekg the code is not conforming to the common interface associated
with all streams (theseekg function can be applied tocin , but the application doesn’t
do anything).

1A seekable input stream can be reread by moving orseekingthe location of input to the beginning (or
end, or sometimes middle). The standard input stream isn’t seekable in the same way a file bound to a
text file is seekable.

June 7, 1999 10:10 owltex Sheet number 25 Page number 644 magentablack

644 Chapter 13 Inheritance for Object-Oriented Design

13.1.2 An Inheritance Hierarchy: Math Quiz Questions

We’ll return to the example of giving a computer-based quiz to students. We discussed
the development of a program to give quizzes to two students sharing a keyboard in
Section 6.2. In this chapter we’ll use a simpler quiz program to show the power of
inheritance. Because the syntactic details of using inheritance in C++ are somewhat
cumbersome, rather than discussing the syntax in detail at first, we’ll look at the program,
make a modification to it to show what inheritance can do, and then look more at the
implementation details.

Program 13.2,inheritquiz.cpp, gives an arithmetic quiz to a student. Only one
chance is given to get each question correct, and no score is kept. Three different kinds
of questions are used in the program, ranging in difficulty from easy to hard (depending,
of course, on your point of view.) The program is aprototype to show what can be
done, but is not a finished product (this program tip repeats Tip 6.6).

Program Tip 13.1: A prototype is a good way to start the implementa-
tion phase of program development and to help in the design process. A
prototype is a “realistic model of a system’s key functions” [McC93]. Booch says that
“prototypes are by their very nature incomplete and only marginally engineered.” [Boo94]
Aprototype is an aid to help find some of the important issues before design and implemen-
tation are viewed as frozen, or unchanging. For those developing commercial software,
prototypes can help clients articulate their needs better than a description in English.

As we’ll see when we explore implementation details of using inheritance in C++,
pointers to objects are often used rather than objects themselves. All our uses of inheri-
tance will use pointers or references; both are used ininheritquiz.cpp.2

Program 13.2 inheritquiz.cpp

#include <iostream>
#include <string>
using namespace std;

#include "tvector.h"
#include "prompt.h"
#include "randgen.h"
#include "mathquestface.h"

// prototype quiz program for demonstrating inheritance

void GiveQuestion(MathQuestion& quest)
// post: quest is asked once, correct response is given
{

string answer;

2All our examples of inheritance usepolymorphism, which we’ll define later. Polymorphism requires
either a pointer or a reference.

June 7, 1999 10:10 owltex Sheet number 26 Page number 645magentablack

13.1 Essential Aspects of Inheritance 645

cout << endl << quest.Description() << endl;
cout << "type answer after the question" << endl;
quest.Create();
quest.Ask();
cin >> answer;
if (quest.IsCorrect(answer))
{ cout << "Excellent!, well done" << endl;
}
else
{ cout << "I'm sorry, the answer is " << quest.Answer() << endl;
}

}

int main()
{

tvector<MathQuestion ∗> questions; // fill with questions

questions.push_back(new MathQuestion());
questions.push_back(new CarryMathQuestion());
questions.push_back(new HardMathQuestion());

int qCount = PromptRange("how many questions",1,10);
RandGen gen;
int k;
for(k=0 ; k < qCount; k++)
{ int index = gen.RandInt(0,questions.size() −1);

GiveQuestion(∗questions[index]);
}
for(k=0 ; k < questions.size(); k++)
{ delete questions[k];
}
return 0;

} inheritquiz.cpp

The parameter to the functionGiveQuestion is a MathQuestion passed by
reference. Based on the declaration and initialization of the vectorquestions ,
it appears that each vector element holds a pointer to aMathQuestion , but that
the pointers actually point to aMathQuestion , a CarryMathQuestion , and a
HardMathQuestion , respectively for indexes 0, 1, and 2.

Examining the sample output that follows shows that three different kinds of question
are, in fact, asked during one run of the program. Looking at the program carefully will
help us develop some questions that will guide the discussion of inheritance, how it
works, and how it is implemented in C++.

1. How can a pointer toMathQuestion actually point to some other type of object
(the other kinds of questions).

2. How can different objects (dereferenced by the* in theGiveQuestion call) be
passed toGiveQuestion which expects aMathQuestion by reference?

3. How are different questions actually created by the callquest.Create() in
GiveQuestion .

4. How can we develop another kind of question and add it to the program?

June 7, 1999 10:10 owltex Sheet number 27 Page number 646magentablack

646 Chapter 13 Inheritance for Object-Oriented Design

O U T P U T

prompt> inheritquiz
how many questions between 1 and 10: 4

addition of three-digit numbers
type answer after the question

134
+ 122

256
Excellent , well done!

addition of three-digit numbers
type answer after the question

175
+ 192

267
I’m sorry, the answer is 367

addition of two-digit numbers with NO carry
type answer after the question

11
+ 18

29
Excellent , well done!

addition of two-digit numbers with a carry
type answer after the question

38
+ 39

77
Excellent , well done!

To answer the four questions raised above, we’ll look at inheritance conceptually,
and how it is implemented in C++. The example of stream inheritance in Program 13.1,
streaminherit.cpp, showed that a common interface allows objects with different types
to be used in the same way, by the same code. The math quiz program,inheritquiz.cpp
leverages a common interface in the same way. Each of the three question types stored

June 7, 1999 10:10 owltex Sheet number 28 Page number 647magentablack

13.1 Essential Aspects of Inheritance 647

MathQuestion

Question

WhatsTheQuestion MultipleChoice

HardMathQuestion CarryMathQuestion

Figure 13.1 Hierarchy of math and other quiz questions.

in the vectorquestion is a kind of MathQuestion . This is-a relationship is con-
ceptual and realized in code. Conceptually, clients write quiz programs with code that
conforms to theMathQuestion class interface and expect to useMathQuestion
objects. For example, the functionGiveQuestion has aMathQuestion parame-
ter. Objects that are instances of other classes that inherit fromMathQuestion , like
CarryMathQuestion , can be used as though they wereMathQuestion objects,
(e.g., they can be elements of a vector likequestion in main).

An inheritance hierarchy, like the one illustrated in Figure 13.1, models an is-a
relationship, where is-a means “has the same behavior” and “can be used in place of-a
or as-a.” This kind of hierarchy is realized in C++ by declaringsubclasses, also called
derived classes, to inherit from abase class, also called asuper class. In Figure 13.1
the classesCarryMathQuestion andHardMathQuestion derive from the super
classMathQuestion . However,MathQuestion itself is a derived or subclass of
the super/base classQuestion . Derived classes have functions with the same names
as functions in the super class, (e.g., the functionsCreate , Ask , andAnswer for the
Question hierarchy). These functions can have different behavior in each subclass
which is what makes the different kinds of quiz question in the same program possible.

13.1.3 Implementing Inheritance

The interfaces for the three different kinds ofMathQuestion classes are declared
in mathquestface.h, Program 13.3. We’ll use four new syntactic constructs in C++ to
implement an inheritance hierarchy. Three of the new syntactic constructs are shown in
mathquestface.h, the fourth, the abstract base class, is discussed in Section 13.2.

public inheritance

virtual functions

protected data members (and functions)

June 7, 1999 10:10 owltex Sheet number 29 Page number 648magentablack

648 Chapter 13 Inheritance for Object-Oriented Design

Program 13.3 mathquestface.h

#ifndef _MATHQUESTFACE_H
#define _MATHQUESTFACE_H

// quiz questions involving arithmetic (addition)
// see comments in questface.h for the naming conventions
// used in quiz classes
//
// MathQuestion() – no carry involved, two-digit numbers
// CarryMathQuestion() – does have carry, two-digit numbers
// HardMathQuestion() – three digit addition
//
// these classes add method Description() to the question hierarchy

#include "questface.h"

class MathQuestion : public Question
{

public:
MathQuestion();
virtual bool IsCorrect(const string& answer) const;
virtual string Answer() const;
virtual void Ask() const;
virtual string Description() const;

virtual void Create(); // create a new question

protected:
string myAnswer; // store the answer as a string here
int myNum1; // numbers used in question
int myNum2;

};

class CarryMathQuestion : public MathQuestion
{

public:
CarryMathQuestion();
virtual string Description() const;
virtual void Create();

};

class HardMathQuestion : public MathQuestion
{

public:
HardMathQuestion();
virtual string Description() const;
virtual void Create();

};

#endif mathquestface.h

June 7, 1999 10:10 owltex Sheet number 30 Page number 649magentablack

13.1 Essential Aspects of Inheritance 649

13.1.4 Public Inheritance

In mathquestface.h, the subclassesCarryMathQuestion andHardMathQuestion
each express their dependence on the superclass from which they’re derived. This de-
pendency is shown on the first line of each class declaration.

class CarryMathQuestion : public MathQuestion
{...
};
class HardMathQuestion : public MathQuestion
{...
};

In general, each subclass expresses a dependency relationship to a superclass by
using the keywordpublic and the name of the superclass. This is calledpublic in-
heritance (we will not use private inheritance, virtual inheritance, or any of the other
kinds of inheritance that are possible in C++.) As we’ll see, a subclass inherits an

Syntax: public inheritance

class Subclass : public Superclass
{

methods and instance variables
};

interface from its superclass, and can
inherit behavior (member functions)
too. Inheritance is a chained, or tran-
sitive relationship so that if subclass
C inherits from superclass B, but B
is itself a subclass of superclass A,
then C inherits from A as well, al-

though this is not shown explicitly in the declaration of C. In Figure 13.1, the class
HardMathQuestion is a subclass of bothMathQuestion andQuestion .

As we mentioned earlier, inheritance models an is-a relationship. When a subclass B
inherits from a superclass A, any object of type B can be used where an object of type A is
expected. This makes it possible, for example, to pass aHardMathQuestion object
to the functionGiveQuestion which has a parameter of typeMathQuestion .
However, as we use inheritance, the is-a relationship captured by public inheritance
will not work correctly in a C++ program unless references or pointers are used. An
object, sayhmq, that’s an instance of theHardMathQuestion class can be passed
as a parameter to a function expecting aMathQuestion object MathQuestion
objectonly if hmq is passed by reference or as a pointer. Similarlyhmqcan be assigned
as aMathQuestion object only if the assignment ofhmq uses a pointer tohmq.
In inheritquiz.cppobjects are passed by reference toGiveQuestion and the vector
question holds pointers toMathQuestion objects so that inheritance will work as
intended. We’ll study why this restriction is necessary in Section 13.1.5.

Program Tip 13.2: Public inheritance should model an is-a relationship.
For is-a to work as expected, objects in an inheritance hierarchy should be passed by

reference or as pointers and assigned using pointers whenever a subclass object is used as
a superclass object.

June 7, 1999 10:10 owltex Sheet number 31 Page number 650magentablack

650 Chapter 13 Inheritance for Object-Oriented Design

13.1.5 Virtual Functions

Inheritance is exploited ininheritquiz.cppsince we can pass any kind of math quiz-
question to the functionGiveQuestion and different questions are created depending
on the type of the object passed. From the compiler’s perspective, the parameter to
GiveQuestion is a reference to aMathQuestion object. How does the compiler
know to callHardMathQuestion::Create when a hard question object is passed
and to callCarryMathQuestion::Create when a carry question object is passed?

The compiler does not determine which function to call atcompile time (when
the program is compiled), but delays choosing which function to call untilrun time
(when the program is executing or running). At run time different objects can be passed
to GiveQuestion . Although the compiler thinks of the parameter as having type
MathQuestion , the actual type may be different because of inheritance. The compiler
calls the “right” version ofCreate because the functionCreate is avirtual function .
Virtual functions are calledpolymorphic functions because they can take many forms3

depending on the run time type of an object rather than the compile time type of an
object.

What does all that really mean? It means that if you put the key wordvirtual before
a member function in a superclass, then the member function that’s called will be the
subclass version of the member function if a subclass is what’s actually used when the
program is running. Ininheritquiz.cpp, Program 13.2, different kinds of question are
created because the member functionsCreate in each of the three classes in the math
question hierarchy are different, as you can see inmathquestface.cpp, Program 13.4.
We’ll discuss when to make functions virtual in Section 13.2.2.

ProgramTip 13.3: The keyword virtual is not required in subclasses, but
it’s good practice to include it as needed in each subclass. Any member
function that is virtual in a superclass is also virtual in a derived class. Since a subclass
may be a superclass at some point (e.g., asMathQuestion is a subclass ofQuestion
but a superclass ofHardMathQuestion), including the word virtual every time a
member function is declared is part of safe programming.

As you can see in the definitions of each member function inmathquestface.cpp, the
word virtual appears only in the interface, or .h file, not in the implementation or .cpp
file. Note that the constructors forCarryMathQuestion andHardMathQuestion
each explicitly call the superclass constructorMathQuestion() . A superclass con-
structor will always be called from a subclass, even if the compiler must generate an
implicit call. As we’ll see in Section 13.2 some classes cannot be constructed which is
why MathQuestion does not call the constructor forQuestion , its superclass.

3The word polymorphic is derived from the Greek wordspolus, (many) andmorphe, (shape).

June 7, 1999 10:10 owltex Sheet number 32 Page number 651 magentablack

13.1 Essential Aspects of Inheritance 651

ProgramTip 13.4: Each subclass should explicitly call the constructor of
its superclass. The constructor will be called automatically if you don’t include an
explicit call, and sometimes parameters should be included in the superclass constructor.
Superclass constructors must be called from an initializer list, not from the body of the
subclass constructor. If the superclass is anabstract base class(see Section 13.2) no
superclass constructor can be called.

Program 13.4 mathquestface.cpp

#include <iostream>
#include <iomanip>
using namespace std;
#include "mathquestface.h"
#include "randgen.h"
#include "strutils.h"

MathQuestion::MathQuestion()
: myAnswer("*** error ***"),

myNum1(0),
myNum2(0)

{
// nothing to initialize

}

void MathQuestion::Create()
{

RandGen gen;
// generate random numbers until there is no carry
do
{

myNum1 = gen.RandInt(10,49);
myNum2 = gen.RandInt(10,49);

} while ((myNum1 % 10) + (myNum2 % 10) >= 10);

myAnswer = tostring(myNum1 + myNum2);
}

void MathQuestion::Ask() const
{

const int WIDTH = 7;
cout << setw(WIDTH) << myNum1 << endl;
cout << "+" << setw(WIDTH −1) << myNum2 << endl;
cout << "——-" << endl;
cout << setw(WIDTH −myAnswer.length()) << " ";

}

bool MathQuestion::IsCorrect(const string& answer) const
{

return myAnswer == answer;
}

June 7, 1999 10:10 owltex Sheet number 33 Page number 652magentablack

652 Chapter 13 Inheritance for Object-Oriented Design

string MathQuestion::Answer() const
{

return myAnswer;
}

string MathQuestion::Description() const
{

return "addition of two-digit numbers with NO carry";
}

CarryMathQuestion::CarryMathQuestion()
: MathQuestion()

{
// all done in base class constructor

}

void CarryMathQuestion::Create()
{

RandGen gen;
// generate random numbers until there IS a carry
do
{

myNum1 = gen.RandInt(10,49);
myNum2 = gen.RandInt(10,49);

} while ((myNum1 % 10) + (myNum2 % 10) < 10);

myAnswer = tostring(myNum1 + myNum2);
}

string CarryMathQuestion::Description() const
{

return "addition of two-digit numbers with a carry";
}

HardMathQuestion::HardMathQuestion()
: MathQuestion()

{
// all done in base class constructor

}

void HardMathQuestion::Create()
{

RandGen gen;
myNum1 = gen.RandInt(100,200);
myNum2 = gen.RandInt(100,200);
myAnswer = tostring(myNum1 + myNum2);

}

string HardMathQuestion::Description() const
{

return "addition of three-digit numbers";
} mathquestface.cpp

June 7, 1999 10:10 owltex Sheet number 34 Page number 653magentablack

13.1 Essential Aspects of Inheritance 653

MathQuestion

IsCorrect()

Ask()

Answer()

Create()

Description()

myNum1

myNum2

myAnswer

HardMathQuestion

Create()

Description()

CarryMathQuestion

Description()

Create()

Figure 13.2 Overriding functions in the MathQuestion hierarchy.

Overriding inherited functions. In mathquestface.h , Program 13.3 the declara-
tions for CarryMathQuestion and HardMathQuestion include only a con-
structor and prototypes forCreate andDescription . Declarations for the other
inherited, virtual functionsIsCorrect , Ask , andAnswer arenot included. This
relationship is diagrammed in Figure 13.2.

Nevertheless, it’s possible to callCarryMathQuestion::Ask() and have an
addition question that requires carrying asked of the user. The functionsCreate and
Description are included in the interfaces of the derived classes and implemented
in mathquestface.cppbecause their behavior is different from what’s inherited from
the superclass versions of these functions. When a subclass implements an inherited
function it is calledoverriding the inherited function. When a method is overridden
in a subclass, the subclass uses its own version of the method rather than the inherited
version. Sometimes an inherited function works well even in subclasses. This is the
case with the inherited functionsAsk , Answer , andIsCorrect . The behavior, or
implementation, of each of these functions does not need to be changed orspecialized
in the subclasses, so these inherited functions are not overridden. Since they’re inherited
unchanged, the functions do not appear in the declarations of the derived classes.

June 7, 1999 10:10 owltex Sheet number 35 Page number 654magentablack

654 Chapter 13 Inheritance for Object-Oriented Design

13.1.6 Protected Data Members

A subclass inherits more than behavior from its superclass, but also inherits state. This
means that in addition to inheriting member function interfaces and, sometimes, imple-
mentations; a subclass inherits instance variables. Private instance variables are accessi-
ble only within member functions of the class in which the variables are declared; private
data of a superclass arenot accessible in any derived class. The private data are present
in the derived classes, and if there are accessor functions or mutator functions inherited
from the superclass these inherited functions can be used to access the private data, but
no derived class member functions can access the private data directly.

In some inheritance hierarchies it makes sense for derived classes to access the
instance variables that make up the state. In the math question hierarchy, for example, the
functionsCreate assign values tomyNum1andmyNum2and these values are used in
the functionsAsk (althoughAsk is not overridden by the derived classes.) Any variables
and functions that are declared asprotected are accessible to the member functions of
the class in which they’re declared as protected, but also to the member functions of
all derived classes. The instance variablesmyNum1, myNum2, and myAnswer are
all declared as protected, so they are accessible inMathQuestion methods and also
in the derived classesHardMathQuestion andCarryMathQuestion . This is
diagrammed in Figure 13.2.

It’s often a good idea to avoid inheriting state, and to inherit only interface and
behavior. The problems that arise from inheriting state invariably stem from trying to
inherit from more than one class, so-calledmultiple inheritance. We won’t use multiple
inheritance in this chapter, although we do use it in conjunction with the graphics package
discussed in How to H.

ProgramTip 13.5: When possible, inherit only interface and behavior,not
state. Minimize the inheritance of state if you think you’ll eventually need to inherit
behavior or interfaces from more than one class. When you’re designing an inheritance
hierarchy, protected data are accessible in derived classes, but private data are not, although
the private data are present.

13.1 If the call to new is not included in each call topush_back in Program 13.2,Pause to Reflect

inheritquiz.cpp, will the program compile? Why?

13.2 Suppose the dereferencing operator isn’t used in the call toGiveQuestion from
main in inheritquiz.cpp. Explain howGiveQuestion should be modified so
that it works with this call:GiveQuestion(questions[index]) .

June 7, 1999 10:10 owltex Sheet number 36 Page number 655magentablack

13.2 Using an Abstract Base Class 655

13.3 Suppose you create a new class namedMultMathProblem for quiz questions
based on multiplying a one-digit number by a two-digit number. Explain why the
methodAsk should be overridden in this class although it wasn’t necessary to
override it in the addition quiz questions.

13.4 Arguably, the behavior of theDescription function in each of the classes in
the math question hierarchy is exactly the same, but the string returned differs.
The behavior is the same because each function returns a string, but doesn’t do
anything else different. Explain modifications to the three classes that make up
the math question hierarchy so that the description is an argument when the class
is constructed and the methodDescription is not overridden in each subclass.
The constructor calls inmain might look like this (arguments are abbreviated.)

questions.push_back(
new MathQuestion("+, 2-digits, no carry"));

questions.push_back(
new CarryMathQuestion("+, 2-digits, carry"));

questions.push_back(
new HardMathQuestion("+, 3-digits"));

Why is this approach (arguably) not as good as the approach taken in the code
(whereDescription is overridden)? Think about what client code should be
responsible for and what classes used in client code should be responsible for.

13.5 If protected in MathQuestion is changed toprivate , theCreate func-
tions in each subclass will not compile. Why?

13.6 Design a new class for addition of three two-digit numbers with no carry. What
inherited methods must you override? Why will you need to add a new data
member in the new class? Why is it better to include the data member, say
myNum3in the new class rather than in the classMathQuestion ?

13.7 Suppose you add state and behavior to the math question hierarchy so that each
question tracks how many times itsCreate method is called. This number should
be tracked and updated by the question classes, but readable by client code. In
what class(es) should the data and methods go?

13.2 Using an Abstract Base Class
The question hierarchy shown in Figure 13.1 shows other kinds of questions than math
questions. The classWhatsTheQuestion is designed to encapsulate and generalize
the state-capital question generator declared incapquest.h, discussed in Section 7.2.6,
and implemented incapquest.cpp, Program 7.9. The class is generalized because it per-
mits questions like “What’s the capital of Texas?” and “What artist recordedSlowhand?”
(the answers, respectively, are Austin and Eric Clapton). We’d like to incorporate all
these kinds of questions in the same quiz program: “what-the” questions, math questions,
and other kinds of questions we haven’t yet designed or implemented.

June 7, 1999 10:10 owltex Sheet number 37 Page number 656magentablack

656 Chapter 13 Inheritance for Object-Oriented Design

The new classWhatsTheQuestion should not derive fromMathQuestion if
the new class doesn’t have anything to do with mathematics. Since inheritance models
is-a relationships, it would be a mistake to derive a question about state capitals from
MathQuestion since the state-capital question cannot be used as a math question,
and is-a means “can be used in a program as a” in our use of inheritance. Instead,
we’ll create a new abstraction, one that captures the idea of any kind of question. We’ll
call this new classQuestion ; bothMathQuestion andWhatsTheQuestion will
derive fromQuestion as shown in Figure 13.1.

The classQuestion is an interface class. The class exists as a superclass, but
primarily as an interface for client programs. Clients write code to the specifications
described in prose and code inquestface.h, Program 13.5. As we’ll see, it is not pos-
sible to createQuestion objects. Instead, we can create object that are instances of
classes that derive fromQuestion , and that inherit its interface. Since client programs
are written to the interface, the new classes can be used in any client code that uses
Question objects by reference or as pointers. For example, if we useQuestion
instead ofMathQuestion in the prototype ofGiveQuestion in Program 13.2,
inheritquiz.cpp, we’ll be able to use the quiz prototype program for all kinds of ques-
tions. A new version of the functionGiveQuestion is shown below. The call to
quest.Description is commented out and the extractionoperator >> is re-
placed bygetline to allow the user to enter several words in response to a question.

void GiveQuestion(Question& quest)
// post: quest is asked once, correct response is given
{

string answer;
// cout << endl << quest.Description() << endl;
cout << "type answer after the question" << endl;
quest.Create();
quest.Ask();
getline(cin,answer);
if (quest.IsCorrect(answer))
{ cout << "Excellent!, well done" << endl;
}
else
{ cout << "I’m sorry, the answer is "

<< quest.Answer() << endl;
}

}

The call ofDescription is commented out because it’s a method from theMathQuestion
hierarchy, but not in our current version of theQuestion hierarchy declared inquest-
face.h, Program 13.5.

The declaration forQuestion is like other class declarations, but all the member
functions, except the destructor, are declared with= 0 after the function prototype. As
we’ll see, these makeQuestion anabstract base class.

June 7, 1999 10:10 owltex Sheet number 38 Page number 657magentablack

13.2 Using an Abstract Base Class 657

Program 13.5 questface.h

#ifndef _QUESTIONTERFACE_H
#define _QUESTIONTERFACE_H

// abstract base class for quiz questions
// derived classes MUST implement four functions:
//
// void Ask() to ask the question
// string Answer() to return the answer
// bool IsCorrect(s) to tell if an answer s is correct
// void Create() to create a new question
//
// This class conforms to the naming conventions
// of quiz questions in "A Computer Science Tapestry" 2e

#include <string>
using namespace std;

class Question
{

public:
virtual ∼Question() { } // must implement destructor, here inline

// accessor functions

virtual bool IsCorrect(const string& answer) const = 0;
virtual string Answer() const = 0;
virtual void Ask() const = 0;

// mutator functions

virtual void Create() = 0;
};

#endif questface.h

13.2.1 Abstract Classes and PureVirtual Functions

A function with= 0 as part of its prototype in a class declarationmustbe overridden in
subclasses; such functions are calledpure virtual functions . The syntax and naming
convention are ugly, it’s better to think of these functions asabstract interfaces. They’re
abstract because implementations are not provided,4 and they’re interfaces because sub-
classes must implement a member function with the same prototype, thus conforming
to the interface declared in the base class.

4The “must be overridden” rule is correct, but it’s possible to supply an implementation of a pure virtual
function that can be called from the overriding function in the subclass. However, any class that contains
a pure virtual function cannot be instantiated/constructed. For our purposes, pure virtual functions will
not have implementations, they’re interfaces only.

June 7, 1999 10:10 owltex Sheet number 39 Page number 658 magentablack

658 Chapter 13 Inheritance for Object-Oriented Design

A class that contains one pure virtual function is called anabstract base class,
sometimes abbreviated as anabc (or, redundantly, an abc class5). I’ll refer to these as
abstract classes. It’s not possible to define variables of a type that’s an abstract class.
Instead, subclasses of the abstract class are designed and implemented. Variables that
are instances of theseconcrete subclassescan be defined. A concrete class is one for
which variables can be constructed. Concrete is, in general, the opposite of abstract.

Why Use Abstract Classes? Designing an inheritance hierarchy can be tricky. One
reason it’s tricky is that to be robust, a hierarchy must permit new subclasses to be
designed and implemented. Often, the original designer of the hierarchy cannot foresee
everything clients will do with the hierarchy. Nevertheless, a well-designed hierarchy
will be flexible in both use and modification through subclassing.

One design heuristic that helps make a class hierarchy flexible is to derive only from
abstract classes. Clients are forced to implement each pure virtual function and are thus
less likely to forget to implement one, thus getting inherited, but unexpected behavior.
The hierarchies we show in this book won’t cause troubleas we’re using them.But what
about how other programmers will use our hierarchies? In general, you cannot expect
all programmers to use your code wisely and not make mistakes. I certainly don’t. A
lengthy description of why it’s a good idea to use abstract classes as superclasses is
found in [Mey96] as item 33. This is one of several items that appear in a section called
Programming in the Future Tense.

Program Tip 13.6: Good software is flexible, robust, and reliable. It
meets current needs, but adapts well to future needs, ideally to ideas not
completely anticipated when the software is designed and implemented.
Good programmers anticipate that things will change and design code to be adaptable in

the face of inevitable change and maintenance.

Program 13.6 whatsthequizmain.cpp

int main()
{

tvector<Question ∗> questions;
questions.push_back(new HardMathQuestion());
questions.push_back(new WhatsTheQuestion("what's the capital of ","statequiz.dat"));
questions.push_back(new WhatsTheQuestion("what artist made ","cdquiz.dat"));

int qCount = PromptlnRange("how many questions",1,10);
RandGen gen;
for(int k=0 ; k < qCount; k++)
{ int index = gen.RandInt(0,questions.size() −1);

GiveQuestion(∗questions[index]);

5What does PIN stand for — the thing you type as a password when you use an ATM? There is no such
thing as a PIN number, nor an ATM machine. Well, there are such things, but there shouldn’t be.

June 7, 1999 10:10 owltex Sheet number 40 Page number 659magentablack

13.2 Using an Abstract Base Class 659

}
for(int k=0 ; k < questions.size(); k++)
{ delete questions[k];
}
return 0;

} whatsthequizmain.cpp

We’ll pass different objects to the modified functionGiveQuestion that uses the
Question interface. Themain that’s shown is part ofwhatsthequiz.cpp.6

O U T P U T

prompt> whatsthequiz
how many questions between 1 and 10: 5

type answer after the question
what’s the capital of South Dakota : pierre
Excellent!, well done

type answer after the question
191

+ 102

293
Excellent!, well done

type answer after the question
what artist made No Jacket Required : who knows
I’m sorry, the answer is Phil Collins

type answer after the question
157

+ 146

303
Excellent!, well done

type answer after the question
what artist made Terrapin Station : grateful dead
Excellent!, well done

We use PromptlnRange instead of PromptRange because we’re using
getline in GiveQuestion instead ofoperator >> (see Program Tip 9.3.) The

6The entire program is not shown here, but is available with the code that comes with this book.

June 7, 1999 10:10 owltex Sheet number 41 Page number 660 magentablack

660 Chapter 13 Inheritance for Object-Oriented Design

vector question is now a vector of pointers toQuestion objects instead of
MathQuestion objects. ClassWhatsTheQuestion is declared inwhatstheface.h.

Program 13.7 whatstheface.h

#ifndef _WHATSTHEQUESTION_H
#define _WHATSTHEQUESTION_H

#include <string>
using namespace std;

// see "questface.h" for details on member functions
//
// A class for generating quiz questions like
// "What’s the capital of Arkansas"
// "Who wrote Neuromancer"
// "What artist recorded ’Are You Gonna Go My Way’"
//
// A file of questions is read, one is used at random each time Create
// is called. The file is in the format
//
// question
// answer
// question
// answer
//
// i.e., a question uses two lines, the answer is the second line, the
// question is the first line:
//
// Terrapin Station
// Grateful Dead
// Hoist
// Phish
// It’s A Shame About Ray
// Lemonheads
// ——————-
//
// The constructor and method Open take a prompt and a file of questions
// as parameters, e.g.,
// WhatsTheQuestion capitals("What’s the capital of", "capitals.dat");

#include "questface.h"
#include "tvector.h"

class WhatsTheQuestion : public Question
{

public:
WhatsTheQuestion();
WhatsTheQuestion(const string& prompt,

const string& filename);

virtual bool IsCorrect(const string& answer) const;
virtual string Answer() const;

June 7, 1999 10:10 owltex Sheet number 42 Page number 661magentablack

13.2 Using an Abstract Base Class 661

virtual void Ask() const;

virtual void Create();

virtual void Open(const string& prompt,

const string& filename);

protected:

struct Quest

{

string first;

string second;

Quest() {} // need vector of Quests

Quest(const string& f, const string& s)

: first(f),

second(s)

{}

};

tvector<Quest> myQuestions; // list of questions read

string myPrompt; // prompt the user, "what’s the ..."

int myQIndex; // current question (index in myQuestions)

};

#endif whatstheface.h

13.2.2 When Is a Method virtual ?

We’ve discussed the advantages of using an inheritance hierarchy and saw how few
modifications were needed in a client program likeinheritquiz.cpp, Program 13.2, to
use completely different kinds of questions. A case has been made to design inheritance
hierarchies by deriving from abstract classes, but when should functions be virtual and
when should they be pure virtual? One easy answer is that if you’re designing an
inheritance hierarchy, you should make every member function virtual.

ProgramTip 13.7: Make all methods in a superclass virtual methods. The
superclass may be an abstract class in which at least some of the methods are pure virtual.
It’s an easy decision to make all methods in a superclass virtual. The cost is a possible
mild performance penalty since virtual functions are slightly more expensive to call than
nonvirtual functions. However, until you know where your code needs performance
tuning, do not try to anticipate performance problems by making methods in a superclass
nonvirtual.

Three classes ininheritdemo.cpp, Program 13.8, form a small inheritance hierar-
chy. We’ll use the superclassPerson and subclassesSimpleton andThinker to
demonstrate what can happen when functions in a superclass aren’t virtual. In the listing
and first run of the program, all classes are virtual. The classPerson is abstract since
Person::ThinkAloud is a pure virtual method. Implementations are provided for

June 7, 1999 10:10 owltex Sheet number 43 Page number 662 magentablack

662 Chapter 13 Inheritance for Object-Oriented Design

the other methods inPerson , but all methods are virtual, so they can be overridden in
derived classes.

Program 13.8 inheritdemo.cpp

#include <iostream>
#include <string>
using namespace std;

#include "dice.h"

class Person // abstract base class for every Person
{

public:
virtual ∼Person() {}

virtual void ThinkAloud() = 0; // makes class abstract

virtual void Reflect() const
{ cout << "...As I see it, ...";
}
virtual string Name() const
{ return "Ethan";
}

};

class Simpleton : public Person // a simple thinker
{

public:
Simpleton(const string& name);
virtual void ThinkAloud();

virtual void Reflect() const;
virtual string Name() const;

private:
string myName;

};

class Thinker : public Person // a cogent person
{

public:
Thinker(const string& name);
virtual void ThinkAloud();

virtual void Reflect() const;
virtual string Name() const;

private:
string myName;
int myThoughtCount;

};

June 7, 1999 10:10 owltex Sheet number 44 Page number 663 magentablack

13.2 Using an Abstract Base Class 663

Simpleton::Simpleton(const string& name)
: myName(name)

// postcondition: ready to think
{ }

void Simpleton::ThinkAloud()
// postcondition: has thought
{

cout << "I don't think a lot" << endl;
}

void Simpleton::Reflect() const
// postcondition: has reflected
{

Person::Reflect();
cout << "I'm happy" << endl;

}

string Simpleton::Name() const
// postcondition: returns name
{

return myName + ", a simpleton";
}

Thinker::Thinker(const string& name)
: myName(name),

myThoughtCount(0)
// postcondition: ready to think
{ }

void Thinker::ThinkAloud()
// postcondition: has thought
{

if (myThoughtCount < 1)
{ cout << "I'm thinking about thinking" << endl;
}
else
{ cout << "Aha! I have found the answer!" << endl;
}
myThoughtCount++;

}

void Thinker::Reflect() const
// postcondition: has reflected
{

cout << "I'm worried about thinking too much" << endl;
}

string Thinker::Name() const
// postcondition: returns name
{

return myName + ", a thinker";
}

void Think(Person & p)

June 7, 1999 10:10 owltex Sheet number 45 Page number 664magentablack

664 Chapter 13 Inheritance for Object-Oriented Design

// postcondition: p has thought and reflected once
{

cout << "I am " << p.Name() << endl;
p.ThinkAloud();
p.Reflect();

}

int main()
{

Simpleton s ("Sam");
Thinker t ("Terry");
int k;
for(k=0 ; k < 2; k++)
{ Think(s);

cout << "—-" << endl << endl;
Think(t);
cout << "—-" << endl << endl;

}
return 0;

} inheritdemo.cpp

Note thatSimpleton::Reflect calls the superclassReflect method by qual-
ifying the call with the name of the superclass. All superclass methods are inherited,
and can be called even when the methods are overridden in a subclass.

O U T P U T

prompt> inheritdemo
I am Sam, a simpleton
I don’t think a lot
...As I see it, ...I’m happy

I am Terry, a thinker
I’m thinking about thinking
I’m worried about thinking too much

I am Sam, a simpleton
I don’t think a lot
...As I see it, ...I’m happy

I am Terry, a thinker
Aha! I have found the answer!
I’m worried about thinking too much

June 7, 1999 10:10 owltex Sheet number 46 Page number 665magentablack

13.2 Using an Abstract Base Class 665

If we makePerson::Name non-virtual, the behavior of the program changes.
Each subclass inherits the nonvirtualName, but any call toNamethrough a pointer or
reference to the superclassPerson cannot be overridden. What this means is that in the
functionThink , where the parameter is aPerson reference, the callp.Name() will
call Person::Name regardlessof the type of the argument passed toThink . Recall
that nonvirtual functions are resolved at compile-time. This means that the determination
of what function is called byp.Name() is made when the program is compiled, not
when the program is run. The determination of what function is actually called by
p.ThinkAloud() andp.Reflect() is made at runtime because these functions
are virtual. Because of thislate binding of the virtual function actually called, the
execution reflects arguments passed to the function at runtime rather than what the
compiler can determine when the program is compiled. In the sample run that follows
only one round of thinking and reflecting is shown since this is enough to see the effects
of the nonvirtual functionPerson::Name : every person in the program prints the
nameEthan although that’s not really any person’s name!

O U T P U T

prompt> inheritdemo
I am Ethan
I don’t think a lot
...As I see it, ...I’m happy

I am Ethan
I’m thinking about thinking
I’m worried about thinking too much

Virtual Destructors. Although it hasn’t mattered in the examples we’ve studied so far,
the destructor in any class with virtual methodsmustbe virtual. Many compilers issue
warnings if the destructor in a class is not virtual when some other method is virtual.
As we noted in Program Tip 13.4, each subclass automatically calls the superclass
constructor. The same holds for subclass destructors. Whenever a subclass destructor
is called, the superclass destructors will be called as well. Superclass destructor calls,
like all destructor calls, are automatic. This means you must implement a superclass
destructor, even for abstract classes! Although abstract classes cannot be constructed,
it’s very likely that you’ll call a destructor through a superclass pointer. The last loop
in main of inheritquiz.cpp, Program 13.2, calls a destructor through a pointer to the
superclassMathQuestion . The destructor should be virtual to ensure that the real
destructor, the one associated with the actual object being destroyed, is called. This
is illustrated in Figure 13.3 where theSubclass destructor is called throughs , a

June 7, 1999 10:10 owltex Sheet number 47 Page number 666magentablack

666 Chapter 13 Inheritance for Object-Oriented Design

Superclass * s;
s = new Subclass();
...
delete s; Subclass

Superclass

~Superclass

~Subclass

Figure 13.3 The subclass destructor automatically calls the superclass destructor, even when
the superclass is abstract. The superclass must provide a destructor implementation even when
the destructor is pure virtual.

Superclass pointer. The destructor̃Superclass() is automatically called by
˜Subclass() .

When to Make a Virtual Function Pure. Any class with one pure virtual method is
abstract. Every method that’s an intrinsic part of a superclass interface, and that must
be implemented in every subclass, should be pure virtual in the superclass. If you can
decide at design time that a default implementation of a method in the superclass is a
good idea, then the method can be virtual rather than pure virtual. A pure virtual method
doesn’t have a reasonable default implementation, but is clearly part of the interface in
an inheritance hierarchy.

It’s possible that you’ll want default implementations for every method, but still want
an abstract class. You can do this by making the destructor pure virtual, and still provide
an empty-body implementation. This is a two-step process:

Declare the destructor pure virtual, that is,

virtual ˜Superclass() = 0;

Provide an empty-body implementation in a .cpp file that must be linked in creating
the final program.

Superclass::˜Superclass()
{
}

You’ll get a link error if you fail to provide an implementation. Remember that a pure
virtual function must be overridden, but you can provide an implementation (that can be
called by subclass implementations).

June 7, 1999 10:10 owltex Sheet number 48 Page number 667magentablack

13.2 Using an Abstract Base Class 667

13.8 In the run ofwhatsthequiz.cppin Section 13.2.1, the user typespierre as thePause to Reflect

capital of South Dakota, and the answer is acknowledged as correct. However,
the entry for South Dakota in the data filestatequiz.dat is Pierre , with a
capital ‘P.’ What method judges the lowercase versionpierre as correct? Given
the declarationwhatstheface.h, Program 13.7, write the method.

13.9 If the user had typedBismark for the capital of South Dakota, what would have
been printed as the correct answer. In particular, what case would be used for the
first letter of the answer?

13.10 Suggest an alternative design toWhatsTheQuestion that would enable the
user to construct an instance of the class by giving the filename, but without giving
the prompt used for the question. (Hint: what information is stored in the file?)

13.11 There is no destructor̃WhatsTheQuestion() declared inwhatstheface.h,
Program 13.7 nor is there a destructor declared inmathquestface.h, Program 13.3.
However, the final loop that deletes objects through pointers ininheritquiz.cpp
and its modification that uses classQuestion doesn’t generate errors. Why?

13.12 If Question is modified to have aDescription function similar to the
function used byMathQuestion classes, but so that subclassesmustoverride
Description , then what does the declaration look like inquestface.h, Pro-
gram 13.5?

13.13 Should the functionPerson::Name() in Program 13.8 have a default imple-
mentation or would it be better to make the function pure virtual? Why?

13.14 Suppose an implementation ofPerson::ThinkAloud() is defined as fol-
lows (inline in the class declaration).

virtual void ThinkAloud()
{

cout << "My brain says...";
}

Show how this function can be called byThinker::ThinkAloud() only in
the case thatThinker prints the message below:

Aha! I have found the answer!

13.15 If the default implementation from the previous problem is provided, and the word
virtual removed from the declaration ofPerson::ThinkAloud , how does
the output of the program change (show your answer by modifying the full run of
the program).

June 7, 1999 10:10 owltex Sheet number 49 Page number 668magentablack

668 Chapter 13 Inheritance for Object-Oriented Design

inverter, not and or

Figure 13.4 Three basic gates for building circuits.

13.3 Advanced Case Study: Gates, Circuits,
and Design Patterns

In this section we’ll study the design and implementation of a class hierarchy and set of
programs for simulatinglogic gatesand circuits.7 We’ll see how a well-designed class
hierarchy enables us to model in software the same modular, component-based circuit
construction that hardware designers use. We’ll use the heuristics for programming
with inheritance discussed earlier in the chapter as well as some of thedesign pat-
terns from [GHJ95] that have become part of the standard tool kit for object-oriented
programmers.

13.3.1 An Introduction to Gates and Circuits

In both an abstract and concrete sense, current computers are built from gates and chips,
sometimes calleddigital logic. Although computers now have specially designed chips
for tasks like playing sound, doing graphics, and reading disks, at some low level ev-
erything can be built from gates that regulate when and how electricity flows through a
circuit. We’ll use a standard set of three gates to construct different circuits and then use
these circuits to construct other circuits. Eventually this process can lead to a working
computer. Instead of physically building the gates we’ll model them in software. The
relationship between mathematical logic and digital logic was first recognized by Claude
Shannon (see his biography in Section 4.3.3.)

The three gates we’ll use are shown in Figure 13.4. They are theand-gate, the
or-gate, and theinverter or not-gate. Each of these gates corresponds to a boolean
operator with the same name in C++. Traditionally, the behavior of these gates is shown
with truth tables identical to those in Table 4.3 for the logical operators. Program 13.9
simply creates one of each gate and tests it with all possible inputs to show how gate
behavior is the same as the behavior of the logical operators shown in Table 4.3.

7This example was motivated by a related example in [AS96]. If you read only one (other) book in
computer science, that should be the one. It is simply the best introductory book on computer science
and programming there is, though it’s not easy reading.

June 7, 1999 10:10 owltex Sheet number 50 Page number 669magentablack

13.3 Advanced Case Study: Gates, Circuits, and Design Patterns 669

Program 13.9 gatetester.cpp

#include <iostream>
using namespace std;

#include "gates.h"
#include "wires.h"

// show truth tables for each digital logic gate

int main()
{

Gate ∗ andg = new AndGate();
Gate ∗ org = new OrGate();
Gate ∗ inv = new Inverter();

GateTester::Test(andg);
GateTester::Test(org);
GateTester::Test(inv);

return 0;
} gatetester.cpp

O U T P U T

prompt> gatetester
testing and (0)

0 0 : 0
1 0 : 0
0 1 : 0
1 1 : 1

testing or (0)

0 0 : 0
1 0 : 1
0 1 : 1
1 1 : 1

testing inv (0)

0 : 1
1 : 0

June 7, 1999 10:10 owltex Sheet number 51 Page number 670magentablack

670 Chapter 13 Inheritance for Object-Oriented Design

AndGate OrGate

Inverter Connector CompositeGate

Gate

NMGateProbe

Figure 13.5 Hierarchy of components for building circuits.

The output is displayed using ones and zeros instead of true and false, but one corresponds
to true and zero corresponds to false. If you look atgatetester.cppcarefully, you’ll notice
thatnew is called for three different types, but the returned pointer is assigned to variables
of the same type:Gate . The inheritance hierarchy that enables this assignment is
shown in Figure 13.5. The classGateTester , included via#include"gates.h" ,
contains a static methodTest . We could have madeTest a free function, but by
making it a static function in theGateTester class we avoid possible name classes
with other functions namedTest .8 Gates by themselves aren’t very interesting; to build
circuits we need to connect the gates together using wires. Complex circuits are built by
combining gates and wires together. Once a circuit is built, it can become a component
in other circuits, acting essentially like a more complex gate.

13.3.2 Wires, Gates, and Probes

Program 13.10,gatewiredemo.cppshows another method of gate construction. Wires
are created, and then gates are constructed with wires attached to each gate’s input(s)
and output(s). The gates in Program 13.9 were constructed without wires attached to the
inputs and outputs, but as we’ll see later it’s possible to attach wires after a gate has been
constructed as well as to construct a gate from wires as shown in Program 13.10. All
three of the principle logic gates (and, or, inverter) can be given a name when constructed
as shown for theandg gate pointer.

The gates ingatewiredemo.cppare wired together as shown in Figure 13.6. An
and-gate and an or-gate are attached so that the output of the and-gate feeds into the
or-gate. In addition,Probe objects are attached to the output wires of the gates. As

8The C++namespacefeature (see SectionA.2.3) could also be used to avoid name conflicts, but several
compilers still don’t support namespaces.

June 7, 1999 10:10 owltex Sheet number 52 Page number 671 magentablack

13.3 Advanced Case Study: Gates, Circuits, and Design Patterns 671

Probe q
Probe p

in

in2

in3

oout

aout

Figure 13.6 A simple example using gates, wires, and probes.

shown in Figure 13.5, aProbe is-a Gate . Abstractly, gates are attached to wires (and
vice versa), so a probe is similar to an and-gate in this respect. AProbe object prints
a message whenever the current on the wire it’s monitoring changes, but also prints a
message when it’s first attached to a wire.

When a wire is constructed, the current on the wire is set to zero/false. The current
changes when it’s either explicitly changed usingWire::SetCurrent , or when a
change in current propagates from an input wire to an output wire through a gate. A
careful reading of the program and output shows that wires can be printed, and that
each wire is numbered in the order in which it’s created (a static counter inwires.h,
Program G.15, keeps track of how many wires have been created). After the circuit is
constructed, the probes detect and print changes caused by changes in the circuit.

Program 13.10 gatewiredemo.cpp

#include <iostream>
using namespace std;

#include "gates.h"
#include "wires.h"

int main()
{

Wire ∗ in = new Wire(); // and-gate in
Wire ∗ in2 = new Wire(); // and-gate in
Wire ∗ in3 = new Wire(); // or-gate in
Wire ∗ aout = new Wire(); // and-gate out
Wire ∗ oout = new Wire(); // or-gate out

Gate ∗ andg = new AndGate(in,in2,aout,"andgate");
Gate ∗ org = new OrGate(in3,andg −>OutWire(0),oout);
cout << "attaching probes" << endl;
Probe ∗ p = new Probe(aout); // attach to the and-out wire
Probe ∗ q = new Probe(oout); // attach to the or-out wire

cout << "set " << ∗in << " on" << endl;
in −>SetSignal(true);

June 7, 1999 10:10 owltex Sheet number 53 Page number 672magentablack

672 Chapter 13 Inheritance for Object-Oriented Design

cout << "set " << ∗in2 << " on" << endl;
in2 −>SetSignal(true);
cout << "set " << ∗in << " off" << endl;
in −>SetSignal(false);
cout << "set " << ∗in3 << " on" << endl;
in3 −>SetSignal(true);
return 0;

} gatewiredemo.cpp

After the probes are attached, the current onwire 0 , one of the and-gate inputs,
is turned on (or set). Since the other and-gate input has no current, no current flows
out of the and-gate. When the current towire 1 is set, the and-gate output (wire 3)
becomes set and the probe detects this. Since the and-gate output is one of the or-gate
inputs, the or-gate output (wire4) is also set and the other probe detects this change.
The probes continue to detect changes as current is turned off and on as illustrated in the
program and output.

O U T P U T

prompt> gatewiredemo
attaching probes

(wire 3) signal= 0
(wire 4) signal= 0

set (wire 0) on
set (wire 1) on

(wire 4) signal= 1
(wire 3) signal= 1

set (wire 0) off
(wire 4) signal= 0
(wire 3) signal= 0

set (wire 2) on
(wire 4) signal= 1

13.3.3 Composite Gates and Connectors

Program 13.12 shows two ways of constructing thexor-gate illustrated in Figure 13.7.
The output of an xor-gate is set when one of its inputs is set, but not when both are
set. The truth-table generated byGateTester::Test for an xor-gate is shown in
the output. Both methods create aCompositeGate object, another of the gates in the
hierarchy shown in Figure 13.5. ACompositeGate is-a gate as shown in the diagram,
but it’s a gate made up of other gates. In particular, a composite gate can be formed
from the basic gate building-blocks, but also from other composite gates. A collection
of connected gates is also known as acircuit , so aCompositeGate object represents
a circuit. The key idea here is that a circuit is also a gate for building other circuits.

June 7, 1999 10:10 owltex Sheet number 54 Page number 673magentablack

13.3 Advanced Case Study: Gates, Circuits, and Design Patterns 673

Figure 13.7 Building an xor circuit.

Program Tip 13.8: The class CompositeGate is a concrete example of
the Composite design pattern [GHJ95]. There, the pattern is a solution to a prob-
lem stated as “you want clients to be able to ignore the difference between compositions
of objects and individual objects. Clients will treat all objects … uniformly.”

A linked-list can also be viewed as a composite. A node is an individual item in a list,
but it also represents a complete list since the node provides access to the rest of the list.
Just as a node contains information and a pointer to another node, aCompositeGate
contains information about the gate and many pointers to other gates, the gates that make
up the circuit. Rather than dwell on the implementation of the class, we’ll see how it’s
used to create complex circuits.

It’s almost simpler to create a new classXorGate than to build a composite gate
that works like an xor-gate. However, creating a new class requires writing code and
recompiling a program. As we’ll see in the final program from this chapter, it’s possible to
create a gate-construction language or program that can build new gates while a program
is running. The only member function of a classXorGate that differs in a substantive
way from eitherAndGate or OrGate isXorGate::Act , the method that determines
how a signal propagates through the gate.

Program 13.11 xorgate.cpp

class XorGate : public Gate
{

public:
virtual void Act()
{

myOuts[0] −>SetSignal(
(myIns[0] −>GetSignal() || myIns[1] −>GetSignal()) &&

!(myIns[0] −>GetSignal() && myIns[1] −>GetSignal())
)

}
}; xorgate.cpp

June 7, 1999 10:10 owltex Sheet number 55 Page number 674magentablack

674 Chapter 13 Inheritance for Object-Oriented Design

The partial class declaration and definition shown above captures in boolean logic
and code exactly the relationship shown in digital logic in Figure 13.7. The output is set
when either input is set, but not when both inputs are set.

Constructing CompositeGate Objects. ThreeCompositeGate methods allow
a complex gate to be constructed from other gates.

AddGate adds a gate to a composite gate. Presumably the added gates will be
connected in some way (otherwise the composite gate won’t be very useful.)

AddIn adds an input wire to a composite gate. Presumably each input wire is
connected to a gate that’s part of the composite object. Each call ofAddIn adds
a new input wire.

AddOut adds an output wire to a composite gate. As withAddIn , presumably
each added output wire is connected to one of the gates added to the composite.

Each of these methods is shown inMakeXORof Program 13.12. Note that each
call of AddIn andAddOut adds a wire that is an input (respectively output) of a gate
already added to the composite. The input and output wires could be specified first, then
the gates added; the net effect is the same.

Using the Method Gate::clone . TheMakeXORfunction also shows the method
Gate::clone applied to theAndGate objectag . The methodclone is abstract9

in Gate so every concrete subclass must provide an implementation. Client programs
typically define objects and reference them through pointers of typeGate * more often
than by pointers of a specific subclass likeAndGate * or CompositeGate * . Since
clone is virtual, the object actually cloned returns a copy of itself.

void DoStuff(Gate * g)
// post: do something with a copy of g
{

Gate * copy = g->clone();
// what kind of gate is copy? we can’t tell but
// we can apply any generic Gate method to copy

}

In this example, the object referenced bycopy is some kind of gate, and if clone works
as expectedcopy is a duplicate of the gateg passed to the functionDoStuff . The
Gate::clone method is an example of what’s often called avirtual constructor .
The clone method is used to create objects, like a constructor, but the clone method is
virtual so it creates an object whose type isn’t known at compile time.

9Recall that I useabstractrather than the more C++ specific termpure virtual.

June 7, 1999 10:10 owltex Sheet number 56 Page number 675 magentablack

13.3 Advanced Case Study: Gates, Circuits, and Design Patterns 675

Program Tip 13.9: The clone method is a concrete example of what’s
called the Factory Method design pattern in [GHJ95]. There, the pattern is
a solution to a problem paraphrased as “client code can’t anticipate what kind of objects
it must create or wants to delegate responsibility of creation to subclasses in a class
hierarchy.”

Using Connectors. The functionsMakeXORandMakeXOR2illustrate the differences
between callingConnect to connect wires to gate inputs and output (inMakeXOR) and
constructing gates from existing wires (MakeXOR2). When gates are constructed with-
out wires attached as they are inMakeXOR, the gate functionsInWire andOutWire
are used to access input wires and output wires, respectively, for attaching these wires
to other wires using connectors. A connector is a gate that simply transfers current from
one wire to another as though the wires are joined or soldered together.

As the output shows, the circuit created byMakeXORuses more wires than the circuit
created byMakeXOR2. When gates are constructed without wires in client code, each
gate creates its own wires for input and output. Counting the input and output wires
for each gate in Figure 13.7 shows that there are 11 wires: 3×(2 and-gates) + 3×(1
or-gate) + 1×(2 inverters). The wires for the gate created byMakeXOR2are explicitly
created in the client program. There are fewer wires since, for example, the connections
between the inputs of the rightmost and-gate (whose output is the circuit’s output) and
their sources (the outputs of the or-gate and inverter) require only two wires whereas
four wires are used byMakeXOR.

Program 13.12 xordemo.cpp

#include <iostream>
using namespace std;

#include "gates.h"
#include "wires.h"
#include "tvector.h"

// illustrate connecting wires to gates using Connect

CompositeGate ∗ MakeXOR()
// post: return an xor-gate
{

CompositeGate ∗ xorg = new CompositeGate(); // holds xor-gate
Gate ∗ ag = new AndGate(); // build components
Gate ∗ ag2= ag −>clone(); // and gate a different way
Gate ∗ og = new OrGate();
Gate ∗ inv = new Inverter();

Connect(og −>InWire(0), ag −>InWire(1)); // wire components
Connect(og −>InWire(1), ag −>InWire(0));
Connect(ag −>OutWire(0), inv −>InWire(0));

June 7, 1999 10:10 owltex Sheet number 57 Page number 676magentablack

676 Chapter 13 Inheritance for Object-Oriented Design

Connect(inv −>OutWire(0), ag2 −>InWire(1));
Connect(og −>OutWire(0), ag2 −>InWire(0));

xorg −>AddGate(ag); xorg −>AddGate(ag2); // add gates to xor-circuit
xorg −>AddGate(inv); xorg −>AddGate(og);

xorg −>AddOut(ag2 −>OutWire(0)); // add inputs/outputs
xorg −>AddIn(og −>InWire(0)); xorg −>AddIn(og −>InWire(1));

return xorg;
}

CompositeGate ∗ MakeXOR2()
// post: returns an xor-gate
{

CompositeGate ∗ xorg = new CompositeGate();
tvector<Wire ∗> w(6); // need 6 wires to make circuit
tvector<Gate ∗> gates; // holds the gates in the xor-circuit
int k;
for(k=0 ; k < 6; k++)
{ w[k] = new Wire();
}
gates.push_back(new OrGate(w[0], w[1], w[2])); // create wired gates
gates.push_back(new AndGate(w[0], w[1], w[3])); // share inputs
gates.push_back(new Inverter(w[3], w[4])); // and out->inv in
gates.push_back(new AndGate(w[2], w[4], w[5])); // combine or, inv

for(k=0 ; k < gates.size();k++) // add gates to xor
{ xorg −>AddGate(gates[k]);
}
xorg −>AddIn(w[0]); xorg −>AddIn(w[1]); // add inputs/outputs
xorg −>AddOut(w[5]);

return xorg;
}

int main()
{

CompositeGate ∗ g = MakeXOR();
CompositeGate ∗g2 = MakeXOR2();
cout << "circuit has " << g −>CountWires() << " wires" << endl;
GateTester::Test(g);
cout << "circuit has " << g2 −>CountWires() << " wires" << endl;
GateTester::Test(g2);

return 0;
} xordemo.cpp

The code inMakeXOR2exploits theGate class hierarchy by creating a vector of pointers
to Gate * objects, but creating different kinds of gates for each pointer to reference. A
vector ofGate * pointers is also used in the private section of theCompositeGate
class to store the gates used in constructing the composite object. Although the functions
MakeXORandMakeXOR2create different digital circuits, the circuits are identical from

June 7, 1999 10:10 owltex Sheet number 58 Page number 677magentablack

13.3 Advanced Case Study: Gates, Circuits, and Design Patterns 677

a logical view point: they compute the same logical operator as shown by the truth tables.
The different functions create aCompositeGate using the same process.

1. Create an initially empty composite.

2. Construct gates, wire them together, and add the gates to the composite.

3. Specify input wires and output wires for the composite.

4. The composite object is finished.

As we’ve noted, steps two and three can be interchanged, the relative order in which
these steps are executed does not affect the final composite gate.

O U T P U T

prompt> xordemo
circuit has 11 wires
testing composite: 4 gates, 2 in wires, 1 out wires

0 0 : 0
1 0 : 1
0 1 : 1
1 1 : 0

circuit has 6 wires
testing composite: 4 gates, 2 in wires, 1 out wires

0 0 : 0
1 0 : 1
0 1 : 1
1 1 : 0

13.16 Suppose a probepin is added to the input wirein as part of Program 13.10:Pause to Reflect

Prob e * q = new Probe(oout); // in original program
Probe * pin = new Probe(in); // added here

As a result of adding this probe three lines of output are added. What are the lines
and where do they appear in the output? (Hint: one line is printed when the probe
is attached.)

13.17 If the AndGate instanceandg in Program 13.10 is tested at the end ofmain ,
the truth table printed is the standard truth table for an and-gate.

June 7, 1999 10:10 owltex Sheet number 59 Page number 678magentablack

678 Chapter 13 Inheritance for Object-Oriented Design

This happens even though the output ofandg is connected to the input of the
or-gateorg . Why? (Hint: is the circuit consisting of the and-gate and or-gate
combined into aGate object?)

GateTester::Test(andg);

13.18 The probep can be removed from the wireaout at the end of Program 13.10
using aWire member function. What’s the function and what call uses it to
remove the probe (seewires.h, Program G.15 forWire methods)?

13.19 Write the functionRemoveProbe whose header follows. (Seewires.h and
gates.hin How to G.)

void RemoveProbe(Probe * p)
// post: p is removed from the wire it monitors/probes

13.20 The return type of the functionMakeXOR is CompositeGate * in
Program 13.12,xordemo.cpp. If the return type is changed toGate * an xor-gate
is still returned, but the call ofMakeXORbelow fails to compile.

CompositeGat e * g = MakeXOR();

If g’s type is changed toGate * the definition ofg compiles, but then the output
statement below fails to compile.

cout << "circuit has " << g->CountWires()
<< " wires" << endl;

What’s the cause of this behavior (hint:CountWires is not aGate method.)

13.21 The circuit diagrammed in Figure 13.8 shows a circuit that is logically equivalent
to an or-gate, but which is constructed from an and-gate and three inverters. Write
a functionMakeORthat returns aCompositeGate representing the circuit
diagrammed in Figure 13.8. Draw a similar circuit that’s logically equivalent to
an and-gate using only inverters and or-gates.

0 0 0

0 1 1

1 0 1

1 1 1

Figure 13.8 Building an or-gate from other basic gates.

June 7, 1999 10:10 owltex Sheet number 60 Page number 679magentablack

13.3 Advanced Case Study: Gates, Circuits, and Design Patterns 679

Control

Figure 13.9 A disabler circuit.

13.22 The circuit diagrammed in Figure 13.9 is adisabler circuit. The signal on the
wire labelledControl determines if the signal on the (other) input wire is passed
through to the output wire of the disabler. When the control signal is zero (off),
the input signal goes through to the output, (i.e., the input and the output are the
same). When the control signal is set, (i.e., true/one), the input signal is stopped,
or disabled, and the output wire is false/zero regardless of the value on the input
wire.

Write a functionMakeDisabler that returns a disabler circuit. Construct both
gates without wires so that you must useConnect to wire the circuit together.
How many wires are used in the circuit? (Do this exercise on paper, not neces-
sarily by writing and testing a function.) Implement an alternative version called
MakeDisabler2 which does not useConnect so that both gates in the circuit
are constructed with wires. How many wires are used in the circuit?

13.23 Write the methodDisabler::Act that represents the logic of a disabler circuit.
Model the function on the version ofXorGate::Act shown in Section 13.3.3.

13.24 Thecomparator circuit shown in Figure 13.10 determines whether the signal on
the wire labeledR is less than the signal on the wire labeledC, where one/zero are
used for true/false. (continued)

DC

disabler
DC

DCR
<

>
C

Figure 13.10 A comparator circuit for selecting the larger of two values.

June 7, 1999 10:10 owltex Sheet number 61 Page number 680magentablack

680 Chapter 13 Inheritance for Object-Oriented Design

Write a truth table for the circuit by tracing all four possible combinations of
zero/one for inputs and labeling the corresponding outputs. Verify that if the
signals are the same, the outputs are both zero. IfR < C then the lower output
wire labeled< is one/true and the upper wire is zero/false. IfR > C then the
upper output labeled> is one/true and the lower wire is zero/false.

13.25 Assume a functionMakeDisabler is written that returns a disabler-gate/circuit.
Use this function to write aMakeComparator function that returns a composite-
gate encapsulating a comparator circuit.

13.26 Do you expect the truth tables printed by the two calls ofGateTester::Test
that follow to be the same? Why?

void TruthTwice(Gate * g)
{

Gate * copy = g->clone();
GateTester::Test(g);
GateTester::Test(copy);

}

13.3.4 Implementation of the Wire and Gate Classes

The interactions between classes in theGate hierarchy and the classWire are fairly
complex. It’s not essential to understand these interactions to write simple programs like
the ones we studied in previous sections, but a solid understanding of the interactions is
needed before you write your ownGate subclasses or write more involved programs.

Once we’ve looked at the classes and their implementations in more detail, we’ll be
able to make judgments about the overall design of theGate /Wire framework. We’ll
see that there are some problems in theGate class hierarchy that make it more difficult
to add anXorGate subclass than it should be. It’s not difficult to add such a class,
but the process would be considerably more simple with the introduction of a new class
encapsulating behavior common toAndGate , OrGate , and what would beXorGate .
As we’ve stressed, software should be grown: the design process does not finish when
you have a working program or prototype. Since programs and classes evolve, it makes
sense to step back and examine a design and implementation after the initial kinks have
been ironed out.

ProgramTip 13.10: Class methods sometimes need to be refactored into
other classes, or into new classes that weren’t part of an initial design.
Refactoring means you don’t add new functionality, but you redistribute (to existing
classes) or reassign (to new classes) existing behavior and functionality to make classes
and code more reusable.

As a start towards understanding the design we’ll consider the simple code in Pro-
gram 13.13 that creates an or-gate, attaches a probe to the output of the gate, and sets

June 7, 1999 10:10 owltex Sheet number 62 Page number 681magentablack

13.3 Advanced Case Study: Gates, Circuits, and Design Patterns 681

one of the input gates to true. The interactions and method calls made by all classes for
the three lines of code ingwinteraction.cppare shown in Figure 13.11.

Program 13.13 gwinteraction.cpp

#include <iostream>

using namespace std;

#include "gates.h"

#include "wires.h"

int main()

{

Gate ∗ org = new OrGate();

Probe ∗ p = new Probe(org −>OutWire(0));

org −>InWire(0) −>SetSignal(true);

return 0;

} gwinteraction.cpp

O U T P U T

prompt> gwinteraction
(wire 2) signal= 0
(wire 2) signal= 1

Two separate concepts generate almost all the interactions shown in Figure 13.11. We’ll
give an overview of each concept, discuss why they’re used in theWire /Gate frame-
work, and then provide a more in-depth look at each of them.

1. A Wire object can have any number of gates attached to it. Every time the signal
on a wire changes, the wire notifies all the attached gates that the signal has changed
using the methodGate::Act . Each gate responds differently when it’s acted on,
for example, probes print a value, or-gates propagate a true value to their output
wire if one of their input wires is set, and so on.

2. When aGate is constructed without wires, such as ingwinteraction.cppor in
MakeXORas opposed toMakeXOR2of Program 13.12,xordemo.cpp, the gate
creates its own wires. Rather than callingnew Wire directly, a gate requests a
wire from aWireFactory associated with the entireGate hierarchy by a static
instance variable of theGate class.

June 7, 1999 10:10 owltex Sheet number 63 Page number 682magentablack

682 Chapter 13 Inheritance for Object-Oriented Design

main OrGate NMGate Wire

MakeWire

NMGate

WireFactory Probe

OutWire(0)

new Probe(org->OutWire(0))

Init

T
i
m
e

AddGate(this)
Act

Act
SetSignal(true) // OutWire(0)

AddGate(this)

SetSignal(true) // InWire(0)
Act

Act

new

new

Figure 13.11 Interaction diagram: creating an or-gate with no connected wires, attaching a probe to the output of
the gate, and setting the signal on the first of the gate’s two inputs.

13.3.5 Gates and Wires: Observers and Observables

Look carefully at the inputs to the xor-gate diagrammed in Figure 13.7 and the comparator
diagrammed in Figure 13.10. In both cases one wire is attached to the inputs of two
different gates. Any change in the wire must propagate a signal through both gates.
Suppose a probe is attached to one of the input wires that feeds into more than one gate.
Then a change in the wire must notify two gates and a probe, which is really three gates
since a probe is-a gate. How are changes in a circuit propagated? In the framework
discussed here, a gate attaches itself to a wire, or can be attached by another object to a
wire using the methodWire::AddGate . For example, aProbe instance adds itself
during construction to the wire it probes.

Probe::Probe(Wire * w)
: myWire(w)

// post: probe is attached to w
{

June 7, 1999 10:10 owltex Sheet number 64 Page number 683magentablack

13.3 Advanced Case Study: Gates, Circuits, and Design Patterns 683

myWire->AddGate(this);
}

It’s almost as though each attached gate listens to the wire, waiting for a change. However,
a gate doesn’t actively listen, it is notified by the wire when the wire’s signal changes.
The wire notifies all the gates that have been attached to it using the following code.

void Wire::SetSignal(bool signal)
// post: notify attached/listening gates if signal changes
{

if (signal != mySignal)
{ mySignal = signal;

int k;
for(k=0 ; k < myGates.size(); k++)
{ myGates[k]->Act();
}

}
}

You can look at the code inwires.hfor details (see How to G), but the code above is
mostly self-explanatory from the names of the instance variables and the syntax of how
they’re used — for example,myGates seems to be atvector object from how it’s
used. Gates that have been attached usingAddGate can subsequently be removed using
Wire::RemoveGate . Gate identity for removal is based on pointer values, so any
object added can be removed since the address of an object doesn’t change.

Program Tip 13.11: In [GHJ95] the Observer pattern is a solution to a
problem “when a change to one object requires changing others, and you
don’t know how many objects need to be changed.” The Observer pattern is
sometimes called Observer/Observable or Publish/Subscribe.

In the code above you can see that a wire’s gates are notified in the same order in
which they are added to the wire. SupposeWire objectw2 notifies the first of the two
gates that are (hypothetically) attached tow2. Since a gate’sAct method may set other
wires, that will in turn call otherAct methods; the second gate attached tow2may have
it’s Act method invoked well after other gates have acted. In one of the modifications in
the Exercise section you’ll be asked to introduce time into theWire /Gate framework
to account for these anomalies.

The Observer pattern is common outside of programming. Volunteer firemen are
notified when there’s an event they must respond to, but the firemen do not actively phone
the fire department to find fires. The firemen correspond to gates in our framework; the
fire department is the wire notifying the firemen. Auctions sometimes model the pattern:
bidders are notified when a new, higher bid has been made. A bidder actively monitoring
new bids doesn’t quite fit the model, but a bidder that responds only when notified of a
new bid does.

June 7, 1999 10:10 owltex Sheet number 65 Page number 684magentablack

684 Chapter 13 Inheritance for Object-Oriented Design

Bjarne Stroustrup (b. 195?)

Bjarne Stroustrup is truly the “father” of C++. He began its design in 1979 and is
still involved with both design and implementation of the language. His interests

span computer science, history, and literature.
In his own words:

…C++ owes as much to novelists and es-
sayists such as Martin A. Hansen, Albert Ca-
mus, and George Orwell, who never saw a
computer, as it does to computer scientists
such as David Gries, Don Knuth, and Roger
Needham. Often, when I was tempted to out-
law a feature I personally disliked, I refrained
from doing so because I did not think I had
the right to force my views on others.
In writing about creating software, Stroustrup
(p. 693) [Str97] mentions several things to
keep in mind, three are ideas we’ve empha-
sized in this book: (1) There are no “cook-
book” methods that can replace intelligence,
experience, and good taste in design and pro-
gramming, (2) Experimentation is essential
for all nontrivial software development, and

(3) Design and programming are iterative activities.
Stroustrup notes that it is as difficult to define what a programming language is

as to define computer science.

Is a programming language a tool for instructing machines? A means of
communicating between programmers? A vehicle for expressing high-level
designs? A notation for algorithms? A way of expressing relationships
between concepts? A tool for experimentation? A means of controlling
computerized devices? My view is that a general-purpose programming
language must be all of those to serve its diverse set of users.

For his work in the design of C++, Stroustrup was awarded the 1994 ACM
Grace Murray Hopper award, given for fundamental contributions made to com-
puter science by work done before the age of 30. Most of this material is taken
from [Str94].

13.3.6 Encapsulating Construction in WireFactory

The simple three-line program in Program 13.13, constructs an or-gate without providing
wires when the or-gate is constructed. The or-gate makes its own wires, and the program
connects a probe to the created output wire. As we saw in the two different functions

June 7, 1999 10:10 owltex Sheet number 66 Page number 685magentablack

13.3 Advanced Case Study: Gates, Circuits, and Design Patterns 685

MakeXORandMakeXOR2of Program 13.12, a gate can be created by attaching existing
wires to the gate when the gate is constructed, or by creating a gate and then connecting
wires to the input/output wires the gate constructs itself. Where do these self-constructed
wires come from? The simplest method is to create new wires usingnew Wire() —
sample code for theInverter constructor shows this (this isn’t the real constructor,
which uses a different technique discussed later). AnInverter has an input, an output,
a name, and a number.

Inverter::Inverter(const string& name)
: myIn(new Wire(name)), myOut(new Wire(name))

myName(name), myNumber(ourCount)
{

ourCount++;
myIn->AddGate(this);

}

Since anInverter creates the wires using thenew operator , the class is
responsible for deleting the wires in its destructor. This approach tightly couples the
Gate andWire classes. If a better wire class is designed, or we want to run a circuit
simulation using aLowEnergyWire class representing a new kind of wire that’s a
subclass ofWire , we’ll have to rewrite every gate’s constructor to use the new kind of
wire. We can’t reduce the coupling inherent in the circuit framework because wires and
gates do depend on each other, but we can reduce the coupling in how gates create wires.
To do this we design aWireFactory class. When a client wants a wire, the wire is
“ordered” from the factory rather than constructed usingnew. If a new wire class is
created, we order wires from a new factory that makes the new kind of wires. Because
we use inheritance to model is-a relationships, the new kind of wires can be used in place
of the original wires since, for example, aLowEnergyWire is-aWire . By isolating
wire creation in aWireFactory , changing the kinds of wires used by all gates means
simply changing the factory, and the factory is created in one place so it can be changed
easily. TheInverter constructor actually used ingates.cppillustrates how a factory
isolates wire construction in one place.

Inverter::Inverter(const string& name)
: myIn(ourWireFactory->MakeWire(name)),

myOut(ourWireFactory->MakeWire(name)),
myName(name), myNumber(ourCount)

{
ourCount++;
myIn->AddGate(this);

}

The my/our naming convention tells us thatourWireFactory is a static instance
variable. The factory is shared by everyGate object since it’s defined as a protected
static data member in the abstractGate superclass. This means everyInverter ,
everyAndGate , and every gate subclass not yet implemented can share the factory.

June 7, 1999 10:10 owltex Sheet number 67 Page number 686magentablack

686 Chapter 13 Inheritance for Object-Oriented Design

Program Tip 13.12: Using a factory class to isolate object creation de-
creases the coupling between the created objects and their collaborating
classes. This design pattern is called Abstract Factory in [GHJ95]. A fac-
tory class is used when “a system should be independent of how its products are created,
composed, and represented” or when “a system should be configured with one of multiple
families of products.”

Our WireFactory class is not abstract, but we’ll explore how to create more
than one kind of factory in the exercises by creating an abstract base class from which
WireFactory derives. TheGate::clone method outlined in Program Tip 13.9 as
a realization of a factorymethodshares characteristics with theWireFactory class
that is a factoryclass: both isolate object creation so that clients can use objects without
knowing how to create them.

13.3.7 Refactoring: Creating a BinaryGate Class

When I first designed theGate hierarchy in Figure 13.5 I anticipated creating classes like
And3Gate , an and-gate with three inputs that sets its output only when all three inputs
are set. I considered anAnd3Gate to be a 3-1-gate, a gate with three inputs and one
output. The existingAndGate class represents a 2-1-gate while the comparator circuit
diagrammed in Figure 13.10 is a 2-2-gate with two inputs and two outputs. Similarly,
the full-adder diagrammed in Figure 13.13 is a 3-2-gate. Thinking there would be some
common behavior in these gates I created a classNMGate to model an n-m-gate as I’ve
just described. Since a subclass is responsible for calling its superclass constructor, this
leads to the constructor below for anAndGate instance constructed without wires.

AndGate::AndGate(const string& name)
: NMGate(ourCount,name)

// post: this and-gate is constructed
{

tvector<Wire *> ins(2), outs(1);
ins[0] = ourWireFactory->MakeWire(myName);
ins[1] = ourWireFactory->MakeWire(myName);
outs[0] = ourWireFactory->MakeWire(myName);
NMGate::Init(ins,outs);
ourCount++;

}

The AndGate constructor creates two input wires, one output wire, and puts these
wires into vectors for initializing the parentNMGateclass. The general classNMGate
is initialized with vectors of wires for input and output so that it can be used for a 3-2-
gate as well as an 8-8-gate. TheOrGate constructor shows striking similarities to the
AndGate .

OrGate::OrGate(const string& name)
: NMGate(ourCount,name)

June 7, 1999 10:10 owltex Sheet number 68 Page number 687magentablack

13.3 Advanced Case Study: Gates, Circuits, and Design Patterns 687

{
tvector<Wire *> ins(2), outs(1);
ins[0] = ourWireFactory->MakeWire(myName);
ins[1] = ourWireFactory->MakeWire(myName);
outs[0] = ourWireFactory->MakeWire(myName);
NMGate::Init(ins,outs);
ourCount++;

}

This duplicated code will be replicated in any new 2-1-gate, (e.g., if we implement an
XorGate class). TheAct methods of these classes differ because the gates model
different logic, and theclone methods differ since each gate must return a copy of
itself, but the otherAndGate andOrGate methods are the same. Since 2-1-gates are
quite common, and we may be implementing more “basic” 2-1-gates in the future, it’s
probably a good idea to refactor the behavior in common to the 2-1-gates into a new class
BinaryGate . The new class derives fromNMGateand is a parent class toAndGate
andOrGate . TheAndGate constructor will change as follows.

AndGate::AndGate(const string& name)
: BinaryGate(ourCount,name)

// post: this and-gate is constructed
{

ourCount++;
}

The behavior common to theAndGate andOrGate constructors has been factored
out into theBinaryGate constructor. Similarly, all the methods whose behavior is the
same in the binary gate subclasses are factored into the newBinaryGate superclass.

13.27 The methodWire::AddGate is implemented as follows.Pause to Reflect

void Wire::AddGate(Gate * g)
// post: g added to gate collection, g->Act() called
{

myGates.push_back(g);
g->Act();

}

Identify each call ofg->Act() whose source isAddGate that appears in the
interaction diagram of Figure 13.11. Which of the calls generate(s) output?

13.28 Constructing anInverter and connecting a probe to its output generates the
output shown. (continued)

Gate * inv = new Inverter();
Probe * p = new Probe(inv->OutWire(0));

June 7, 1999 10:10 owltex Sheet number 69 Page number 688magentablack

688 Chapter 13 Inheritance for Object-Oriented Design

O U T P U T

(wire 1) signal= 1

Why is the wire labeled(wire 1) , where is wire 0? Draw an interaction diagram
like Figure 13.11 for these two statements. Trace all method calls, particularly the
Gate::Act calls, and show why the call ofg->Act() in Wire::AddGate
shown in the previous exercise is necessary to get the behavior shown in the output
— what would the output of the probe be if the callg->Act() wasn’t included
in the methodAddGate ? Why?

13.29 The statements below construct a disabler circuit as diagrammed in Figure 13.9.
The circuit isn’t formed as a composite, but the gates and wires together make a
disabler circuit with a probe attached to the circuit’s output wire.

Wire * controller= new Wire();
Gate * ag= new AndGate();
Gate * inv= new Inverter(controller, ag->InWire(1));
Probe * p= new Probe(ag->OutWire(0));
ag->InWire(0)->SetSignal(true); // send a signal through

Since thecontroller is false/zero when constructed, the signal set should
propagate through the disabler. Draw an interaction diagram like Figure 13.11 for
these five statements.

13.30 As implemented, theWireFactory class cannot recycle used wires, (i.e., if a
Gate is destroyed, the wires it may have ordered from the factory are not reused).
The factory does keep track of all the wires ever allocated/ordered, and cleans the
wires up when the factory ceases to exist.

In what function does the currentWireFactory destroy all the wires allocated
during the factory’s lifetime? Sketch a design that would allow the factory to
recycle wires no longer needed. You’ll need to identify how the factory stores
recycled wires and how the factory collaborates with theGate classes to get
wires back when a gate no longer needs them.

13.31 The classNMGate is an abstract class because it has at least one abstract/pure
virtual function, (e.g.,Act). However, there is anNMGate constructor and an
NMGateclass has state: the input and output wires. Why is the class an abstract
class, which means it’s not possible to create anNMGateobject, but the class still
has a constructor and state? Note that the statement below will not compile for
two reasons: the constructor is protected and the class is abstract.

Gate * g = new NMGate(); // won’t compile

June 7, 1999 10:10 owltex Sheet number 70 Page number 689magentablack

13.3 Advanced Case Study: Gates, Circuits, and Design Patterns 689

13.32 Why isourCount++ used in the body of the refactoredAndGate constructor at
the end of Section 13.3.7? Why isn’t the increment factored into theBinaryGate
constructor?

13.33 The following statement, added as the last statement inmain of Program 13.12,
xordemo.cpp, produces the output shown.

cout << g2->deepString() << endl;

The output shows the components of the composite gateg2 created byMakeXOR2.
The methoddeepString is implemented in eachGate subclasses, although
it often defaults to the same function astostring . Why are the and gates
numbered 2 and 3? Where are and gates numbered 0 and 1? Draw the circuit for
this composite and label every gate and wire with its number.

O U T P U T

composite: 4 gates, 2 in wires, 1 out wires

all-in (wire 11) (wire 12)

all-out (wire 16)

or (1)

in (wire 11) (wire 12) out (wire 13)

and (2)

in (wire 11) (wire 12) out (wire 14)

inv (1)

in (wire 14) out (wire 15)

and (3)

in (wire 13) (wire 15) out (wire 16)

13.34 Instead of refactoringAndGate andOrGate into a newBinaryGate class,
suppose a new constructor is added to theNMGateclass in which the number of
inputs and outputs is specified as shown in the following:

June 7, 1999 10:10 owltex Sheet number 71 Page number 690magentablack

690 Chapter 13 Inheritance for Object-Oriented Design

Is this a better solution than introducing a new classBinaryGate ? Why? Write
the constructor that takes the number of inputs and outputs as parameters.

AndGate::AndGate(const string& name)
: NMGate(2,1,ourCount,name)

// post: this and-gate is constructed
{

ourCount++;
}

13.3.8 Interactive Circuit Building

Program 13.12,xordemo.cpp, shows how a composite circuit can be built by creating
gates and wires, then wiring them together. In Section 13.3.3 we described how to create
new class declarations and definitions using anXorGate class as an example. Both
these methods for creating circuits require writing, compiling, testing, and debugging
programs. A different approach is outlined in the run ofcircuitbuilder.cpp. A complete
version of this program is not provided; you’ll be asked to write it as an exercise. We’ll
discuss why it’s a useful program and some of the design issues that arise in developing
it.

A graphical circuit-building program in which the user creates new gates by choosing
from a palette of standard gates, uses the mouse to wire gates together, and tests the
circuits built, might be the best way of designing and building new circuits. However,
a text-base interactive circuit builder is easier to design and implement. Many of the
classes and ideas in a text-based program may transfer to a graphics-based program, so
we’ll view the text-based program as a useful prototype.

A

B

S

C

Figure 13.12 Building A half-adder circuit.

We’ll use the interactive circuit building program to build ahalf-adder, a circuit for
adding two one-digit binary numbers diagrammed in Figure 13.12.10 We’ll use the half-
adder to build afull-adder, a circuit that basically adds three one-bit numbers, though
we’ll view the inputs as two numbers and a carry from a previous addition, diagrammed

10A binary digit is usually called abit , which is almost an acronym forbinary digit .

June 7, 1999 10:10 owltex Sheet number 72 Page number 691magentablack

13.3 Advanced Case Study: Gates, Circuits, and Design Patterns 691

in Figure 13.13. Full-adders can be wired together easily to form ann-bit ripple-carry
adderfor adding two n-bit binary numbers that we’ll explore in an exercise.

Binary, or base 2, numbers are added just like base 10 numbers, but since the only
values of a binary digit (or bit) are zero and one, we get Table 13.1 as a description of
the half-adder.

Table 13.1 Adding two one-bit numbers

A B S C
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

The output labeledS in Figure 13.12 and Table 13.1 is the sum of two bits. The
output labeledC is the carry. Since we have 1+ 1 = 10 in base 2, the last line of
the table shows the sum is zero and the carry is one, where the sum is the rightmost or
least-significant digit. Similarly in Figure 13.13 the sum and carry represent adding the
three input bits. A table for the full-adder is shown in the output ofcircuitbuilder.cpp.

Before looking at a run of the program we’ll outline a list of requirements for an
interactive circuit builder. The program doesn’t meet all these requirements in the run
shown, but you can add features as explored in chapter exercises.

1. The program should allow the user to choose standard gates for building circuits,
but the list of gates should grow to include circuits built during the program. In
other words, the program may start with only three gates (and, or, inverter), but
any circuits built with the program become gates used in building other circuits.

2. The program should be simple to use, commands should correspond to user expec-
tations. First-time users should be able to use the program without much help, but
experienced users should be able to use their experience to build circuits quickly.

3. The program should be able to load circuits built by the program. This means the
user should be able to save newly constructed circuits and load these circuits in a
later run.

4. Connecting gates and wires should not require an in-depth knowledge of theGate
andWire classes we’ve studied. Circuit designers shouldn’t need to be experts
in object-oriented programming and design to use the program.

5. The program should be flexible enough to adapt to new requirements we expect to
receive from users once the program has been reviewed and tested. For example,
users make mistakes in building circuits; it would be nice to supportundofeatures
to change gates and connections already created.

In the run below there is no facility for saving and loading circuits and there is noundo
command, but attempts are made to meet the other requirements. The program shows
an initial collection of the three standard gates available for creating circuits. In the run,

June 7, 1999 10:10 owltex Sheet number 73 Page number 692magentablack

692 Chapter 13 Inheritance for Object-Oriented Design

HA

HA

HA
Sum

B

Cin

Cout

A

Figure 13.13 Building a full-adder from half-adders and an or-gate.

the user builds the half-adder diagrammed in Figure 13.12 by creating gates, printing the
composite made from the gates in order to find the name of each wire, then connecting
the gates and specifying inputs and outputs for the composite gate constructed. After
the new circuit is finished, the user typesstop, the circuit is tested, and the new circuit is
added to the list of available gates.

The full-adder diagrammed in Figure 13.13 is built next using the same process:

Gates are added to the composite: two half-adders and an or-gate.

The composite is printed (the half-adders show up as composites), the wires be-
tween the gates are connected, and the inputs and outputs are specified.

The circuit is finished, tested, and added to the tool kit of available circuits.

Designing for Both Novice and Expert Users. The commandadd which adds gates to
the composite being constructed comes in three forms, each illustrated in the run.

add and, the user specifies the gate to add

add, the user doesn’t specify a gate, and is prompted for one

the user presses enter/return when prompted for a gate and list of available gates
is printed (see the end of the output)

Minimal Knowledge of Gate and Wire Classes. Every gate displayed is shown with
inputs and outputs. The input and output wires are numbered, and users connect wires
by using a wire’s number rather than typingand(1)->InWire(0) which might be
used in a program, but shouldn’t be demanded from a user11.

11Implementation aside: wire numbers can be used to find wires only because aWireFactory supports
wire lookup by number.

June 7, 1999 10:10 owltex Sheet number 74 Page number 693magentablack

13.3 Advanced Case Study: Gates, Circuits, and Design Patterns 693

O U T P U T

prompt> circuitbuilder
0. and
1. or
2. inverter
command: add and
command: add and
command: add or
command: add inverter
command: show
current circuit
composite: 4 gates, 0 in wires, 0 out wires
all-in
all-out

and (1)
in (wire 8) (wire 9) out (wire 10)

and (2)
in (wire 11) (wire 12) out (wire 13)

or (1)
in (wire 14) (wire 15) out (wire 16)

inv (1)
in (wire 17) out (wire 18)

connections: none

command: connect 10 17
command: connect 18 12
command: connect 16 11
command: connect 14 8
command: connect 9 15
command: in 14
command: in 9
command: out 13
command: out 10
command: test
output continued→

June 7, 1999 10:10 owltex Sheet number 75 Page number 694magentablack

694 Chapter 13 Inheritance for Object-Oriented Design

O U T P U T

testing composite: 4 gates, 2 in wires, 2 out wires

0 0 : 0 0
1 0 : 1 0
0 1 : 1 0
1 1 : 0 1

command: stop
name for circuit: half
command: add half
command: add half
command: add or
command: show
current circuit
composite: 3 gates, 0 in wires, 0 out wires
all-in
all-out

composite: 4 gates, 2 in wires, 2 out wires
all-in (wire 25) (wire 20)
all-out (wire 24) (wire 21)
output elided/removed

composite: 4 gates, 2 in wires, 2 out wires
all-in (wire 36) (wire 31)
all-out (wire 35) (wire 32)
output elided/removed

or (4)
in (wire 41) (wire 42) out (wire 43)

connections: none
command: connect 24 31
command: connect 21 42
command: connect 32 41
command: in 36
command: in 25
command: in 20
command: out 35
command: out 43
command: test

output continued→

June 7, 1999 10:10 owltex Sheet number 76 Page number 695 magentablack

13.3 Advanced Case Study: Gates, Circuits, and Design Patterns 695

O U T P U T

testing composite: 3 gates, 3 in wires, 2 out wires

0 0 0 : 0 0
1 0 0 : 1 0
0 1 0 : 1 0
1 1 0 : 0 1
0 0 1 : 1 0
1 0 1 : 0 1
0 1 1 : 0 1
1 1 1 : 1 1

command: stop
name for circuit: full
command: add
gate name:
0. and
1. or
2. inverter
3. half
4. full

13.3.9 SimpleMap : Mapping Names to Gates

In my prototype for the interactive builder program I used a structure called amap. I’ll
show the simple version I used in this prototype which is good enough for the prototype,
easy to understand, and not fully functional. You don’t need the classSimpleMap to
write the interactive circuit builder, but you’ll need to implement something just like it
(seesimplemap.h, Program G.17.)

A SimpleMap is templated on two classes: one class is thevaluestored in the map,
the other is thekey used to look up a value. Insimplemapdemo.cpp, Gate * values
are stored in the map andint values are keys to retrieve gate pointers. The same kind
of map is used incircuitbuilder.cpp, but strings are used to lookup a gate rather than
integers. Users are more comfortable typingadd and than typingadd 0 , where 0 is
the index of the and-gate stored in a map.

Program 13.14 simplemapdemo.cpp

#include <iostream>
using namespace std;

June 7, 1999 10:10 owltex Sheet number 77 Page number 696magentablack

696 Chapter 13 Inheritance for Object-Oriented Design

#include "simplemap.h"
#include "gates.h"

int main()
{

SimpleMap<int,Gate ∗> gatemap;
gatemap.insert(0, new AndGate("map-and-gate"));
gatemap.insert(1, new OrGate("map-or-gate"));
gatemap.insert(2, new Inverter("map-not-gate"));

Gate ∗ g = 0; // get g from map
SimpleMapIterator<int,Gate ∗> git(gatemap);
for(git.Init(); git.HasMore(); git.Next())
{ int index = git.Current();

g = gatemap.getValue(index);
cout << index << "\t" << ∗g << "\t" << ∗(g −>clone()) << endl;

}
return 0;

} simplemapdemo.cpp

The program shows how a map works as a gate tool kit. The program retrieves a gate
and makes a copy of it usingclone . The copy could be added to a composite being
constructed by the user. When a new circuit is finished it can be easily added to the tool
kit using the methodSimpleMap::insert .

O U T P U T

prompt> simplemapdemo
0 and (0) map-and-gate and (1) map-and-gate
1 or (0) map-or-gate or (1) map-or-gate
2 inv (0) map-not-gate inv (1) map-not-gate

13.4 Chapter Review
We discussed inheritance, a powerful technique used in object-oriented programming
for reusing a common interface. We saw several examples of inheritance hierarchies
in which superclasses specified an interface, and subclasses implemented the interface
with different behavior, but using a common naming convention. Inheritance allows an
object that’s an instance of a subclass to be substituted for, or used-as-an instance of, the
corresponding superclass. In this book inheritance always models an “is-a” relationship,
which ensures that objects can be substituted for other objects up an inheritance hierarchy.

Topics covered include:

Streams form an inheritance hierarchy. A function with anistream parameter
can receive many kinds of streams as arguments includingcin , ifstream , and

June 7, 1999 10:10 owltex Sheet number 78 Page number 697magentablack

13.5 Exercises 697

istringstream objects.

Prototypes are first-attempts at designing and implementing a program or classes
that allow the programmer and the client to get a better idea of where a project is
headed.

Inheritance in C++ requires superclass functions to be declaredvirtual so that
subclasses can change or specialize behavior. We usepublic inheritance which
models an is-a relationship. Virtual functions are also called polymorphic func-
tions. (Other uses of inheritance are possible in C++, but we use inheritance only
with virtual functions and only with public inheritance.)

Virtual superclass functions are always virtual in subclasses, but the wordvirtual
isn’t required. It’s a good idea to continue to identify functions as virtual even in
subclasses, because a subclass may evolve into a superclass.

Subclasses should call superclass constructors explicitly, otherwise an implicit call
will be generated by the compiler.

An inherited virtual function can be used directly, overridden completely, or over-
ridden while still calling the inherited function usingSuper::function syntax.

Data and functions declared asprotectedare accessible in subclasses, but not
to client programs. Data and functions declared asprivate are not accessible to
subclasses except using accessor and mutator functions that might be provided by
the superclass. Nevertheless, a subclass contains the private data, but the data isn’t
directly accessible.

Abstract base classes contain one pure virtual function, a function identified with
the ugly syntax of= 0. An abstract base class is an interface, it’s not possi-
ble to define an object whose type is an abstract base class. It’s very common,
however, to define objects whose type isABC * whereABCis an abstract base
class. An abstract base/superclass pointer can reference any object derived from
the superclass.

Flexible software should be extendible, programming in the future tense is a good
idea. Using abstract classes that can have some default function definitions, but
should have little state, is part of good programming practice.

Several design patterns were used in designing and implementing aGate /Wire
framework for modeling digital circuits. The patterns used includeComposite,
Factory, Abstract Factory, andObserver.

Programs should be grown rather than built; refactoring classes and functions is
part of growing good software.

A classSimpleMap is a usable prototype of the map classes you’ll study as you
continue with computer science and programming. The map class facilitates the
implementation of an interactive circuit-building program.

13.5 Exercises
13.1 Design a hierarchy of math quiz questions that cover the operations of addition, sub-

traction, multiplication, and division. You might also consider questions involving

June 7, 1999 10:10 owltex Sheet number 79 Page number 698magentablack

698 Chapter 13 Inheritance for Object-Oriented Design

ratios, fractions, or other parts of basic mathematics. Each kind of question should
have both easy and hard versions, (i.e., addition might require carrying in the hard
version). Keep the classes simple to make it possible to write a complete program;
assume the user is in fourth or fifth grade.
Design and implement a quiz class that uses the questions you’ve just designed (and
tested). The quiz should use different questions, and the questions should get more
difficult if the user does well. If a user isn’t doing well, the questions should get
simpler. The quiz class should give a quiz to one student, not to two or more students
at the same time. Ideally, the quiz class should record a student’s scores in a file so
that the student’s progress can be tracked over several runs of the program.

13.2 Implement the classMultipleChoice shown in Figure 13.1. You’ll need to decide
on some format for storing multiple choice questions in a file, and specify a file when
a MultipleChoice question object is created. Incorporate the new question into
inheritquiz.cpp, Program 13.2, or design a new quiz program that uses several different
quiz questions.

13.3 We studied a templated classLinkSet designed and implemented in Section 12.3.6
(see Programs 12.11 and 12.12, the interface and implementation, respectively.) New
elements were added to the front of the linked list representing the set elements. Design
a class like the untemplated version of the set class,LinkStringSet , that was
developed first. The new class supports only the operationsAdd andSize . Call the
classWordList ; it can be used to track the unique words in a text file as follows.

void ReadStream(WordStreamIterator& input,
WordList * list)

// post: list contains one copy of each word in input
{

string word;
for(input.Init(); input.HasMore(); input.Next())
{ word = input.Current();

ToLower(word);
StripPunc(word);
list->Add(word);

}
cout << list->Size() << " different words" << endl;

}

Make the functionAdd a pure virtual function and make the helper functionFindNode
from LinkStringSet virtual and protected rather than private. Then implement
three subclasses each of which uses a different technique for maintaining the linked
list (you may decide to use doubly linked lists which make the third subclass slightly
simpler to implement).

A classAddAtFront that adds new words to the front of the linked list. This
is similar to the classLinkStringSet .
A classAddAtBack that adds new words to the end of the linked list (keep a
pointer to the last node, or use a circularly linked list).

June 7, 1999 10:10 owltex Sheet number 80 Page number 699magentablack

13.5 Exercises 699

A classSelfOrg that adds new nodes at the back, but when a node is found
using the virtual, protectedFindNode , the node is moved closer to the front
by one position. The idea is that words that occur many times move closer to
the front of the list so that they’ll be found sooner.

Test each subclass using the functionReadStream shown above. Time the imple-
mentations on several text files. Try to provide reasons for the timings you observe.
As a challenge, make two additions to the classes once they work. (1) Add an iterator
class to access the elements. The iterator class will need to be a friend of the superclass
WordList , but friendship isnot inherited by subclasses. You’ll need to be careful in
designing the hierarchy and iterator so the iterator works with any subclass. (2) Make
the classes templated.

13.4 Program 12.4,frogwalk3.cppin Section 12.1.6, shows how to attach an object that
monitors two random walkers to each of the walkers. The classWalker is being
observed by the classWalkRecorder , though we didn’t use the termObserver
when we discussed the example in Chapter 12.
Create an inheritance hierarchy forWalkRecorder objects that monitor a random
walker in different ways. Walkers should accept any number ofWalkRecorders ,
rather than just one, by storing a vector of pointers rather than a single pointer to a
WalkRecorder . Implement at least two different recorders, but try to come up with
other recorders that you think are interesting or useful.

Implement a recorder that works like the originalWalkRecorder in tracking
every location of all the walkers it’s recording.
Implement anExtremeRecorder class that tracks just the locations that are
furthest left (lowest) and right (highest) reached by any walker being monitored
by theExtremeRecorder . Alternatively, have the recorder keep track of one
pair of extremes per walker rather than one pair of extremes for all walkers (this
is tricky).
Use the graphics package in How to H and create a class that displays a walker as
a moving square on a canvas. Each walker monitored should appear as a different
color. Walkers can supply their own colors, or the recorder can associate a color
with a walker (it could do this using aSimpleMap object or in several other
ways).

13.5 Design a hierarchy of walkers each of which behave differently. The walkers should
wander in two-dimensions, so a walker’s location is given by aPoint object (see
point.h, Program G.10). The superclass for all walkers should be namedWalker .
Design aWalkerWorld class that holds all the walkers.WalkerWorld::Step
asks the world to ask each of its walkers to take one step, taking a step is a virtual
function with different implementations by differentWalker subclasses. You can
consider implementing a hierarchy ofWalkerWorld classes too, but at first the
dimensions of the world in which the walkers room should be fixed when the world is
created. The lower-left corner of the world has location(0,0) ; the upper-right corner
has location(maxX,maxY) . In a world of size 50× 100 the upper-right corner has
coordinates (49,99).

June 7, 1999 10:10 owltex Sheet number 81 Page number 700magentablack

700 Chapter 13 Inheritance for Object-Oriented Design

Consider the following different behaviors for step-taking, but you should be imagi-
native in coming up with new behaviors. A walker should always start in the middle
of the world.

A random walker that steps left, right, up, and down with equal probability. A
walker at the edge of the world, for example, whose location is (0,x), can’t move
off the edge, but may have only three directions to move. A walker in the corner
of the world has only two choices.
A walker that walks immediately to the north edge of the world and then hugs
the wall circling the world in a clockwise direction.
A walker that wraps around the edge of the world, for example, if it chooses to
walk left/west from location (0,y) its location becomes (maxX,y).

You’ll probably want to add at least oneWalkRecorder class to monitor the walkers;
a graphics class makes for enjoyable viewing.

13.6 Function objects were used to pass comparison functions encapsulated as objects to
sorting functions; see Section 11.3 for details. It’s possible to use inheritance rather
than templates to enforce the common interface used by the comparison function
objects described in Section 11.3. Show how the function header below can be used to
sort using function objects, although the function is only templated on one parameter
(contrast it to the declaration forInsertSort in sortall.h, Program G.14.)

template <class Type>
void InsertSort(tvector<Type> & a,
int size, const Comparer & comp);

You should show how to define an abstractComparer class, and how to derive
subclasses that are used to sort by different criteria.

13.7 The circuit constructed by the statements below is self-referential. Draw the circuit
and trace the calls ofGate::Act through the or-gate, inverter, and probe. What
happens if the circuit is programmed? What happens if the or-gate is changed to an
and-gate?

Gate * org = new OrGate("trouble");
Gate * inv = new Inverter();
Prob e * p = new Probe(inv->OutWire(0));

Connect(org->OutWire(0),inv->InWire(0));
Connect(inv->OutWire(0), org->InWire(1))

13.8 Implement a complete program for interactively building circuits. Invent a circuit-
description language you can use to write circuits to files and read them back. You
should try to use a Factory for creating the gates and circuits used in the program, but
you’ll need a factory to which you can add new circuits created while the program is
running. Using aSimpleMap can make the factory implementation easier, but you’ll
need to think very carefully about how to design the program.

13.9 Implement a classGateFactory that encapsulates creation of the four standard
gate classes:AndGate , OrGate , Inverter , CompositeGate as well as a class

June 7, 1999 10:10 owltex Sheet number 82 Page number 701magentablack

13.5 Exercises 701

XorGate . The factory class is used like theWireFactory class, but for creating
gates rather than wires, see the code on the next page.
For example, the code below creates a disabler-circuit, (see Figure 13.9).

GateFactory gf;
Gate * cg = gf.MakeComposite();
Gate * ig = gf.MakeInverter();
Gate * ag = gf.MakeAndGate();
// connect wires, add gates, input and output wires, to cg

This class enables gates to be created using a factory, but it doesn’t force client programs
to use the factory. Nor does it stop clients from creating hundreds of factories. The
second concern can be addressed using a design pattern calledSingleton. A singleton
class allows only one object to be created. Clients can have multiple pointers to the
object, but there’s only one object. The classSingleton in singelton.hillustrates
how to do this.

Program 13.15 singleton.h

#ifndef _SINGLETON_H
#define _SINGLETON_H

// demo code fora singleton implementation

class Singleton
{

public:
static Singleton ∗ GetInstance();
// methods here for Singleton behavior

private:
static Singleton ∗ ourSingleton;
Singleton(); // constructor

};

Singleton ∗ Singleton::ourSingleton = 0;

Singleton ∗ Singleton::GetInstance()
{ if (ourSingleton == 0)

{ ourSingleton = new Singleton(); // ok to construct
}
return ourSingleton;

}

Singleton::Singleton()
{ // nothing to construct in this simple example
}

#endif singleton.h

Show by example how client code uses a singleton object. Assume there’s a void
methodSingleton::DoIt() and write code to call it. Explain how client pro-
grams are prevented from creatingSingleton objects and how the class limits

June 7, 1999 10:10 owltex Sheet number 83 Page number 702magentablack

702 Chapter 13 Inheritance for Object-Oriented Design

0
C

0
S

C 1

S 1

C2

S 2

C3

A 7 B 7

S 7

B00AB1A 1B 2A 2 = 0
C

FA FA FA FA

Figure 13.14 A ripple-carry adder for 8-bit numbers.

itself to creating one object. Then modify either yourGateFactory or the existing
WireFactory class to be singletons.

13.10The circuit in Figure 13.14 is an 8-bit ripple-carry adder, a concrete version of the
more general n-bit ripple-carry adder. The circuit adds two 8-bit numbers represented
by A andB, whereA = A7A6A5A4A3A2A1A0, andA0 is the least-significant bit.
The largest 8-bit value is1111111which is 25510 (base 10). Each box labeledFA is a
full-adder, see Figure 13.13 for details. This ripple-adder is a 17-9-gate circuit, with
17 inputs: 8 bits for A, 8 bits for B, and the initial carry-in value, and 9 outputs: 8 bits
for the sum and a final carry-out.
Write an English description for how the ripple-carry adder works. Note that the initial
carry-inC0 is set to zero. Other carries ripple through the circuit, hence the name. Then
write a functionRippleAdder to create and return a composite-gate representing
an n-bit ripple-carry adder wheren is a parameter to the function. Assume you have a
functionFullAdder . To test the function you’ll need to implement theFullAdder
function which in turn will require implementing aHalfAdder function.

13.11 In real circuits, electricity does not travel through a circuit instantaneously, but is
delayed by the gates encountered. Different gates have different built-in delays, and
the delays of the built-in gates affect circuits built up from these gates.
For example, we’ll assume a delay of 3 time-units for an and-gate, 5 units for an or-
gate, and 2 units for an inverter (you’ll be able to change these values in the program
you write). Assume a disabler-circuit as diagrammed in Figure 13.9 has the input to
the and-gate from the outside on, the input to the inverter off, so that the output signal
is on. If the inverter-input signal is set to true, the circuit’s output will change to false
five time-units later. There will be a 2-unit delay for the inverter followed by a 3-unit
delay for the and-gate.
Develop a new class calledTimedGate that acts like a gate, but delays acting for a
set amount of time. This is a nontrivial design, so you’ll need to think very carefully
about how to incorporate delays into the circuit system. Assume you’ll be using only
TimedGates , not mixing them with regular gates. One way to start is shown in the
following:.

June 7, 1999 10:10 owltex Sheet number 84 Page number 703magentablack

13.5 Exercises 703

class TimedGate : public Gate
{

public:
// substitute me for g
TimedGate(Gate * g, int delay);

virtual int InCount() const
{return myGate->InCount();}

virtual int OutCount() const
{return myGate->OutCount();}

virtual Wire * InWire(int n) const
{return myGate->InWire(n);}

virtual Wire * OutWire(int n) const
{return myGate->OutWire(n);}

virtual string tostring() const;
// can use g’s tostring

virtual Gate * clone()
{

return new TimedGate(myGate->clone(), myDelay);
}
virtual void Act(); // act with delay

protected:
Gate * myGate;
int myDelay;

};

This class can be used as-a gate. It forwards most requests directly to the gate it
encapsulates as shown. The constructor and theTimedGate::Act function require
careful thought.
A TimedGate object must remove theGate g it encapsulates from the wires con-
nected to g’s inputs. Then theTimedGate object substitutes itself for the the inputs.
All this happens at construction.
In addition, you’ll need to define some kind of structure that stores timed events so that
they happen in the correct order. In my program I used a staticEventSimulator
object that allTimedGates can access. Events are put into the simulator, and ar-
ranged to occur in the proper order. Again, you’ll need to think very carefully about
how to do this.

13.12The circuit in Figure 13.15 is designed to control an elevator. It’s a simple circuit
designed to direct the elevator up or down, which are the circuit’s outputs. The inputs
are the current floor and the requested floor. The diagram shows a circuit for an elevator
in a four-story building. The current floor is specified by the binary numberC1C0,
so that 00 is the first floor,12 01 is the second floor, 10 is the third floor, and 11 is the
fourth floor.

12This is a book on C++, so floors are numbered beginning with zero.

June 7, 1999 10:10 owltex Sheet number 85 Page number 704magentablack

704 Chapter 13 Inheritance for Object-Oriented Design

C
1

R
1

R
0

C
0 DC

DC

Control
DC

DC

DCR
<

>C

Comp

Comp
>

<

>

<

UP

DOWN

Comp

Figure 13.15 A circuit for choosing which direction an elevator travels. The inputs labeled C are the current floor
(2 bits) and the R inputs are for the requesting floor.

The digitC1 is the most significant digit. Similarly,R1R0 is a binary representation of
the requested floor.
The purpose of the circuit is to direct the elevator up when the requested floor is greater
than the current floor, and down when the requested floor is less than the current floor.
Write an English description of why the circuit works. Be attentive to the order of
inputs to the comparator gates and see Fig 13.10 and Figure 13.9 and the associated
descriptions.
Write a truth table by hand for a 4-input 2-output circuit, or build the circuit with a
program and haveGateTester::Test print the truth table for the circuit. Try to
generalize the circuit to a building with 2N floors rather than four floors.

June 7, 1999 10:10 owltex Sheet number 17 Page number 705magentablack

AHow to: use basic C++,
syntax and operators

In this howto we summarize the basic syntax of C++ and the rules and operators that
are used in C++ expressions. This is a brief language reference for C++ as used in this
book, not the entire language. We don’t cover the use of dynamic memory in this howto.

A.1 Syntax

A.1.1 The function main

C++ programs begin execution with a functionmain . The smallest C++ program is
shown below, it doesn’t do anything, but it’s syntactically legal C++.

int main()
{

return 0;
}

The return value is passed back to the “system”, a non-zero value indicates some kind
of failure. Although not used in this book, the functionmain can have parameters, these
are so-calledcommand-line parameters, passed to the program when the function is
run. A brief synopsis of command-line parameters is given in Sec. A.2.6.

A.1.2 Built-in and other types

The built-in types in C++ used in this book areint , double , bool , andchar . A
type void is used as a built-in “empty-type”, but we don’t treatvoid as an explicit
type. A function declared asvoid does not return a value of typevoid , but returns
no value. In addition todouble , the typefloat can be used to represent floating
point values; butfloat is less precise and we do not use it. We also don’t use the
modifiersshort , long , andunsigned . The most useful of these isunsigned
which effectively doubles the range of positive values, e.g., on many systems achar
value is signed and ranges from -128 to 128, but anunsigned char value ranges
from 0 to 255.

The range of values represented byint andchar expressions are accessible using
values given in the header file<climits> (or <limits.h>). The range for floating
point values is found in<cfloat> (or <float.h> .) See Howto F for information
about these standard header files.

705

June 7, 1999 10:10 owltex Sheet number 18 Page number 706magentablack

706 Appendix A How to: use basic C++, syntax and operators

Non built-in types in C++ are called user-defined types. Many user-defined types are
implemented for use in this book. Information about these types can be found in Howto G.
Standard C++ user-defined types used in this book includestring andvector . We
use a vector class with error-checking rather than the standard vector class, but we use
the standard C++ string class declared in<string> . For programmers without access
to this class we provide a clasststring that can be used in place ofstring for
all the programs in this book. The clasststring is accessible via the header file
"tstring.h" .

A.1.3 Variable Definition and Assignment

Variables aredefinedwhen storage is allocated. Variable definitions include a type and a
name for the variable. An initial value may optionally be supplied. The C++ statements
below define anint variable without an initial value, adouble variable with an initial
value, two string variables with initial values and one without.

int minimum;
double xcoord = 0.0;
string first = "hello", second, third="goodbye";

In this book we usually define only one variable per statement, but as the string definitions
above show, any number of variables can be defined for one type in a definition statement.
One good reason to define only one variable in a statement is to avoid problems with
pointer variables. The statement below makesfoop a pointer to aFoo, but foop2 is
a Foo, not a pointer.

Foo * foop, foop2;

To make both variables pointers requires the following.

Foo * foop, * foop2;

Variables that are instances of a class, as opposed to built-in types likeint or bool are
constructed when they are defined. Typically the syntax used for construction looks like
a function call, but the assignment operator can be used when variables are defined as
in the second line below. This statement constructs a variable only, it does not construct
then assign, although the syntax looks like this is what happens.

Dice cube(6); // define/construct a 6-sided Dice
Dice dodo = 12; // define/construct a 12-sided Dice
Date usb(1,1,2000); // define/construct first date of year 2000

It’s legal to use constructor syntax for built-in types too:

int x(0);
int y = 0; // both define ints with value zero

June 7, 1999 10:10 owltex Sheet number 19 Page number 707magentablack

A.1 Syntax 707

Table A.1 Arithmetic Assignment Operators.

Symbol Example Equivalent
+= x += 1; x = x + 1;
*= doub *= 2; doub = doub * 2;
-= n -= 5; n = n - 5;
/= third /= 3; third = third / 3;
%= odd %= 2; odd = odd % 2;

TheAssignment Operator The assignment operator,operator = , assigns new values
to variables that havealready been defined. The assignment operator assigns values to
tomorrow andbaker below.

Date today;
Date tomorrow = today + 1; // definition, not assignment
int dozen = 12, baker = 0; // definition, not assignment
tomorrow = today - 1; // make tomorrow yesterday
baker = dozen + 1; // a triskaidekaphobe’s nightmare

Assignments can be chained together. The first statement usingoperator = below
shows a single assignment, the second shows chained assignment.

double average;
int min,max;

average = 0.0;
min = max = ReadFirstValue();

The assignment of 0.0 toaverage could have been done whenaverage is defined,
but the assignments tomin andmax cannot be done when the variables are defined
since, presumably, the functionReadFirstValue is to be called only once to read a
first value which will then be assigned to be bothmin andmax.

In addition to the assignment operator, several arithmetic assignment operators alter
the value of existing variables using arithmetic operations as shown in Table A.1.

The expectation in C++ is that an assignment results in a copy. For classes that
contain pointers as data members, this usually requires implementing/overloading an
assignment operator and a copy constructor. You don’t need to worry about these unless
you’re using pointers or classes that use pointers. See Howto E for details on overloading
the assignment operator.

June 7, 1999 10:10 owltex Sheet number 20 Page number 708magentablack

708 Appendix A How to: use basic C++, syntax and operators

Table A.2 C++ keywords

asm default for private struct unsigned
auto delete friend protected switch using
bool do goto public template virtual
break double if register this void
case dynamic_cast inline reinterpret_cast throw volatile
catch else int return true wchar_t
char enum long short try while
class explicit mutable signed typedef
const extern namespace sizeof typeid
const_cast false new static typename
continue float operator static_cast union

A.1.4 C++ Keywords

The keywords (or reserved words) in C++ are given in Table A.2. Not all the keywords
are used in this book. We either discuss or use in code all keywords except for the
following:

asm, auto, goto, register, throw, volatile, catch, wchar_t, short, try, extern, typeid,
typename, union

A.1.5 Control Flow

We use most of the C++ statements that change execution flow in a program, but not all
of them. We use the statements listed in Table A.3.

Table A.3 Control flow statements in C++

if (condition) statement
if (condition) statementelsestatement
switch (condition) case/default statements

while (condition) statement
do statementwhile (condition)
for (init statement; condition; update expression)

caseconstant expression: statement
default : statement
break;
continue;
return expression(expression is optional)

June 7, 1999 10:10 owltex Sheet number 21 Page number 709magentablack

A.1 Syntax 709

There are few control statements we do not use, these are:

try andcatch for handling exceptions. We do not use exceptions in the code in
this book, so we do not need try and catch.

goto for jumping to a labelled statement. Although controversial, there are oc-
casions where using a goto is very useful. However, we do not encounter any of
these occasions in the code used in this book.

Selection Statements The if statement by itself guards a block of statements so that
they’re executed only when a condition is true.

if (a < b)
{ // statements only executed whe n a < b
}

The if/else statement selects one of two blocks of statements to execute:

if (a < b)
{ // executed whe n a < b
}
else
{ // executed when a >= b
}

It’s possible to chainif/else statements together to select between multiple con-
ditions, see Sec. 4.4.2. Alternatively, theswitch statement selects between many
constantvalues, the values must be integer/ordinal values, e.g., ints, chars, and enums
can be used, but doubles and strings cannot.

switch (expression)
{

case 1 :
// do this
break;

case 2 :
// do that
return;

case 20:
case 30:

// do the other
break;

default:
// if no case selected

}

Conditional Expressions: the ?: operator Although not a control statement, the
question-mark/colon operator used in aconditional expressionreplaces anif/else

June 7, 1999 10:10 owltex Sheet number 22 Page number 710magentablack

710 Appendix A How to: use basic C++, syntax and operators

statement that distinguishes one of two values. For example, consider the statement
below.

if (a < b) // assign to min the smallest of a and b
{ min = a;
}
else
{ min = b;
}

This can be expressed more tersely by using a conditional:

// assign to min the smallest of a and b
min = (a < b) ? a : b;

A conditional expression consists of three parts, a condition whose truth determines
which of two values are selected, and two expressions for the values. When evaluated,
the conditional takes on one of the two values. The

Syntax: conditional statement (the ?: operator)

condition expression? expression a: expression b

expression that comes before
the question-mark is interpreted
as boolean-valued. If it is true
(non-zero), thenexpression a
is used as the value of the con-

ditional, otherwiseexpression bis used as the value of the conditional.
We do not useoperator ?: in the code shown in the book although it is used in

some of the libraries provided with the book, e.g., it is used in the implementation of the
tvector class accessible intvector.h .

Repetition There are three loop constructs in C++, they’re shown in Table A.3. Each
looping construct repeatedly executes a block of statements while a guard or test-
expression is true. The while loop may never execute, e.g., whena > b before the
first loop test in the following.

while (a < b)
{ // do this whil e a < b
}

A do-while loop always executes at least once.

do
{ // do that whil e a < b
} while (a < b);

A for statement combines loop initialization, test, and update in one place. It’s convenient
to use for loops for definite loops, but none of the loop statements generates code that’s
more efficient than the others.

int k;
for(k = 0 ; k < 20; k++)
{ // do that 20 times
}

June 7, 1999 10:10 owltex Sheet number 23 Page number 711magentablack

A.2 Functions and Classes 711

It’s possible to write inifite loops, thebreak statement branches to the first statement
after he inner-most loop in which thebreak occurs.

while (true) for(;;) while (true)
{ // do forever { // do forever { if (a < b) break;
} } }

Occasionally thecontinue statement is useful to jump immediately back to the loop
test.

while (expression)
{ if (something)

{ // do that
continue; // test expression

}
// when something isn’t true

}

Function returns The return statement causes control to return immediately from a
function to the statement following the function call. Functions can have multiple return
statements. Avoid function cannot return a value, butreturn can be used to leave
the function other than by falling through to the end of the function.

void dothis() int getvalue()
{ if (test) return; { if (test) return 3;

// do this // do that

} // function returns } // error, no value returned

A.2 Functions and Classes

A.2.1 Defining and Declaring Functions and Classes

A function is declaredwhen its prototype is given anddefinedwhen the body of the
function is written. A function’s header must appear before the function is called, either
as part of a function definition or as a prototype. Two prototypes follow.

int doThat(int x, int y); void readIt(const string& s);

The return type of a function is part of the prototype, but isn’t used to distinguish one
function from another when the function is overloaded. Overloaded functions have the
same names, but different parameter lists:

void check(int x); void check(string s);
void check(bool a, bool b); int check(int x); // conflict

A class isdeclaredwhen member function prototypes and instance variables are
provided, typically in a header file. The body of the member functions aren’t typically
included as part of a declaration.

June 7, 1999 10:10 owltex Sheet number 24 Page number 712magentablack

712 Appendix A How to: use basic C++, syntax and operators

class Bug; // forward declaration
class Doodle // Doodle declaration only, not definition
{

public:
Doodle();
Doodle(int x);
int getDoo() const;
void setDoo(int x) ;

private:
int myDoo;
Bug * myBug;

};

Functions that don’t alter class state should be declared asconst . See Howto D for
details. The classdefinitionoccurs in an implementation file, typically with a .cpp suffix.

int Doodle::getDoo() const // method definition
{

return myDoo;
}

It’s possible to define member functionsinline as part of the class declaration:

class Simple // declaration and inline definitions
{

public:
Simple(const string& s) : myString(s) { }
void Set(const string& s)
{ myString = s;
}
int Get() const { return myString; }

private:
string myString;

};

The classSimple shows an initializer list used to construct private instance variables.
Initializer lists are the preferred form of giving values to instance variables/data members
when an object is constructed.

Initializer Lists A class can have more than one constructor, each constructor should
give initial values to all private data members. All data members will be constructed
before the body of the containing class is constructed. Initializer lists permit parameters
to be passed to data member constructors. Data members are initialized in the order
in which they appear in the class declaration, so the initializer list should use the same
order.

In C++ it’s not possible for one constructor to call another of the same class. When
there’s code in common to several constructors it should be factored into a privateInit
function that’s called from the constructors. However, each constructor must have its
own initializer list.

June 7, 1999 10:10 owltex Sheet number 25 Page number 713 magentablack

A.2 Functions and Classes 713

A.2.2 Importing Classes and Functions: #include

Class and function libraries are typically compiled separately and linked with client code
to create an executable program. The client code must import the class and function
declarations so the compiler can determine if classes and functions are used correctly.
Declarations are typically imported using the preprocessor directive#include which
literally copies the specified file into the program being compiled.

The C++ standard specifies that standard include files are specified without a .h
suffix, that is,<iostream> and <string> . For the most part, these header files
import declarations that are in thestd namespace(see Sec. A.2.3). Using a file with the
.h suffix, for example<iostream.h> , imports the file in the global namespace. This
means that the directives below on the left are the same as that on the right.

#include <iostream> #include <iostream.h>
using namespace std;

Although most systems support both<iostream> and<iostream.h> , the namespace-
version is what’s called for in the C++ standard. In addition, some files do not have
equivalents with a .h suffix—the primary example is<string> .

A.2.3 Namespaces

Large programs may use classes and functions created by hundreds of sofware devel-
opers. In large programs it is likely that two classes or functions with the same name
will be created, causing a conflict since names must be unique within a program. The
namespacemechanism permits functions and classes that logically related to be grouped
together. Just as member functions are specified by qualifying the function name with
the class name, as inDice::Roll or string::substr , functions and classes that
are part of a namespace must specify the namespace. Examples are shown in Prog. A.1
for a user-defined namespaceMath, and the standard namespacestd. Note thatusing
namespace std is not part of the program.

Program A.1 namespacedemo.cpp

#include <iostream>

// illustrates using namespaces

namespace Math
{

int factorial(int n);
int fibonacci(int n);

}

int Math::factorial(int n)
// post: return n!
{

int product = 1;

June 7, 1999 10:10 owltex Sheet number 26 Page number 714magentablack

714 Appendix A How to: use basic C++, syntax and operators

// invariant: product = (k-1)!
for(int k=1; k <= n; k++)
{ product ∗= k;
}
return product;

}

int Math::fibonacci(int n)
// post: return n-th Fibonacci number
{

int f = 1;
int f2= 1;
// invariant : f = F_(k-1)
for(int k=1; k <= n; k++)
{ int newf = f + f2;

f = f2;
f2 = newf;

}
return f;

}

int main()
{

int n;
std::cout << "enter n ";
std::cin >> n;

std::cout << n << "! = " << Math::factorial(n) << std::endl;
std::cout << "F_(" << n << ")= " << Math::fibonacci(n) << std::endl;

return 0;
} namespacedemo.cpp

O U T P U T

prompt> namespacedemo
enter n 12
12 = 479001600!
F_(12)= 233

Writing std::cout and std::endl each time these stream names are used
would be cumbersome. Theusingdeclaration permits all function and class names that
are part of a namespace to be used without specifying the namespace. Hence all the
programs in this book begin withusing namespace std; which means function
and class names in the standard namespacestddo not need to be explicitly qualified with
std:: . When you write functions or classes that are not part of a namespace, they’re
said to be in theglobal namespace.

June 7, 1999 10:10 owltex Sheet number 27 Page number 715magentablack

A.2 Functions and Classes 715

A.2.4 Operators

Table A.4 C++ Operator Precedence and Associativity

operator symbol name/description associativity

:: scope resolution left
() function call left
[] subsccript/index left
. member selection left
-> member selection (indirect) left
++ – post increment/decrement right
dynamic_cast<type> right
static_cast<type> right
const_cast<type> right
sizeof size of type/object right
++ – pre increment right
new create/allocate right
delete destroy/de-allocate right
! logical not right
- + unary minus/plus right
& address of right
* dereference right
(type) cast right
.* ->* member selection left
* / % multiply, divide, modulus left
+ plus (binary addition) left
- minus (binary subtraction) left
<< shift-left/stream insert left
>> shift-right/stream extract left
< <= > >= relational comparisons left
== != equal, not equal left
& bitwise and left
ˆ bitwise exclusive or left
| bitwise or left
&& logical and left
|| logical or left
= assignment right
+= -= *= /= %= arithmetic assignment right
<<= >>= shift assign right
? : conditional right
throw throw exception right
, sequencing left

June 7, 1999 10:10 owltex Sheet number 28 Page number 716 magentablack

716 Appendix A How to: use basic C++, syntax and operators

The many operators in C++ all appear in Table A.4. [Str97] An operator’s prece-
dence determines the order in which it is evaluated in a complex statement that doesn’t
use parentheses. An operator’s associativity determines whether a sequence of con-
nected operators is evaluated left-to-right or right-to-left. The lines in the table separate
operators of the same precedence.

A.2.5 Characters

Characters in C++ typically use an ASCII encoding, but it’s possible that some imple-
mentations use UNICODE or another encoding. Table F.3 in Howto F provides ASCII
values for all characters. Regardless of the underlying character set, the escape sequences
in Table A.5 are part of C++.

The newline character\n and the carriage return character\r are used to indicate
end-of-line in text in a platform-specific way. In Unix systems, textfiles have a single
end-of-line character,\n. In Windows environments two characters are used,\n\r .
This can cause problems transferring text files from one operating system to another.

A.2.6 Command-line parameters

Command-line parameters are not covered in this book, but Prog. A.2,mainargs.cpp
shows how command-line parameters are processed by printing each paraemter. Param-
eters are passed in an array of C-style strings conventionally namedargv (argument
vector). The number of strings is passed in an int parameter namedargc (argument
count). Every program has one parameter, the name of the program which is stored in
argv[0] .

Table A.5 Escape sequences in C++

escape sequence name ASCII

\n newline NL (LF)
\t horizontal tab HT
\v vertical tab VT
\b backspace BS
\r carriage return CR
\f form feed FF
\a alert (bell) BEL
\\ backslash \
\? question mark ?
\’ single quote (apostrophe) ’
\" double quote "

June 7, 1999 10:10 owltex Sheet number 29 Page number 717magentablack

A.2 Functions and Classes 717

Program A.2 mainargs.cpp

#include <iostream>
using namespace std;

int main(int argc, char ∗ argv[])
{

int k;
cout << "program nam e = " << argv[0] << endl;
cout << "# arguments passe d = " << argc << endl;

for(k=1 ; k < argc; k++)
{ cout << k << "\t" << argv[k] << endl;
}
return 0;

} mainargs.cpp

O U T P U T

prompt> mainargs
program name = c:\book\ed2\code\generic\tapestryapp.exe
arguments passed = 1

the run below is made from a command-line prompt, e.g., a Unix prompt, a DOS
shell, or a Windows shell

prompt> ./tapestryapp this is a test
program name = ./tapestryapp
1 this
2 is
3 a
4 test

As you can see if you look carefully at the output, the name of the program is
actuallytapestryapp , although we’ve used the convention of using the filename of
the program, in this casemainargs , when illustrating output.

June 7, 1999 10:10 owltex Sheet number 30 Page number 718magentablack

718 Appendix A How to: use basic C++, syntax and operators

June 7, 1999 10:10 owltex Sheet number 31 Page number 719magentablack

BHow to: format output
and use streams

B.1 Formatting Output
Most of the programs we’ve shown have generated unformatted output. We used the
streammanipulator setw in windchill.cpp,Prog. 5.8 (and some other programs), to
force column-aligned output, but we have concentrated more on program design and
development than on making output look good.

In addition to well-formatted code, good programs generate well-formatted output.
The arrangement of the output aids the program user in interpreting data. However, it is
altogether too easy for a programmer to spend an inordinate amount of time formatting
output trying to make it “pretty.” The objective of this book is to present broad program-
ming concepts, which include documenting code and formatting output. You should
strike a balance between the objectives of producing working programs and writing
programs so that users can understand both the program and the output.

There are two methods for altering an output stream to change the format of values
that are inserted into the stream: using stream member functions and using an object
called a manipulator, accessible via the include file<iomanip> (or <iomanip.h> .
Formatting functions and manipulators are summarized in Tables B.1 and B.2. In general
it’s much easier to use a manipulator than the corresponding stream formatting member
function. Three programs illustrate how the output functions and manipulators change
a stream so that strings and numbers are formatted according to several criteria.

Using Flags. Stroustrup [Str97] calls using flags “a time-honored if somewhat oldfash-
ioned technique”. Sticking to manipulators, which don’t use flags, will make your life
simpler than using the flag-based member functions of theostream hierarchy. A flag
is conceptually either on or off. Rather than using severalbool variables, flags are nor-
mally packed as individual bits in one int. For example, since eight flags can be stored
in an eight-bit number; one eight-bit number represents 256 different combinations of
flags being on or off.

B.1.1 General and Floating Point Formatting

Table B.1 shows the stream member functions that take parameters and their correspond-
ing manipulators. All stream formatting functions except forwidth arepersistent, once
applied to the stream they stay in effect until they’re removed. Thewidth function, and

719

June 7, 1999 10:10 owltex Sheet number 32 Page number 720magentablack

720 Appendix B How to: format output and use streams

Table B.1 Parameterized Stream Formatting Functions and Manipulators

Stream Function Manipulator Brief Description
width(int w) setw(int w) output field-width

precision(int p) setprecision(int p) # of digits

fill(), fill(int) setfill(int) pad/fill character

setf(int) setiosflags add flags
unsetf(int) resetiosflags remove flags
flags(), flags(int) read, set flags

it’s corresponding manipulatorsetw , affect only the next string or number output. The
functions in Table B.1 are used in Prog. B.1 as part of Sec. B.1.1, they’re summarized
below.

width(int n)sets the field-width of the next string or numeric output to the specified
width. Output is padded with blanks (seefill) as needed. Output that requires a
width larger thann isn’t truncated, it overflows the specified width.

precision(int n)sets the number of digits that appear in floating point output.
This is the number of digits to the right of the decimal point in eitherfixed or
scientific format, and the total number of digits otherwise, see Prog. B.1 for
examples. Values are rounded, not truncated.

fill(int n) sets the fill character ton and returns the old fill value. Without a
parameterfill() returns the current fill value.

setf(int n)sets the flag(s) specified byn, without affecting other flag values. Sim-
ilarly, unsetf unsets one or more flags. More than one flag can be specified by
using bitwise-or as shown in Prog. B.3.

flags(int n)sets the flags ton, the only flags set are those inn, and returns the
old flags. In contrast,setf leaves other flags unaffected. WIthout a parameter
flags returns the current flags. These functions are demonstrated in Prog. B.3.

B.1.2 Manipulators

Most of the flags that can be set using the stream member functionssetf , flags ,
and unsetf are given in Table B.2. These flags are very cumbersome to use since
some require specifying an additional parameter when usingsetf . For example, the
following statements set left-justification (the default justification is right) then generate
as output’1.23 ’ with two spaces of padding/fill.

cout.setf(ios_base::left, ios_base::adjustfield);
cout << "’"; cout.width(6);
cout << 1.23 << "’" << endl;

It’s much simpler to use a manipulator, the statement below has the same effect.

cout << left << "’" << setw(6) << 1.23 << "’" << endl;

June 7, 1999 10:10 owltex Sheet number 33 Page number 721 magentablack

B.1 Formatting Output 721

Table B.2 Stream formatting flags and corresponding manipulators. The flags are used with the
setf stream member function; all flags are static constants in the class ios_base ,
called ios in earlier versions of C++. See Prog. B.2.

Stream Flags flag option Manipulator
hex, oct, dec io_base::basefield hex, oct, dec

left, right ios_base::adjustfield left, right

fixed, scientific ios_base::floatfield fixed, scientific

showbase none showbase, noshowbase

showpoint none showpoint, noshowpoint

boolalpha none boolalpha, noboolalpha

showpos none showpos, noshowpos

The flags and manipulators in Table B.2 are summarized here, they are used in the
programs that follow.

hex, oct, decset the base of numeric output to 16, 8, and 10, respectively. The
default base is 10. Ifshowbase is specified octal numbers are preceded by a zero
and hexadecimal numbers are preceded by0x , see Prog. B.3.

left, right set the justification of string and numeric output. These don’t have a
visible effect unless the output requires a width smaller than the default width, six,
or than the width specified by usingsetw/width , then fill characters are added
to the right and left, respectively (left-justification means adding fill characters to
the right.)

showbase, showpoint, showpos, respectively show what base is in effect, show a
decimal point, and show a leading plus sign. Withoutshowpoint , the value 70.0
is displayed as 70, regardless of the precision value. Withshowpoint as many
zeros are shown as set byprecision .

boolalphamakestrue andfalse display as those strings rather than 1 and 0.
See Prog. B.3 for an example.

Precision and Justification for Floating Point Values Using Manipulators. Formatted
output for floating point numbers is shown in Prog. B.1,formatdemo.cpp.

Program B.1 formatdemo.cpp

#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;

// formatting using manipulators

June 7, 1999 10:10 owltex Sheet number 34 Page number 722magentablack

722 Appendix B How to: format output and use streams

int main()

{

const double CENTIPI = 100 ∗ acos(−1); // arccos(-1) = PI

const int MAX = 10;

const int TAB = 15;

int k;

cout << "default setting " << CENTIPI << ", with setprecision(4), "

<< setprecision(4) << CENTIPI << endl;

cout << "\nfixed floating point, precision varies, fixed/scientific\n" << endl;

for(k=0 ; k < MAX; k++)

{ cout << left << "pre. " << k << "\t" << setprecision(k) << setw(TAB)

<< fixed << CENTIPI << scientific << "\t" << CENTIPI << endl;

}

cout << endl << "width and justification vary, fixed, precision 2\n" << endl;

cout << setprecision(2) << fixed;

for(k=3 ; k < MAX+3; k++)

{ cout << "wid. " << k << "\t+" << left << setw(k) << CENTIPI << right

<< "+\t\t-" << setw(k) << CENTIPI << "-" << endl;

}

cout << endl << "repeated, fill char = @\n" << endl;

cout << setfill('@');

for(k=3 ; k < MAX+3; k++)

{ cout << "wid. " << k << "\t+" << left << setw(k) << CENTIPI << right

<< "+\t\t-" << setw(k) << CENTIPI << "-" << endl;

}

return 0;

} formatdemo.cpp

The manipulatorsetw affects the next numeric output only, other manipulators are
persistent and last until changed, e.g.,precision , left , andright . See Table B.2
for descriptions of manipulators. The manipulatorprecision rounds floating point
values rather than truncating them. When floating point values are printed using either
fixed or scientific , the precision is the number of decimal digits, otherwise (see
the first line of output) the precision is the total number of digits. The default precision
is six, as shown on the first line of output. The justification is set toleft in the first
loop, but varies in the subsequent output.

June 7, 1999 10:10 owltex Sheet number 35 Page number 723magentablack

B.1 Formatting Output 723

O U T P U T

prompt> formatdemo
default setting 314.159, with setprecision(4), 314.2

fixed floating point, precision varies, fixed/scientific

pre. 0 314 3.141593e+002
pre. 1 314.2 3.1e+002
pre. 2 314.16 3.14e+002
pre. 3 314.159 3.142e+002
pre. 4 314.1593 3.1416e+002
pre. 5 314.15927 3.14159e+002
pre. 6 314.159265 3.141593e+002
pre. 7 314.1592654 3.1415927e+002
pre. 8 314.15926536 3.14159265e+002
pre. 9 314.159265359 3.141592654e+002

width and justification vary, fixed, precision 2

wid. 3 +314.16+ -314.16-
wid. 4 +314.16+ -314.16-
wid. 5 +314.16+ -314.16-
wid. 6 +314.16+ -314.16-
wid. 7 +314.16 + - 314.16-
wid. 8 +314.16 + - 314.16-
wid. 9 +314.16 + - 314.16-
wid. 10 +314.16 + - 314.16-
wid. 11 +314.16 + - 314.16-
wid. 12 +314.16 + - 314.16-

repeated, fill char = @

wid. 3 +314.16+ -314.16-
wid. 4 +314.16+ -314.16-
wid. 5 +314.16+ -314.16-
wid. 6 +314.16+ -314.16-
wid. 7 +314.16@+ -@314.16-
wid. 8 +314.16@@+ -@@314.16-
wid. 9 +314.16@@@+ -@@@314.16-
wid. 10 +314.16@@@@+ -@@@@314.16-
wid. 11 +314.16@@@@@+ -@@@@@314.16-
wid. 12 +314.16@@@@@@+ -@@@@@@314.16-

June 7, 1999 10:10 owltex Sheet number 36 Page number 724magentablack

724 Appendix B How to: format output and use streams

Formatting Using Stream Member Functions. Program B.2 demonstrates some of the
same formatting features shown in Prog. B.1, but using stream member functions instead
of manipulators. As you can see, using manipulators is much simpler.

Program B.2 streamflags.cpp

#include <iostream>

#include <cmath>

using namespace std;

int main()

{

const double PI = acos(−1); // arccos(-1) = PI radians

const int MAX = 10; // max precision used in demo

int k;

// set right justified, fixed floating format

cout.setf(ios_base::right, ios_base::adjustfield);

cout.setf(ios_base::fixed, ios_base::floatfield);

cout << "fixed, right justfied, width 10, precision varies\n" << endl;

for(k=0 ; k < MAX; k++)

{ cout.precision(k);

cout << k << "\t+";

cout.width(MAX);

cout << PI << "+" << endl;

}

// use different fill characters

int fillc = cout.fill();

cout.precision(2);

cout << "\nshow fill char, precision is 2\n" << endl;

for(k='a'; k <= 'd'; k++)

{ cout << "old fill = '" << char(fillc) << "' +";

cout.width(MAX);

cout.fill(k);

cout << PI << "+" << endl;

fillc = cout.fill();

}

return 0;

} streamflags.cpp

June 7, 1999 10:10 owltex Sheet number 37 Page number 725 magentablack

B.1 Formatting Output 725

O U T P U T

prompt> streamflags
fixed, right justfied, width 10, precision varies

0 + 3+
1 + 3.1+
2 + 3.14+
3 + 3.142+
4 + 3.1416+
5 + 3.14159+
6 + 3.141593+
7 + 3.1415927+
8 +3.14159265+
9 +3.141592654+

show fill char, precision is 2

old fill = ’ ’ +aaaaaa3.14+
old fill = ’a’ +bbbbbb3.14+
old fill = ’b’ +cccccc3.14+
old fill = ’c’ +dddddd3.14+

Using Flags as Parameters. Program B.3 shows how to pass format flags as parameters.
The stream member functionflags returns the current flags, but also sets the flags to
the value of its parameter as shonw in the functionoutput . Flags can be combined
using the bitwise or operator,operator | , as shown inmain . Each flag as a bit is
one or zero. The bitwise or operation corresponds to a boolean or, but uses bits instead.
In Prog. B.3, the result of combining the bits with or is a single number in which both
flags are set.

Program B.3 formatparams.cpp

#include <iostream>
#include <iomanip>
using namespace std;

void output(ostream& out, ios_base::fmtflags flags)
// post: print using flags, restore old flags
{

ios_base::fmtflags oldflags = out.flags(flags);

out << "oldflags: " << oldflags << "\tnew: "

June 7, 1999 10:10 owltex Sheet number 38 Page number 726magentablack

726 Appendix B How to: format output and use streams

<< out.flags() << "\t";

out << 12.47 << "\t" << true << "\t"
<< 99.0 << "\t" << 255 << endl;

out.flags(oldflags); // restore as before
}

int main()
{

output(cout, cout.flags()); // default
output(cout, ios_base::showpos); // leading +
output(cout, ios_base::boolalpha); // print true
output(cout, ios_base::showpoint); // show .0

output(cout, ios_base::boolalpha |ios_base::hex); // bool on, base 16
output(cout, ios_base::hex |ios_base::showbase); // show 0x in front
return 0;

} formatparams.cpp

O U T P U T

prompt> formatparams
oldflags: 513 new: 513 12.47 1 99 255
oldflags: +513 new: +32 +12.47 1 +99 +255
oldflags: 513 new: 16384 12.47 true 99 255
oldflags: 513 new: 16 12.4700 1 99.0000 255
oldflags: 201 new: 4800 12.47 true 99 ff
oldflags: 0x201 new: 0x808 12.47 1 99 0xff

B.1.3 Stream Functions

We’ve used stream functionsfail andopen and mentionedclose in Chap. 6. We
summarize these and a few other stream functions here.

open(const char *) opens anifstream bound to the text file whose name
is an argument. We usestring::c_str() to obtain the c-string pointer needed
as an argument. It’s possible toopen an output file for appending rather than
writing, in generalopen takes an optional second argument we haven’t used:

ios_base::app , open output for appending
ios_base::out , open a stream for output
ios_base::in , open a stream for input
ios_base::binary , open for binary i/o
ios_base::trunc , truncate to zero length

June 7, 1999 10:10 owltex Sheet number 39 Page number 727magentablack

B.2 Random Access Files 727

fail() returns true if an i/o operation has failed, but characters have not been
lost. You may be able to continue reading after callingclear .

clear() clears the error state of the stream. After a stream hsas failed it must
be cleared before i/o will succeed.

good() returns true if a stream is in a good state. This is a nearly useless function,
“good” isn’t well-defined. You shouldn’t need to ever callgood .

close() flushes any pending output and manages all system resources associated
with a stream. Many operating systems have a limit on the number of files that can
be opened at one time. You don’t often need to callclose explicitly, it’s called
by the appropriate destructor.

eof() returns true if the end-of-file condition of a stream is detected. This is
another worthless function (seegood). If fail is true, this function may be able
to tell you if fail is true because end-of-file is reached.

ignore(int n, int sentinel) skips as many asn characters, stops skip-
ping when thesentinel character is read or whenn characters are read, whichever
comes first.

seekg(streampos p) seeks an input stream to a positionp. We useseekg(0)
to reset a stream in the classWordStreamIterator , other uses are illustrated
in the next section.

B.2 Random Access Files
We’ve usedifstream and ofstream streams as character-based streams, all the
input and output is done a character at a time. Although operatorsoperator << and
operator >> make it possible to insert and extract values of many types without
reading one character at a time, underneath the streams are still character based.

Occasionally files are written as raw binary data rather than as character-based text.
If you think you must write binary files, you may be correct, but you’ll give up a great
deal.

Binary files aren’t readable (as text) in a text editor, so you can’t examine them
without writing a program to help and you can’t fix mistakes without writing a
program.

If you’re writing objects whose size isn’t fixed, e.g., strings, or objects containing
pointers, you’ll need to do lots of work to use files of raw binary data.

Seeking to a Fixed Position in a File. The file methodsseekg and tellg shown in
Prog. B.4 can be applied to text files as well as to binary files. Since text files are character
based, seeking is based on the size of a character. Input files have aget position, which
can be moved usingseekg and whose position can be obtained usingtellg , where
the ’g’ is for get. Similarly, output files useseekp and tellp for theput position.
Using the seek and tell functions makes it possible to randomly access data in a file, as
opposed to the sequential access we’ve used so far. Here random access means that it’s

June 7, 1999 10:10 owltex Sheet number 40 Page number 728 magentablack

728 Appendix B How to: format output and use streams

possible to jump to location p without reading locations 0 through p-1, just as vectors
have random access and linked-lists do not.

You’ll need to consult a more advanced book on C++ for more information , a
careful reading ofbinaryfiles.cpp, Prog. B.4, will show how to work with binary files.
Prog. B.4 writes two files ofDate s, one in text format, one as raw binary data. The
low-level stream functionsread andwrite manage a chunk of memory for reading
or writing. The functions assume the memory is C-style array of characters, to interpret
the memory as something else it must be cast to the appropriate type as shown by using
thereinterpret_cast operator.

Program B.4 binaryfiles.cpp

#include <iostream>
#include <string>
#include <fstream>
using namespace std;
#include "prompt.h"
#include "date.h"

// illustrates reading/writing raw bits, binary files

int main()
{

string filename = PromptString("file for storing Dates: ");
int limit = PromptRange("# of Dates ",10,10000);
Date today;
int start = today.Absolute();
string text = filename + ".txt";
string binary = filename + ".bin";
cout << "testing program on " << today << endl;

ofstream toutput(text.c_str()); // open text file
int k;
for(k=start ; k < start+limit; k++) // write text form of dates
{ toutput << Date(k) << endl;
}
toutput.close();

// open binary file, write raw dates
ofstream boutput(binary.c_str(),ios_base::binary);
for(k=start ; k < start+limit; k++)
{ Date d(k);

boutput.write(reinterpret_cast<const char ∗>(&d),sizeof(d));
}
boutput.close();

// open input file to read raw dates from
ifstream input(binary.c_str(),ios_base::binary);
input.seekg(0,ios_base::beg); // to the beginning
streampos startp= input.tellg(); // position of start
input.seekg(0,ios_base::end); // seek to end of stream

June 7, 1999 10:10 owltex Sheet number 41 Page number 729magentablack

B.2 Random Access Files 729

streampos endp = input.tellg(); // position of end
int size = endp −startp; // number of entries

cout << "size of file: " << size << ", # dates = "
<< size/sizeof(Date) << endl;

// read alldates in file, start at front
input.seekg(0, ios_base::beg);
for(k=0 ; k < size/sizeof(Date); k++)
{ input.read(reinterpret_cast<char ∗>(&today),sizeof(today));

cout << today << endl;
}
return 0;

}

binaryfiles.cpp

To show why you don’t want to use binary files, the first three lines ofbindate.txt
follow.

May 27 1999
May 28 1999
May 29 1999

Here are the first few characters inbindate.bin

ˆ[ˆ@ˆ@ˆ@ˆEˆ@ˆ@ˆ@\317ˆGˆ@ˆ@ˆ\

O U T P U T

prompt> binaryfiles
file for storing Dates: bindate
of Dates between 10 and 10000: 10
testing program on May 27 1999
size of file: 120, # dates = 10
May 27 1999
May 28 1999
May 29 1999
May 30 1999
May 31 1999
June 1 1999
June 2 1999
June 3 1999
June 4 1999
June 5 1999

June 7, 1999 10:10 owltex Sheet number 42 Page number 730magentablack

730 Appendix B How to: format output and use streams

B.3 I/O Redirection
UNIX and MS-DOS/Windows machines provide a useful facility for permitting pro-
grams that read from the standard input stream,cin , to read from files. As we’ve seen,
it’s possible to use the classifstream to do this. However, we often use programs
written to read from the keyboard and use the streamcin to read from files instead. You
can useinput redirection to do this. When you run a program that reads fromcin , the
input can be specified to come from a text file using the symbol< and the name of the
text file. Running Prog. 6.7,countw.cpp,as shown in the following, indicates how input
redirection works.

O U T P U T

prompt> countw< melville.txt
number of words read = 14353
prompt> countw< hamlet.txt
number of words read = 31956

The less-than sign,<, causes the program on the left of the sign (in this case,countw) to
take itscin input from the text file specified on the right of the< sign. The operating
system that runs the program recognizes when the text file has “ended” and signals end
of file to the programcountw.This means that no special end-of-file character is stored
in the files. Rather, end of file is a state detected by the system running the program.

It is possible to run the word-counting program on its own source code.

O U T P U T

prompt> countw< countw.cpp
number of words read = 54

Among thewordsof Prog. 6.7,countw.cpp,are"main()" , " {" , "(cin" , and"endl;" .
You should examine the program to see if you can determine why these are considered
words.

June 7, 1999 10:10 owltex Sheet number 43 Page number 731magentablack

CHow to: use the class
string

Experience shows that it is impossible to design the perfectstring. People’s taste, expectations,
and needs differ too much for that. So, the standard librarystring isn’t ideal. I would have

made some design decisions differently, and so would you.
Bjarne Stroustrup

The C++ Programming Language, Third Edition, p. 579

“I’m a frayed knot”
A string going into a bar for the third time

An oldstring joke

C.1 The class string

The standard C++ string class is imported into client programs using:

#include<string>

It’s possible you’ll be programming in C++ using an older compiler that doesn’t support
the standard class, or that you’ll be using a different string class, e.g., the classapstring
that is part of the Advanced Placement Computer Science C++ classes. A clasststring
is provided with this book as a replacement for the standard class. It is identical to the class
apstring except that the constant identifying an illegal position iststring::npos
instead of the global constantnpos used inapstring .

The standard classstring is better than a simple encapsulation of the C-style
string which is a zero-terminated array of characters. The classstring is actually a
typedef for a templated class. The template makes it possible to change more easily
to an alphabet with more characters than can be represented by achar value. The type
char typically limits an alphabet to 128 or 256 different characters. I won’t discuss
the templated classbasic_string , see one of the more advanced books on C++ for
details, e.g., [Str97]. I will outline some of the member functions that you may find
useful in writing programs. For information on all thestring functions consult the
header file<string> or a C++ reference.

C.1.1 Basic Operations

Strings can be read, written, assigned, copied, and compared using relational operators.
The relational operators compare usinglexicographical order, which is alphabetical
order except that the underlying character set’s ordinal values are used. This means that

731

June 7, 1999 10:10 owltex Sheet number 44 Page number 732magentablack

732 Appendix C How to: use the class string

in an ASCII environment the string"Zebra" comesbeforethe string"aardvark"
because the ASCII value of the character ’Z’ is 90 while the value of ’a’ is 97.

Some string implementations may use efficient implementation techniques such as
reference counting to share storage, but you can think of strings as working like the
built-in types: assignment works as you should expect it to.

strin g a = "hello";
strin g b = a; // b constructed as copy of a
b[0] = ’j’; // a still represents "hello"

As this example shows, indivdual characters are accessed using the indexing bracket
operator [] . There is no range checking, an index that is greater thans.length()-1 ,
the largest valid index, or less than zero, the smallest valid index, will be processed
silently and almost certainly lead to an error later. The clasststring , like apstring ,
does do range checking for the indexing operator. The standard class supportsat which
does do range-checking:

strin g s = "hello";
s[30] = ’x’; // problem eventually, bad index
s.at(30) = ’x’; // error, exception thrown

Characters are indexing beginning with zero, the last valid index iss.length()-1 as
we’ve noted. The functionlength returns the number of characters in the string which
is one larger than the largest valid index because the first character has index zero.

C.1.2 Conversion to/from C-style Strings

Many C++ functions pre-date the C++ standard; other functions are written to be used
with C-style strings. The methodstring::c_str() returns a C-style string equiv-
alent to a string. We use this method extensively in opening textfiles.

string filename = "c:\\data\\hamlet.txt";
ifstream input(filename.c_str()); // open file

A string can also be constructed from a C-style string. This is how strings are constructed
from string literals since a string literal is treated as a C-style string.

strin g s = "hello world"; // string(const char *) constructor

Some of the useful C-style functions such asatoi andatof have equivalents in the
library of string free functions fromstrutils.h, Prog. G.8. See Howto G for details.

C.2 String Member Functions

C.2.1 Adding Characters or Strings

In this book we use overloadedoperator += and operator + extensively for
appending characters to a string and concatenating strings, respectively.

June 7, 1999 10:10 owltex Sheet number 45 Page number 733magentablack

C.2 String Member Functions 733

strin g c = ’a’; // no good, cannot construct from char
strin g s = "hello";
strin g t = " world";
strin g u = "el";
u += "ephant"; // ok , u = "elephant"
u += ’s’; // ok to append char , u = "elephants"
strin g v = s + t; // ok, v = "hello world"
v = ’t’ + s; // no good, can’t concatenate to a char
v = string("") + ’t’ + s; // ok, concatenate char to string

As shown, it’s not possible to concatenate a string to a char, but it is possible to concatenate
a char to a string. To guard against errors, there is no string constructor from one char,
this is why concatenation of strings to chars doesn’t work. It is possible, however, to
concatenate a char to a string as shown in the examples above.

It’s also possible to add a string (or a string literal/C-style string) at a given po-
sition/index using the methodstring::insert . The local copy below is needed
because the parameters areconst .

string Fullname(const string& first, const string& last)
// post: returns fullname, e.g., first + last
{

// return firs t + " " + last;
string copy(last);
copy.insert(0," "); // copy is no w " " + last
copy.insert(0,first); // copy is now firs t + " " + last
return copy;

}

C.2.2 Using Substrings

A substring can be extracted from a string using the methodstring::substr() .
Substrings are specified using a starting index/position and the number of characters in
the substring. The number of characters is optional.

string string::substr(int index = 0, in t n = npos) const;
// post: return substring of n characters starting at index

The methodsubstr “does the right thing” when too many characters are specified,
only as many as are available are returned. On the other hand, if the starting position is
out of range an error occurs. Prog. C.1 shows thesubstr method used together with
other string methods we discuss in the next section. The function prototype above shows
default values for both parameters, but the first argument is almost always provided.

The methodstring::replace , also shown in Prog. C.1, uses a position and a
length to replace a substring of characters in a string.

string& string::replace(int index, int n, const string& s);
// post: replace n chars beginning at index with s,
// return result

June 7, 1999 10:10 owltex Sheet number 46 Page number 734magentablack

734 Appendix C How to: use the class string

Thussubstr reads (a copy of) part of a string andreplace writes a part of a string.
Both functions use as many characters as specified by the optional second parameter,
but don’t generate an error if there are fewer characters in the string than specified.

Program C.1 stringdemo.cpp

#include <iostream>

#include <string>

using namespace std;

int main()

{

strin g s = "I sing the body electric";

cout << s << endl;

cout << s.substr(2,4) << endl;

cout << s.substr(s.find("electric") −5) << endl << endl;

string copy(s);

int bodyPos = copy.find("body");

copy.replace(bodyPos,copy.length(),"blues");

cout << copy << endl << endl;

cout << "search for chars/strings" << endl;

cout << "first e at " << s.find('e') << endl;

cout << "last e at " << s.rfind('e') << endl;

cout << "first z at " << s.find('z') << endl;

cout << "space after body " << s.find(" ", bodyPos) << endl;

return 0;

} stringdemo.cpp

O U T P U T

prompt> stringdemo
I sing the body electric
sing
body electric

I sing the blues

search for chars
first e at 9
last e at 18
first z at 4294967295
space after body at 15

June 7, 1999 10:10 owltex Sheet number 47 Page number 735magentablack

C.2 String Member Functions 735

C.2.3 Finding (Sub)strings and Characters

The string member functionsfind and rfind return the index in a string at which
another string or character begins. If the searched for value isn’t found, the functions
returnstring::npos . As the output shows, this is the largest positive value for an
index. Your programs should not rely onstring::npos having any particular value.

The functionsfind and rfind come in many flavors. We’ll only use the basic
versions though these have an optional second argument indicating at what index the
search begins as shown in Prog. C.1.

int string::find(const string& s, int loc = 0) const;
// post: return position/index of first location of s
// starting search at index loc,
// return npos if not found

int string::find(char ch, int loc = 0) const;
// post: as above, search for character ch

int string::rfind(const string& s, int loc = 0) const;
// post: return position/index of first location of s
// starting search at index loc, searching backwards
// return npos if not found

int string::rfind(char ch, int loc = 0) const;
// post: as above, search for character ch backwards

Although we’ve used the typeint for all indexes, the typesize_type is actually used
in all string member functions. In nearly every implementation this will be the same
assize_t , anunsigned int or some other unsigned integer type, e.g.,long .

June 7, 1999 10:10 owltex Sheet number 48 Page number 736magentablack

736 Appendix C How to: use the class string

June 7, 1999 10:10 owltex Sheet number 49 Page number 737magentablack

DHow to: understand and
use const

An important factor, both for and against C++, was the willingness
of the C++ community to acknowledge C++’s many imperfections.

Bjarne Stroustrup
The Design and Evolution of C++, p. 178

The key wordconst in C++ is used in many contexts. Using classes that support
object “const-ness” is straightforward, but developing classes that support constness re-
quires some care in design and implementation and some knowledge of often overlooked
C++features that facilitate designing with const.

D.1 Why const ?
Many C++ programmers rely on object const-ness to combine efficiency and safety.
For example, passing parameters by value (the default mechanism in C++ and the only
parameter passing mechanism in C and Java) creates a copy of the passed argument1.
For example consider passing a copy of a string:

void verse(int bottleCount, string beverage)
{

cout << bottleCount << " bottles of "
<< beverage << " on the wall" << endl;

cout << bottleCount << " bottles of "
<< beverage << endl;

// and so on
}

This function might be called several times in a loop as shown here.

// illustration of function call and argument/parameter copy
string bev;
cout << "enter a beverage ";
cin >> bev;
for(in t k = 100; k > 0; k--)
{

verse(k,bev);
}

1In Java everything is a pointer (or a reference, depending on your viewpoint), so making copies isn’t
expensive. In C nearly everything is a pointer so making copies isn’t expensive. In C++ value semantics
mean “make a copy”, so copies are expensive.

737

June 7, 1999 10:10 owltex Sheet number 50 Page number 738magentablack

738 Appendix D How to: understand and use const

In this example, the one hundred function calls create one hundred copies of the variable
bev : one per call2. If the prototype of the functionverse is changed to use a const-
reference parameter as shown below, then no copies are made:

void verse(int bottleCount, const string & beverage)
{

// function here
}

The pass-by-reference (indicated by the & in the parameter) means that no copy is made
in passing an argument. Theconstmodifier means that the parameterbeverage cannot
be modified within the body ofverse . The reference is for efficiency and the const is
for safety. Since many C++ programmers rely on passing const-reference parameters,
class designers should now how to support this style of programming.

D.1.1 Literal Arguments

In the example above, it’s possible to use pass-by-reference without the const modi-
fier to achieve efficiency without regard to safety3. However, in C++ if the parameter
beverage is a reference parameter, butnot a const reference parameter, then the func-
tion call below will not compile:

verse(99,"orange juice");

Here, the second parameter is the string literal"orange juice" . Literals must be
passed by value or by const reference. In the latter case a temporary object will be
constructed to hold the literal. The C++ standard requires a const reference parameter in
this case; a reference parameter without the const modifier won’t support literal (constant)
arguments.

D.2 const Member Functions
How does the compiler determine what functions are safe to call when a variable/parameter
is defined as const? For example, in theverse function above, suppose the program-
mer adds the line below to convert the first character of the beverage to its upper-case
equivalent (toupper is accessible via the header file<cctype> , see Howto F).

void verse(int bottleCount, const string & beverage)
{

beverage[0] = toupper(beverage[0]);
// verse output here

}

2The compiler might be able re-use the same copy, but not necessarily.
3This is typical, for example, in Pascal programs where arrays are passed as var parameters to avoid the
overhead of copying the array (e.g., consider a binary-search function that searches inO(logn) time
but takesO(n) time to copy the array; not the paradigm of efficiency we’d like.)

June 7, 1999 10:10 owltex Sheet number 51 Page number 739magentablack

D.2 const Member Functions 739

Compiling this code under Visual C++ 5.0 yields the error message

error C2106: left operand must be l-value

That’s an “ell”, where an l-value (for left-hand-side of an assignment value) is a value
that can be assigned to. In the code above, it is not possible to assign tobeverage[0]
since the parameterbeverage is const. How does the compiler determine this?

In the example above, the compiler knows the prototype/signature of all string mem-
ber functions. These member functions include two indexing operators: oneoperator
[] for const strings and oneoperator [] for non-const strings. Both prototypes are
shown below:

char operator[](int k) const; // const strings
char & operator[](int k); // non-const strings

Note that the const indexing operator returns achar which will be a copy of the k-
th character in the string. The non-const function returns achar& , a reference to
a character in the string. Returning a reference means that the actual character in the
string can be modified, e.g., the code below turns"hello" into "jello" since string
fruit is not const.

string fruit = "hello";
fruit[0] = ’j’;

This code works because the value returned by the indexing operator is a reference (note
the return type:char &) to a character in the string. Sometimes it helps to realize that
the two statements below are equivalent:

fruit[0] = ’j’;
fruit.operator[](0) = ’j’;

At first it may seem strange to see a function call used as an l-value, i.e., the result
returned by the call is assigned to. This is an essential part of how reference return-types
are used in C++.

As shown in the example above, some member functions have the wordconst as
part of their prototype/signature—the wordconst appears after the parameter list. To
see another example, part of the header file for the classDate is reproduced below (see
date.h, Prog. G.2) with some of the const methods shown.

class Date
{

public:
Date(int m,int d,int y);
// accessor functions

int Month() const; // return month
int Day() const; // return day
int Year() const; // return year
...

};

June 7, 1999 10:10 owltex Sheet number 52 Page number 740magentablack

740 Appendix D How to: understand and use const

As shown in the comment in the code above, the terminology often used for const member
functions isaccessor, indicating that (private) data is accessed only, not modified. In
contrast, non-const member functions are often calledmutators.

ProgramTip D.1: A const member function is a member function that
can be applied to a const object. The compiler ensures that const member functions
do not modify private data. The compiler also ensures that only const member functions
are called for const objects — const objects most often occur in programs as const reference
parameters.

Const member functions can also be applied to non-const objects. As we saw with
operator [] earlier, and as explained in the next section, it’s possible to have two
versions of a function: one for const and one for non-const objects.

The key here is that any member function that doesn’t modify data should be declared
const in both the .h file and in the .cpp file (prototypes of member functions must match
declaration and definition, declaration is the .h file, definition is the .cpp file). Only
const functions are called on const objects, non-const objects can call both const and
non-const functions.

D.2.1 Overloading on const

Two functions areoverloadedwhen they have the same name. Overloaded functions
must have different parameter lists so that the compiler can determine which function
to call. For example, typically a class has several constructors, all with the same name
(the name of the class) but with different parameters. In theDate class there are three
overloaded constructors.

It’s possible to have two member functions with the same name, where one is const
and the other non-const. We saw this in the example of the overloaded indexing operators
for the string class, which are reproduced below.

char operator[](int k) const; // const strings
char& operator[](int k); // non-const strings

At first glance these functions may appear to have the same parameter list and thus violate
the rule requiring parameter lists of overloaded functions to be different. However, the
const modifier for a member function really is part of the parameter list—it modifies the
parameterthis that is implicit in every member function and that refers to the object
actually passed to the member function. In some sense you can think of all member
functions having an implicit first parameter, a parameter of the type of the class to which
the member function belongs. The string indexing functions would then be rewritten as
follows asnon-member functions (usingself for this.)

char operator[](const string& self, int k);
char& operator[](string& self, int k);

June 7, 1999 10:10 owltex Sheet number 53 Page number 741magentablack

D.3 Mutable Data 741

If we actually developed the code like this, instead of usings.operator[](k) we
would write operator[](s,k) whereoperator[] is now a free function with
two parameters instead of a member function of the string class with one parameter.

D.3 Mutable Data
Sometimes a class is logically const, but not physically const. This means that from a
user viewpoint a function doesn’t appear to change the class, but internally a change is
needed to implement the function. One prototypical instance of this is a group of member
functions that iterate over data in a collection. Not all of our iterator classes have been
developed in a const-friendly way because we didn’t want to discuss the issues raised
here, but in more advanced applications you’ll want const and non-const iterators. The
classCListIterator is const friendly, but first we’ll discuss another iterator class.
Consider aWordStreamIterator counting the words in a file:

WordStreamIterator ws;
ws.Open("hamlet.txt");
int count = 0;
for(ws.Init(); ws.HasMore(); ws.Next()
{ count++;
}

Is the variablewsconst? It doesn’t seem to be since it’s reading data from theifstream
object it encapsulates. So we don’t expect theWordStreamIterator methods to be
const althoughHasMore is clearly an accessor and should be const.

In a different context, what about iterating over aCList object? (Seeclist.h,
Prog. G.12, recall thatCList objects cannot change.)

void print(const StringList& list)
{

StringList iter(list);
for(iter.Init(); iter.HasMore(); iter.Next())
{ cout << iter.current() << endl;
}

}

The problem here is that parameterlist is const, as it should be, since the print
function doesn’t modifylist . However, the iterating member functions will need to
keep a pointer to the current node of theCList list and advance the pointer as needed.
For example here’s the code fromclist.cppfor theNext iterator function.

template <class Type>
void CListIterator<Type>::Next() const
{

if (HasMore())
{ myCurrent= myCurrent->next;
}

}

June 7, 1999 10:10 owltex Sheet number 54 Page number 742magentablack

742 Appendix D How to: understand and use const

Here the iterator functionNext is labeled as a const function, meaning that it cannot
modify any of the object’s state/instance variables. As a result, ifmyCurrent is
declared as aNode * pointer, the definition ofNext above will not compile. If we
makeNext non-const, then we cannot support the concept of a const-iterator: an iterator
over a const collection. We’d like to differentiate between const collections and non-
const collections, and have iterators that support both types.

There are two solutions: one is to cast away the constness in the functionNext .
The other is to declare the private variablemyCurrent asmutable. The key word
mutable is a relatively new addition to C++, but is supported by most recent compilers.
A mutable data member can be modified by a const function. It’s a good idea to keep
mutable data to a minimum. However, in some situations where logical constness (the
iterator doesn’t change the list) and physical constness (the iterator updates a pointer)
don’t coincide, mutable is a nice feature. The declaration for theCListIterator
class is reproduced below, again see Prog. G.12 for full details.

template <class Type>
class CListIterator
{

public:
CListIterator(const CList<Type>& list);

void Init() const;
bool HasMore() const;
void Next() const;
Type Current() const;

private:
typedef CList<Type>::TNode Node;
Node * myFirst; // front of list
mutable Node * myCurrent; // current node

};

If your compiler doesn’t support mutable you can cast away constness using either the
const_cast operator or an old style cast. Both lead to incredibly ugly code. Since
the iterator is const, the object*this must have its const-ness cast away as shown.
Sincethis is a pointer to a const object (see Sec. D.4) we must cast so that*this
isn’t const, we want to change the object referenced bythis .

template <class Type>
void CListIterator<Type>::Next() const
// post: iterator advanced to next item
{

if (HasMore())
{ const_cast<CListIterator<Type> *>(this)->myCurrent

= myCurrent->next;
}

}

June 7, 1999 10:10 owltex Sheet number 55 Page number 743magentablack

D.4 Pointers and const 743

For compiler that don’t supportconst_cast the following alternative will work.

// use an old style cast
(CListIterator<Type> *)(this)->myCurrent = myCurrent->next;

}

In both cases, before the cast the pointerthis has type

const CListIterator<Type> *

The cast changesthis to point to a non-const object, so that the object’s state can be
changed. This non-const reference can be modified since it is an l-value.

ProgramTip D.2: It’s not a good idea to cast away constness. C++ allows
this, but you shold try to minimize throwing away const since the use of
const is for safety (a good thing). Using the keywordmutable marks logical
constness in a way that is easy to see and easier syntactically than using casts.

D.4 Pointers and const

Many functions have pointer parameters modified byconst . For example, thestring
constructor from a C-style string:

string::string(const char * p)
// post: initialized to C-style string p

Since the asterisk follows the type it makes a pointer to,p is a pointer to a constant
character. This means that the object pointed to byp cannot be changed, it’s constant.
You cannot change an object through a pointer declared in this way. Pointers can be
modified byconst in other ways.

Date * tptr = new Date(); // points to today
Date * const cptr = new Date(); // constant pointer
const Date * coptr = new Date(); // constant object

*tptr += 1; // ok, tomorrow
*cptr += 1; // ok, object isn’t const
cptr = tptr; // no, cptr is a constant pointer
*coptr += 1; // no, *coptr is a const object
coptr = tptr; // ok, pointer isn’t const, object is

These examples illustrate the differences between a pointer to a constant object:coptr
in the code above, and a const pointer:cptr in the same code.

June 7, 1999 10:10 owltex Sheet number 56 Page number 744magentablack

744 Appendix D How to: understand and use const

D.5 Summary
Programming with const can be painful. It’s easy to miss the appearance of const in
compiler error messages — be sure that you look for it when you get a “member function
foo not implemented” error. You’ll usually be told the function signature/prototype
causing the error, look for const to see if you put a const in the header file, but forgot to
add the const when defining the function.

Some people decide const is too painful and never program with const reference
parameters. However, it’s easy to use const when you don’t have to write the classes,
assuming that the class designer and implementer liked const too.

So use const for safety and learn to design and implement classes that support use
of const by others.

June 7, 1999 10:10 owltex Sheet number 57 Page number 745magentablack

EHow to: overload
operators

Just as most people want government benefits without having to pay for them, most C++
programmers want implicit type conversions without incurring any cost for temporaries.

Scott Meyers
More Effective C++, p. 105

E.1 Overloading Overview

C++ allows you to overload operators. This means, for example, that you can write
expressions that are natural, e.g.,

BigInteger a,b;
cout << "enter two integer values ";
cin >> a >> b;
cout << " a + b = " << (a+b) << endl;

Here operators<<, >> and + are overloaded forBigInteger values. Of course it’s
possible to run amok with operator overloading and use+ to mean multiply just because
you can. Rather than dwell on when to overload operators, this howto will explain how
to overload operators. Many books show the syntax for declaring overloaded operators,
but few offer guidelines for keeping the amount of code you write to a minimum and for
avoiding code duplication. The guidelines in this howto do not necessarily result in the
most efficient code from an execution standpoint, but development efforts are minimized
while efficiency and maintainability from a coding standpoint is emphasized. Of course
once you’ve succeed in implementing overloaded operators you can then concentrate on
making things efficient. To quote Donald Knuth (as cited in [McC93]):

Premature optimization is the root of all evil.

E.2 Arithmetic Operators

Arithmetic operators include+=, -= , *= , /= , %=and their binary cousins+, - , * , / , %.
The easiest way to implement these operators is to implement the arithmetic assignment
operators as member functions, and then to implement the binary operators using the
arithmetic assignment functions. The binary operators are implemented as free, non-
member functions.

745

June 7, 1999 10:10 owltex Sheet number 58 Page number 746magentablack

746 Appendix E How to: overload operators

E.2.1 Binary Operators

Here we assume that all arithmetic assignment operators have been implemented, and
discuss how to implement the binary arithmetic operators. We’ll use+ as an example,
assuming we’re implementing addition for a classBigInt , but the example applies to
all the binary arithmetic operators for any class.

BigInt operator + (const BigInt & lhs, const BigInt & rhs)
// postcondition: returns lhs + rhs
{

BigInt copy(lhs);
copy += rhs;
return copy;

}

The code here is straightfoward. A copy of the parameterlhs (left-hand-side) is made
and the sum accumulated in this copy which is then returned. Assuming that+= is
implemented properly it’s possible to shorten the body of the function:

BigInt operator + (const BigInt & lhs, const BigInt & rhs)
// postcondition: returns lhs + rhs
{

return BigInt(lhs) += rhs;
}

This implementation actually uses the return value ofoperator += (see Sec. E.2.2)
and is potentially more efficient though less clear to read at first. The efficiency gains are
spelled out in some detail in [Mey96], we’ll mention them briefly later in this section.

Symmetry is good: why operator + is not a member function In some textbooks,
operator + is implemented as a member function. In the example aboveoperator
+ is a free function, not a member of any class. The problem with making it a member
function is that it must have an object that it can be applied to. For example, consider
operator + as a member function:

BigInt BigInt::operator +(const BigInt & rhs)
// postcondition: returns (*this) + rhs
{

BigInt copy(*this);
// code here to add rhs to copy, and return result

}

The copy of*this is required since evaluatinga + b should not result in changing
the value ofa. Note thata + b is the same asa.operator +(b) whenoperator
+ is a member function. The real drawback here is that the following statements are
legal whenoperator + is a member function:

BigIn t a = Factorial(50); // a large number
BigIn t b = a + 1; // one more than a large number

June 7, 1999 10:10 owltex Sheet number 59 Page number 747magentablack

E.2 Arithmetic Operators 747

However, the following statements arenot legal:

BigIn t a = Factorial(50); // a large number
BigIn t b = 1 + a; // one more than a large number

The expressiona + 1 compiles and executes because (we’re assuming) that there is
aBigInt constructor that will create aBigInt from an int, i.e., the constructor below
is implemented. We’ll have more to say on constructors that act as implicit converters
later.

BigInt::BigInt(int num);
// postcondition: *this has the value num

This constructor creates ananonymousBigInt variable for the int value 1. This anony-
mous variable is passed to the functionoperator + . However, the symmetric ex-
pression1 + a cannot be evaluated ifoperator + is a member function because
the translation to1.operator +(a) is syntactic nonsense — 1 is aliteral, it cannot
have a member function applied to it nor will C++ create an anonymous variable so that
a member function can be applied.

Program Tip E.1: Overloaded operators for classes should behave like
operators for built-in types The binary arithmetic operators are commutative. When
they’re overloaded they should behave as users expect them to. So for symmetry and
commutativity, binary arithmetic operators should not be member functions.

The alternative is to makeoperator + a friend function, then it has access to the
private instance variables of the class for which it is overloaded. However, the approach
outlined above whereoperator + is implemented in terms ofoperator += avoids
declaring friend functions. Since friend status should be granted sparingly, and since
clients of a class cannot grant friendship after the class declaration is fixed, the approach
outlined here should be used.

Consequences The approach here uses a local variable that is a copy of one of the
parameters. A copy is also made when the value is returned from the function. Since
the function must return by-value, the copy on return cannot be avoided. Since we don’t
want a + b to have the side effect of altering the value ofa a copy ofa cannot be
avoided. Furthermore, compiler optimization should be able to avoid the copy in many
situations, particularly if the one-line implementation of the operator shown above is
used. This implementation, reproduced here

return BigInt(lhs) += rhs;

facilititates what’s called thereturn value optimization[Mey96]. Smart compilers can
generate efficient code so that the cost of temporaries is negligible or nothing in evaluating
statements like the following:

x = a + b;

June 7, 1999 10:10 owltex Sheet number 60 Page number 748magentablack

748 Appendix E How to: overload operators

If you’ve benchmarked a program, determined that the line below is executed millions
of times and is using temporaries and time:

x = a + b + c + d + e;

then you can recode the line using the corresponding arithmetic assignment operator:

x += a; x += b; x += c; x += d; x += e;

This code won’t create any temporaries. This code should be as efficient as you can
get it to be, and you have two benefits: ease of developing overloaded operators and
efficiency when you need it.

E.2.2 Arithmetic Assignment Operators

Again we’ll useoperator += for a classBigInt as an examplar of the syntax and
semantics for overloading arithmetic assignment operators.

const BigInt& BigInt::operator += (const BigInt & rhs)
// postcondition: rhs has been added to *this,
// *this returned

Using this prototype the code below compiles:

BigIn t a = Factorial(25);
BigIn t b = Factorial(30);

a += b;
BigIn t c = (b += b);

Note thatoperator += returns a value (a constant reference) that is assigned toc . This
isn’t typical, but it’s legal C++ for the built-in arithmetic operators, so it should be legal
for overloaded arithmetic operators. As we saw in the implementation ofoperator
+, it’s possible to make good use of the return value ofoperator += .

Program Tip E.2: Overloaded operators should have the same seman-
tics as their built-in counterparts. This means that arithmetic assignment operators
should return values. The return type must be a reference to avoid a copy, and it should
be const.

Return Values from Overloaded Operators. A reference is returned since there is no
reason to make a copy. A const reference is returned so that the returned value is not an
lvalue, i.e., so that it cannot be assigned to:

BigIn t a = Factorial(25);
BigIn t b = Factorial(30);

(a += b) = b; // this is NOT legal C++ !!!

June 7, 1999 10:10 owltex Sheet number 61 Page number 749magentablack

E.2 Arithmetic Operators 749

The expression(a += b) is not an lvalue since the value returned is const reference.
The const modifier is the essential piece of preventing the return value from being an
lvalue.

The expression returned from an overloaded arithmetic operator should be*this ,
the value of the object being operated on:

const BigInt& BigInt::operator += (const BigInt & rhs)
// postcondition: rhs has been added to *this,
// *this returned
{

// code here
return *this;

}

Aliasing In one of the examples above the expressionb += b is used. In this case
the parameterrhs will be an alias for the object on whichoperator += is invoked.
This can cause problems in some situations since the value ofrhs may change during
the computation of intermediate results (wellrhs doesn’t change, it’s const, but it’s an
alias for *this whose instance variables may be changing as the functionoperator
+= executes).

When aliasing could cause a problem this needs to checked as a special case just as
it is for overloaded assignment operators (of which the arithmetic assignment operators
are a special case).

if (this == &rhs) // special case

In some situations it may be possible to use other overloaded operators to handle the
special cases. For example, the code below is from the implementation of theBigInt
classoperator += .

if (this == &rhs) // to add self, multiply by 2
{ *this *= 2;

return *this;
}

This will not always be possible becauseoperator *= will not always be overloaded
for int values.

Special Cases Sometimes, often for efficiency (but make it right before making it fast),
arithmetic operators are overloaded more than once for a given class. For example, the
classBigInt has the following overloaded member functions and free functions.

// member functions

const BigInt & operator *= (const BigInt &);
const BigInt & operator *= (int num);

// free functions

June 7, 1999 10:10 owltex Sheet number 62 Page number 750magentablack

750 Appendix E How to: overload operators

BigInt operator *(const BigInt & lhs, const BigInt & rhs);
BigInt operator *(const BigInt & lhs, int num);
BigInt operator *(int num, const BigInt & rhs);

Here it’s possible to evaluateb * 5 for a BigInt b variable, without converting
the 5 to an anonymous variable. This may be done for efficiency or because the spe-
cialized versions ofoperator += andoperator + are used in implementing the
non-specialized versions. Note that for symmetryoperator + is overloaded twice
for addingBigInt andint values.

E.3 Relational Operators

Implementing the boolean relational operators<, >, <=, >=, ==, and != requires a
technique similar to the method discussed in Section E.2.1 for binary arithmetic opera-
tors. This is because we want to be able to write the code below (all three comparison
expressions involving<):

BigInt x;
// code givin g x a value

if (x < y) // do something

if (x < 128) // do something

if (1024 < x) // do something

For reasons similar to those outlined in Section E.2.1, the creation of anonymous variables
for either left- or right-hand sides of a relational expression (e.g., involving< or ==)
requires that these operators not be member functions. If they’re implemented as free
functions, then they’ll need to be friend functions unless the approach outlined here is
used.

Although relational operators can be implemented as friend functions, there is an easy
method for implementing them that is similar to the method using arithmetic assignment
operators such as+= to implement the corresponding relational operator, in this case+,
that avoids declaring any friend functions.

For example, consider a classDate for representing calendar dates, e.g., January 23,
1999. Determining if two dates are equal, or if one comes before another, can be done
simply if == and< (and the other relational operators) are overloaded forDate objects.
The approach I use is illustrated by the partial declaration of theDate class that follows:

June 7, 1999 10:10 owltex Sheet number 63 Page number 751 magentablack

E.3 Relational Operators 751

class Date
{

public:
// constructors and other member functions elided
// functions for implementing relational operators

bool equal(const Date & rhs) const;
bool less(const Date & rhs) const;

private:
// stuff here

};

Here the functionsequal and less determine if one Date is equal to or less than
another, respectively. These functions are implemented to facilitate overloading the
relational operators although these functions can be useful in debuggers. The code
below showsequal in use.

Date a(1,1,1998), b(12,31, 1997);

if (a.equal(b+1)) // just checking

Using functionsequal andless is the method in Java for comparisons, so using this
approach in C++ has the added benefit of easing a transition to Java. But this method
is useful on its own, especially with inheritance as we’ll see later. Once the functions
are implemented, implementing the overloaded relational operators is straightforward.
Again, for the classDate we have:

Program E.1 datecomps.cpp

// relational operators for Date class

bool operator == (const Date & lhs, const Date & rhs)
// post: return true iff lhs == rhs
{

return lhs.equal(rhs);
}

bool operator != (const Date & lhs, const Date & rhs)
// post: return true iff lhs != rhs
{

return ! (lhs == rhs);
}

bool operator < (const Date & lhs, const Date & rhs)
// post: return true iff lhs < rhs
{

return lhs.less(rhs);
}

June 7, 1999 10:10 owltex Sheet number 64 Page number 752magentablack

752 Appendix E How to: overload operators

bool operator > (const Date & lhs, const Date & rhs)

// post: return true iff lhs > rhs

{

return rhs < lhs;

}

bool operator <= (const Date & lhs, const Date & rhs)

// post: return true iff lhs <= rhs

{

return ! (lhs > rhs);

}

bool operator >= (const Date & lhs, const Date & rhs)

// post: return true iff lhs >= rhs

{

return rhs <= lhs;

} datecomps.cpp

In these examples only== and < use the member functionsequal and less
directly, the other overloaded operators are implemented in terms of== and<. However,
it’s clearly possible to useequal andless only for implementing all the overloaded
operators.

When using the STL (Standard Template Library) the header file<function> is
typically included. Templated function declarations in this file implement all relational
operators in terms of< and == so typically only these operators are overloaded for
classes that are used in environments in which STL is available. For example, part of
the SGI implementation of the header filefunction.h is shown below:

template <class T>
inline bool operator!=(const T& x, const T& y)
{

return !(x == y);
}

template <class T>
inline bool operator>(const T& x, const T& y)
{

retur n y < x;
}

If you use STL, you typically will overload onlyoperator < andoperator == ;
by including the header file<function> , you’ll include templated functions that will
implement the other relational operators in terms of< and==. Note that these templated
functions are defined asinline functions for efficiency. Functions defined as inlinemay
be implemented without calling the function by literally substituting the code in the body
of the function where the call is made, with parameters instantiated appropriately. The
inline declaration is a request to the compiler, not a requirement.

June 7, 1999 10:10 owltex Sheet number 65 Page number 753magentablack

E.4 I/O Operators 753

E.4 I/O Operators
We’ll look first at overloading the insertion operator,operator << , for stream output.
Here it’s absolutely not possible to make the operator a member function of the class for
which output is being defined. The statement

cout << x;

Could be interpreted by the compiler ascout.operator <<(x) , where the inser-
tion operator is a member function of the ostream class of whichcout is an instance.
The insertion operator could also be a free function with two parameters, much like
operator + is as discussed above. Since programmers don’t typically have access to
redefining the standard I/O classes, the I/O operators are typically implemented as free
functions. The header for the insertion operator for BigInt is shown below.

ostream& operator <<(ostream & out, const BigInt & big)
// postcondition: big inserted onto stream out

The return type must be a reference type because the stream on which the object is
inserted is returned for subsequent insertion operations. This is what allows insertions
to be chained together:

BigIn t b = factorial(val);
strin g s = " factorial = ";

cout << s << b;

The last statement could be written more cumbersomely as follows sinceoperator <<
is overloaded as a free function for both string and BigInt objects.

operator << (operator << (cout,s), b);

However, it’s essential thatoperator << be an operator and not a function since the
order in which arguments are evaluated in C++ is not defined. In the statementx =
min(sqrt(x),sqrt(y)) , compilers are not required to evaluatesqrt(x) before
evaluatingsqrt(y) (this is a C legacy, it’s too badthat the order in which arguments
are evaluated isn’t prescribed). However, the associativity ofoperator << is defined,
it’s left associative, which means that

cout << x << y << z;

requires that x be inserted before y, and that y be inserted before z.
Now that we know the prototype for the overloadedoperator << , how do we

implement the operator? As with overloaded arithmetic operators there are two choices:

Makeoperator << a friend of the class whose output is being overloaded, e.g.,
of BigInt in the examples above.

Create a member function that can be used in implementingoperator << as a
free, non-friend function.

June 7, 1999 10:10 owltex Sheet number 66 Page number 754magentablack

754 Appendix E How to: overload operators

We’ll adopt the second approach, since it avoids the coupling entailed by creating
friend classes and the solution we’ll use is easily extensible to other, non-stream output,
e.g., on a graphics display.

E.4.1 The Function tostring()

One very simple way to provide output is to create a member functiontostring()
that converts an object to a string-ized form. Assuming thattostring() returns a
string, and thatoperator << is overloaded for strings, we can write:

ostream& operator <<(ostream & out, const BigInt & big)
// postcondition: big inserted onto stream out
{

out << big.tostring();
return out;

}

Note that in the code above you cannot determine just by reading iftostring()
returns a standard string, an apstring, a tstring, or some other type—it must return a type
for which stream insertion is overloaded.

The implementation above works for any class for which a member functiontostring()
exists (this is how Java overloads + to work as a string catenator with any object, which
is then used for output in Java).

Inheritance and tostring() In an inheritance hierarchy, requiring all subclasses
to implementtostring by making it (pure) virtual in superclasses makes it possible
to write one overloadedoperator << that works with every class in the hierarchy. In
Chap. 13 we explored a hierarchy of classes for implementing digital logic. Part of the
abstract super classGate and an appropriately overloaded operator are shown below.

// from gates.h
class Gate
{

public:
virtual ˜Gate() {}
virtual string tostring() const = 0;
..

};
// from gates.cpp
ostream& operator << (ostream& out, const Gate& g)
{

out << g.tostring();
return out;

}

All Gate subclasses:AndGate , Inverter , OrGate , andCompositeGate are
“printable” since these concrete classes must supply an implementation oftostring

June 7, 1999 10:10 owltex Sheet number 67 Page number 755magentablack

E.5 Constructors and Conversions 755

and the overloadedoperator << uses the polymorphictostring . Clients design-
ing newGate subclasses get output for free as well.

The Function print() A member functionprint() is like usingtostring() .
Typically, print takes a stream parameter.

ostream& operator <<(ostream & out, const BigInt & big)
// postcondition: big inserted onto stream out
{

big.print(out);
return out;

}

This works without using a string class, but is restricted to stream output. To write an
object on a graphics screen, conversion to string is usually simpler since most graphics
screens have functions to facilitate text display.

Overloading for Input. You can overloadoperator >> for input asoperator <<
is overloaded for output. It’s also possible to implement an overloadedgetline func-
tion that reads a line at-a-time rather than using white-space delimited input which is
expected withoperator >> . By far the easiest way to do input is to convert from
a string. This is easy, but not always completely general since string input is required
to be white space delimited. For example, if you’re implementing an overloaded input
operator for theBigInt class what value is read by the line of text that follows?

1234567891234567890is a large number

Ideally the chactersis a number will remain on the stream and input of theBigInt
will stop with the zero. However, this requires reading one character at a time rather
than a string at a time. You’ll need to decide on what method is best: converting from a
string or parsing input one character at a time, based on the constraints of the problem
you’re solving.

E.5 Constructors and Conversions
The techniques we describe for overloading binary arithmetic and relational operators
were motivated in part by concerns for symmetry. For example, we wanted to write
botha + 2 and2 + a when usingBigInt variables. As we noted, symmetry in this
case is made possible by a constructor that creates aBigInt from an int . Because
constructors permit this kind of implicit conversion unexpected behavior can occur when
conversions happen that the programmer doesn’t expect. The second statement below
may be a typo, or the programmer may mean to assign tou a vector of one element.

tvector<int> u(10); // vector of 10 elements
u = 1; // we meant u[0] = 1

June 7, 1999 10:10 owltex Sheet number 68 Page number 756magentablack

756 Appendix E How to: overload operators

We know there’s a vector constructor that takes anint argument since it’s used in the
first statement. This means it’s possible that the second statement does two things:

Creates an anonymous/temporaryint vector with one element.

Assigns/copies this temporary tou.

However, in thetvector class the second statement doesn’t compile. To limit implicit
conversions with the vector class, the keywordexplicit is used with the constructor:

explicit tvector(int size); // size and capacity = size

A constructor modified byexplicit cannot act as an implicit converter, an explicit
use of the class name is required. The two statements that follow make an explicit use
of the constructor:

tvector<int> u(10); // vector of 10 elements
u = tvector<int>(1); // copy one-element vector to u

By usingexplicit , it’s harder for unanticipated conversions to take place in client
code—it’s unlikely a programmer would type the second line above by mistake.

June 7, 1999 10:10 owltex Sheet number 69 Page number 757magentablack

FHow to: understand and
use standard libraries

By its very nature, the library provided with a programming language is a mixed bag.
P.J. Plauger

The Standard C Library, p. x

F.1 Functions

C++ inherits many free (non-class) functions from C. Afunction library is a collection of
cohesive functions that have a common domain. For example, the header file<cmath>
imports mathematical functions, the file<cctype> imports character functions, and
the library<cstdlib> imports “standard” algorithms like the C-based functionsatoi
andatof . In addition to the function libraries inherited from C, C++ includes several
standard class libraries. In particular, theStandard Template Library, or STL, provides
implementations of functions, algorithms, and container classes like vector. We use some
of the ideas from STL, for example in the classtvector and in the sorting functions of
sortall.h, but a complete discussion of STL is beyond the scope of this book. Complete
though terse information on STL is available in [Str97]; a description of why the library
works as it does and a wonderful book on generic programming is [Aus98].

The function libraries imported using header files of the form<cXXX> are instd
namespace. For a brief introduction to namespaces see Sec. A.2.3 in Howto A. Functions
in the global namespace are imported using<XXX.h> . For example, use<cmath> for
functions in thestd namespace, but<math.h> for functions in the global namespace.
Older libraries/environments typically support only the.h versions of the function li-
braries.

F.1.1 The Library <cmath>

Functions in the standard math library,<cmath> , are given in Table F.1. On older sys-
tems this library is called<math.h> . All trigonometric functions use radian measure,
see the functions inmathutils.h , Prog. G.9 for functions to convert between degrees
and radians.

Most of the functions in<cmath> are described sufficiently in Table F.1. The
arguments toatan2 are presumed to be x- and y-coordinates, so that,atan2(1,1)
is the same asatan2(3,3) or atan(π/4) .

757

June 7, 1999 10:10 owltex Sheet number 70 Page number 758magentablack

758 Appendix F How to: understand and use standard libraries

Table F.1 Some functions in <cmath>

function name prototype returns

double fabs (double x) absolute value of x
double abs (double x) absolute value of x (C++only)
double log (double x) natural log of x
double log10 (double x) base-ten log of x
double sin (double x) sine of x (x in radians)
double cos (double x) cosine of x (x in radians)
double tan (double x) tangent of x (x in radians)
double asin (double x) arc sine of x [−π/2, π/2]
double acos (double x) arc cosine of x [0, π]
double atan (double x) arc tangent of x [−π/2, π/2]
double atan2 (double x, atan(x/y)

double y)
double sinh (double x) hyperbolic sine of x
double cosh (double x) hyperbolic cosine of x
double tanh (double x) hyperbolic tangent of x
double pow (double x, xy

double y)
double sqrt (double x)

√
x, square root of x

double fmod (double d, floating-point remainder d/m
double m)

double ldexp (double d, d*pow(2,i)
int i)

double floor (double x) largest integer value≤ x
double ceil (double x) smallest integer value≥ x

F.1.2 The Library <cctype>

The functions in<cctype> operate onchar values, they’re summarized in Table F.2.
On older systems this library is called<ctype.h> . You would expect functions with
the prefixis, such asislower andisalnum , to have return typebool. However,
to ensure compatibility with both C and C++ code, many libraries use integer values
for the return type of these predicates in<cctype>. These boolean-valued functions
return some nonzero value for true, but this value is not necessarily one. All the functions
useint parameters, but arguments are expected to be in the range of legalchar values.

F.2 Constants and Limits

Several header files import constants and functions that encapsulate platform specific
limits on the maximum and minimal values of different built-in types. Unfortunately,
the C++ standard does not require anint to be represented by 32 bits, nor adouble

June 7, 1999 10:10 owltex Sheet number 71 Page number 759 magentablack

F.2 Constants and Limits 759

Table F.2 Some functions in <cctype>

function prototype returns true when

int isalpha(int c) c is alphabetic (upper or lower case)
int isalnum(int c) c is alphabetic or a digit
int islower(int c) c is a lowercase letter
int isdigit(int c) c is a digit character ’0’-’9’
int iscntrl(int c) c is a control character
int isprint(int c) c is printable character including space
int ispunct(int c) c is a punctuation (printable, not space, not alnum)
int isspace(int c) c is any white-space character,

’ ’,’ \t’,’ \n’,’ \v’, ’ \r’,’ \f’
int isupper(int c) c is an uppercase letter

returns

int tolower(int c) lowercase equivalent of c
int toupper(int c) uppercase equivalent of c

to be represented by 64 bits, although these are the standard sizes on 32-bit computers
and are the standard sizes used in languages like Java.

F.2.1 Limits in <climits>

The header file<climits> (or <limits.h>) imports the constants shown inoldlim-
its.cpp, Prog. F.1. However, the valueINT_MIN , for example, is almost certainly a pre-
processor#define rather than a C++ constant. Although these constants are simple to
use, consider using the constants and classes defined in<limits> , whose use is shown
in Prog. F.2 below.

Program F.1 oldlimits.cpp

#include <iostream>
#include <iomanip> // for setw
#include <climits>
#include <string>
using namespace std;

// illustrates range of values for integral types

const int FIELD_SIZE = 13; // size of field for output chunk

void Print(const string& type, long low, unsigned long high);

int main()
{

cout << setw(FIELD_SIZE) << "type"

June 7, 1999 10:10 owltex Sheet number 72 Page number 760magentablack

760 Appendix F How to: understand and use standard libraries

<< setw(FIELD_SIZE) << "low"
<< setw(FIELD_SIZE) << "high" << endl << endl;

Print("char", CHAR_MIN, CHAR_MAX);
Print("uchar", 0, UCHAR_MAX);
Print("short", SHRT_MIN, SHRT_MAX);
Print("ushort",0, USHRT_MAX);
Print("int", INT_MIN, INT_MAX);
Print("uint", 0, UINT_MAX);
Print("long", LONG_MIN, LONG_MAX);
Print("ulong", 0, ULONG_MAX);
return 0;

}

void Print(const string& type, long int low, unsigned long int high)
// postcondition: values printed in field width FIELD_SIZE
{

cout << setw(FIELD_SIZE) << type
<< setw(FIELD_SIZE) << low
<< setw(FIELD_SIZE) << high << endl;

} oldlimits.cpp

O U T P U T

prompt> oldlimits
type low high

char -128 127
uchar 0 255
short -32768 32767

ushort 0 65535
int -2147483648 2147483647

uint 0 4294967295
long -2147483648 2147483647

ulong 0 4294967295

F.2.2 Double Limits in <cfloat>

The header file<cfloat> (or<float.h>) imports several constants includingDBL_MIN
andDBL_MAXwhich specify the minimal and maximaldouble values, respectively.

F.2.3 Limits in <limits>

The header file<limits> imports a templated classnumeric_limits that provides
values related to all the built-in types. Clients can create versions ofnumeric_limits

June 7, 1999 10:10 owltex Sheet number 73 Page number 761magentablack

F.2 Constants and Limits 761

for programmer-defined classes. For example, we could create a version for the class
BigInt . All the methods and constants innumeric_limits are static, so no vari-
ables of typenumeric_limits are created.

We use only four of the methods available in the classnumeric_limits . There
are many more, for example, in the classnumeric_limits<double> specifically
for floating point values. In the functionprintLimits we use the standard C++
operatortypeid , imported from<typeinfo> . Basically,typeid allows types to
be compared for equality, and provides access to a string form of a type’s name. For
more information onnumeric_limits andtypeid see [Str97].

Program F.2 limits.cpp

#include <iostream>

#include <limits>

#include <typeinfo>

#include <iomanip>

using namespace std;

// print class-specific limits using numeric_limits from <limits>

template <class Type>

void printLimits(const Type& t)

// post: print max,min values and # bits used by t

{

cout << "\ninformation for " << typeid(t).name() << endl;

cout << "min =\t" << numeric_limits<Type>::min() << endl;

cout << "max =\t" << numeric_limits<Type>::max() << endl;

cout << "#bits=\t" << numeric_limits<Type>::digits << endl;

cout << "is integral? "

<< boolalpha << numeric_limits<Type>::is_integer << endl;

}

int main()

{

printLimits(0);

printLimits(0u);

printLimits(0L);

printLimits('a');

printLimits(static_cast<unsigned char>('a'));

printLimits(0.0);

printLimits(static_cast<float>(0.0));

return 0;

} limits.cpp

June 7, 1999 10:10 owltex Sheet number 74 Page number 762magentablack

762 Appendix F How to: understand and use standard libraries

O U T P U T

prompt> limits
information for int
min = -2147483648
max = 2147483647
#bits= 31
is integral? true

information for unsigned int
min = 0
max = 4294967295
#bits= 32
is integral? true

information for long
min = -2147483648
max = 2147483647
#bits= 31
is integral? true

information for char
min = -128 actually prints a char, not an int
max = 128 actually prints a char, not an int
#bits= 7
is integral? true

information for unsigned char
min = 0
max = 255
#bits= 8
is integral? true

information for double
min = 2.22507e-308
max = 1.79769e+308
#bits= 53 # bits in mantissa
is integral? false

information for float
min = 1.17549e-38
max = 3.40282e+38
#bits= 24 # bits in mantissa
is integral? false

June 7, 1999 10:10 owltex Sheet number 75 Page number 763magentablack

F.2 Constants and Limits 763

F.2.4 ASCII values

Since most C++ environments use ASCII coding for characters, Table F.3 provides ASCII
values for all the standard characters.

Table F.3 ASCII values

ASCII character set
decimal char decimal char decimal char decimal char
0 ˆ@ 32 space 64 @ 96 ‘
1 ˆA 33 ! 65 A 97 a
2 ˆB 34 " 66 B 98 b
3 ˆC 35 # 67 C 99 c
4 ˆD 36 $ 68 D 100 d
5 ˆE 37 % 69 E 101 e
6 ˆF 38 & 70 F 102 f
7 ˆG 39 ’ 71 G 103 g
8 ˆH 40 (72 H 104 h
9 ˆI 41) 73 I 105 i
10 ˆJ 42 * 74 J 106 j
11 ˆK 43 + 75 K 107 k
12 ˆL 44 , 76 L 108 l
13 ˆM 45 - 77 M 109 m
14 ˆN 46 . 78 N 110 n
15 ˆO 47 / 79 O 111 o
16 ˆP 48 0 80 P 112 p
17 ˆQ 49 1 81 Q 113 q
18 ˆR 50 2 82 R 114 r
19 ˆS 51 3 83 S 115 s
20 ˆT 52 4 84 T 116 t
21 ˆU 53 5 85 U 117 u
22 ˆV 54 6 86 V 118 v
23 ˆW 55 7 87 W 119 w
24 ˆX 56 8 88 X 120 x
25 ˆY 57 9 89 Y 121 y
26 ˆZ 58 : 90 Z 122 z
27 escape 59 ; 91 [123 {
28 fs 60 < 92 \ 124 |
29 gs 61 = 93] 125 }
30 rs 62 > 94 ˆ 126 ˜
31 us 63 ? 95 _ 127 del

June 7, 1999 10:10 owltex Sheet number 76 Page number 764magentablack

764 Appendix F How to: understand and use standard libraries

June 7, 1999 10:10 owltex Sheet number 77 Page number 765magentablack

GHow to: understand and
use Tapestry classes

G.1 A library of useful classes

This book supplies many classes for you to use in programming and exploring computer
science. These classes extend what’s available in the base C++ language by supplying
off-the-shelf components that you can use to solve more problems than if you had to
design and implement the classes from scratch. If someone tells you that you’re not
really using C++ if you use these supplied classes because the classes are not part of the
C++ language, these people are narrow-minded and without a clue as to how people write
software today. It may be prudent not to tell them this. The classes introduced in this
book have been designed to be powerful but simple so that they are easy for beginning
programmers to use. This means the classes may not be as powerful as similar classes
that are designed to serve a larger audience of professional programmers. However,
the classes are designed to be understandable by novice programmers while still being
powerful enough to be used in large, real programs. Sometimes an industrial-strength
class that covers 95% of all applications is not as powerful as a class that covers 65%
of all applications if the industrial-strength class is much harder to learn and use. The
Tapestry classes are used by people programming for a living and programming for fun.
Sometimes this is the same group of people.

G.1.1 Summary of Classes and Functions

I refer to the core classes and function libraries introduced in this book aslibtapestry.
The easiest way to use these classes is to create a library which is then linked automatically
with every program you write. With Unix you do this with a makefile, with Windows
or Macs you do this with a project as part of an IDE. Information on creating libraries
is available in Howto I. Only the non-templated classes and functions are part of the
library.

There are many other programs used in the book, but the core classes and functions
are summarized in Table G.1. The header files for most of these classes are reproduced
in the following sections as documentation for each class.

765

June 7, 1999 10:10 owltex Sheet number 78 Page number 766magentablack

766 Appendix G How to: understand and use Tapestry classes

Table G.1 The classes and function libraries introduced in this book that make up
libtapestry .

Class Header File Description
BigInt bigint.h unbounded integers
CList clist.h immutable lists
ClockTime clockt.h clock times such as 13:24:09
CTimer ctimer.h stopwatch timing for code segments
Date date.h calendar dates such as July 16, 2007
Dice dice.h simulateN -sided dice
DirStream andDirEntry directory.h access file and directory information
Permuter permuter.h permutes int vectors
Point point.h represents two-dimensional points
RandGen randgen.h randomint anddouble values
SimpleMap simplemap.h rudimentary map class
StringSet stringset.h sets of strings
tvector tvector.h range-checked vector class
tmatrix tmatrix.h range-checked 2D matrix class
WordStreamIterator worditer.h reading files of words

Free Functions Header File Description
deg2rad , PI , ... mathutils.h math utilities
PromptRange , ... prompt.h prompt for values in specific range
QuickSort , bsearch , ... sortall.h sorting and searching functions
ToLower , atoi , ... strutils.h converting and changing strings
WaitForReturn utils.h wait for user to press return

The classesCList , tvector , tmatrix , andSimpleMap are templated as are
the functions insortall.h. The classes indirectory.hare implemented differently for Unix
and Windows platforms. All other classes should be platform independent, although it
is possible there are some differences I have not encountered.

G.1.2 Implementations ofTapestry Classes

I have designed the classes and functions in Table G.1 to be used from the beginning of
an introductory course though some stress topics not typically covered in the first weeks,
such as vectors, matrices, and maps. Although the classes are designed to be used by
client programs, most of them can be studied as examples of class design. However,
some implementations depend on topics not covered in this book, or rely on platform
specific libraries that aren’t of general interest. These include:

Classes indirectory.cppuse low-level operating-system specific functions.

Classes intvector.hallocate built-in arrays usingoperator new [] , not cov-
ered in this text.

June 7, 1999 10:10 owltex Sheet number 79 Page number 767 magentablack

G.2 Header Files for Tapestry Classes 767

Classes indate..cpp, randgen.cpp, andclockt.cppuse C-functions for accessing
time to determine the current time of the day or the current day of the week.

All other classes have been documented so that their implementations can be studied.

G.2 Header Files forTapestry Classes

G.2.1 Prompting Functions in prompt.h

Each prompting function comes in two forms, one usingoperator >> for input, the
other usinggetline . For example, functionsPromptRange andPromptlnRange
both request integer input in a specific range though the latter reads an entire line of text
while the former reads only the first string. All the functions read strings and convert to
the type requested, such asint or double .

Program G.1 prompt.h

#ifndef _PROMPT_H
#define _PROMPT_H

#include <string>
using namespace std;

// facilitates prompting for int, double or string
//
// each function has a PromptlnXXX equivalent that reads a line of
// text
//
// PromptRange: used for int or double entry
//
// int PromptRange(const string & prompt,int low, int high)
// – returns int in range [low..high]
// Example:
// int x = PromptRange("enter weekday",1,7);
//
// generates prompt: enter weekday between 1 and 7
//
// double PromptRange(const string & prompt,double low, double high)
// – returns int in range [low..high]
// Example:
// doubl e d = PromptRange("enter value",0.5,1.5);
//
// generates prompt: enter value between 0.5 and 1.5
//
// const string & promptString(const string & prompt)
// – returns a string
// Example:
// string filename = PromptString("enter file name");
//
// bool PromptYesNo(const string & prompt)

June 7, 1999 10:10 owltex Sheet number 80 Page number 768magentablack

768 Appendix G How to: understand and use Tapestry classes

// – returns true iff user enter yes
// (or any string beginning with y, only strings beginning with y or
// n are accepted)
//
// Example:
// if (PromptYesNo("continue?"))
// DoStuff();
// else
// Quit();

long int PromptRange(const string & prompt,long int low, long int high);
// precondition: low <= high
// postcondition: returns a value between low and high (inclusive)

long int PromptlnRange(const string & prompt,long int low, long int high);
// precondition: low <= high
// postcondition: returns a value between low and high (inclusive)
// reads an entire line

int PromptRange(const string & prompt,int low, int high);
// precondition: low <= high
// postcondition: returns a value between low and high (inclusive)

int PromptlnRange(const string & prompt,int low, int high);
// precondition: low <= high
// postcondition: returns a value between low and high (inclusive)
// reads an entire line

double PromptRange(const string & prompt,double low, double high);
// precondition: low <= high
// postcondition: returns a value between low and high (inclusive)

double PromptlnRange(const string & prompt,double low, double high);
// precondition: low <= high
// postcondition: returns a value between low and high (inclusive)
// reads an entire line

string PromptString(const string & prompt);
// postcondition: returns string entered by user

string PromptlnString(const string & prompt);
// postcondition: returns string entered by user, reads entire line

bool PromptYesNo(const string & prompt);
// postcondition: returns true iff user enters "yes" (any string with
// ’y’ as first letter, only ’y’ and ’n’ strings accepted)

bool PromptlnYesNo(const string & prompt);
// postcondition: returns true iff user enters "yes" (any string with
// ’y’ as first letter, only ’y’ and ’n’ strings accepted)
// reads entire line

#endif

June 7, 1999 10:10 owltex Sheet number 81 Page number 769 magentablack

G.2 Header Files for Tapestry Classes 769

prompt.h

G.2.2 The class Date

Program G.2 date.h

#ifndef _DATE_H
#define _DATE_H

/ ∗∗
This code is freely distributable and modifiable providing you
leave this notice in it.
Copyright @ Owen Astrachan
∗∗/
#include <iostream>
#include <string>
using namespace std;

// a class for manipulating dates
//
// Date class represents a date in the Gregorian calendar
// works only for dates after October, 1752
//
// attempts to construct invalid dates, e.g., 15 month,
// or 38th day result in month == 1, day == 1. years aren’t checked
// for validity
//
// Date() — construct default date (today)
// Date(long days) — construct date given absolute # of days from
// 1 A.D., e.g., 710,347 = November 12, 1945
//
// Date(int m,int d,int y) — constructor requires three parameters:
// month, day, year, e.g.,
// Date d(4,8,1956); initializes d to represent
// the date April 8, 1956. Full year is required
//
//
// int Month() — return, respectively, month, day, and year
// int Day() corresponding to date wit h 1 = january,
// int Year() 2 = february, ... 12 = december
//
//
// string DayName() — return string corresponding to day of week
// either "Monday", "Tuesday", ... "Sunday"
// string MonthName() — return string corresponding to month
// either "January", "February",..."December"
//
// int DaysIn() — return number of days in month
//
//
// long Absolute() — returns absolute # of date assuming

June 7, 1999 10:10 owltex Sheet number 82 Page number 770 magentablack

770 Appendix G How to: understand and use Tapestry classes

// that Jan 1, 1 AD is day 1. Has property
// that Absolute() % 7 = k, wher e k = 0 is sunday
// k = 1 is monday, .. . k = 6 is saturday
//
// string ToString() – returns string version of date, e.g.,
// – d.SetDate(11,23,1963); then d.ToString()
// returns string "November 23 1963"
// ∗∗∗
// arithmetic operators for dates
// ∗∗∗
//
// dates support some addition and subtraction operations
//
// Date d(1,1,1960); // 1960 is a leap year
// d++; // d represents January 2, 1960
// d–; // d is back to January 1, 1960
// d += 31; // d is February 1, 1960
// d -= 32; // d is December 31, 1959
// Date d 2 = d + 1; // d2 is January 1, 1960
// Date d3 = 365 + d2; // d3 is December 31, 1961
// Date d 4 = d - 1; // d4 is December 30, 1959
//
// ∗∗∗
class Date
{

public:
// constructors

Date(); // construct date with default value
Date(long days); // construct date from absolute #
Date(int m,int d,int y); // construct date with specified values

// accessor functions

int Month() const; // return month corresponding to date
int Day() const; // return day corresponding to date
int Year() const; // return year corresponding to date
int DaysIn() const; // return # of days in month
string DayName() const; // "monday", "tuesday", ... or "sunday"
string MonthName() const; // "january","february",... or "december"
long Absolute() const; // number of days since 1 A.D. for date
string ToString() const; // returns string for date in ascii

bool Equal(const Date & rhs) const; // for implementing <, >, etc
bool Less(const Date & rhs) const;

// mutator functions

Date operator ++(int); // add one day, postfix operator
Date operator −−(int); // subtract one day, postfix operator
Date& operator +=(long dx); // add dx, e.g., ja n 1 + 31 = feb 1
Date& operator −=(long dx); // subtract dx, e.g., ja n 1 - 1 = dec 31

private:

int myDay; // day of week, 0-6

June 7, 1999 10:10 owltex Sheet number 83 Page number 771 magentablack

G.2 Header Files for Tapestry Classes 771

int myMonth; // month, 0-11
int myYear; // year in four digits, e.g., 1899

void CheckDate(int m, int d, int y); // make sure that date is valid
};

Date operator + (const Date & d, long dx); // add dx to date d
Date operator + (long dx, const Date & d); // add dx to date d
Date operator − (const Date & d, long dx); // subtract dx from date d
long operator − (const Date & lhs, const Date & rhs);

ostream & operator << (ostream & os, const Date & d);
bool operator == (const Date & lhs, const Date & rhs);
bool operator != (const Date & lhs, const Date & rhs);
bool operator < (const Date & lhs, const Date & rhs);
bool operator > (const Date & lhs, const Date & rhs);
bool operator <= (const Date & lhs, const Date & rhs);
bool operator >= (const Date & lhs, const Date & rhs);

#endif date.h

G.2.3 The class Dice

Changes from the first edition code include making accessor functionsconst and
moving the random number generator fromdice.hto dice.cpp.

Program G.3 dice.h

#ifndef _DICE_H
#define _DICE_H

// class for simulating a die (object "rolled" to generate
// a random number)
//
// Dice(int sides) – constructor, sides specifies number of "sides"
// for the die, e.g., 2 is a coin, 6 is a ’regular’ die
//
// int Roll() – returns the random "roll" of the die, a uniformly
// distributed random number between 1 and # sides
//
// int NumSides() – access function, returns # of sides
//
// int NumRolls() – access function, returns # of times Roll called
// for an instance of the class

class Dice
{

public:
Dice(int sides); // constructor
int Roll(); // return the random roll
int NumSides() const; // how many sides this die has

June 7, 1999 10:10 owltex Sheet number 84 Page number 772 magentablack

772 Appendix G How to: understand and use Tapestry classes

int NumRolls() const; // # times this die rolled

private:
int myRollCount; // # times die rolled
int mySides; // # sides on die

};

#endif / ∗ _DICE_H not defined ∗/ dice.h

G.2.4 The class RandGen

Program G.4 randgen.h

#ifndef _RANDGEN_H
#define _RANDGEN_H

#include <limits.h> // for INT_MAX

// designed for implementation independent randomization
// if all system dependent calls included in this class, then
// other classes can make use of this class in independent manner
//
// all random numbers are uniformly distributed in given range
//
// RandGen() — constructor sets seed of random # generator
// once per program, not per class/object
//
// RandInt(int max)
// RandInt(int low,int max) - return random integer in range [0..max)
// when one parameter used, [low..max] when
// two parameters used
//
// examples: rnd.RandInt(6) is random integer [0..5] or [0..6)
// rnd.RandInt(3,10) is random integer [3..10]
// rnd.RandInt() is random integer [0..INT_MAX)
//
// RandReal() – returns random double in range [0..1)
// RandReal(double low, double max)
// – returns random double in range [low..max)

class RandGen
{

public:
RandGen(); // set seed for all instances
int RandInt(int max = INT_MAX); // returns int in [0..max)
int RandInt(int low, int max); // returns int in [low..max]
double RandReal(); // returns double in [0..1)
double RandReal(double low, double max); // range [low..max]

static void SetSeed(int seed); // static (per class) seed set

June 7, 1999 10:10 owltex Sheet number 85 Page number 773magentablack

G.2 Header Files for Tapestry Classes 773

private:

static int ourInitialized; // for ’per-class’ initialization

};

#endif randgen.h

G.2.5 The class CTimer

Program G.5 ctimer.h

#ifndef _CTIMER_H

#define _CTIMER_H

// a class that can be used to "time" parts of programs

// or as a general timer

//

// operations are:

//

// Start() : starts the timer

// Stop() : stops the timer

// ElapsedTime() : returns the elapsed time between

// start and the last stop

// CumulativeTime(): returns cumulative total of all

// "laps" (timed intervals), i.e., sum of

// calls to ElapsedTime

// Reset() : resets cumulative time to 0

// so "removes" history of timer

//

//

class CTimer{

public:

CTimer(); // constructor

void Reset(); // reset timer to 0

void Start(); // begin timing

void Stop(); // stop timing

double ElapsedTime(); // between last start/stop

double CumulativeTime(); // total of all times since reset

private:

long myStartTime,myEndTime;

double myElapsed; // time since start and last stop

double myCumulative; // cumulative of all "lap" times

};

#endif // _CTIMER_H not defined ctimer.h

June 7, 1999 10:10 owltex Sheet number 86 Page number 774 magentablack

774 Appendix G How to: understand and use Tapestry classes

G.2.6 The class WordStreamIterator

Changes from the first edition include renaming the iterator functions.

Program G.6 worditer.h

#ifndef _WORDSTREAMITERATOR_H
#define _WORDSTREAMITERATOR_H

// Owen Astrachan 7/3/95, modified 4/9/99
//
// class WordStreamIterator
//
// void Open(string name)
// – initializes iterator to file specified by name
//
// void Init(), void Next(), bool HasMore()
// – "standard" iterating functions (see below)
//
// usage: call Init(), before accessing Current()
// call Next() to move to the next word in the stream
// call Current() to access the current word
// call HasMore() to determine if Current() is valid
//
// string Current()
// – returns current string (see below)
//
// WordStreamIterator iter;
// iter.Open("testfile.dat");
// for(iter.Init(); iter.HasMore(); iter.Next())
// cout << iter.Current() << endl;
//
//

#include <string>
#include <fstream>
using namespace std;

class WordStreamIterator
{

public:
WordStreamIterator();
void Open(const string & name); // bind stream to specific text file
void Init(); // initialize iterator
string Current(); // returns current word
bool HasMore(); // true if more words
void Next(); // advance to next word

private:
string myWord; // the current word
bool myMore; // true if more words
ifstream myInput; // the stream to read from

};

June 7, 1999 10:10 owltex Sheet number 87 Page number 775 magentablack

G.2 Header Files for Tapestry Classes 775

#endif worditer.h

G.2.7 The class StringSet

Program G.7 stringset.h

#ifndef _STRINGSET_H
#define _STRINGSET_H

#include <string>
#include "tvector.h"
using namespace std;

class StringSet
{

public:
StringSet();
StringSet(int isize); // initialize size – for efficiency

// accessors

bool contains(const string& s) const;
int size() const;

// mutators

void insert(const string& s);
void erase (const string& s);
void clear();

friend class StringSetIterator;

private:

int myCount; // # of entries stored in myList
tvector<string> myList; // storage for each string

int search(const string & key) const; // returns index in myList of key
};

class StringSetIterator
{

public:
StringSetIterator(const StringSet& s);

void Init() const;
bool HasMore() const;
void Next() const;
string Current() const;

June 7, 1999 10:10 owltex Sheet number 88 Page number 776magentablack

776 Appendix G How to: understand and use Tapestry classes

private:

const StringSet& mySet;

mutable int myIndex;

};

#endif stringset.h

G.2.8 The String Functions in strutils.h

Program G.8 strutils.h

#ifndef _STRUTILS_H

#define _STRUTILS_H

#include <iostream>

#include <string>

using namespace std;

void ToLower(string & s);

// postcondition: all alphabetic characters in s changed to lower case

// (only upper case letters changed)

void ToUpper(string & s);

// postcondition: all alphabetic characters in s changed to upper case

// (only upper case letters changed)

void StripPunc(string & s);

// postcondition: s has no leading/trailing punctuation

void StripWhite(string & s);

// postcondition: s has no leading/trailing white space

string LowerString(const string & s);

// postcondition: return lowercase equivalent of s

string UpperString(const string & s);

// postcondition: return uppercase equivalent of s

int atoi(const string & s); // returns int equivalent

double atof(const string & s); // returns double equivalent

string itoa(int n); // returns string equivalent

string tostring(int n); // like itoa, convert int to string

string tostring(double d); // convert double to string

#endif strutils.h

June 7, 1999 10:10 owltex Sheet number 89 Page number 777 magentablack

G.2 Header Files for Tapestry Classes 777

G.2.9 The Math Helper Functions in mathutils.h

Program G.9 mathutils.h

#ifndef _MATHUTIL_H
#define _MATHUTIL_H

bool FloatEqual(double lhs, double rhs);
// post: returns true iff lhs == rhs
// where == is determined by using relative error, i.e.
// |lhs-rhs | / min(|lhs |, |rhs |)

// convert degrees to radians and vice-versa

double deg2rad(double deg);
double rad2deg(double rad);

const double PI = 3.1415926535897;

// returns smaller of lhs and rhs, operator < must
// be overloaded for the type T

template <class T>
T min(const T& lhs, const T& rhs)
{

return lhs < rhs ? lhs : rhs;
}

// returns larger of lhs and rhs, operator < must
// be overloaded for the type T

template <class T>
T max(const T& lhs, const T& rhs)
{

return lhs < rhs ? rhs : lhs;
}

#endif mathutils.h

G.2.10 The struct Point

Program G.10 point.h

#ifndef _POINT_H
#define _POINT_H

#include <string>

June 7, 1999 10:10 owltex Sheet number 90 Page number 778 magentablack

778 Appendix G How to: understand and use Tapestry classes

using namespace std;

struct Point
{

Point();
Point(double px, double py);

string tostring() const;
double distanceFrom(const Point& p) const;

double x;
double y;

};

bool operator == (const Point& lhs, const Point& rhs);
bool operator != (const Point& lhs, const Point& rhs);
bool operator < (const Point& lhs, const Point& rhs);
bool operator > (const Point& lhs, const Point& rhs);
bool operator <= (const Point& lhs, const Point& rhs);
bool operator >= (const Point& lhs, const Point& rhs);

ostream& operator << (ostream& os, const Point& p);

#endif point.h

G.2.11 The classes in directory.h

Program G.11 directory.h

#ifndef _DIRECTORY_H
#define _DIRECTORY_H

//
// author: Owen Astrachan
// date: 9/21/93
//
// modified 11/28/94
// modified 4/5/95
// modified 1/18/96
// modified 5/10/99, ported to 32-bit windows
//
// classes for manipulating directories
// provide a standard interface for directory
// queries from C++ programs that can, in theory, be implemented
// on several platforms
//
// currently supported: Unix, DOS, Windows
//
// the class DirEntry provides directory information

June 7, 1999 10:10 owltex Sheet number 91 Page number 779 magentablack

G.2 Header Files for Tapestry Classes 779

// accessible via methods Name, Size, and IsDir
//
// the class DirStream does I/O on directories
// it supports "standard" (for the Tapestry book)
// iterator methods/member functions
//

// ∗∗∗∗∗∗∗∗∗ DirEntry member functions:
//
// string Name() – returns name of file
// int Size() – returns size of file (in bytes)
// bool IsDir() – returns false if NOT directory, else true
// string Path() – returns full path to file
// DirEntry() – constructor, directory entry undefined attributes

// ∗∗∗∗∗∗∗∗∗ DirStream member functions:
//
// DirStream(string name) – constructor (pass name of directory)
// DirStream() – default constructor (use current directory)
// void open(string name) – opens directory stream with given name
// bool fail() – returns true if directory operations has
// failed, else returns false
// void close() – close stream
//
//
// void Init() – set DirStream so first entry is accessible
// bool HasMore() – returns true if current ok, else false
// void Next() – advance to next entry
// DirEntry Current() – return current directory entry
// call only when HasMore = true

#include <string>
using namespace std;

const string DIR_SEPARATOR = "\\"; // platform specific

class DirStream; // need forward reference for friendship
class WIN32_DATA; // defined in .cpp file (avoid parsing huge <windows.h>

#include "date.h"
#include "clockt.h"

class DirEntry
{

public:
DirEntry(); // constructor
∼DirEntry(); // destructor

string Name() const; // return name (not full path) of file
string Path() const; // return canonicalized path of file
long Size() const; // return size (bytes) of file
bool IsDir() const; // return false if file, true if directory
Date GetDate() const;
ClockTime GetTime() const;
friend DirStream; // class has access to internals

June 7, 1999 10:10 owltex Sheet number 92 Page number 780 magentablack

780 Appendix G How to: understand and use Tapestry classes

private:

// this is the private directory entry information
// it is platform specific, probably should be a ’handle’
// to a class PrivateDirEntry defined in directory.cc

DirEntry(WIN32_DATA ∗ dat); // from platform specific constructor

string myName; // NOT full path, just ’file’ name
string myPath; // full, canonicalized path
Date myDate; // creation date
ClockTime myTime; // creation time
long mySize; // in bytes
bool myIsDirectory; // true if directory, else false

};

class HHandle; // forward, really a HANDLE, but avoid parsing <windows.h>

class DirStream
{

public:
DirStream(const string & name); // name is path to directory
DirStream(); // current directory
∼DirStream(); // destructor
void open(const string & name); // open, bind to file with name
void close(); // close the stream
bool fail(); // return true if failed, else false

void Init(); // standard iterator functions
void Next();
bool HasMore();
DirEntry Current();

// stuff below is ’esoteric’ C++
//
// the () method returning void ∗ is what allows
// the expression: while (dirstream)
// to work [see Teale, The I/O Stream Handbook]

operator void ∗() const
{

return myStatus ? (void ∗) this : (void ∗) 0;
};

// allow the expression if (!dirstream)

int operator !() const
{

return !myStatus;
}

private:

June 7, 1999 10:10 owltex Sheet number 93 Page number 781 magentablack

G.2 Header Files for Tapestry Classes 781

HHandle ∗ myStream; // for Windows
WIN32_DATA ∗ myData; // for Windows
bool myStatus; // if true, everything ok, else all done
string myPath; // full path to this directory
DirEntry myEntry; // cached, current entry
bool myIsClosed; // already closed myStream?

void Initialize(const string & s); // private init commonality
void SetEntry(); // common code (Init/Next)

// disable assignment and copy

DirStream operator = (const DirStream & dir);
DirStream(const DirStream & dir);

};

#endif / ∗ _DIRECTORY_H not defined ∗/ directory.h

G.2.12 The class CList

Program G.12 clist.h

#ifndef _LIST_H
#define _LIST_H

#include <iostream>
#include <string>
using namespace std;

template <class Type> class CListIterator;
template <class Type> class CListPrinter;

// CList is a constant, or immutable list. Once a
// list is created, neither the list nor its contents
// can be changed. This means new lists can safely
// share storage with existing lists since none will be
// changed during program execution
//
// Head(), First()
// return the first element of a list, error if IsEmpty()
// Tail()
// returns a listi with all but first element
// list.Tail() is empty if list is empty
// Last()
// returns last element in list, constant time access
// Size()
// returns # elements in list, constant time
// IsEmpty()
// returns true if list is empty, else returns false
// Contains(Type t)
// returns true iff list contains t

June 7, 1999 10:10 owltex Sheet number 94 Page number 782 magentablack

782 Appendix G How to: understand and use Tapestry classes

// Find(Type t)
// returns a (sub)list with Head() == t, or EMPTY if !Contains(t)
// Address()
// returns a string-ized form of the hex address of the first element
// Printer(), Printer(const string& delimiter)
// effectively returns a stream manipulator, inserts the list
// onto a stream with delimiter between elements, the
// default/no-parameter function inserts newlines between elements
//
// usage: cout << list.Printer(",") << end;
//
// static ConsCalls() – returns # times cons called
// static EMPTY – effectively a constant for the empty list
//
// CListIterator is the standard tapestry iterator, constructed from
// a list

template <class Type>
class CList
{

public:

CList(); // make an empty list

// accessors, determine properties of list, get first/last values

Type Head() const; // abbreviation for First()
Type First() const; // return copy of first element
Type Last() const; // return copy of last element
CList Tail() const;

bool Contains(const Type & t) const; // true if t in list
int Size() const; // # of items in list
bool IsEmpty() const; // true if Size() == 0
CList<Type> Find(const Type& t) const; // return l with l.Head() == t

string Address() const;

CListPrinter<Type> Printer() const;
CListPrinter<Type> Printer(const string& delimiter) const;

static

CList<Type> cons(const Type & s, const CList<Type>& slist);

static CList<Type> EMPTY;

static int ConsCalls();

friend class CListIterator<Type>;

private:
CList(const Type& t, const CList<Type>& lst); // make a new list

struct TNode

June 7, 1999 10:10 owltex Sheet number 95 Page number 783 magentablack

G.2 Header Files for Tapestry Classes 783

{
// data members
Type info; // value stored
TNode ∗ next; // link to next TNode

// constructors
TNode()

: next(0)
{ }
TNode(const Type & val, TNode ∗ link=0)

: info(val),
next(link)

{ }

};

TNode ∗ myFirst; // first node of list
TNode ∗ myLast; // last node of list
int myCount; // # of items in list

static int ourConsCount; // # calls of cons
};

template <class Type> inline
CList<Type> cons(const Type& t, const CList<Type>& slist)
{

return slist.cons(t,slist);
}

template <class Type>
CList<Type> append(const Type& t, const CList<Type>& slist);

template <class Type>
class CListPrinter
{

public:
CListPrinter(const CList<Type>& list);
CListPrinter(const CList<Type>& list, const string& delimiter);
CList<Type> myList;
string myDelimiter;

};

template <class Type>
ostream& operator << (ostream& output, const CListPrinter<Type>& p);

template <class Type>
ostream& operator << (ostream& output, const CList<Type>& list);

template <class Type>
class CListIterator
{

public:

June 7, 1999 10:10 owltex Sheet number 96 Page number 784 magentablack

784 Appendix G How to: understand and use Tapestry classes

CListIterator(const CList<Type>& list);

void Init() const;
bool HasMore() const;
void Next() const;
Type Current() const;

private:
typedef CList<Type>::TNode Node;
Node ∗ myFirst;
mutable Node ∗ myCurrent;

};

#include "clist.cpp"

typedef CList<string> StringList;
typedef CListIterator<string> StringListIterator;

#endif clist.h

G.2.13 The class Poly

Program G.13 poly.h

#ifndef _POLY_H
#define _POLY_H

#include <string>
using namespace std;
#include "clist.h"

// polynomials in ’x’ (can be easily modified for
// polys in any variable, and templated for polys of ..)
//
// coefficients are doubles
// Poly() or Poly::ZERO represent 0, otherwise
// Poly(a,b) represents axˆb
//
// polynomials of more than one term are constructed using +=, e.g.,
// Poly a = Poly(5,3) + Poly(4,2) + Poly(3,1) + Poly(2,0)
// then a = 5xˆ3 + 4xˆ2 + 3x + 2
//
// Head() returns the leading term, Tail() returns all but Head()
// both return Poly objects [and return non-poly on error]
// IsPoly() returns true if object is a "good" polynomial, e.g.,
// Poly().Tail().IsPoly() == false
//
// accessors include
// leadingCoeff(), degree() for first term
// at(double x) to evaulate a polynomial at x

June 7, 1999 10:10 owltex Sheet number 97 Page number 785 magentablack

G.2 Header Files for Tapestry Classes 785

// tostring() – standard helper function
//

class Poly
{

public:
Poly();
Poly(double coeff, int exp);

const Poly& operator += (const Poly& rhs);
const Poly& operator ∗= (double c);

string tostring() const;
double at(double x) const;
int degree() const;
double leadingCoeff() const;

Poly Tail() const;
Poly Head() const;
bool IsPoly() const;

static Poly ZERO;
static int TermsAllocated();

private:
struct Pair // this is the (a,b) in axˆb
{ double coeff;

int expo;
Pair()

: coeff(0.0),expo(0) { }
Pair(double c, int e) : coeff(c), expo(e) { }

};
typedef CList<Pair> Polist;
typedef CListIterator<Pair> PolistIterator;
static bool ourInitialized;

Poly(Polist p); // make poly from list of terms, helper
Polist myPoly; // the list of terms

};

Poly operator + (const Poly& lhs, const Poly& rhs);
Poly operator ∗ (double c, const Poly& p);
Poly operator ∗ (const Poly& p, double c);
ostream& operator << (ostream& out, const Poly& p);
#endif poly.h

G.2.14 The Sorting Functions in sortall.h

Program G.14 sortall.h

#ifndef _SORTALL_H

June 7, 1999 10:10 owltex Sheet number 98 Page number 786 magentablack

786 Appendix G How to: understand and use Tapestry classes

#define _SORTALL_H

#include "tvector.h"
#include "comparer.h"

// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
// prototypes for sort functions and search functions
// author: Owen Astrachan
//
// see also: comparer.h, sortall.cpp
//
// for "plain" sorts, the type being sorted
// must be comparable with < and for Merge and Quick also with <=
// for sorts with the Comparer template parameter the type
// for Comparer (see comparer.h) must have a member function
// named compare that takes two const Type arguments: lhs, rhs,
// and which returns -1, 0, or +1 if lhs <, ==, > rhs, respectively
//
// search functions take a Comparer object also
//
// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

template <class Type>
void InsertSort(tvector<Type> & a, int size);

template <class Type, class Comparer>
void InsertSort(tvector<Type> & a, int size, const Comparer & comp);

template <class Type>
void SelectSort(tvector<Type> & a, int size);

template <class Type, class Comparer>
void SelectSort(tvector<Type> & a, int size, const Comparer & comp);

template <class Type>
void BubbleSort(tvector<Type> & a, int size);

template <class Type>
void MergeSort(tvector<Type> & a,int n);

template <class Type, class Comparer>
void MergeSort(tvector<Type> & a, int n, const Comparer & comp);

template <class Type>
void QuickSort(tvector<Type> & a, int size);

template <class Type, class Compare>
void QuickSort(tvector<Type> & a, int size,const Compare& comp);

template <class Type>
void HeapSort(tvector<Type>& a, int size);

template <class Type>
void Swap(tvector<Type>& v, int j, int k);

June 7, 1999 10:10 owltex Sheet number 99 Page number 787 magentablack

G.2 Header Files for Tapestry Classes 787

// post: v[k] and v[j] swapped

// searching functions

template <class Type>
int bsearch(const tvector<Type>& list, const Type& key);

template <class Type, class Comparer>
int bsearch(const tvector<Type>& list, const Type& key, const Comparer& c);

template <class Type, class Comparer>
int search(const tvector<Type>& list, const Type& key, const Comparer& c);

template <class Type>
int search(const tvector<Type>& list, const Type& key);

#include "sortall.cpp"

#endif sortall.h

G.2.15 Header Files from Circuit Simulation

Program G.15 wires.h

#ifndef _WIRES_H
#define _WIRES_H

#include <iostream>
#include <string>
using namespace std;
#include "tvector.h"

// A wire has current flowing through it.
// When the current changes, a wire notifies
// all the gates listening on the wire that the current
// has changed. The gates act accordingly (see gates.h)
//
// Some of the "gates" are really connectors to other wires
// A connector allows gates to be strung together, but connectors
// are more like solder than real gates. As such, connectors aren’t
// part of a CompositeGate. To facilitate finding a wire’s
// connectors, a ConnectorIterator can be used to access all a wire’s
// connectors.

class Gate;
class Connector;

class Wire
{

June 7, 1999 10:10 owltex Sheet number 100 Page number 788magentablack

788 Appendix G How to: understand and use Tapestry classes

public:
Wire(const string& name="");
virtual ∼Wire();
virtual bool GetSignal() const; // true/false, on/off
virtual string tostring() const; // for I/O

virtual void SetSignal(bool signal); // set signal, propagate
virtual void AddGate(Gate ∗ g); // g monitors this wire
virtual void RemoveGate(Gate ∗ g); // g stops monitoring
virtual int Number() const; // which wire is this?

friend class ConnectorIterator; // access myGates

private:

tvector<Gate ∗> myGates;
bool mySignal;
string myName;
int myNumber;
static int ourCount; // class wide, keeps count

};

ostream& operator << (ostream& out, const Wire& w);

// A WireFactory is used to encapsulate wire creation
// If wires are "ordered" from the factory, the factory takes
// care of cleaning up the wires when the factory ceases to exist
// This is a rudimentary factory, there’s no facility for clients
// to recycle wires and the factory doesn’t clean up the gates
// attached to the wires it destroys
//
// MakeWire – creates a new wire
// GetWire – retrieves an already created wire by the wire’s number

class WireFactory
{

public:
WireFactory();
virtual ∼WireFactory();
virtual Wire ∗ MakeWire(const string& name="wire"); // create anew
virtual Wire ∗ GetWire(int num) const; // get by number

private:
tvector<Wire ∗> myWires;

};

// standard tapestry iterator for iterating over all
// connectors attached to a wire

class ConnectorIterator
{

public:
ConnectorIterator(Wire ∗ w);
void Init();
bool HasMore();
void Next();

June 7, 1999 10:10 owltex Sheet number 101 Page number 789magentablack

G.2 Header Files for Tapestry Classes 789

Connector ∗ Current();
private:

Wire ∗ myWire;
Connector ∗ myConnector;
int myIndex;

};

#endif wires.h

Program G.16 gates.h

#ifndef _GATES_H
#define _GATES_H

#include <iostream>
#include <string>
using namespace std;
#include "tvector.h"

class Wire;
class WireFactory;
class Gate
{

public:
virtual ∼Gate() {}
virtual void Act() = 0;
virtual string tostring() const = 0;
virtual int InCount() const = 0;
virtual int OutCount() const = 0;
virtual Wire ∗ InWire(int n) const = 0;
virtual Wire ∗ OutWire(int n) const = 0;
virtual Gate ∗ clone() = 0;

virtual string deepString() const { return tostring();}

static Wire ∗ WireByNumber(int num);

protected:
static WireFactory ∗ ourWireFactory;

};

ostream& operator << (ostream& out, const Gate& g);

class Connector : public Gate
{

public:
Connector(Wire ∗ in, Wire ∗ out);
virtual void Act();
virtual string tostring() const;
int InCount() const {return 1;}
int OutCount() const {return 1;}
Wire ∗ InWire(int n) const {return myIn;}

June 7, 1999 10:10 owltex Sheet number 102 Page number 790magentablack

790 Appendix G How to: understand and use Tapestry classes

Wire ∗ OutWire(int n) const {return myOut;}
Gate ∗ clone();

private:
Wire ∗ myIn;
Wire ∗ myOut;

};

class Inverter : public Gate
{

public:
Inverter(Wire ∗ in, Wire ∗ out, const string& name="");
Inverter(const string& name="");
virtual void Act();
virtual string tostring() const;

int InCount() const {return 1;}
int OutCount() const {return 1;}
Wire ∗ InWire(int n) const {return myIn;}
Wire ∗ OutWire(int n) const {return myOut;}
Gate ∗ clone();

virtual string deepString() const;

private:
Wire ∗ myIn;
Wire ∗ myOut;
string myName;
int myNumber;
static int ourCount;

};

class NMGate : public Gate
{

public:

virtual void Act () = 0;
virtual string tostring() const = 0;

int InCount() const {return myIns.size();}
int OutCount() const {return myOuts.size();}

Wire ∗ InWire(int n) const {return myIns[n];}
Wire ∗ OutWire(int n) const {return myOuts[n];}

virtual string deepString() const;

protected :

NMGate(int number=0, const string& name="generic");

void Init(const tvector<Wire ∗>& in, const tvector<Wire ∗>& out);
tvector<Wire ∗> myIns;
tvector<Wire ∗> myOuts;
int myNumber;
string myName;

June 7, 1999 10:10 owltex Sheet number 103 Page number 791magentablack

G.2 Header Files for Tapestry Classes 791

};

class AndGate : public NMGate
{

public:
AndGate(Wire ∗ in, Wire ∗ in2, Wire ∗ out, const string& name ="");
AndGate(const string& name="");
virtual void Act();
virtual string tostring() const;
Gate ∗ clone();

private:
static int ourCount;

};

class OrGate : public NMGate
{

public:
OrGate(Wire ∗ in, Wire ∗ in2, Wire ∗ out, const string& name ="");
OrGate(const string& name = "");
virtual void Act();
virtual string tostring() const;
Gate ∗ clone();

private:
static int ourCount;

};

class CompositeGate : public NMGate
{

public:
CompositeGate();
virtual string tostring() const;
virtual void Act();

virtual void AddIn(Wire ∗ w);
virtual void AddOut(Wire ∗ w);
virtual void AddGate(Gate ∗ g);

virtual Gate ∗ clone();
virtual string deepString() const;
virtual int CountWires() const;

private:
tvector<Gate ∗> myGates;

};

class Probe : public Gate
{

public:
Probe (Wire ∗ w);
virtual void Act();
virtual string tostring() const;

int InCount() const {return 1;}

June 7, 1999 10:10 owltex Sheet number 104 Page number 792magentablack

792 Appendix G How to: understand and use Tapestry classes

int OutCount() const {return 1;}
Wire ∗ InWire(int n) const {return myWire;}
Wire ∗ OutWire(int n) const {return myWire;}
Gate ∗ clone() {return this;}

protected:
Wire ∗ myWire;

};

class GateTester
{

public:
static void Test(Gate ∗ gate);

};

void Connect(Wire ∗ w1, Wire ∗ w2);

#endif gates.h

G.2.16 The Map class SimpleMap

Program G.17 simplemap.h

#ifndef _SIMPLEMAP_H
#define _SIMPLEMAP_H

#include "tvector.h"

// simple map, supports (for map m):
// m.insert(Key,Value);
// v = m.getValue(k); // returns default Value() if k not found

template <class Key,class Value> class SimpleMapIterator;

template <class Key, class Value>
class SimpleMap
{

public:
SimpleMap()
{ }
void insert(const Key& k, const Value& v)
{

myKeys.push_back(k);
myValues.push_back(v);

}
Value getValue(const Key& key) const
{ for(int k=0 ; k < myKeys.size(); k++)

{ if (myKeys[k] == key) return myValues[k];
}

June 7, 1999 10:10 owltex Sheet number 105 Page number 793magentablack

G.2 Header Files for Tapestry Classes 793

return Value();
}

friend class SimpleMapIterator<Key,Value>;

private:
tvector<Key> myKeys;
tvector<Value> myValues;

};

template <class Key,class Value>
class SimpleMapIterator
{

public:
SimpleMapIterator(const SimpleMap<Key,Value>& map)

: myMap(map),
myIndex(−1)

{ }
void Init()
{ myIndex = 0;
}
bool HasMore()
{ return myIndex < myMap.myKeys.size();
}
bool Next()
{ myIndex++;
}
Key Current()
{ return myMap.myKeys[myIndex];
}

private:
const SimpleMap<Key,Value>& myMap;
int myIndex;

};

#endif simplemap.h

June 7, 1999 10:10 owltex Sheet number 106 Page number 794magentablack

794 Appendix G How to: understand and use Tapestry classes

June 7, 1999 10:10 owltex Sheet number 107 Page number 795magentablack

HHow to: use the graphics
classes in canvas.h

H.1 The Graphics Library:TOOGL 1.0
The documentation in this section describes version 1.0 ofTOOGL, the Tapestry Object
Oriented Graphics Library (for Exploring and Experimenting)1.

The graphics library consists of several classes for drawing and animating shapes.
These classes provide support for client programs to create and manipulate shapes and
images, and for the shapes to interact with the program and the user via the keyboard and
mouse. The classes are built on a graphics engine underneath them doing the drawing
and event-processing, the engine is not part of the library. The current implementation
uses an engine created by a group at Carnegie Mellon University. The principal author of
the CMU graphics engine is Geoff Washburn, the package is accessible via the following
URL, this will also be linked to the website for this book (see below);

http://www.cs.cmu.edu/afs/cs/user/mjs/ftp

The currentTOOGL classes are fully functional, but may evolve as they’re more ex-
tensively used. In particular, the origin is currently fixed in the upper-left corner, with
x-coordinates increasing to the right and y-coordinates increasing down the screen. Co-
ordinates are expressed in pixels rather than in an absolute measure like centimeters. In
the future the ability to choose the coordinate system will become part of theTOOGL
classes and coordinates will be specified in centimeters or inches.

If you’re reading this as part ofA Computer Science Tapestry, the pictures of the
screen images created by the graphics classes will be in black-and-white. For full-color
pictures, and a much more extensive set of examples, including animations rather than
still screen captures, see the supporting web pages at the following URL:

http://www.cs.duke.edu/csed/tapestry

The programs and examples in this Howto show the functionality of the graphics classes
by using language features like arrays/vectors and inheritance. It’s possible, however,
to introduce every C++ concept with a graphical example, so that the first graphics
programs might have no control statements, just shapes drawn on a canvas. Again, for
a fuller treatment see the website for the book.

1TOOGL is pronounced too-gull, not too-gee-ell.

795

June 7, 1999 10:10 owltex Sheet number 108 Page number 796magentablack

796 Appendix H How to: use the graphics classes in canvas.h

H.2 Using the Canvas Class

The basic window for drawing withTOOGL is an instance of the classCanvas , ac-
cessible by using#include"canvas.h" . A Canvas object is not double-buffered,
and is intended for drawing shapes or figures once rather than as part of an animation.
For drawing, redrawing, and animation, use the classAnimatedCanvas described in
Sec. H.3.

H.2.1 Canvas Basics

A Canvas object is constructed by specifying its width, height, and distance in the x-
and y-direction of the upper-left corner of the canvas from the upper-left corner of the
screen; constructor parameters are integers. Any

Syntax: Canvas constructor

Canvas can(width, height, x, y);

number ofCanvas objects can be
created in the same program. When
a Canvas object is used, the stan-
dard console window is still visible,
and all standard output streams are

functional, so text and graphical output can be easily mixed. However, if the console
window covers part of aCanvas window, theCanvas window may be erased when
the console window is moved. To ensure that all windows in a program are visible, the
first Canvas created in a program displays the message “click with mouse to begin”.
Before clicking, you should move windows so that they don’t overlap, ensuring that the
console window won’t erase any part of aCanvas window.

H.2.2 Drawing, Styles, and Colors

Program H.1,circles.cpp, draws seven circles, each in a different color. Circles are drawn
in a filled style, in which the entire circle is filled with a color, and a frame style, in which
just the outline of the circle is drawn. As the output ofcircles.cppin Fig. H.1 shows, the
default style of drawing uses filled figures, as thoughCanvas::SetFilled() had
been explicitly called. The circles on the left of Fig. H.1 are filled, while the circles on
the right are framed because the methodCanvas::SetFrame() changes the drawing
style just before the circles on the right are drawn. The largest radius circle must be drawn
first when the filled style is used or else each drawn circle would completely obscure
the circles drawn previously. To ensure that the graphics window remains visible after
drawing has finished, the methodCanvas::runUntilEscape keeps the graphics
window showing until the escape key is pressed when the graphics window has the
focus2. It’s also possible to use the free functionWaitForReturn() in utils.h, which
pauses until the user presses the return (or enter) key3.

2A window has the focuswhen it is the active window. In most windowing systems you make a window
active by clicking in the title bar of the window, or in the window itself.
3On many systems the return key must be pressed twice.

June 7, 1999 10:10 owltex Sheet number 109 Page number 797magentablack

H.2 Using the Canvas Class 797

Program H.1 circles.cpp

#include "canvas.h"

// show simple Canvas functions, change style and color of drawing

void circles(Canvas& c, const Point& p, double size)
// post: series of circles drawn on c, centered at p
// initial size = size (decreased by 20% for each one
{

color spectrum[] = {CanvasColor::RED, CanvasColor::ORANGE, CanvasColor::YELLOW,
CanvasColor::GREEN, CanvasColor::BLUE, CanvasColor::INDIGO,
CanvasColor::VIOLET};

int k;
for(k=0 ; k < 7; k++)
{ c.SetColor(spectrum[k]);

c.DrawCircle(p,size);
size ∗= 0.80;

}
}

int main()
{

const int WIDTH = 250, HEIGHT = 150;
Canvas c(WIDTH, HEIGHT, 20,20);
circles(c, Point(WIDTH/4, HEIGHT/2), WIDTH/4);
c.SetFrame();
circles(c, Point(3 ∗WIDTH/4, HEIGHT/2), WIDTH/4);
c.runUntilEscape();
return 0;

} circles.cpp

Figure H.1 Circles drawn in different colors and styles using circles.cpp, Prog. H.1

June 7, 1999 10:10 owltex Sheet number 110 Page number 798magentablack

798 Appendix H How to: use the graphics classes in canvas.h

Table H.1 DrawXXX methods for the Canvas class. All methods are void .

Method Prototype
DrawPixel (const Point& p);
DrawRectangle(const Point& p1, const Point& p2);
DrawCircle (const Point& center, int radius);
DrawEllipse (const Point& p1, const Point& p2);
DrawTriangle (const Point& p1, const Point& p2,

const Point& p3);
DrawPolygon (const tvector<Point>& a, int numPoints);
DrawString (const string& s, const Point& p,

int fontsize=14);
DrawPieWedge(const Point& p, int radius,

double startRad, double endRad);

H.2.3 Drawing Shapes andText

The DrawXXX methods described in Table H.1 make lines, curves, and other shapes
appear on aCanvas object. Once set, the color and the style (filled/frame) in a canvas
apply to all drawings, though both the color and style can be changed between invocations
of DrawXXXmethods usingSetColor(..) , SetFramed() , andSetFilled()
as shown in Prog. H.1. Colors are described in Sec. H.3.8.

TheDrawPieWedge 4 method draws a segment of a circle, whose center and radius
are specified. ParametersstartRad andendRad specify the angles (in radians) of
the segment. For example, the call below draws a quarter-circle centered at pointp with
radius 1005.

c.DrawPieWedge(p, 100, 0.0, PI/2);

Many of theCanvas methods are shown indrawshapes.cpp, Prog. H.2, which draws
randomly-sized different shapes at random locations. Two runs are shown in Fig. H.2:
the screen capture on the right uses the default filled drawing mode, the capture on the
left uses the code shown indrawshapes.cppwhere the callc.SetFrame() uses the
framed, outline style for each figure.

Program H.2 drawshapes.cpp

#include "canvas.h"
#include "prompt.h"
#include "randgen.h"
#include "dice.h"

4TheDrawPieWedge method is called by theStatusCircle class declared instatusbar.hand used
in Prog. 6.16.
5The constantPI and functions to convert degrees to radians can be found inmathutils.h, see Howto G.

June 7, 1999 10:10 owltex Sheet number 111 Page number 799magentablack

H.2 Using the Canvas Class 799

// fill screen with random shapes

Point getPoint(Canvas& c)
// postcondition: return a random point in Canvas c
{

RandGen gen;
return Point(gen.RandReal(0,c.width()), gen.RandReal(0,c.height()));

}

void drawShape(Canvas & c)
// postcondition: random shape/random size drawn on c
{

const int NUM_SHAPES = 4; // # different shapes
const int MAX_SIZE = 30; // max size of a shape
Dice shapeDie(NUM_SHAPES); // for randomizing selections
Dice sizeDie(MAX_SIZE); // for randomizing size

Point p1(getPoint(c));
Point p2(p1.x + sizeDie.Roll(), p1.y + sizeDie.Roll());

switch (shapeDie.Roll())
{

case 1 :
c.DrawRectangle(p1,p2);
break;

case 2 :
c.DrawEllipse(p1,p2);
break;

case 3 :
c.DrawCircle(p1, sizeDie.Roll());
break;

case 4 :
c.DrawTriangle(p1,p2,getPoint(c));
break;

}
}

int main()
{

const int WIDTH= 200, HEIGHT= 200;
RandGen rnd;
Canvas c(WIDTH,HEIGHT,20,20);
int numSquares = PromptRange("# of shapes: ",1,1000);
int k;
for(k=0 ; k < numSquares; k++)
{ c.SetFrame();

c.SetColor(CanvasColor(rnd.RandInt(0,255), rnd.RandInt(0,255),
rnd.RandInt(0,255)));

drawShape(c);
}
c.runUntilEscape();
return 0;

} drawshapes.cpp

June 7, 1999 10:10 owltex Sheet number 112 Page number 800magentablack

800 Appendix H How to: use the graphics classes in canvas.h

Figure H.2 Many shapes of random size and random color.

Using DrawText . As shown in Table H.1, theDrawText method has an optional
parameter that specifies the font size. Prog. H.3,grid.cpp, shows theDrawLine and
DrawText methods used to create the labeled grids in Fig. H.3.

Program H.3 grid.cpp

#include "canvas.h" // for Canvas
#include "strutils.h" // for tostring(int)
// illustrates line and text drawing in Canvas class
int main()
{

const int GRID_SIZE = 200;
const int SIZE= 20; // fudge dimensions to make room for text
Canvas c(GRID_SIZE+SIZE, GRID_SIZE+SIZE,100,100);
int j;
for(j=0; j <= GRID_SIZE; j+= SIZE)
{ c.SetColor(BLACK);

c.DrawString(tostring(j), Point(0,j),12); // draw text labels
c.DrawString(tostring(j), Point(j,0),12);

}
c.SetColor(BLUE);
for(j=0; j <= GRID_SIZE; j+= SIZE)
{ c.DrawLine(Point(j,0), Point(j,GRID_SIZE)); // horizontal line

c.DrawLine(Point(0,j), Point(GRID_SIZE,j)); // vertical line
}
c.runUntilEscape();
return 0;

} grid.cpp

June 7, 1999 10:10 owltex Sheet number 113 Page number 801magentablack

H.3 Using the AnimatedCanvas Class 801

Figure H.3 Grids drawn with grid.cpp, on the left with default font size of 14, on the right
with a font size of 12.

H.3 Using the AnimatedCanvas Class
The classAnimatedCanvas supports the same methods thatCanvas supports6 but
is double-buffered so it can be used for animations. Although both classes support
the notion ofShape objects that draw themselves, these shapes don’t work very well
without double buffering.

Double buffering is a technique that uses two canvases, one for displaying and one
for drawing, that makes flicker-free animations possible. All drawing takes place on an
off-screen drawing buffer, which acts just like a canvas, but isn’t visible. When drawing
on the off-screen buffer is complete, the buffer is displayed on the visible canvas very
quickly using an operation calledbitblt , pronounced “bit blit”.

H.3.1 The Shape Hierarchy

Client code draws directly on aCanvas object using one of theDrawXXX methods
from Table H.1. In contrast, shapes are added to anAnimatedCanvas , and each
shape knows how to draw itself on the canvas (using one or more of theDrawXXX
methods). Client programs don’t normally draw on anAnimatedCanvas , although
it’s possible to do so. It doesn’t make sense to draw directly because each time the
off-screen buffer is copied on-screen, any drawings made directly on the canvas will be
erased.

6The classCanvas is actually a subclass ofAnimatedCanvas without double-buffering. This
meansCanvas doesn’t support animations. Both classes are subclasses of a classBaseCanvas that
communicates with the underlying graphics engine.

June 7, 1999 10:10 owltex Sheet number 114 Page number 802magentablack

802 Appendix H How to: use the graphics classes in canvas.h

CircleShape

EllipseShape

RectangleShape

PolygonShape

TriangleShape

TextShape

ImageShape CompositeShape Bouncer

EmptyShapeMover

MKAdapter

Shape

Figure H.4 The hierarchy of shapes in shapes.h used with the AnimatedCanvas class. The shapes on the left
encapsulate a method of the corresponding name.

Instead, shapes are added to anAnimatedCanvas which then cycles through all
the shapes asking each shape to draw itself. Animations are possible because a shape
can draw itself at different locations. The double-buffering makes it seem as though the
shapes are moving although what’s actually happening is that all the shapes are erased,
redrawn at new locations, and then displayed again.

The different shapes are accessible inshapes.hwhich is included as part ofcanvas.h.
The shape inheritance hierarchy is shown in Fig. H.4. The classes on the left correspond
to aDrawXXXmethod, the other classes extend the kind of shape objects and the behavior
of shape objects.

H.3.2 Properties of Shape Objects

Every shape has a current position, a color, and abounding box. The abstract base
classShape , from which all classes in the hierarchy in Fig. H.4 derive, is shown as
Prog. H.4 which shows just the superclass. As the declaration shows, all derived classes
must implement the following methods (they’re abstract, or pure virtual, inShape):

draw(AnimatedCanvas& c) is the method that anAnimatedCanvas ob-
ject calls, passing itself (the canvas), so that a shape object can draw itself.

setLocation(const Point& p) sets the location of a shape object, see
the relatedbbox method.

getLocation() returns the current location of a shape object.

bbox() returns the bounding box of a shape object. The bounding box is a

June 7, 1999 10:10 owltex Sheet number 115 Page number 803magentablack

H.3 Using the AnimatedCanvas Class 803

(minimal) rectangle that surrounds the shape. The bounding box is used to draw
and detect overlap with other shapes.

clone() returns a copy of a shape. The superclassShape implementsclone
to return a NULL/0 pointer, which will cause immediate problems in most cases
so subclasses should overrideclone .

In most cases at first you’ll be using the classes in Fig. H.4 rather than creating your
own classes.

Program H.4 abcshape.h

class Shape
{

public:
Shape();
virtual ∼Shape() {}

virtual void draw(AnimatedCanvas& c) = 0;
virtual void setLocation(const Point& p) = 0;
virtual Shape ∗ clone();

int id () const {return myCount;}
virtual Point getLocation() const = 0;
bool contains(const Point& p) const;
bool overlaps(const Shape& s) const;

virtual Box bbox() const = 0;
virtual string tostring() const;

protected:

static int ourCount;
int myCount;

}; abcshape.h

H.3.3 Using Shapes: addShape and clone

Program H.5 shows how simple it is to create shapes with interesting behavior. A five-
line program creates a bouncing ball, snapshots are shown in Fig. H.57. The program
creates aCircleShape , adds bouncing behavior to the circle by creating aBouncer
object from the circle, then adds the bouncer to the canvas and runs the program until
the user presses the ESCAPE key. We’ll discuss theBouncer class in more detail in
Sec. H.3.6, but the parameters are a shape, a direction in radians, and a velocity. One
radian is approximately 57 degrees.

7See the website whose URL is given at the beginning of this Howto for access to an animation, or run
the program.

June 7, 1999 10:10 owltex Sheet number 116 Page number 804magentablack

804 Appendix H How to: use the graphics classes in canvas.h

Figure H.5 Three snapshots of a bouncing ball in an AnimatedCanvas .

Program H.5 bouncedemo.cpp

#include "canvas.h"

// simple bouncer, one circle bouncing

int main()
{

AnimatedCanvas canvas(200,200,20,20);
CircleShape circle(Point(100,100), 10.0, CanvasColor::RED);
Bouncer b(circle,1,2);
canvas.addShape(b);
canvas.runUntilEscape(10);
return 0;

} bouncedemo.cpp

An AnimatedCanvas object stores pointers to all the shapes it contains. Client
code can create shapes on the heap by callingnew, or can construct shapes as local
(stack) variables as shown in Prog. H.5. Objects added to anAnimatedCanvas are
cloned if they’re not added as pointers8. In Prog. H.5, for example, the bouncer object
b will be cloned by theaddShape method. Normally client programs don’t need to be
concerned about cloning, but it’s difficult to remove cloned shapes from a canvas. New
shape classes may implement cloning improperly, so fewer bugs are usually encountered
when shapes are allocated on the heap and not cloned.

8To be precise,clone is called when an object is passed by reference rather than by a pointer. Cloning
can be circumvented using the address-of operator, but this is almost always a very bad idea.

June 7, 1999 10:10 owltex Sheet number 117 Page number 805magentablack

H.3 Using the AnimatedCanvas Class 805

��
��
��
��
��
��

��
��
��
��
��
�� �

�
�
�

��
��
��
��

��
��
��
��

(0,0) (50,0)

(0,30)

Figure H.6 The CompoundShape fish and its bounding box from bouncefish.cpp

H.3.4 The CompositeShape class

The classCompositeShape allows you to construct a new shape by combining sev-
eral shapes together. Prog. H.6,bouncefish.cpp, shows how one fish is made from
several shapes, then cloned to create an aquarium. Just as theaddShape method
clones shapes added to a canvas when the shapes aren’t allocated on the heap, the
CompositeShape::add method clones shapes not allocated on the heap. The
CompositeShape fish that’s part ofbouncefish.cpp, Prog. H.6 is shown in Fig. H.6
with its bounding box, a snapshot of the bouncing fish is shown in Fig. H.7.

Figure H.7 An aquarium of 40 bouncing fish from bouncefish.cpp

June 7, 1999 10:10 owltex Sheet number 118 Page number 806magentablack

806 Appendix H How to: use the graphics classes in canvas.h

Program H.6 bouncefish.cpp

#include <iostream>

using namespace std;

#include "canvas.h"

#include "randgen.h"

#include "prompt.h"

#include "mathutils.h"

int main()

{

const int WIDTH= 300;

const int HEIGHT= 200;

AnimatedCanvas display(WIDTH,HEIGHT,20,20);

RandGen rgen;

display.SetTitle("fish bouncer demo");

EllipseShape body (Point(10,10), Point(50,30), CanvasColor::YELLOW);

EllipseShape bodyb(Point(9,9), Point(51,31), CanvasColor::BLACK);

CircleShape eye (Point(40,15), 5, CanvasColor::RED);

TriangleShape fin (Point(30,5), Point(30,11), Point(35,11), CanvasColor::BLUE);

TriangleShape tail (Point(0,10), Point(0,30), Point(15,20), CanvasColor::GREEN);

CompositeShape fish;

fish.add(fin);

fish.add(tail);

fish.add(bodyb);

fish.add(body);

fish.add(eye);

// fish should start on grid, not bouncing

const int MAX_FISH_X = WIDTH − fish.bbox().width();

const int MAX_FISH_Y = HEIGHT − fish.bbox().height();

int numFish = PromptRange("how many fish: ",1,100);

int k;

for(k=0 ; k < numFish; k++)

{ fish.setLocation(Point(rgen.RandInt(0,MAX_FISH_X),

rgen.RandInt(0,MAX_FISH_Y)));

Bouncer fishb(fish, deg2rad(rgen.RandInt(0,360)), rgen.RandInt(2,7));

display.addShape(fishb);

}

display.runUntilEscape(10);

return 0;

} bouncefish.cpp

June 7, 1999 10:10 owltex Sheet number 119 Page number 807magentablack

H.3 Using the AnimatedCanvas Class 807

H.3.5 Processing Mouse and Key Events

An AnimatedCanvas object cycles through all the shapes that have been added calling
Shape::draw on each one. It’s possible to have individual shapes respond to mouse
clicks and key presses, but it’s more often useful to add click/key behavior to an entire
canvas. We’ll discuss methods for doing this withTOOGL.

The simplest way to incorporate functions that respond to mouse presses and key
clicks is to create a class that derives fromMKAdapter (Mouse and Key Adapter)
and add an instance of the new class to a canvas. Incirclefun.cppa simple class
MakeCircle is created that responds to mouse clicks by creating a circle at the point
of the click and labeling the center. The radius of the circle is chosen randomly as a
multiple of five between five and thirty. Output from one run is shown in Fig. H.8

Program H.7 circlefun.cpp

#include <iostream>
using namespace std;

#include "canvas.h"
#include "dice.h"

// illustrate MKAdapter, make a circle where mouse is clicked

class MakeCircle : public MKAdapter // stateless, make a circle where clicked
{

public:
MakeCircle()
{ }
void processClick(const Point& p, AnimatedCanvas& ac)
// post: circle of random radius created at mouse click point
// center labeled withcoordinates
{

Dice d(6);

CircleShape circ(p,d.Roll() ∗5, CanvasColor::MAGENTA);
ac.addShape(circ);

TextShape label(p,p.tostring(),CanvasColor::BLACK);
ac.addShape(label);

}
};

int main()
{

AnimatedCanvas ac(200,200,20,20);
MakeCircle mc;
ac.addShape(mc);
ac.runUntilEscape(10);

return 0;
} circlefun.cpp

June 7, 1999 10:10 owltex Sheet number 120 Page number 808magentablack

808 Appendix H How to: use the graphics classes in canvas.h

Figure H.8 Responding to mouse clicks by creating circles in Prog. H.7, circlefun.cpp

It’s possible for a new class derived fromMKAdapter to have aprocessClick
method for responding to mouse clicks and aprocessKey method for responding to
keys. Both methods are called by anAnimatedCanvas object which passes itself
(the canvas) and either the point of the mouse click or the key press. AnMKAdapter is
also aShape so that it can be added to a canvas via theaddShape method. However,
MKAdapter derives fromEmptyShape , a shape with size zero and no drawing behav-
ior. TheEmptyShape class is often used to add behavior to a canvas via an invisible
shape.

As a simple illustration of responding to key presses, Prog. H.8 implements a ver-
sion of the toyEtch-a-Sketch. By pressing arrow keys, the user can create pictures by
moving a drawing pen around the screen. This program uses aCanvas rather than an
AnimatedCanvas because lines are drawn rather than shapes and we don’t want to
erase the lines via double-buffering. A rudimentary drawing using the program is shown
in Fig. H.9

Program H.8 sketchpad.cpp

#include "canvas.h"

// illustrates MKAdapter with SketchAnEtch (stealing shamelessly
// from EtchASketch, a trademarked product)

class SketchPad : public MKAdapter
{

public:

SketchPad(const Point& start); // begin to draw at start

June 7, 1999 10:10 owltex Sheet number 121 Page number 809magentablack

H.3 Using the AnimatedCanvas Class 809

void processKey(const Key& key, AnimatedCanvas& c);

private:

static const int DELTA; // each key-click moves this amount

Point myPoint; // current point in drawing

};

const int SketchPad::DELTA = 2;

SketchPad::SketchPad(const Point& start)

: myPoint(start)

{

}

void SketchPad::processKey(const Key& key, AnimatedCanvas& c)

// post: line drawn from oldpoint to newpoint in given direction

// specified by key (arrow key)

{

Point newPoint = myPoint;

if (key.isuparrow())

{ newPoint.y −= DELTA;

}

else if (key.isdownarrow())

{ newPoint.y += DELTA;

}

else if (key.isleftarrow())

{ newPoint.x −= DELTA;

}

else if (key.isrightarrow())

{ newPoint.x += DELTA;

}

c.DrawLine(myPoint,newPoint);

myPoint = newPoint;

}

int main()

{

const int WIDTH=200, HEIGHT=200;

Canvas c(WIDTH,HEIGHT,20,20); // double buffering off

c.SetColor(CanvasColor::BLACK);

c.SetTitle("Tapestry SketchAnEtch");

SketchPad sp = SketchPad(Point(WIDTH/2,HEIGHT/2)); // start in middle

c.addShape(sp);

c.runUntilEscape(10);

return 0;

} sketchpad.cpp

June 7, 1999 10:10 owltex Sheet number 122 Page number 810magentablack

810 Appendix H How to: use the graphics classes in canvas.h

Figure H.9 Creative drawing using sketchpad.cpp.

H.3.6 Animations with Bouncer and Mover

The classesBouncer and Mover make it relatively simple to write programs with
animated shapes, either by using the classes directly or by creating new classes derived
from them, but with motion behavior specific to a problem. ABouncer object controls
its own movement, aMover object has its movement controlled by client code outside
the class.

Bouncer Basics. WhenBouncer objects are used, typically the objects are created,
added to anAnimatedCanvas , and then the canvas is “run” for a set number of steps or
until the user presses escape using, respectivelyAnimatedCanvas::run(int) or
AnimatedCanvas::runUntilEscape() . Both functions take an optional second
int parameter that specifies a millisecond delay between drawing cycles.

void AnimatedCanvas::run(int steps,int pause)
// post: all objects in canvas drawn for steps cycles
// with pause millisecond delay (pause is optional)

void AnimatedCanvas::runUntilEscape(int pause)
// post: all objects drawn until user presses Escape
// with pause millisecond delay (pause is optional)

A Bouncer object bounces off the borders of the window it’s in, bouncing off so that
the angle of impact equals the angle of reflection. Clients can subclassBouncer to
create different behavior when a border is hit. For example, objects could disappear
from the left and re-appear on the right with the same y-coordinate, could change color,
or could do nearly anything when hitting a border. There are two ways to change

June 7, 1999 10:10 owltex Sheet number 123 Page number 811magentablack

H.3 Using the AnimatedCanvas Class 811

behavior: by overridingBouncer::update or one of the methods it calls. The
update function is called just before anyBouncer object draws itself as shown in the
code forBouncer::draw .

void Bouncer::draw(AnimatedCanvas& c)
// post: bouncer updated and drawn
{

update(c);
myShape->draw(c);

}

As this example shows, aBouncer object is a wrapper around an existingShape
object, stored in the bouncer as the instance variablemyShape. TheBouncer class is
an example of the design patternDecorator [GHJ95].

ProgramTip H.1: (From [GHJ95]) Use Decorator to add responsibilities
to individual objects dynamically and transparently and when extension
by subclassing is impractical. For example, it would be impractical to create classes
BouncingCircle , BouncingRectangle , BouncingText , and so on.

The word “transparent” here means that a shape object can be turned into a bouncing-
shape without affecting other shapes and it can still be used as a shape.

Client programs can overrideupdate or one of the four methodsupdate calls
each time a bouncing object hits a border.

void Bouncer::updatetop (AnimatedCanvas& c, Point& p)
void Bouncer::updatebottom (AnimatedCanvas& c, Point& p)
void Bouncer::updateleft (AnimatedCanvas& c, Point& p)
void Bouncer::updateright (AnimatedCanvas& c, Point& p)

A Bouncer subclass could, for example, override justupdatebottom to change be-
havior when an object reaches the bottom of a canvas. It’s also possible to add behavior
as shown in the example below frombackandforth.cpp(this program is online, and not
shown completely here.) A subclass ofBouncer , calledBackAndForthBouncer ,
constructs objects that change appearance when they hit the left or right border. For ex-
ample, by creating a left-facing fish that mirrors the fish frombouncefish.cpp, Prog. H.6,
we can make the fish appear to swim back and forth as shown in Fig. H.10. We do this by
simply storing two shapes and alternating between which one is displayed depending on
the direction the object is moving. We override only two of theupdateXXX methods
as shown in the code that follows. Since we’re creating a new shape, we need to override
clone as well or else the new class will have the same behavior as theBouncer class
since it inheritsBouncer::clone . All other inherited methods can be used as is.

June 7, 1999 10:10 owltex Sheet number 124 Page number 812magentablack

812 Appendix H How to: use the graphics classes in canvas.h

Figure H.10 Bouncing by creating a subclass as shown in backandforth.cpp

Program H.9 fishforth.cpp

// from backandforth.cpp
class BackForthBouncer : public Bouncer
{

public:
BackForthBouncer(Shape ∗ left, Shape ∗ right,

double angle, double velocity);
virtual void updateright (AnimatedCanvas& c, Point& p);
virtual void updateleft (AnimatedCanvas& c, Point& p);
virtual Shape ∗ clone();

protected:
Shape ∗ myLeft;
Shape ∗ myRight;

};

void BackForthBouncer::updateright(AnimatedCanvas& c, Point& p)
{

myShape = myLeft; // use left-facing shape
myShape−>setLocation(p); // update location
Bouncer::updateright(c,p); // bounce

}

void BackForthBouncer::updateleft(AnimatedCanvas& c, Point& p)
{

myShape = myRight; // use right-facing shape
myShape−>setLocation(p); // update location
Bouncer::updateleft(c,p); // bounce

}

June 7, 1999 10:10 owltex Sheet number 125 Page number 813magentablack

H.3 Using the AnimatedCanvas Class 813

Shape∗ BackForthBouncer::clone()
{

return
new BackForthBouncer(myLeft,myRight,myAngle,myVelocity);

} fishforth.cpp

H.3.7 Canvas Iterator

As a final example of extending the classBouncer by subclassing, we’ll show how to
process collisions using theCanvas iterator class. Part of the classMoleBouncer
from bouncefun.cppshows how to determine if a shape collides with another shape. The
overriddenupdate function is shown in Prog. H.10. The complete program isn’t shown,
but it’s nearly identical tocirclefun.cpp, Prog. H.7, except it createsMoleBouncer
objects where the mouse is clicked instead of drawing circles. Two snapshots are shown
in Fig. H.11.

Program H.10 molebouncer.cpp

class MoleBouncer : public Bouncer
{

public:
MoleBouncer(Shape& s, double angle, double v)

: Bouncer(s,angle,v)
{ }

virtual void update(AnimatedCanvas& ac)
{

RandGen rgen;
Iterator<Shape> it(ac.makeIterator());
bool collided = false; // collision or still bouncing?
Poin t p = getLocation();
double angle = getAngle();
for(it.Init(); it.HasMore(); it.Next())
{ // check for collision, but not with myself

if (it.Current().id() != this −>id() && it.Current().overlaps(∗this))
{ ac.removeShape(this);

ac.addShape(
new MoleBouncer(

CircleShape(Point(rgen.RandReal(0,ac.width()/10),
rgen.RandReal(0,ac.height()/10)),

RADIUS, CanvasColor::BLUE), 2 ∗PI − angle, 4));
collided = true;
break;

}
}
if (!collided) // no collision, update
{ Bouncer::update(ac);
}

}
}; molebouncer.cpp

June 7, 1999 10:10 owltex Sheet number 126 Page number 814magentablack

814 Appendix H How to: use the graphics classes in canvas.h

Figure H.11 Molecules bouncing in bouncefun.cpp

Collisions are detected using the methodShape::overlaps which is implemented
in the abstract classShape using bounding boxes. When aMoleBouncer object
detects a collision, it removes itself and creates a new object that is placed initially in the
upper left corner of the canvas. Mouse clicks create larger, magenta objects, collisions
create smaller, blue objects.

If no collision is detected, an object updates itself as a normal bouncer by calling
the parent methodBouncer::update . It’s essential that objects avoid checking
themselves for collisions since every object will collide with itself. AllCanvas objects
support themakeIterator method used inmolebouncer.cpp. The methodCurrent
in the classCanvasIterator (seecanvasiterator.h) returns a reference to a shape,
so the shapes can be modified via the iterator.

Mover Basics. Shapes can be wrapped (or decorated) by theMover class and con-
trolled by client programs rather than by the objects themselves, as whenBouncer
objects are used. Client programs must callmoveTo or moveBy and then explicitly ask
anAnimatedCanvas to redraw its shapes. This differs from howBouncer objects
are moved, since bouncers are typically part of a canvas cycling through its shapes using
run or runUntilEscape . In contrast, whenMover objects are used client programs
usually callAnimatedCanvas::run(1) to redraw all shapes once.

void Mover::moveTo(const Point& p)
// post: mover is at location p
{

myShape->setLocation(p);
}

June 7, 1999 10:10 owltex Sheet number 127 Page number 815magentablack

H.3 Using the AnimatedCanvas Class 815

void Mover::moveBy(double dx, double dy)
// post: mover moved by dx,dy from current point
{

Poin t p = myShape->getLocation();
p.x += dx;
p.y += dy;
myShape->setLocation(p);

}

H.3.8 Specifying Color with Class CanvasColor

.

The classCanvasColor supplies over 130 named constants for identifying and
using colors. Each constant is specified usingRGBvalues, supplying a value between
0 and 255 for red, green, and blue that contribute to the color. See the header file
canvascolor.hfor details and note that theCanvasColor class encapsulates the colors
used by the CMU graphic engine that runs underneathTOOGL. Part of the header file
is shown below.

class CanvasColor
{

public:
CanvasColor(unsigned char red = 0, unsigned char green = 0,

unsigned char blue = 0)
: myRed(red), myGreen(green), myBlue(blue)

{ }
// see canvascolor.h for details, note all data is public

string tostring() const;

unsigned char myRed;
unsigned char myGreen;
unsigned char myBlue;

static const color SNOW;
static const color GHOSTWHITE;
static const color WHITESMOKE;
static const color GAINSBORO;
static const color FLORALWHITE;
static const color OLDLACE;
// about one hundred more constants
..

};

June 7, 1999 10:10 owltex Sheet number 128 Page number 816magentablack

816 Appendix H How to: use the graphics classes in canvas.h

H.3.9 The class Key in key.h

The classKey encapsulates key presses when used withTOOGL. Part of the class decla-
ration is shown below, the entire class is accessible inkey.h. As the declaration shows, a
Key object responds to a wide variety of query/predicate methods for determining what
key it represents.

class Key
{

public:
enum Kind{ascii, escape, function, arrow, none};

Key();
Key(char ch);
Key(char ch, Kind k);

char aschar() const; // the key as a character
bool isnothing() const;
bool isasc() const;
bool isfunction() const;
bool isarrow() const;
bool isescape() const;
bool iscontrol() const;
bool isleftarrow() const;
bool isrightarrow() const;
bool isuparrow() const;
bool isdownarrow() const;
bool ishome() const;
bool isend() const;
// more

};

June 7, 1999 10:10 owltex Sheet number 129 Page number 817magentablack

IHow to: cope with C++
environments

The tools we use have a profound (and devious!) influence on our thinking habits, and, therefore,
on our thinking abilities.

Edsger Disjkstra
Selected Writings on Computing: A Personal Perspective, 1982.

I.1 Coping with Compilers
Compilers and programming environments are supposed to be our friends. Once mas-
tered, they stay out of the way and let us concentrate on the task at hand: solving problems
and writing programs. However, they can be unbelievably frustrating when they don’t
work as we expect them to (or just plain don’t work).

In this howto I’ll provide some guidance on using compilers and IDEs (Integrated
Development Environments). More complete information can be found at the books’s
website:

http://www.cs.duke.edu/csed/tapestry

For the purposes of this Howto, compilers and IDEs fall into three groups as shown in
Table I.1. Most compilers are available at very reasonable prices for educational use. In
particular, the Cygwin suite of tools is available for both Linux and Windows NT/95/98,
and it’s free. Seehttp://www.cygnus.com for details.

The libraries of code and classes discussed in this text are accessible via the book’s
web site for each of the compilers listed in Table I.1. I realize that there are other

Table I.1 Compilers and IDEs.

Platform Compiler/IDE
Windows 95, 98, NT

Metrowerks Codewarrior
Visual C++
Borland C++ Builder/5.0x
Cygwin egcs

Linux/Unix
g++
egcs (preferred)

Macintosh
Metrowerks Codewarrior

817

June 7, 1999 10:10 owltex Sheet number 130 Page number 818magentablack

818 Appendix I How to: cope with C++ environments

compilers. Many people use Borland Turbo 4.5; although it runs all the examples in this
book except for the graphical examples, it doesn’t track the C++ standard and it’s really
a compiler for an older operating system (Windows 3.1). I strongly discourage people
from using it.

In theory, all the programs and classes in this book run without change with any
compiler and on any platform. In practice compilers conform to the C++ standard to
different degrees. The only differences I’ve encountered in using the code in this book
with different compilers is that as I write this, the egcs compilers still use<strstream>
andistrstream instead of<sstream> andistringstream for the string stream
classes. Otherwise, except for the classesDirStream andDirEntry fromdirectory.h
which are platform specific, the other code is the same on all platforms.

I.1.1 Keeping Current

Once printed, a book lasts for several years before being revised. Compilers and IDEs
have major new releases at least once a year. Rather than being out-of-date before
publication, I’ll keep the book’s web site current with information about the latest releases
of common compilers and IDEs. I’ll include a general discussion here about the major
issues in developing programs that use a library of classes and functions, but detailed
instructions on particular compilers and platforms, including step by step instructions
for the common environments, can be found on the web.

I.2 Creating a C++ Program

The steps in creating a C++ program are explained in detail in Sections 7.2.2, 7.2.3,
and 7.2.4. The steps are summarized here for reference, repeating material from those
sections, but augmented with explanations of specific compilers/environments.

1. Thepreprocessingstep handles all #include directives and some others we haven’t
studied. Apreprocessoris used for this step.

2. Thecompilation step takes input from the preprocessor and creates anobject file
(see Section 3.5) for each .cpp file. Acompiler is used for this step.

3. One or more object files are combined with libraries of compiled code in the
linking step. The step creates an executable program by linking together system-
dependent libraries as well as client code that has been compiled. Alinker is used
for this step.

I.2.1 The Preprocessor

The preprocessor is a program run on each source file before the source file is compiled.
A source file likehello.cpp, Prog. 2.1 is translated into atranslation unit which is then
passed to the compiler. The source file isn’t physically changed by the preprocessor, but
the preprocessor does usedirectives like #include in creating the translation unit that

June 7, 1999 10:10 owltex Sheet number 131 Page number 819magentablack

I.2 Creating a C++ Program 819

the compiler sees. Each preprocessor directive begins with a sharp (or number) sign#
that must be the first character on the line.

Where are include Files Located? The preprocessor looks in a specific list of di-
rectories to find include files; this list is theinclude path. In most environments you
can alter the include path so that the preprocessor looks in different directories. In
many environments you can specify the order of the directories that are searched by the
preprocessor.

Program Tip I.1: If the preprocessor cannot find a file specified, you’ll
probably get a warning. In some cases the preprocessor will find a dif-
ferent file than the one you intend; one that has the same name as the
file you want to include. This can lead to compilation errors that are hard to fix. If
your system lets you examine the translation unit produced by the preprocessor you may
be able to tell what files were included. You should do this only when you’ve got real
evidence that the wrong header file is being included.

Changing the Include Path

In Metrowerks Codewarrior the include path is automatically changed when you
add a .cpp file or a library to a project. The path is updated so that the directory
in which the added file is located is part of the path. Alternatively, the path can be
changed manually using the sequence of menus:

Edit→ Console-App Settings→ Target→ Access Paths

In Visual C++ the include path must often be changed manually, although projects
do automatically generate a list of external dependencies that include header files.
To change the include path use the sequence of menus below, then choseInclude
Files to specify where the preprocessor looks for files.

Tools→ Options→ Directories

In Borland, the include path is not always searched in the order in which files
are given. To change the include path choose the sequence of menus below, then
change the include path in theSource Directoriessection.

Options→ Project→ Directories

The include path for g++ and egcs is specified with a-I argument on the command
line to the compiler or in a Makefile. Multiple arguments are possible, the line
below makes an executable namedprog, from the source fileprog.cpp, using the
current directory and/foo/code as the include path (the current directory is
always part of the path.)

g++ -I. -I/foo/code -o prog prog.cpp

June 7, 1999 10:10 owltex Sheet number 132 Page number 820magentablack

820 Appendix I How to: cope with C++ environments

I.2.2 The Compiler

The input to the compiler is the translation unit generated by the preprocessor from a
source file. The compiler generates anobject file for each compiled source file. Usually
the object file has the same prefix as the source file, but ends in .o or .obj. For example, the
source filehello.cppmight generatehello.objon some systems. In some programming
environments the object files aren’t stored on disk, but remain in memory. In other
environments, the object files are stored on disk. It’s also possible for the object files to
exist on disk for a short time, so that the linker can use them. After the linking step the
object files might be automatically erased by the programming environment.

Libraries Often you’ll have several object files that you use in all your programs. For
example, the implementations ofiostream andstring functions are used in nearly
all the programs we’ve studied. Many programs use the classes declared inprompt.h ,
dice.h , date.h and so on. Each of these classes has a corresponding object file
generated by compiling the .cpp file. To run a program using all these classes the
object files need to be combined in the linking phase. However, nearly all programming
environments make it possible to combine object files into a library which can then be
linked with your own programs. Using a library is a good idea because you need to
link with fewer files and it’s usually simple to get an updated library when one becomes
available.

I.2.3 The Linker

The linker combines all the necessary object files and libraries together to create an
executable program. Libraries are always needed, even if you are not aware of them.
Standard libraries are part of every C++ environment and include classes and functions
for streams, math, and so on. Often you’ll need to use more than one library. For example,
I use a library calledtapestry.libfor all the programs in this book. This library contains
the object files for classesDice , Date , RandGen and functions fromstrutils
among many others. The suffix.lib is typically used for libraries.

You aren’t usually aware of the linker as you begin to program because the libraries
are linked in automatically. However, as soon as you begin to write programs that use
several .cpp files, you’ll probably encounter linker errors.

These errors may be hard to understand. The key thing to note is that they arelinker
errors. Programming environments differ in how they identify linker errors, but all
environments differentiate between compilation errors and linker errors. If you get a
linker error, it’s typically because you forgot a .cpp file in the linking step (e.g., you left
it out of the project) or because you didn’t implement a function the compiler expected
to find.

June 7, 1999 10:10 owltex Sheet number 133 Page number 821magentablack

Bibliography

[AA85] Donald J. Albers and G.L. Alexanderson.Mathematical People. Birkhäuser,
1985.

[ACM87] ACM. Turing Award Lectures: The First Twenty Years 1966-1985. ACM
Press, 1987.

[AS96] Harold Abelson and Gerald Jay Sussman.Structure and Interpretion of Com-
puter Programs. MIT Press, McGraw Hill Book Company, second edition
1996.

[Asp90] William Aspray.Computing Before Computers. Iowa State University Press,
1990.

[Aus98] Matthew H. AusternGeneric Programming and the STLAddison-Wesley,
1998.

[Ben86] Jon Bentley.Programming Pearls. Addison-Wesley, 1986.

[Ben88] Jon Bentley.More Programming Pearls. Addison-Wesley, 1988.

[Ble90] Guy E. Blelloch.Vector Models for Data-Parallel Computing. MIT Press,
1990.

[Boo91] Grady Booch.Object Oriented Design with Applications. Benjamin Cum-
mings, 1991.

[Boo94] Grady Booch.Object Oriented Design and Alnaysis with Applications. Ben-
jamin Cummings, second edition, 1994.

[BRE71] I. Barrodale, F.D. Roberts, and B.L. Ehle.Elementary Computer Applications
in Science Engineering and Business. John Wiley & Sons Inc., 1971.

[Coo87] Doug Cooper.Condensed Pascal. W.W. Norton, 1987.

[Dij82] Edsger W. Dijkstra.Selected Writings on Computing: A Personal Perspec-
tive. Springer-Verlag, 1982.

[DR90] Nachum Dershowitz and Edward M. Reingold. Calendrical calculations.
Software-Practice and Experience, 20(9):899–928, September 1990.

[(ed91] Allen B. Tucker (ed.).Computing Curricula 1991 Report of the ACM/IEEE-
CS Joint Curriculum Task Force. ACM Press, 1991.

821

June 7, 1999 10:10 owltex Sheet number 134 Page number 822magentablack

822 Appendix I How to: cope with C++ environments

[EL94] Susan Epstein and Joanne Luciano, editors.Grace Hopper Celebration of
Women in Computing. Computing Research Association, 1994. Hopper-
Book@cra.org.

[Emm93] Michele Emmer, editor.The Visual Mind: Art and Mathematics. MIT Press,
1993.

[G9̈5] Denise W. Gürer. Pioneering women in computer science.Communications
of the ACM, 38(1):45–54, January 1995.

[Gar95] Simson Garfinkel.PGP: Pretty Good Privacy. O’Reilly & Associates, 1995.

[GHJ95] Erich Gamma and Richard Helm and Ralph Johnson and John Vlissides
Design Patterns: Elements of Reusable Object-Oriented Programming
Addison-Wesley, 1995

[Gol93] Herman H. Goldstine.The Computer from Pascal to von Neumann. Princeton
University Press, 1993.

[Gri74] David Gries. On structured programming - a reply to smoliar.Communica-
tions of the ACM, 17(11):655–657, 1974.

[GS93] David Gries and Fred B. Schneider.A Logical Approach to Discrete Math.
Springer-Verlag, 1993.

[Har92] David Harel.Algorithmics, The Spirit of Computing. Addison-Wesley, second
edition, 1992.

[Hoa89] C.A.R. Hoare.Essays in Computing Science. Prentice-Hall, 1989. (editor)
C.B. Jones.

[Hod83] Andrew Hodges.Alan Turing: The Enigma. Simon & Schuster, 1983.

[Hor92] John Horgan. Claude e. shannon.IEEE Spectrum, April 1992.

[JW89] William Strunk Jr. and E.B. White.The Elements of Style. MacMillan Pub-
lishing Co., third edition, 1989.

[Knu97] Donald E. Knuth.The Art of Computer Programming, volume 1 Fundamental
Algorithms. Addison-Wesley, third edition, 1997.

[Knu98a] Donald E. Knuth.The Art of Computer Programming, volume 2 Seminumer-
ical Algorithms. Addison-Wesley, third edition, 1998.

[Knu98b] Donald E. Knuth.The Art of Computer Programming, volume 3 Sorting and
Searching. Addison-Wesley, third edition 1998.

[KR78] Brian W. Kernighan and Dennis Ritchie.The C Programming Language.
Prentice-Hall, 1978.

[KR96] Samuel N. Kamin and Edward M. Reingold.Programming with class: A
C++ Introduction to Computer Science. McGraw-Hill, 1996.

June 7, 1999 10:10 owltex Sheet number 135 Page number 823magentablack

I.2 Creating a C++ Program 823

[Mac92] Norman Macrae.John von Neumann. Pantheon Books, 1992.

[McC79] Pamela McCorduck.Machines Who Think. W.H. Freeman and Company,
1979.

[McC93] Steve McConnell.Code Complete. Microsoft Press, 1993.

[MGRS91] Albert R. Meyer, John V. Gutag, Ronald L. Rivest, and Peter Szolovits,
editors. Research Directions in Computer Science: An MIT Perspective.
MIT Press, 1991.

[Neu95] Peter G. Neumann.Computer Related Risks. Addison Wesley, 1995.

[Pat96] Richard E. Pattis.Get A-Life: Advice for the Beginning Object-Oriented
Programmer. Turing TarPit Press, 1999.

[Per87] Alan Perlis. The synthesis of algorithmic systems. InACM Turing Award
Lectures: The First Twenty Years. ACM Press, 1987.

[PL90] Przemyslaw Prusinkiewicz and Aristid Lindenmayer.TheAlgorithmic Beauty
of Plants. Springer-Verlag, 1990.

[RDC93] Edward M. Reingold, Nachum Dershowitz, and Stewart M. Clamen. Cal-
endrical calculations, ii: Three historical calendars.Software-Practice and
Experience, 23(4):383–404, April 1993.

[Rie96] Arthur Riel.Object-Oriented Design Heuristics. Addison-Wesley, 1996.

[Rob95] Eric S. Roberts. Loop exits and structured programming: Reopening the de-
bate. InPapers of the Twenty-Sixth SIGCSE Technical Symposium on Com-
puter Science Education, pages 268–272. ACM Press, March 1995. SIGCSE
Bulletin V. 27 N 1.

[Rob95] Eric S. Roberts.The Art and Science of C. Addison-Wesley, 1995.

[Sla87] Robert Slater.Portraits in Silicon. MIT Press, 1987.

[Str87] Bjarne Stroustrup.The C++ Programming Language. Addison Wesley, 1987.

[Str94] Bjarne Stroustrup.The Design and Evolution of C++. Addison-Wesley, 1994.

[Str97] Bjarne Stroustrup.The C++ Programming Language. Addison Wesley, third
edition, 1997.

[Mey92] Scott Meyers.Effective C++. Addison Wesley, 1992.

[Mey96] Scott Meyers.More Effective C++. Addison-Wesley, 1996.

[Wei94] Mark Allen Weiss.Data Structures andAlgorithmAnalysis in C++. Benjamin
Cummings, 1994.

[Wil56] M.V. Wilkes. Automatic Digital Computers. John Wiley & Sons, Inc., 1956.

June 7, 1999 10:10 owltex Sheet number 136 Page number 824magentablack

824 Appendix I How to: cope with C++ environments

[Wil87] Maurice V. Wilkes. Computers then and now. InACM Turing Award Lectures:
The First Twenty Years, pages 197–205. ACM Press, 1987.

[Wil95] Maurice V. Wilkes.Computing Perspectives. Morgan Kaufmann, 1995.

[Wir87] Niklaus Wirth. From programming language design to compiler construction.
In ACM Turing Award Lectures: The First Twenty Years. ACM Press, 1987.

June 7, 1999 10:10 owltex Sheet number 29 Page number 827magentablack

Index

Symbols
! , 112
!= , 108
%, 78
%=, 114
&&, 111, 112
* , 78
*= , 114
+, 78
++, seepostincrement
+=, 114
-- , seepostdecrement
-= , 114
-> , seeSelector
/ , 78
/= , 114
:: , seeScope resolution
<, 108
<<, 35
<=, 108
=, 100
= and==, 117
==, 108
>, 108
>=, 108
>>, 70
[] , 343
||, 111, 112
∼, 625

A
Abstract base class

defined, 658
examples, 657-661
interface classes, 656
question kinds, 655
virtual functions, 658-661

Abstract data types, defined, 407
Abstractions

complexity and, 9-10
computer science and, 397-398
defined, 397

Accessor functions, 219
acos,see<cmath>
Actual parameter,seeArgument

Address-of operator &, uses of, 576
Algorithms

bogo-sort, 10
card arranging example, 6-7
computer science theory, 8
debugging, 17
defensive programming, 17
defined, 6-7
language and, 9, 12
problem identifying, 15-16
programs from, 16-17
searching,seeSearching
sorting,seeSorting
testing, 7
verifying, 7

Aliasing, uses of, 228
American Standard Code for Information In-

terchange (ASCII)
character code assumptions, 401
character sets and, 398
table, 763

Ampersand, reference parameter use, 226
Analysis, algorithm, 556-559
And-gates

boolean operators and, 668
digital logic, 668

AP Computer Science
apvector, 342
apstring, 403

Append with lists, 493-495
Architecture, 9
Argument

as actual parameter, 49
defined, 49
order of, 57
uses of, 45, 84

Arithmetic assignment operators
C++ and, 113, 715
symbols, 114,

Arithmetic operators, 77-78
Array defining, size determining, 380-381
Array initializing, 381-382
Array as parameters

C++ and, 382-383
const parameters, 385

827

June 7, 1999 10:10 owltex Sheet number 30 Page number 828magentablack

828 INDEX

examples, 383-384
Array size, parameters of, 385-386
Array sorting

bubble, 526
insertion, 529-535
programming tips, 526
quicksort, 559
selection, 526-529
sorting algorithms, 525

Arrays,seetvector,seeVector
built-in, 380-386
characteristics, 342
examples, 340-346
lists using tvectors, 357-380
properties, 342

Arrays as counters, 340-343
asin,see<cmath>
Assembly (language)

high-level programs and, 17
machine language and, 17
origin of, 17

Assignment operator
assignment chaining, 102
escape sequences, 103
examples, 101-102
left-associative, 103
object copying, 622
overloaded, 623-624

Association for Computing Machinery (ACM),
5

atan,see<cmath>
atan2,see<cmath>
atof, as function, 289
atoi, as function, 289
Automatic test programs, uses of, 616
Automatic variables

defined, 575
uses of, 575

Auxiliary functions
declaration complications, 497
examples, 496-497
header files, 497
reversed list building, 495-496

Average case,seeO notation average case

B
Backslash,seeEscape character
Backtracking

defined, 475
permutation generations and, 475

Balloon class, 86-92
Banana problem, defined, 153
Base class, C++ inheritance hierarchy, 647
Base class abstract

method virtual, 661-667
virtual functions, 657-661

BASIC language, 73
Beatiful boy,seeEthan
Bentley, John, 284
BigInt class, 160, 273, 468, 577, 766
Big-Oh,seeO Notation, 556
Binary number systems, concepts of, 12
Binary search

calculating, 375
defined, 374
function search post conditions, 380
middle number guessing, 374
versus sequential search, 374

BinaryGate class, creating, 686-687
Black box

defined, 127
math library as, 127-128
robust programs, 136

Blobs finding (case study)
class designing, 508
class enum values, 507
cloning use, 508-509
examples, 506-507, 509-514

Block delimiters, symbols, 114
Block statements

defined, 144
program fragment indentations, 115
purpose of, 144

Bogo-sort, defined, 10
bool, 108
Boole, George, 108
Boolean expressions

logical operators, 111
purpose of, 108
short-circuit evaluating, 113
true values and, 108

Boolean operators
code reading, 145
De Morgan’s Laws, 145
developing, 144-145
if statement guarding, 144
logic gates, 668

Boolean-valued functions
leap year determining, 130, 131-132

Break statements, loop writing, 182

June 7, 1999 10:10 owltex Sheet number 31 Page number 829magentablack

INDEX 829

Brownian Motion, 321
Bubble Sort

warning about,seeDog, 526
code, 569

Buffered input
defined, 239
loop stopping, 239

Bugs, defined, 17
Built-in arrays

benefits, 380
initializing, 381-382
parameters, 382-386
properties of, 380

C
C, 13
c_str(), 244
C++

ambiguity in, 121
arithmetic assignment operators, 113-

114
characteristics of, 13
file suffixes implementing, 217
global variable file scope, 479
indentation use in, 60
inheritance implementing, 647
inheritance use, 642
loop tests, 182
looping statements, 153
mathematics translating, 112
memory addresses, 573
non-void functions, 140
null pointer, 590
operations defined, 20
operator requirements, 179
pointer copying, 621
pointer use, 575-576
rational operators, 112
repetition program control, 99
simple programs, 30-31
standard libraries, 305
state encapsulating, 213-214
struct use in, 330
variable defining, 70
variable scope support, 191
vector referencing, 582
verse and, 71-72
word counting, 240

C++ class string, examples of, 213

C++ compiler, const reference parameter and,
232

Call by reference
defined, 230
parameter passing, 230

Call by value
defined, 230
parameter passing, 230

Calling functions
and flow of control, 37
function writing, 141-142
non-void functions, 140-141
programming tips, 141
return statements, 142

Card arranging, algorithms examples, 6-7
Case label, switch statements, 312-313
Case studies

blobs finding, 506-515
CD track shuffling, 352-357
class CList, 491-504
comment removing, 417-426
exponentiation, 167-172
gates and circuits, 668-696
iteration and string sets, 259-265
lists and class CList, 486-504
logic gates, 668-696
overloaded operators, 426-440
pizza slices, 83-85
removing components, 417-426
tvector class, 352-357

Cast, 165, 245-246
<cctype> , 401-403, 758-759
CD shuffling (case study)

examples, 354-356
initializing, 353-356
permutations, 356
programming tips, 353, 354
track shuffling, 356-357

Chapman, Gail, 249
char abstraction

character codes assumptions, 400-401
character value storage, 398
examples, 399-400
memory needs, 398
versus int, 399

Character set
ASCII set, 398
defined, 398
Unicode portability, 398

Characters

June 7, 1999 10:10 owltex Sheet number 32 Page number 830magentablack

830 INDEX

examples, 415
getline function behaviors, 416
numbers, 416
streams and, 414
strings and, 414

Chips
computer speed, 12
software use from, 12-13

Chocolate, 22
Choice

conditional execution, 105
examples, 104-105
program development, 104
program maintenance, 104
test expression, 105

Choices, programming tips, 104
Church-Turing Thesis, 397
cin, as input stream, 69
Circuit building

component hierarchy, 670
mathematical logic, 668
uses of, 668
wire use in, 670

Circularly linked lists, 607-608
Clancy, Mike 267, 411
Class

behavior of, 213-214, 279
console window, 87-88
defined, 20, 86
documenting, 214
examples, 86-87
graphics window, 88
implementation syntax, 213
libraries for, 219
noun use in, 278-279
off-the-shelf components, 86
responsibility determining, 279
state of, 213-214

Class CList (case study), 489-504
Class design

implementing, 282-284
int value converting, 289-299
iterative enhancement process, 282
library of, 277
member functions choosing, 277
nouns classes, 278-279
requirements, 278
responsibility assigning, 281-282
reusing, 277
verb finding scenarios, 279-280

Class design requirements, 278
Class documentation

.h file interfaces, 213-214
class behavior, 213-214
examples of, 217-218
function prototypes, 216-217
private data, 214
public member functions, 214

Class implementation
comments, 214-215
documentation, 213-214
private variables scope, 220-222

Class interfaces
class design, 277-299
conforming interfaces, 300-309

Class member functions
calling and writing functions, 140-142
date classes, 143-144
string member functions, 137-140

Class question implementing, 287-289
Class quiz implementing, 285-287
Class state

client programs, 214
defined, 213
private data defining, 214

Class testing
class separation for, 282-283
examples, 283-284
implementation definitions, 284
interface declarations, 284
programming tips, 282, 284
stub functions, 283

Class uses, client programmers, 191
Classes

BigInt class, 160, 766
CList class, 487
ClockTime class, 426-440
CTimer class, 257-259
Date class, 191-194
Dice class, 195-200
DirEntry class, 459
DirStream class, 459
RandGen class, 220, 222
StringSet class, 259-261
WordStreamIterator, 247-249
implementing use, 213-222
iterator (case study), 259-265
member functions, 88-89
private, 91-93
problem domain extending, 153

June 7, 1999 10:10 owltex Sheet number 33 Page number 831magentablack

INDEX 831

program design with functions, 222-
234

program reading, 89-91
public, 91-93
stream iteration, 234-249

<climits> , 759-762
CList

creating, 487
characteristics, 499
i/o manipulator as, 488
linked list and, 595
polynomials and, 499
structure sharing, 489
uses of, 499

ClockTime class, programming tips, 431
Clone as factory method, 674-675
Clone function, recursive functions and, 453-

454
Clones

recursion rules, 455-456
recursive calls for, 465

<cmath>
and<math.h> , 126
acos , 125
asin , 125
atan , 125
atan2 , 758
cos , 125
ceil , 125
fabs , 125
floor , 125
log , 125
log10 , 125
pow, 125
sin , 125
sqrt , 125
tan , 125
use and table, 125-127, 757-758

close, and streams, 727
Code evaluating, 224-225
Cohesion, 225
Comment

class, 214
defined, 34
out code, 520
pre- and post-conditions, 128
removal, 419

Combinatorics, permutation generation and,
475

Common Business-Oriented Language (COBOL),
191

CompositGate class, 674
Comparator circuits, 679
Compile time, defined, 650
Compilers

coping with different, 817-820
dependencies, 304-305
error messages, 197
numeric data processing, 75
purpose of, 17
syntax checking, 33
variety of, 14

Compiling
C++ program creating, 301
defined, 13, 301
dependencies, 304-305
input sources, 304
libraries, 305
library code linking, 93
machine code translating, 93
object code output, 93-94
object file output, 304
optimized code, 304
programming tips, 304, 305
recompiling reasons, 304

Complexity,seeO notation
characteristics of, 9-10
efficiency considerations as, 166
O notation, 556

Component uses, 20
Composite design pattern, 673
Composite gates

building, 673
connector using, 675-680
Gate::clone method using, 674-675
linked-list as composite, 673
xor-gate constructing, 672

Computer science
algorithms, 5-8
characteristics, 3-5
concepts, 8-11
discipline growth, 3
languages, 12-15
program creating, 15-18
program designing, 18-20
programming, viii, 3
tapestry of, 4
versus informatics, 3

Computer science tapestry

June 7, 1999 10:10 owltex Sheet number 34 Page number 832magentablack

832 INDEX

contexture and, 4
study approaches, 4

Computers
chips for, 12
digital logic, 668
economy of scale, 19
electric signals, 12
general purpose applications, 158
number crunchers as, 157

Concatenate, strings using +, 135
Concrete subclass, defined, 658
Condition, if statement testing, 105
Conditional compiling, preprocessor direc-

tives, 303
Conforming interfaces

compiling, 304-305
preprocessors, 302-304
program creating, 301-302
text files and, 300

Connector
comparator circuit, 679
disabler circuit, 679
examples, 675-677
or-gate building, 678
versus connect wires, 675

Cons-ing up, 491-492
Console window, defined, 87-88
const, using, 737-744
const reference parameters

benefits, 231
compiling, 232
copy constructors, 232-233
expression passing, 232
literal passing, 232
memory needs, 231
print, 232
programming tips, 232
space needs, 231

Constant identifiers
benefits of, 189
meaning of, 188
programming uses of, 188

Constant time, 611
Construction encapsulating, 684-686
Constructors

compiler uses, 193
date class and, 193
defined, 193
purpose of, 193

Container class, 614

Contexture, defined, 4
Control

assignment operator, 100-103
block statements, 114-121
boolean operators, 144-145
choices, 103-107
class member functions, 137-144
conditional execution, 103-107
defensive programming, 114-121
functions, 37
nonsequential, 99
operators, 107-114
program control types, 99
return value functions, 123-137

Control-D as eof, 242
Control-Z as eof, 242
Converting, arithmetic uses, 81
Copy constructors

default copy use, 623
header node, 623
object copying, 622
private variables, 623
shared resources, 623
syntax, 623
uses of, 232-233

Copy constructors, 622
cos,see<cmath>
Cosines, law of, 129
Counters

class tvector, 343-344
tvector counting, 344-346

Counting loops, defined, 166
Counting matches, uses of, 370
Counting searches, uses of, 370
Coupling, 224-225
cout, 44
Craps, 207
Cryptography

ethical considerations, 163
public-key, 162

ctype , see<cctype>
CTimer class, 256-259

D
Dangling else problems, 121
Dartmouth Time Sharing System, 73
Data aggregates

class writing for, 330
design rules for, 330-331
heterogeneous aggregate as, 330

June 7, 1999 10:10 owltex Sheet number 35 Page number 833magentablack

INDEX 833

implementing, 330
as structs, 329

Data members protected
inheriting state avoiding, 654
instance variable hierarchies, 654
member functions accessing, 654
programming tips, 654
state inheriting, 654

Date class
constructors, 193
examples, 143-144, 192-193
member functions, 194
programming tips, 198
Y2K and, 191

De Morgan’s Law,seeBoolean operators
logical operators, 145
uses of, 145

Declaration, class 214, 711
Declaration, function,seeFunction proto-

type
and definition, 711

Debugging, defined, 17
Deep copy

assignment operators, 623-624
copy constructors, 622-623
defined, 621
destructors, 624-625
liked list coping, 621
unexpected behavior examples, 620-

621
Default constructor

defined, 197
error messages, 197

Defensive programming, curly bracket use,
105

Defensive programming
cascaded if/else statements, 118-122
conventions, 116-117
curly bracket use, 116
definition, 17
indentations, 117
programming tips, 116

Definition, variable, 70, 706
Definite loops

defined, 166
purposes of, 178

Deleting
argument for, 590
destructor member functions, 591-593
examples, 589-590

heap memory returning, 591
programming tips, 591
stack object, 590
syntax, 590

Depends, it, 376, 471
Dereferences, pointers and, 572
Derived classes, C++ inheritance hierarchy,

647
Design heuristics, 219, 692
Design pattern

Abstract Factory, 686
as part of toolkit, 668
Composite pattern, 673, 805
Decorator pattern, 811
defined, 248
Factory method, 675
Iterator, 247-248
Observer Observable, 683

Destructors
as member functions, 592-592
defined, 591
errors with local variables, 624
node reclaiming, 625
object copying, 622
programming tips, 625
syntax, 625
uses of, 591

Destructors member functions, uses of, 591-
592

Dice class, 195-200
Digital logic

defined, 668
mathematical logic, 668

Directories
hierarchy of, 458
recursive functions, 458

Directory traversal recursion
examples, 461-463
for loops, 463-464
recursive clones, 464
subdirectory file numbering, 462
subdirectory lists, 460-461

Disabler circuits, 679
Divide and conquer

program design and, 67
purpose of, 67

Division
as arithmetic operator, 78
overloaded for int and double, 78, 80
stumbling block, 81

June 7, 1999 10:10 owltex Sheet number 36 Page number 834magentablack

834 INDEX

Divisor
efficiency calculating, 166
loop functions and, 166

Dog
house for, 19
of a sort,seeBubble sort

do-while loop
input prompts, 180-181
output statements, 181
uses of, 180

dot operator, 138
double,seeDivision

circuitry for, 81
floating-point numbers, 75

Doubly linked lists
examples of, 608
uses of, 607

Duvall, Robert, xiii
Dynamic memory, versus static memory, 571-

572
Dynamic data

excess storage, 571
indirect references, 571-593
linked lists, 571, 595-610
pointers, 571
templated classes, 610-632
vector size, 571

E
Efficiency,seeComplexity

characteristics, 9-10
complexity as, 166
factoring and, 167
prime number determining, 166

Electronic brain, conception of, 5
Electronic Numerical Integrator and Com-

puter (ENIAC), 157
Element deleting

examples, 368-369
pop_back, 368

Else statements
dangling else problems, 121-122
if statements and, 105
purpose of, 106
syntax for, 106

Encryption, 166-167
End-of-file character, uses of, 242-243
Enumerated Type,seeenum
enum

compared to int, 425

class based, 426
defined, 424

Enigma, coding machine, 5
Erich Narten, 579, 581
Error, off by one, 350
Error message

and function prototypes, 59-60
and literals as parameters, 232
and lvalue with constants, 188
and string class, 542
and templated functions, 537-539

Escape sequence, 103
Ethan Astrachan, 662, 665
Euclid’s Algorithm for GCD, 204
Explicit constructor, 755-756
Exponent, meaning of, 77
Exponential numbers, Fibonacci numbers and,

474
Exponentiation (case study)

C++ and, 167
defined, 158
duplicate code factoring, 170-171
invariant expressing, 169-170
loop development, 167-171
numerical analysis, 158
programming tips, 171

Expression, defined, 77
Expression evaluating

C++ rules, 79
circuits specializing, 81
examples of, 79-81
pitfalls with, 81

Extractionoperator >>
and white space, 237
defined, 69
overloading, 755

Extreme value finding
initializing, 252-254
largest/smallest values, 251-252
word frequencies, 254-256

F
Factorial

arithmetic operators, 160-161
combinatorics and, 158
defined, 158
integer value limitations, 160
loop testing, 159-160

Factorial functions
alternative versions, 467-468

June 7, 1999 10:10 owltex Sheet number 37 Page number 835magentablack

INDEX 835

examples, 468-470
programming tips, 471
recursion understanding, 469-471

Fence post problems
alternatives for, 175
defined, 175
loops as, 238
string space in, 175
while loops, 180

Fibonacci numbers, 471-474
Field width

nested loops, 185
printing, 185-186

File associations with streams
error detecting, 245
examples of, 243-244
ofstream, 244-245
random access, 727-729
string filenames, 244

File scope, global variables and, 479
Finding scenarios, programming tips, 280
Fix, Sarah, xiii
Floating-point numbers

number processing and, 75
prime number computing, 166

Flow of control
function calls, 37
function statements, 36
output streams, 37
statement sequencing, 36
switch statement selecting, 313
symbols for, 36
while loops, 154

for loops
characteristics, 178
linked list iterating, 599
parenthesis use, 178

Formal parameter. see Parameter
Formatting output, 719-729
Forward referencing

and compilation problems 585
uses of, 585
programming tip, 586

Fractals, mathematical concept, 325
Freestore,seeHeap objects
Friend functions, 614-615
Full-adder,seeHalf-adder

circuit building, 692
defined, 690

Function calls

prototype matching, 59
purpose of, 37

Function object
comparing, 544-549
examples, 545-547, 547-549
function object behaviors, 545
generic programming, 545
predicate, 549-553
programming tips, 544
sort methods, 543-544

Function overloading, syntax, 529
Function prototype

compilers, 216-217
defined, 59
as function signature, 59
header files, 216
as interfaces, 217
purpose of, 216
syntax, 59

Function signature,seeFunction prototype
Function template,seeTemplate functions
Function use

benefits of, 40, 140-142
example, 40-41
modifying, 43
programming tip, 141

Function writing, encapsulating guidelines,
141-142

Functions
header files and, 91
prompt range uses, 180
specializing, 653
using, 40-44
versus calling, 59

Functions with parameters
examples, 45-48
parameter passing, 48-51
uses of, 44-45

Functions with several parameters, 51-60
argument order, 57
calling and prototype matching, 59
compiler error messages, 59-60
defining versus calling, 59
designing elegance, 56-57
examples, 52-53, 55-57, 58-60
functionality combinations, 54-55

Functor,seeFunction object

G
Gate class 680-681

June 7, 1999 10:10 owltex Sheet number 38 Page number 836magentablack

836 INDEX

Gate clone method
clone method, 674
MakeXOR function, 674
programming tips, 675
as virtual constructor, 674

Gate observables
examples, 682-683
identity removing, 683
notifying wire gates, 683
pattern uses, 683
programming tips, 683
wire changes, 682

Gates, name mapping to, 695-696
Gates and circuits (case study)

circuit building, 690-695
composing gates, 672-680
gate observers, 682-684
gates, 670-672
introduction, 668-670
probes, 670-672
refactoring, 686-690
wire observables, 682-684

Gates, William H., contributions, 216
Guass, C.F., 205
getline

end of line markings, 409
examples, 408-409
parameters in, 409
programming tips, 410
purpose of, 407
return value, 410
syntax, 409
word-at-a-time versus line-oriented, 407

Global variables
C++ and, 479
compiling, 480
defined, 221
examples, 479-480
local declaration shadowing, 480
programming acceptance of, 221
scope of, 479
uses of, 480
value maintaining, 483
variable differentiating, 480
zero initializing, 484

Goldwasser, Shafi, contributions of, 530
Granularity, uses of, 256
Graphical user interfaces, code reusing, 19
Graphics window, defined, 88
Gries, David, contributions of, 373

Guard, if statement testing, 105

H
Hailstone sequence, 272
Half-adder,seeFull-adder

circuit building, 690-691
defined, 690

Halting problem, defined, 5
Hangman, 445-447
Hardware, development rate of, 18
Head

CList and, 488
defined, 488

Header files
.h suffixes, 214
class defining, 343
class documentation, 214
compiler information, 215
example, 89-91
function group interfacing, 215
names, 215
private data variables, 215
programming use of, 215
purpose of, 33

Header nodes, 606-607
Heap objects, 575-576
Hello world, 30
Helper functions, 612-614
Heron’s formula, 129
Heterogeneous aggregates,seeStruct

data aggregates and, 330
defined, 330

Hexadecimal numbering, memory address,
573

High level languages
benefits of, 13
C++ and, 13
low language converting, 13
low language differences, 13-15

Hoare, Charles Anthony Richard, contribu-
tions of, 11, 564

Hopper, Grace Murray, contributions of, 201
Hromcik, Judy, xiii

I
Identifiers, 61
Identifiers hidden, 481-482
If/else statements,seeElse statements

abnormal exiting, 112-113
block statements for, 114

June 7, 1999 10:10 owltex Sheet number 39 Page number 837magentablack

INDEX 837

contents of, 106
else statements and, 106
examples, 106-107
parentheses use, 105
programming tips, 107
relational operators in, 108
return statements, 142
rule exceptions, 134
syntax, 105
testing, 108
uses of, 105-107

If/else statements cascading
dangling else problems, 121-122
examples, 118-120
nested statements, 118

ifstream
as parameter, 261
defined, 243
open, 244
program tips, 248
word reading class, 247-249

Implementation
as .cpp file, 94, 202, 216,220
interdependencies, 586

include statements
as part of programs, 33-34, 713
code cut-and-pasting, 302
path altering, 302-303

Indentation
and program style, 60
styles, K&R, 116-117

Indexing operator []
array and tvector indexing and, 402-

403
string indexing and, 403
overloading and const, 739

Indirect references. see Pointers
Inductive definition

defined, 467-468
uses of, 469

Infinite loops
examples, 156
loop and a half, 182-183

Infinite recursion, 456-458
Informatics, computer science versus, 3
Information hiding, 215
Inheritance

aspects of, 641-655
base class abstract, 655-667
gate and circuits (case study), 668-696

public, 649
purpose of, 641
stream hierarchy, 642-643
uses of, 641
virtual functions, 650-653

Initializer list
syntax, 293
uses of, 293, 712

Inline functions, 288, 628
Inner loops

iterations and, 184
nested loops and, 184

Input file streams, uses of, 244
Input Process Output Model (IPO), program

design and, 67
Input streams, 69
Insertion operator 37, 44
Insertion sort

empirical results, 532
examples, 531-532, 532-534
invariant for, 530-531
quadratic sorts and, 532
versus quicksort, 563

Instance,seeObject, 218
Instance variable

constructor giving values to, 219
private, 220
variable 214

Instantiation, defined, 538
int

circuitry for, 81
double and, 78, 80
integer numbers and, 75
number sizing, 75
type char and, 82

int converting to strings,seeatoi
Interaction diagram, 583, 682
Interactive circuit building, 690-692
Interactive testing, 616-620
<iostream>

as include file, 33
and<iostream.h> , 49, 214

Interdependencies
compiling, 584
examples, 583-584, 586-589
forward referencing, 585
implementation files, 586
preprocessing, 584-585
programming tips, 586

June 7, 1999 10:10 owltex Sheet number 40 Page number 838magentablack

838 INDEX

Interface classes, abstract base class and,
656

Interface diagram, class accessing from, 89
Invariant

seeLoop, Invariant
data, 432

iomanipulator, 720-726
setf, 719-723
setw, 185, 186, 434, 720
setprecision, 719-723

Is a kind of
as models, 647
uses of, 647

Is-a relationship
as models, 647
uses of, 647

isalnum, 401
isalpha, 401
iscntrl, 759
isdigit, 401
islower, 401
isprint, 759
ispunct, 759
isspace, 759
istream, 261
istringstream, 411-413
istrstream, 411
It depends,seeDepends, it
Iteration

class use and, 191-200
defined, 153
loop statement alternatives, 177-189
programs repetition as, 153
programming tips, 543
string sets (case study), 259-265
while loops, 153-177

Iteration case study
iterations, 261
sets, 263-265
type ofstream, 261-263
word counting, 263-265

Iteration compared to recursion, 467-478
Iterators

error message understanding, 542
examples, 539-540, 541-542
expected interface conforming, 542
function templates, 539-543
interface generalizing, 543
parameter use, 540-541

Iterative enhancement

defined, 45
techniques of, 46-47

Iteration functions
container class, 614-615
element choices, 614
examples, 615
friend declaring, 615
set element accessing, 614

J
Joke, 731
Joule, 95
Juggling, 122

K
Katz, Beth, xiii
Kemeny, John, contribution of, 73
Key words, meaning of, 61
Kmoch, Joe, xiii
Knot, frayed, 731
Knuth, Donald, contributions of, 92

L
Languages,seeAlgorithms;Assembly; High

level languages; Lisp; Low level
languages; Machine language; Scheme

algorithms expressing, 9, 12
choices in, 9
high and low, 12-15
idea expressing, 12

Late binding, virtual functions and, 665
Leap year determining, 129-132
Lenstra, Arjen, 162
Levine, David, xiii
Lexicographical order

defined, 109
rational operators and, 109

Libraries
assessing, 401
benefits, 305
character set portability, 401
class and, 219
class design, 277
compiling, 305
defined, contents of, 33
math, 125-128
object file linking, 305
parameters for, 401
portable program writing, 402-403
programming tips, 401

June 7, 1999 10:10 owltex Sheet number 41 Page number 839magentablack

INDEX 839

programs existing with, 305
purpose of, 33

Lifetime
defined, 478-479
object properties, 449

limits.h, see<climits>
<limits> , 761-762
Line-oriented data parsing, 411-413
Linked lists

access speed, 595
characteristics of, 607
circularly, 607-608
CList objects and, 595-596
deleting nodes from, 601-602
doubly, 607-608
examples, 596-598
header nodes, 606-607
iterating over, 599-600
last nodes, 600-601
node creating, 598-599
node deleting, 600-602
node splicing, 602-606
nodes, 595
tvector and, 596
uses of, 571

Linking
and compilation, 93-94
C++ program creating, 302
defined, 93, 302
error understanding, 306
library use, 305
linker error examples, 305-306
programming tips, 306
string compilation and, 306

LinkSet implementing, 628-632
LinkStringSet, 625-632
Lisp (language)

development of, 486
list structure, 486

List, defined, 449
List using tvectors

reserve using, 358-363
resize using, 358-363

List using tvector, push_back using, 358-
363

Lists using tvectors
binary searching, 374-375
capacity, 358
element deleting, 368-369
sorted vector insertions, 366-368

vector idioms, 363-366
vector searching, 369-373

Local variable
definition, 189-191
destructors and, 624
static, 483
use, 217

Logarithmic
complexity for binary search, 375
running time, 557
aspects of quicksort, 565

Logic gates, 668-670
Logic gates (case study), 670-694
Logical operators, 111-112
long int, purpose of, 75
Loop body

curly bracket guarding, 154
defined, 154
loop section developing, 177

Loop invariant
adding last node to linked list and, 600
defined, 160, 527
exponentiation and, 169-171
insertion into sorted vector and, 367-

368
insertion sort and, 530-532
quick sort and, 561-563
selection sort and, 527-528

Loops
and a half, 181-183
buffered input effect, 239
counting loops, 166
definite loops, 166
do-while loops, 180-181
for, 178-179
guidelines for choosing type, 183
nested, 183-188
priming, 181, 240
pseudo-infinite loops, 181-183
purpose of, 153
sentinel loops, 238
statement of, 154
stopping, 238-239
syntax for, 178
test development, 177

Lovelace, Ada, contributions of, 51
Low level languages, 12-15

M
Machine code, compiler translating into, 93

June 7, 1999 10:10 owltex Sheet number 42 Page number 840magentablack

840 INDEX

Machine languages
assembly language and, 13, 17
defined, 13
executing, 17-18

Macintosh, 24
Madlibs, 270-271
main

defined, 34, 705
and command line parameters, 716

Manipulator,seeiomanipulator
Match collecting

examples, 370-371
match recalling, 371
vector storage, 370

Match searching
examples, 369-370
return values, 369
sequential searching, 369
unique matches, 369-370

Matching counting, examples, 370
Math library,see<cmath>

black box behavior, 127-128
examples, 126-127
functions in, 125
uses of, 126

Math quiz questions inheritance hierarchy,
644-647

Mathematical functions
loops and, 157-158
numerical analysis, 158
types of, 158

Matrix, two-dimensional arrays as, 504
Matrix class,seetmatrix

blobs finding (case study), 506-515
programs, 504-506

Member functions
accessibility of, 89
accessor functions, 219
C++ and, 220
categories, 219
characteristics of, 217
class documentation, 217
date other, 194
defined, 89
examples of, 88-89
header files and, 91
mutator function, 220
scope resolution symbol, 217
string examples, 398
symbol for, 89

verbs as, 279
Methods,seeMember functions

OOP languages and, 89
virtual, 661-667

Modulus,seeoperator, modulus
Monte Carlo simulation, 336
Multiple inheritances, uses of, 654
Mutator functions, 220

member functions and, 219
Mxyzptlk, Mr. 374

N
Namespace, 34, 713
Naming convention,61
Nested loops, 183-188
Nested scope, identifiers hidden, 481
new

and dynamic memory, 572, 575
and heap, 575

newline, 103
as white space, 235
andoperator >> , 237
and getline, 409

Nodes, 595-599
Normalize

and data invariant, 432
with ClockTime class, 432
with Rational class, 444

Not gates, 668
Nouns as classes, 278-279
Null pointer, 590
Number processing

arithmetic operators, 77-79
examples, 74
expression evaluating, 79-82
floating-point numbers, 75
numeric data, 75-77
syntax for, 73-74
type char, 82-83

Numeric analysis, 158
Numbers to English, 132-135
Numeric data, 75-77
Numeric literals, defined, 37

O
O notation

average case, 557
curve family, 556
defined, 556
sequential searching, 556

June 7, 1999 10:10 owltex Sheet number 43 Page number 841magentablack

INDEX 841

uses of, 556
worst case 556-557

Object,seeVariable
Object code, 93-94
Object files, 93-94, 304
Object sharing, 578-581
Object state, 91
Object-oriented programming (OOP)

C++ use, 13
class library in, 277
classes, 86
component reusing, 20
design patterns for, 668
goal of, 19
inheritance and, 641
methods, 89
program designing, 18-19
program writing, 86
related parameter groupings, 330

OBOB, 350
off-by-one bug,seeOBOB
Off-the-shelf components

class and, 86
defined, 19
objects as, 19-20

ofstream
and pass by reference, 262
as parameter, 261
example, 244, 262

One-dimensional random walks, 310-322
open,seeifstream, open
Operators++ and-- , 179
Operator

arithmetic, 78
associativity, 103, 715
defined, 77
logical, 111-112
modulus, 78-79
output parameter, 333
overloading, 78, 333
precedence, 79,715
printing, 333
programming tips, 110, 333, 334
relational, 333-334
relational, 108-111
short-circuit evaluating, 112-113
symbol, 333
symbols for, 108
types of, 107
uses of, 77-78

operator >>
cin >> expression, 71, 72, 240
code for, 240-241
end-of-file character, 242-243
examples, 242
if statements, 241
member function use, 241
while loop testing, 242
word counting, 240

Optimized code, uses of, 304
Or-gate 668, 678
ostream, 261
ostringstream output

different value joining, 413
result values, 413
string stream values, 413

ostrstream, 413
Outer loop, 184-188
Out of range error, 404
Output, 37-40

arithmetic expressions in, 38
format, 719-729
number crunching, 37
numeric literals, 37
string literals, 37

Output file stream, 244
Output streams

defined, 37
insertion operator, 37

Overloaded operators (case study)
class design versus throw-away code,

428-429
clocktime class implementing, 429-432
clocktime class testing, 436-437
data invariants, 432-433
final programs, 438-440
friend class, 433
how to, 745-756
operator += overloads, 435
operator + overloads, 435
operator overloads, 433-434
relational operator overloads, 435

Overriding inherited functions, 653

P
Palindrome, 157
Parameter

call by reference, 226-229
call by value, 227
defined, 45

June 7, 1999 10:10 owltex Sheet number 44 Page number 842magentablack

842 INDEX

list, 34, 48
initializing, 70
order of, 57
passing 48-50, 229-230
variable similarities, 70

Partition function of quick sort, 561-563
Pathname, 463
Pattis, Richard, 89, 228
Pentium chips, 12, 23
Perfect number, 205
Perlis, Alan, contributions of, 594
Permutation generation, 475-578
Permutations, defined, 356
PermuteHelper, 477-478
Pig-latin, 152, 443
Pivot elements,seePartition function

choosing, 563
swapping, 563

Pixels, defined, 339
Pizza slices (case study), 83-84, 141
Point struct, 331-333
Pointer sharing, 582
Pointers

characteristics, 571-575
heap objects, 575-578
indirect references, 571
memory addresses, 573
reference variables, 581
selector operator symbol, 575
sharing and, 582-583
syntax, 572
vectors and, 574-575

Polymorphism, 650
Polynomials, 499-501
pop_back, element deleting, 368-369
Portable, defined, 398
Post-conditions, 128
Postdecrement,seeOperator, postdecrement
Postincrement,seeOperator, postincrement
Power-PC, 12
pow,see<cmath>
Precedence,seeOperator, precedence
Predecrement,seeOperator, predecrement
Preincrement,seeOperator, preincrement
Precision, 720, 723
Pre-conditions, defined, 128
Predicate functions objects, 549-552
Predicates, 132, 552
Preprocessor

#include statements, 302

C++ program creating, 301
compiling preventing, 303-304
defined, 301
include statement locations, 302-303
other directives, 303-304
source file stages, 302

Prime numbers, 158, 162-166
Priming loops, loop writing and, 181-182
Private sections

header files, 91
object’s state, 91-92
public member implementing, 91
uses of, 91

Private variable scope, 220-221
Probes as gates, 671-672
Program creating

algorithm to programs, 16-17
executing machine language, 17-18
high-level to low-level programs, 17
problem to algorithms, 15-16
process of, 15
results displaying, 18

Program design
classes, 86-93
compiling, 93-94
computation input phase, 68-72
execution stages, 67
IPO model, 67
linking, 93-94

Program design with functions, 40-60, 224-
230

Program designing, 18
Program development, maintenance versus,

104
Program forms

function with parameters, 44-51
function with several parameters, 51-

60
function using, 40-44
output, 37-40
program style, 60-61
simple programs, 30-35
workings of, 35-37

Program maintenance, time spent in, 104
Program reading, 89-91
Program style, indenting, 60
Programmer-defined functions, 34
Programming tips

<cctype> functions return with int val-
ues, 401

June 7, 1999 10:10 owltex Sheet number 45 Page number 843magentablack

INDEX 843

abstract factories, 686
accessor functions, 220
bubble sorting, 526
C++ parenthesis use, 110
calling function postconditions, 128
cast, 246
case labels and statement quantity, 313
class design behaviors, 334
class designing, 280
class implementing with constructors,

431
class method refactoring, 680
classes cohesive code, 225
code coupling, 225
code modifying, 141
code optimization-off, 304
code-duplication helpers, 321
coding conventions, 116
common code factoring out, 171
compilation errors, 198
compiler warnings, 85
compiling templated classes, 628
composite design patterns, 673
constructor’s initializer list, 366
convention following, 132
different member functions value com-

municating, 291
duplicate code, 104
efficiency, 494
extreme value approaches, 253
factory method designs, 675
forward references versus #include in

header files, 586
function template object file size, 543
future tense programming, 658
getline and extraction operators, 410
global variables, 221
identifiers and nested scope names, 481
if/else statement use, 107
inline member functions and small classes,

288
instance variable value assigning, 219
int versus long int, 77
interface and behavior inheriting, 654
interface class method minimizing, 319
iterative enhancement cornerstones, 282
linked list creating, 598
loop break statements, 182
loop documenting with invariants, 171
member function implementing, 625

memory allocating from Heap, 576
negative value avoiding, 79
nester loop coding, 188
new mode adding code, 606
non-void function return values, 141
object changing observable patterns,

683
object uses, 139
one member function variable defin-

ing, 220
open-closed principle 544
out-of-range indexes, 404
parameterized policy, 552
pattern uses, 240
pointer deference guarding, 605
preprocessor file finding, 303
program changing, 135
program development implementing,

644
program reading, 135
programming sequences, 284
programmer defined class parameters,

232
prototype programming designs, 222
public inheritances, 649
quick and dirty solutions, 428
recursive algorithm implementing, 508
recursive call clones, 471
recursive function calls, 456
return statements and flow of control,

165
source file dependencies minimizing,

305
state and instance variables, 220
stream passing by reference, 261, 262
string names for templated classes, 543
struct use, 331, 332
subclass calling superclass construc-

tors, 651
superclass methods as virtual methods,

661
switch statement breaks, 313
templated class developing, 611
templated function error messages, 535
testing for classes, 616
tvector size as parameter, 354
tvector parameter passing, 350
unresolved reference errors, 306
value passing with node-pointers, 600
variable defining for values, 72

June 7, 1999 10:10 owltex Sheet number 46 Page number 844magentablack

844 INDEX

vector size, 360
virtual subclass use, 650
writing function postconditions, 128

Programming
art and science in, 29
key elements, 33-34
practicing, 29
purpose of, 30

Programming styles, identifiers, 61
Programs (high-level), 17
Programs (simple), 31-35
Promotion, arithmetic uses, 81
Protected, defined, 654
Prototype,seeFunction prototype

for program development, 222, 644,
695

Pseudo-infinite loops, 181-183
Pseudocode, 236
Public inheritance, 649
Public section, 91, 93
Punctuation and whitespace, 237
Pure virtual functions, 658, 666
push_back

defined, 359
programming tips, 360
sorted vector inserting, 366-368

Q
Quadratic complexity

sorts, 525-534
defined, 554

Question class, 306-308
Quicksort

analysis of, 564-567
code for, 561
computational complexity, 564
defined, 559
partition function, 560-561
recursive processes, 559-560, 565

Quiz program
class based, 225-226
inheritance based, 644-660

R
Radian measure

in <cmath> , 125, 321
mathutil.h conversion, 321, 766, 776-

777
Ramm, Dee, xiii
RandomWalk interfaces

examples, 328
point objects, 327
two-dimensional walks, 327, 329

Random access, programming and, 340
RandomWalk

characteristics of, 309
one-dimensional classes, 310-311
random walk classes, 314-321
random walk interfaces, 327-329
two-dimensional classes, 321-327

Reading code, 89-91
Read-only parameters,seeconst reference

parameters
Real numbers, number processing and, 75
Recursion

and class matrix, 504-515
base case, 454-455
clones from, 455-456
defined, 449
directories, 458-466
functions, 449-458
infinite recursive, 456-458
iteration comparing, 467-478
list and class CList (case study), 486-

504
purpose of, 449
scope, 478-486

Redirection, I/O, 730
Refactoring, 680, 686-687
Reference parameters, 226-229
Reference variables, 581
Relational operators, 108-111
Removing comments (case study), 417-426
Repetition, defined, 99
Reserve as tvector method, 360
Reserved words,seeKey words
Resize as tvector method, 360-362
Responsibility assigning, 281-282
Return value

composing functions, 125
examples, 124
math libraries, 126-128
post conditions and, 128-129
pre conditions and, 128-129
purpose of, 34
return type, 129-137

Reuse, 18-20
Reversing functions, parameters for, 495
Ritchie, Dennis, contributions of, 32
Roberts, Eric, 181

June 7, 1999 10:10 owltex Sheet number 47 Page number 845magentablack

INDEX 845

Robust programs
black box functions, 136
error detecting, 245

Rodger, Susan, xiii, 249
Run time, defined, 67, 650

S
Scenarios, 279-280
Schapira, Al, 284
Scheme (language), 486
Scientific American, 162
Scientific notation,seeExponent
Scope

global variables, 479-480
identifiers hidden, 481-482
object properties, 449
static class variables, 484-486
static definitions, 483-484
variable definitions, 189-191

Scope resolution operator
member functions and, 217
symbol, 140, 217, 282
uses of, 140, 282

Searching,seeBinary Search, Sequential Search,
Match

code reusing, 612
error messages, 613-614
helper function interfacing, 612

Selection, defined, 99
Selection sort, 527-529
Selector operator, pointers and, 572
Semantics, 31-32
Semicolon, statement terminating symbol,

36
Sentinel loops, 238
Sequential access, programming and, 340
Sequential search, 375-376
setf,seeiomanipulator, setf
setprecision,seeiomanipulator, setprecision
Set as templated class, 610-611
setw,seeiomanipulator, setw
Shadowed, global variables and, 480
Shakespeare, William, 244, 351, 409
Shallow copy

default copy construction, 623
uses of, 621

Shannon, Claude, 668
contribution of, 122

Shaw, Mary, contributions of, 281
Short-circuit evaluation, 112-113

Side effect, 141
SimpleMap, 695-696
Simulation, 195
sin,see<cmath>
sizeof, 728
Software, development rate, 18
Sort analyzing

algorithm classifying, 553-554
examples, 555
quadratic curves, 554-555

Sorted vector insertions
examples, 366-367
push_back function, 366

Sorting,seeBubble Sort, Insertion Sort, Se-
lection Sort, Quicksort

analyzing, 553-559
arrays, 525-535
object functions, 543-553
quicksort, 559-567
template functions, 535-543

Source code, 93-94
Spam, 442-443
Sparse structures

examples, 500-501, 501-504
polynomials accessing, 500

Specialized functions, defined, 653
Specification

defined, 235
programming and, 235-236

Speech synthesizers, uses of, 132
sqrt,see<cmath>
<sstream>

and istringstream, 411-413
and ostringstream, 413-414

Stack ADT as exercise, 639
Stack variables

defined, 575
uses of, 575

Stallman, Richard, contributions of, 146
Standard deviation, 271-272
Standard output stream, uses of, 37
State machines

identifying words, 417-419
removing comments, 419-424

static_cast, 246
Static class variables, 484-486
Static function variables, 483-484
Static memory, versus dynamic memory, 571-

572
Stream inheritance hierarchy, 642-643

June 7, 1999 10:10 owltex Sheet number 48 Page number 846magentablack

846 INDEX

Streams
abstract data types as, 407
characters, 414-416
how to format using, 719-730
input getline, 407-410
line-oriented data passing, 411-413
output, 413-414
string,see<sstream>

String building, 398
String characters

library for, 401-403
strings, 403-406
type char, 398-401

String class compilation, 306
String literals, 37
string functions and constants

c_str , 732
find , 138, 139, 735
length , 138, 732
npos , 140, 734-735
operator += , 173-176, 733
operator < , 109, 731
rfind , 735
substr , 137, 138

String sets
examples, 260
speed increasing, 259-261

String sets with linked lists, 611-612
String values, concatenating, 135
Strings

abstractions, 398
characters in, 398-406
computing abstraction, 397-398
defined, 48
overloading operator (case study), 426-

440
programming tips, 404
removing comments (case study), 417-

426
streams, 406-416

StripPunc,seestrutils
StripWhite,seestrutils
Stroustrup, Bjarne, contributions of, 684
strstream.h,see<sstream>
Structs

data aggregates as, 329-331
operators for, 333-334
storing points, 331-333

strutils, 261, 766, 776
Stub function, iterative process, 318

Subclass
inheritance hierarchy, 647
public inheritance, 649

Subscripted variable, 342
Super class

inheritance hierarchy, 647
public inheritance, 649

Supercomputers, idea expression, 12
Swap

implementing as an exercise, 234
in sorting, 527-528
in sorting analysis, 555-556

Switch statement, 313-314
Symbols

accessor functions, 220
ampersand, 226-227
arithmetic operators, 78
assignment operators, 100-101
constant identifiers, 188
flow of control, 36
insertion operator, 44
math library, 126
operator ++, 179-180
operator >> , 240-243
scope resolution operator, 140, 217,

282
selector operator, 575
semicolon use, 36

Syntactic sugar, 178
Syntax

defined, 31
detail importance, 33
English word rules, 31-32
how to use C++, 705-717
error tolerance, 31
program rules, 33-34

T
tab,seeWhite space
Tail

CList and, 488
defined, 488

Tail-ing down, examples, 489
tan,see<cmath>
Template functions

code bloat, 543
code reuse, 535
comparable objects, 536
iterators and, 539-543
programming tips, 543

June 7, 1999 10:10 owltex Sheet number 49 Page number 847magentablack

INDEX 847

reusing, 543
sorting algorithm efficiency, 535
syntax, 539
tvector printing, 536-529
uses of, 536

Templated classes
deep copy, 620-625
friend functions, 614-616
interactive testing, 616-620
iterator functions, 614-616
LinkStringSet templates, 625-636
searching functions, 612-614
string sets, 611-612

temporary
and const ref parameter, 232
and anonymous construction, 333

Testing
seeClass testing
seeDice class testing
seeInteractive testing

Text file,seeofstream
this

as object pointer, 582
in assignment operator, 623-624

tmatrix, two-dimensional data, 449
tmatrix program

default constructor defining, 504
documentation for, 504
example, 505-506
member function, 504
parameters, 504
syntax, 504
two-dimensional array as, 504

tolower,see<cctype>
toupper,see<cctype>
tostring, as function, 289
Translation unit, 302-304
true, 108
Truth tables

and logical operators, 112
and digital gates, 669-670

Throw-away code, programming tips, 428
Turing, Alan

Church-Turing Thesis, 397
contributions of, 5

Turing machine, 5
development, 397

tvector,seeVector
array initializing, 381-382

CD track shuffling (case study), 352-
357

characteristics, 343
counting with, 344-346
defined, 347
efficiency, 343
function template printing, 536-539
initializing, 348
linked lists compared, 596
parameters, 348-352

tvector collections
object storing, 357-358
vector size determining, 358

tvector definition, 347-348
tvector parameters

examples, 348-351
programming tips, 350
variable passing, 348, 350
vector elements, 350

tvector printing
examples, 536-537
function template, 536-539
programming tips, 538
templated function calls, 538

Two-dimensional arrays, matrix as, 504
Two-dimensional walk class

Brownian motion, 321
calculating direction changes, 322
examples, 322-325
fractal characteristics of, 326-327
versus one-dimensional, 322

Type cast
defined, 165
uses of, 165-166

Type casting
correct average calculating, 245
number truncating, 246
precedence of, 245-246
programming tips, 246
static_cast, 246

Type char
as characters represented, 82
int values and, 82
printing and, 83
string values building, 83

Type conversion,seestrutils.h
and constructors, 755
explicit keyword and, 755-756
tostring,seetostring

typedef

June 7, 1999 10:10 owltex Sheet number 50 Page number 848magentablack

848 INDEX

and standard string class, 542
defininition and examples, 497

U
Unary operator !, 112
Underscore, 61
Unicode

character code assumptions, 401
international characters, 398
non-English language use, 398

Universal Automatic Computer (UNIVAC),
157

UNIX, pathname in, 463
Users

output from, 68
prompts for, 68

V
Value parameters, storage allocating, 228
Value passing

call by reference, 230
call by value, 230
program performance, 230

Variable references, 581
Variable defining, terms for, 70
Variable scope, 189-191
Variables

defining, 70
floating-point numbers, 75
initializing, 70
loop testing, 156
parameter similarities, 70
syntax, 70

Vector,seetvector
Vector capacity

constructor arguments, 358
determining, 358
doubling, 360
size and, 358

Vector idioms, 363-366
Vector searching

applications for, 369
match collecting, 370-371
match counting, 370
unique match searching, 369-370

Vector size
constructor argument, 358
element determining, 359
element number, 358
growth of, 360

Verbs as member functions, 279
Virtual constructor, 674
Virtual destructors, 665-666
Virtual functions

abstract class using, 658-661
abstract classes and, 657-661
change behavior programs, 665
class declaration overriding, 657
compiler choices, 650
examples, 651-652, 662-664
inheritance hierarchy designing, 661
inherited functions overriding, 653
inherited superclass methods, 664
late binding, 665
program tips, 650, 651, 661
pure making of, 666
superclass constructors, 650
superclass functions, 661-662
uses of, 650
virtual destructors, 665-666

void
as return type, 34, 40, 705
as type, 705

von Neumann, John, contributions of, 405

W
While loops

computing factors, 158-162
definition and diagram, 154
efficiency considerations, 166-167
English number writing, 173-175
exponentiation (case study), 167-172
fence post problems, 175-177
flow of control, 154
infinite loops, 156-157
loop test parts, 155-156
loop test reevaluating, 154
loop types, 166
mathematical functions, 157-158
prime number computing, 162-166

White space, elements in, 33
White space delimited input, 236-237
width, 720
Wilkes, Maurice, contributions of, 490
Windows, pathname in, 463
WireFactory, 684-686
Wire class, 670-672
Wirth, Niklaus, contributions of, 414
Word counts, 240-243
Word frequencies, 254-256

June 7, 1999 10:10 owltex Sheet number 51 Page number 849magentablack

INDEX 849

Word reading,seeStream iteration
authorship determining, 234-235
classes for, 247-249
counting words, 240-243
pseudocode solutions, 235-237

Word reading class, 247-248
WordStreamIterator, 247-248
Worst case,seeO notation worst case

X
Xor-gate

circuit building, 673
constructing, 672

Y
Y2K, 191

Z
Zero

and false, 108
and NULL, 590
as first array index, 343

	frontmatter
	chapter1
	chapter2
	chapter3
	chapter4
	chapter5
	chapter6
	chapter7
	chapter8
	chapter9
	chapter10
	chapter11
	chapter12
	chapter13
	howto
	index

