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Abstract 

Adaptive mesh refinement (AMR) pennits a computational algorithm to allocate ad
ditional grid resolution when and where it is most needed. A block-structured AMR 
scheme provides this capability without sacrificing the numerical and computational ef
ficiencies associated with regular meshes. In this paper we describe an AMR implemen
tation of the discrete ordinates method for radiative transfer, coupled with an existing 
projection method for low-Mach number flows. The complete algorithm constitutes a 
conseroative scheme for unsteady combined-mode heat transfer. Results for two- and 
three-dimensional problems are shown. 

Introduction 

The computational modeling of practical combustion applications with limited computer 
resources can be made difficult by the presence of multiple length scales and high gradients 
and by the large number of species in a sufficiently detailed reaction mechanism. In addition, 
the locations of regions with high gradients or small length scales may change over time. 
An accurate prediction of a reacting flow may therefore require that the computational grid 
be dynamically adapted both in time and space. 

Radiative heat transfer is the dominant mode of heat transfer in many combustion appli
cations. Because it can significantly affect temperatures, and, hence, density distributions 
and reaction rates, radiative heat transfer may be very inHuential in combustion dynam
ics. Deterministic methods for radiative heat transfer have been formulated for globally 
refined, nonuniform grids (see, for example, [1, 2]). However, most of these methods use 
fixed computational grids and are appropriate only for steady flows. 

In this paper we present a method based on a different approach, local adaptive mesh re
finement (AMR). We develop an AMR algorithm to solve a system of equations for unsteady 
combined-mode heat transfer, using a hierarchical grid structure approach first developed 
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support was provided by the Applied Mathematical Sciences Program of the DOE Office of Mathematics, 
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NOMENCLATURE 

Cp specific heat at constant pressure, u x component of velocity, mls 
kJ/kg·K Uo Mean inlet or initial axial velocity, 

DR Reflux divergence operator mls 
eij estimate of error in numerical solution v y (r, if cylindrical) component of 

in cell ij velocity, mls 
En Correction term in multilevel algorithm, W z component of velocity, mls 

J/(m3s) Wm Ordinate weight 
h Enthalpy per unit mass, J Ikg x axial coordinate 
[ Instantaneous radiant intensity, y,z off-axis (Cartesian) coordina.tes 

W/(m 2 . Sr) At Size of a single time step, s 
in Extension of 1m to coarse cells under Ax, b..y Width, height of a computational 

m 
fine grids cell 

jn+l Thial solution to 1m at new time level E Wall emissivity m 
dimensionless time, tp,1 R2 p Pr J;;,+V2 Time-a.veraged intensity over a time step 

e 
,.. Absorption coefficients, m- 1 

1m Nonphysical multilevel solution used to Ai Collection of computation cells at 
enforce energy conservation refinement level l 

dI$n+l Flux register for 1m at interface between ). thermal diffusivity, W Im-K 
levels l and l + 1 (at levell resolution) 8Al Boundary between levels l 1 and l 

h Blackbody intensitYt (J'bT4/1r P, Dynamic viscosity, kg/m-s 
L Length of pipe, channel, or duct in p"~,,,, Direction cosines 

computational domain p Fluid density kg/ms 
V!';,·;r: Estimate of error in numerical p Wall reflectivity 1 

solution over entire domain (J' Scattering coefficient, m- 1 

l Level index (Tb Stefan-Boltzmann constant, 
£ma:z; Level index of finest refinement level 5.669 x 1O-8W /M2 s 
m Ordinate index T optical thickness, K.R 
N conduction-radiation parameter, Om Ordinate direction unit vector 

pK.)'/4(J'bT~ 
n Time index Subscripts and superscripts 
it Outward unit normal at a boundary 
p Level projection operator (- )ij value at center of cell ij 
p Fluid pressure, kg/ms2 

Oi,j+1J2 value at upper y-edge of cell ij 
Pr Prandtl number, MCp / ). On value at time tn 

q Fluid pressure, kg/ms2 on+! value at time tn + At t n +1 
r Refinement ratio between levels 

(·r~+!·p predicted value at center of time tn 
r radial (cylindrical) coordinate 
qr radiative heat flux, W 1m2 (-)n+l/2 value a.t time t n + At/2 

R Pipe radius or duct half· width or Oi+1/2.j value at upper x-edge of cell ij 
parallel plate channel half-width, m 0 initial or inlet values 

Rm Refluxing source at coarse-fine w wall values 
interfaces 

Re Reynolds number. 2Rpuo/p. Other 
S Radiation source term, W l(m3 - Sr) 
T Temperature l K (-) Average from fine to coarse level, 

T& Bulk temperature, K space only 
Tw Wall temperature, K (0) Average from fine to coarse level, 
t Time, s space and time 
U Fluid velocity, mls 

by Berger and Oliger [3] and Berger and Colella [4] for hyperbolic conservation laws in 
two dimensions, and extended to three dimensions by Bell et al. [5). The grid structure is 
dynamic in time and is composed of nested uniform rectangular grids of varying resolution. 
By using grids of finer resolution in both space and time in the regions of most interest, 
AMR allows one to model large problems more efficiently. The integration algorithm on 
the grid hierarchy is a recursive procedure in which a coarse grid is advanced, fine grids are 
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advanced multiple steps to reach the same time as the coarse grid, and the coarse and the 
fine grids are synchronized. The method is valid for multiple grids on each level and for 
multiple levels of refinement. 

The central feature of the algorithm presented here is a new scheme for modeling un
steady radiative transport with a discrete ordinates method [6, 7, 8] on locally refined 
meshes. This scheme incorporates portions of the adaptive mesh refinement discrete ordi
nates algorithm for solving instantaneous or steady-state radiative heat transfer problems 
described in [9, 10] _ The method is also based on two other earlier works, an incompressible 
adaptive mesh refinement algorithm (IAMR) [11] and a single grid projection method for 
unsteady low-Mach number combustion [12]. (There are other computational approaches 
for unsteady low-Mach number flows on locally refined meshes and for unsteady low-Mach 
number combustion; see the literature reviews in [11] and [13], respectively.) 

The remainder of this paper is broken into four sections. The first section presents the 
governing equations. The second section discusses the numerical method, including a review 
of the three works on which it is based. The third section presents and discusses numerical 
results computed with the algorithm. The last section summarizes the work and discusses 
future directions. 

Governing Equations 

We make the following simplifications for the sake of exposition. The fluid is an incompress
ible single component gas with constant and uniform density, viscosity, thermal diffusivity, 
and specific heat. Body forces and the heat production due to viscous stress are negligible. 
The governing equations for unsteady combined mode heat transfer are then the following: 

au + (U -V)u = .!.( - Vp + j.tv2u) at p 

ap;;;T + V· pUepT = AV2T - V· qr 

V-U=O. 

(1) 

(2) 

(3) 

(2) is written in conservative form to underscore the fact that the algorithm described 
below conserves enthalpy_ 

This paper considers an emitting-absorbing and isotropically scattering gray medium, al
though the discrete ordinates method is not restricted to these conditions. For this medium, 
the radiative transfer equation (RTE) is 

(n . V) J(O) + (I'\: + a)J(O) = K,!b + ~ [ J (0/) dO', 
41r 141r 

The divergence of the radiative heat flux is given by 
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For gray surfaces which reflect diffusely, the radiative boundary condition for (4) is given 
by 

1(0) = €h +!!.. f (n. 0') 1(O')dO' 
1r in.o'>o 

(6) 

for n . 0 < ° where 1(0) is the intensity leaving the surface and p is the surface reflectivity. 

Numerical Algorithm 

The algorithm is derived from three previous works: the incompressible adaptive mesh 
refinement (IAMR) algorithm described in [11], the adaptive mesh refinement discrete ordi
nates algorithm for solving instantaneous or steady-state radiative heat transfer problems 
[9, 10], and the single grid projection method for low-Mach number combustion described 
in [12]. In the next three subsections, we briefly review these in the context of this paper in 
order to lay the groundwork for the discussion of the AMR scheme for unsteady radiative 
heat transfer in the fourth subsection. In the fifth subsection, we briefly discuss extensions 
to flows with variable properties. 

AMR for Unsteady Convective Heat Transfer 

IAMR [11] solves the unsteady N avier-Stokes equations for incompressible flow (Eqs. (1) and 
(3)) along with additional equations for advected and diffused scalars on a block-structured 
adaptive mesh (Figure 1). For the discussion here, we consider one such additional equation, 
the energy equation for unsteady convective and diffusive heat transfer: 

8pCpT 2 -m + V . pU cpT = .x V T. (7) 

The IAMR algorithm uses a hierarchical grid structure, which changes dynamically in 
time, composed of rectangular, uniform grids of varying resolution. The collection of grids 
at a given resolution is referred to as a level, and is denoted by Ai for £ E {a, 1, 2, ... }. 
Level 0 is the coarsest level and covers the entire problem domain. The widths of the cells 
in the level f grids differ from those at f + 1 by a even integer factor T.e called the refinement 
ratio; T.e is typically 2 or 4. In space, the levels are properly-nested, i.e., there must always 
be a region at least one cell wide at level f + 1 separating two levels f and e + 2. (For 
convenience in structuring the computation, coarser levels extend under the finer levels 
that cover them, but values in these obscured regions are always overridden by finer level 
information as it becomes available.) 

(It is useful to define at this point to define a level projection operator P for later use 
in the paper. P (A t+ 1) is the collection of cells at level f covered by cells at level e + 1; 
Ai - P(Al +l) is the portion of level f that is not covered. Similarly, P(8Al +l) is the 
collection of level e cell edges covered by 8Ae+1, the border of level e + 1.) 

Most quantities are stored at cell-centers of the mesh, while fluxes between cells are 
represented as being on cell edges (faces in three dimensions). Both Cartesian (two- and 
three-dimensional) and axisymmetric coordinates are currently supported, but for simplicity 
most of the discussion in this paper is confined to two-dimensional Cartesian coordinates. 
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Figure 1: A properly nested hierarchy of grids 

Two features of the IAMR algorithm must be outlined here in order to show how the 
radiative transfer scheme fits into it. These are the single-level timestep and the adaptive
mesh timestep. At a single levell, the basic IAMR timestep to advance the solution from 
time tn to time tn + f1t = tn+1 proceeds as follows: 

1. A second-order Godunov method [14] uses state information from cell centers at time n 
to compute U at cell faces at time n + 1/2. Upwinding rules are applied to information 
on faces. 

2. A MAC-style projection is applied to the face-based velocities to compute the advec
tion velocities U ADV at all cell edges. With this feature the scheme is both conservative 
and free-stream preserving for advected scalars. This projection requires solution of 
an elliptic equation across the level. 

3. A second-order Godunov method uses the MAC-projected edge velocities to compute 
edge values of U and T at t n+ %. 

4. The convective derivatives (U . '\1U)ij+% and ('\1 . UT)ij+% are computed at cell centers 
at time time n + 1/2 using the values of UADV and the edge values of U and T. 

5. The solution of the following Crank-Nicholson difference equations for (7) and (1) 
computes T and U at time n + 1: 

(T~+l - T!': 11.) A (( )n ( )n+l) PCp 2J f1t lJ + ('\1 . UT)ij+ /2 = 2 '\12T ij + '\12T ij (8) 

(9) 
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6. The velocity computed in step 5 does not necessarily satisfy (3). A node-based pro
jection [15] is applied, then, to correct the new-time velocity divergence and to update 
the pressure to time n + 112. 

The spatially implicit finite difference equations that arise in the MAC projection, the 
Crank-Nicholson differencing steps, and in the nodal projection are solved with multigrid 
techniques (16]. The cell-centered solves use V-cycles with red-black Gauss-Seidel relax
ation and conjugate gradient at the bottom of the V-cycle. The nodal solve uses a similar 
approach. The details of the discretizations of the elliptic operators and of the pressure 
gradient are discussed in [11J. Note that the MAC projection, the Crank-Nicholson solves, 
and the nodal projection must be done on all grids in a level simultaneously. 

On the full adaptive mesh, an IAMR timestep consists of separate timesteps on each 
of the levels, plus synchronization operations to insure correct behavior at the coarse-fine 
interfaces, plus regridding operations which permit the refined grids to track complex and/or 
interesting regions of the flow. The ratio of the levell and the levell + 1 time steps is rt, 
so that the Courant number is roughly the same on all levels. Figure 2 shows a space/time 
diagram of a single coarse (level 0) timestep, during which a regridding operation moves 
the interface between levels 1 and 2. The timestep is a recursive procedure which proceeds 
as follows on level l: 

1. Advance level f, using boundary information from level f - 1 as needed but ignoring 
levels e + 1 and higher. 

2. Advance levell + 1 rl times. (This involves advancing levels .e + 2 and higher, recur
sively.) 

3. Synchronize levels land l + l. 

4. If the appropriate regridding interval has passed, tag cells at level l that require 
refinement according to some predefined user criteria, determine the new level l + 1 
grids to cover this region, and transfer data to the new grids (using conservative 
interpolation from level l if necessary). 

T 

t ilTl 
aT2 

.6.T2 

L\Tl 
.6.T2 

~To 
aT:;! 

ilTl 
.6.T2 

1 
aT2 

ilTl 
aT2 

aT2 

x 
Figure 2: Multilevel timestep structure 

The synchronization operations serve in part to ensure that the overall timestepping 
scheme conserves enthalpy. The operations are otherwise complex and mostly irrelevant to 
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the unsteady radiative transfer algorithm. The only part we describe here is the refluxing 
operation for the advective terms: During a coarse timestep, both coarse and fine grids 
compute advective fluxes on the faces that make up the coarse-fine interface. Since these 
fluxes do not match exactly, it is necessary to adjust the flux computed on the coarse grid 
to bring it into agreement with the integrated fluxes from the fine grid in order to insure 
conservation. For advection, it is then sufficient to adjust the state in coarse cells bordering 
a fine grid to account for the new flux information. The key data structure for refluxing is 
an object called the flux register, that exists at coarse-fine interfaces at the same resolution 
as the coarse grid. 

Though the synchronization operations for the elliptic and parabolic portions of the 
algorithm are more complicated, they also depend on flux registers for storing informa
tion about various imbalances between coarse and fine grids. We likewise use these data 
structures for storing information relevant to energy conservation in the radiative transfer 
algorithm. 

AMR Discrete Ordinates for Steady Radiative Transport 

We now summarize the AMR discrete ordinates algorithm for solving instantaneous or 
steady-state radiative transfer problems presented in [9]. 

The instantaneous radiation field satisfies the radiative transfer equation (RTE) (4). 
The discrete ordinate method is based on a semi-discrete form of this equation, 

(10) 

where the continuous dependence of the radiative intensity 1 on angle is reduced to consid
eration only of the intensity in the discrete directions Om. The ordinate weights Wm satisfy 
L Wm = 41r. The corresponding discretization of (5) is 

\1. qr = I: W mK(lb - 1m) = 41rKh - I: wmKlm· 
m 

Discretizing (10) conservatively over cells gives, in Cartesian coordinates, 

~: (Im,i+'hJ Im,i-'h,j) + ~~ (Im,iJ+Y, - Im,i,j-Y,) 

+ (K + (J')Im,ij = Sm(I), 

(11) 

(12) 

where the emission and scattering sources have been combined into a single source term 
Sm (I). The system can be closed by specifying a relationship between the cell and the edge 
values, such as the diamond-difference or step approximation, but the multilevel algorithm 
does not depend on the details of this relationship. Finally, Eq. (6) is discretized to provide 
a physical boundary condition at exterior faces, combining the effects of emission and diffuse 
reflection at the walls; 

1m = ElraU +!!... I: W m , (it· Om') 1m" it· Om < O. 
1r~r. 

n.uml>O 
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Note that the intensities 1m in different ordinate directions are coupled only through 
the scattering term and through reflection at the boundary. Eqs. (10) and (13) are solved 
by repeatedly sweeping through the grid for all ordinate directions. For each ordinate the 
sweep proceeds in the direction the radiation is moving. After each sweep the reflection and 
scattering sources are updated, and the iteration is continued until the system converges. If 
scattering is isotropic the source Sm(l) is independent of direction and it is not necessary 
to maintain storage for all ordinate directions at once. (It is convenient, though, to allocate 
storage for edge fluxes at the boundary for all ordinate directions.) 

So far we have described the discrete ordinates method as it has been presented in 
many earlier sources [6, 7, 8]. The contribution of [9, 10] was to extend this method to the 
adaptive grid structure described above. In each uniform region Ai of the adaptive mesh, 
the solution satisfies equation (12) in the interior and the boundary condition (13) at the 
walls. At a coarse-fine interface 8A"+1 we require the coarse flux to be the average of the 
fine fluxes across each face: 

(14) 

There are two new features added to the computation in order to deal with the adaptive 
mesh. One is the sequencing of grids on each individual level, the other is the method of 
cycling between levels to obtain a converged solution. The single-level algorithm is just an 
elaboration of that for a single grid: transport sweeps are performed for each ordinate in 
the direction of propagation. As shown in Figure 3, this imposes an ordering on the grids, 
since some grids must be solved before others. In two dimensions, the necessary orderings 
always exist, and to handle all ordinate directions a total of four orderings are required 
(one for transport towards the upper right, one towards the lower right, and the reversals 
of these for transport to the left). 

/ 
/ 

/ / 
Figure 3: Transport sweeps must be performed on some grids before others. Double lines 
show locations of flux registers. 

In tluee dimensions, however, there are cases where an ordering is not possible (this 
complication was not mentioned in [9, 10]). Figure 4 shows one such case. For radiation 
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transport in the increasing x, y and z directions, grid A must precede B, B must precede 
C, and C must precede A. We resolve the difficulty by dividing grids into pieces. The 
situation shown in the figure can be resolved by dividing any of the three grids into two 
parts; the resulting four grids can then be ordered appropriately. A total of eight orderings 
are required in three dimensions, of which four are reversals of the other four. 

z 

J-v 
x 

Figure 4: Grid ordering is not always possible in three dimensions. Some grids must be 
divided into pieces until a complete ordering is obtained. 

The situation becomes more complicated when multiple levels are involved. Radiation 
passes from coarse to fine grids on the upstream edges of the fine grids, and from fine to 
coarse grids on the downstream edges. We compute the composite solution across all levels 
by again iterating a transport process until the system converges. The process now covers 
all active levels, however, in sequence from coarse to fine and back again. 

The details of the multilevel iteration are not as important as the form of the resulting 
solution. We obtain at each levell a solution I$n satisfying (10) on the the exposed portion 
of the level At - P(Al +1 ), satisfying (13) on physical boundaries, and satisfying (14) on 
P(8A1) and P(8Al +1). On interfaces where radiation passes from a coarse grid to a fine 
grid we enforce (14) trivially by setting I$n+l := I$n. Transport sweeps across a level do not 
stop when a finer level is encountered, however. There is therefore an extended solution 
i$n, which agrees with I$n in the exposed region where that exists, but is also defined in the 
region p(AI+l) under the finer level. 

This extended solution obeys an equation 

(15) 

over all of A l, The final term in this equation can be thought of as feeding fine grid 
information back into the coarse grid. 8I!n+l is accumulated in flux registers and is defined 
as 

8I:n+ 1 (I:n+l) i:n on P(8AI+1 ). (16) 

(Note that 8I!n+l = 0 along the upstream faces where radiation enters the fine grid.) DR 
is the "reflux divergence" operator, which returns the divergence of its argument on the 
coarse cells bordering 8AI.+l. The effect of this term is to enforce equation (14) along the 
downstream faces where radiation passes from the fine to the coarse grid. 
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Single Grid Algorithm for Unsteady Combined Mode Heat Transfer 

A single grid projection method for low-Mach number combustion is described in [12]. The 
single grid method is a fractional step scheme in which we first advance the evolution equa
tions of reacting flow and then solve an elliptic equation to correct the velocity and update 
pressure. In order that the method be second-order accurate in time for nonlinear differen
tial equations with source terms, a sequential, predictor-corrector treatment of the evolution 
equations is used. The sequential approach ensures that all implicit finite difference equa
tions are linear, while the predictor-corrector formulation guarantees second-order accuracy 
in time. The discrete-ordinates method is used for radiative transport. 

We outline below the application of this algorithm to Eqs. (1)-(5). The basic steps are 
similar to the level solve for convective heat transfer described above. The main differences 
are the incorporation of the discrete ordinates method and the predictor-corrector treatment 
of Eq. (2) in order to time center the sources due to radiative transport: 

1. The convective derivatives U . V U and V . UT at cell centers at time time n + 1/2 are 
computed as described above. 

2. The difference equations 

= ~ ((V2T)~ + (V2T)~+l~) 
- (V. qr)n (17) 

are solved for the predicted temperature Tij+1,P. 

3. (V· qr )0+1 is computed using the discrete ordinates method for the temperature field 
Tn+1,p. 

4. The difference equations 

( T~+l - T?: 11) 
PCp 1) f:t.t 'tJ + (V . UT)ij+ /2 = ~ (V2T!L. + V2T~+1) -2 1) lJ 

~ ((V. qr)ij + (V· qr)ij+l) (18) 

are solved for 7i,j+l. 

5. The Crank-Nicholson difference equations (9) are solved to compute U at time n + 1. 

6. A projection is applied to correct the new-time velocity divergence and to update the 
pressure. 

Note that (V . qr)n is the divergence of the radiative flux computed in the previous time 
step using Tn,p. (V· qr) 0 is computed using TO. 
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AMR for Time-dependent Radiative Transfer 

The AMR algorithm for unsteady combined-mode heat transfer differs from the convective 
transport algorithm in two significant ways. The first is simply that the sequence of steps 
to advance a single level follows the same sequence of steps for the single grid algorithm 
presented above. Note that in the single level advance, the diffusive temperature fluxes 
AVT at coarse-fine interfaces used in the synchronization step are stored only during the 
temperature correction step. The second difference entails the incorporation of the discrete 
ordinates algorithm. The remainder of this subsection focuses on this topic. 

For a time step in a single level calculation, i.e., one in which tmax 0, we solve for 
Im at times nand n + 1, compute (\7 . qr)n and (\7 . qr )n+l, and then update T in a 
time-centered fashion by solving (18) so that the scheme is second-order in time. Note 
that this update is automatically conservative, since it involves a simple integration in 
time of a conservative radiative transport solution for the entire domain. In the multilevel 
adaptive algorithm, however, the domain is not all advanced at a single time step, and 
imbalances in the radiative energy field develop along level interfaces which must be stored 
and redistributed properly in order for the scheme to be conservative. 

The multilevel algorithm is specified recursively by detailing the interactions of a single 
level t with the levels both above and below in the hierarchy, as it advances from time index 
n to n + 1. (In our description, we do not distinguish time indices on other levels, though we 
point out that many finer-level time steps are involved.) Before we provide the equations, 
though, it may be helpful to describe the basic form of the algorithm and the roles played 
by the important variables. 

We begin a coarse time step by computing a multilevel solution I! across all the active 
levels. Note that this defines (\7 . qr)n at level t and all finer levels. We then advance the 
coarse level. We first compute a predicted temperature Tn+l,p by solving (17) on level t. 
We next compute a trial solution i!+ 1 at the new time, approximating the effect of the 
missing finer levels on the coarse region At P(Al+l) by reusing the reflux contribution 
from time n. We find (\7. qr )n+l using the values of i! and compute Tn+l by solving (18). 

The coarse cells in the fine region P(Al+l) are eventually overwritten by finer level 
data. Changes to the fluid state in this region affects cells outside the coarse-fine interface, 
however, so we also modify the enthalpy update in P (A l+ 1) with an estimate of the effects 
of levels t + 1 and above. A quantity E'-+ 1 is computed for this purpose from the time n 
multilevel solution, and is used in the coarse enthalpy update. These attempts to antici
pate the effects of the finer levels are used only to improve accuracy-none are needed for 
conservation, as that is provided by the synchronization procedure at the end of the coarse 
time step. Note that by definition, El+l = 0 on At P(Ai +1 ) and on Almall;. 

Once the trial solution to level e is in place at time n + 1, level f + 1 is advanced through r 
cycles to bring it up to the same time. (Recall that this procedure in turn involves advancing 
and regridding still finer levels, if any.) Boundary conditions for level t + 1 are obtained by 
interpolating the level t solution in both space and time. For the radiative intensity Im we 
use piecewise linear interpolation in time and piecewise constant interpolation in space, so 
the fine flux at each incoming face is set to the time-weighted average of the fluxes at the 
corresponding coarse faces. Outgoing fluxes at the coarse-fine interface are accumulated in 
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flux registers for use in the synchronization step. 
At the end of a coarse time step we perform the radiation synchronization step. (This 

step follows all the other AMR synchronizations.) We compute two multilevel solutions. 
One is simply the new-time radiative transfer solution I~+l, which is also used as the 
baseline solution for the next time step. The other is computed with the accumulated 
coarse-fine flux mismatch used as an additional source term. The difference between these 
solutions is applied to all active levels to insure conservation of energy. (The correction is 
computed in this manner because it can be negative as well as positive, but the method 
we use to solve the discrete ordinates equations on each grid has a limiter that disallows 
negative fluxes.) 

When more than two levels begin or end together, the multilevel computations are 
combined. Consider, for example, a calculation with two levels of refinement. The end 
of a level 1 timestep requires synchronization of levels 1 and 2. If the level 0 step is also 
completed, however, we perform a single synchronization operation for levels 0, 1 and 2 
together. Note that a synchronization of levels 1 and 2 also contributes an increment to 
the flux registers at the 0-1 interface, which will be part of the source at the next 0-1-2 
synchronization. 

We are now ready to formally specify the details of the radiative transfer algorithm 
for advancing a level £. Note that the multilevel solve at the initialization step has to be 
performed only if level £ was regridded just prior to the beginning of the time step, and then 
only if it has not already been done for this time by a still coarser level than the current 
one. This is checked by comparing the time stamps for the current level to that of the next 
coarser one. Also note that the synchronization step does not have to be done if it is going 
to be done by a still coarser level that has been updated to the same time. Again, this is 
checked by comparing time stamps. 

If (£ = 0 or tOld,f > to1d,l-1) then 

Initialization from coarsest to finest level at current time, levels f' E {£, ... , fmax}: 

For £' E {imax - 1, ... ,£} do 

• It,n := (Ii'+1,n) on P(Al'+l) 

Enddo 

Multilevel Solve: £1 E {i, ... 1 £max} 

(Omit this computation if a valid solution is already available from the end of 
the previous time step.) 

• (Om' V)I~,n Klt',n - (I\. + a)I~,n + Sm(II.',n) on Ai' - p(Al'+l) 

• I~ln = (I~+lln) on P(8Al'+1), £' < £max 

End 

For £' E {f, ... ,fmax - I} do 

• Derive (Om' v)i~,n = K-It,n-(K+a)i~,n +sm(il',n) -DR(Omt5I~+lln) on All 

• t5I~+l,n := (I~+l,n) _ i~,n on P(8Al'+1) 

12 



• El'+l,n := Em WmK,«(I~+l)n) - j~,n) on P(Al'+1) 

• Compute (V· qr)n using j~,n 

Enddo 

Endif 

Time step, level i: 

• Compute the predicted temperature Tn+l,p by solving 

ij ij + (V . UT)~~% 
(

Tn+11P _ Tn ) 
PCp I:l.t 1,) 

= ~ ((V2T)~ + (V2T)~+l'P) 
- (V. qr)n + El '+l,n 

• Using Tn+1,p, solve 

(Om' V)i;nn+l = K,Ii,n+l - (K, + a)i;nn+l + Sm(il ,n+l) - DR(nmoI~+l,n) on Ai 

I-l,n+% 
• m 
• Compute (V . qr )n+l using i:nn+1 

• Compute the corrected temperature T n+ 1 by solving 

~ ((V2T)~ + (V2T)~+l'P) 

-~ (V, qr)n + (V. qr)n+l) 

+E"'+l,n 

• Advance levels f + 1, ... , i max . 

• oI;"+l,n+% := ((I!:n,+l)) - I:nn+% on P(8Al +1 ) 

If (f = 0 or tnew,l < tnew,l-l) then 

Syncmonization/refiuxing, levels i' E {i, . .. ,imax}: 

For if E {imax - 1, ... ,i} do 

• Ii',n+l := (Ii'+l,n+l) on p(Al'+l) 

• R~+l -DR(Om(oI~+l,n+% - t5I~+l,n». (fl.tf/ /fl.tl ) on P(8Al'+1) 

Enddo 

Multilevel Solve: P' E {f, ... , i max } 

• (Om·V)j~,n+l = K,Ii',n+l (K,+a)j~,n+l+Sm(jl',n+l)+R~+l on Al ' _p(Al'+l) 

• j~,n+l = (j~+l,n+l) on P(8Al'+1), f' < f max 

End 

13 



Multilevel Solve: l' E {i, . .. ,imax } 

• (Om' \1)I~jn+l KIt' ,n+l - (K + a)I~ln+l + Sm(Il' ,n+l) on Ai' - P(A£'+l) 

• I~,n+l = (I~+l,n+l) on P(8Ai'+1), i' < 'max 

End 

For £' E {£max -1, ... ,£} do 

• (pepT)i',n+l (pepT)I'.n+l + D..tl Em WmK(j~.n+l - I~:n+l) on Ai' - P(Al'+1) 

• (pepT)tl\n+l := ((pepT)l'+l,n+l) on p{Al'+l) 

Enddo 

• i~n+% := i;nn+% + (i;nn+l - I;nn+l) on P( 8A l), £ > 0 

Endif 

Note that the final enthalpy update can be written in the form 

pCpT:= pCpT + D..t L wm((Om' \1)im - (Om' \1)Im - Rm)· (19) 
m 

The first two terms in the sum are fluxes, and thus have no effect on global energy conser
vation. The final term (Rm) undoes the failure to conserve energy due to the mismatch of 
fluxes at the coarse-fine grid interfaces and the inclusion 'Of the DR term in the level solve. 

The composite solution j~+ 1 does not have a clear physical interpretation. We are only 
interested in its difference with I::t+\ which we compute in this way to avoid problems 
with the limiter. In the description above, there are three calls to the multilevel solver. 
As noted, however, the first call is necessary only if there if the grid structure has been 
changed, rendering the previous solution to I~ invalid. 

Extensions to Variable Properties 

We now outline the extension of the algorithm described above to allow for variable density, 
thermal diffusivity, and specific heat. We assume that h = h(T) and oX oX(T). By 
definition, ep = h'(T). The governing equations are now (1), (3), the continuity equation, 
and the energy equation 

8ph 
- + \1. pUh = \1. oX\1T - \1. qr at . (20) 

We also consider the following non-conservative form of (20): 

(21) 

The algorithm to update a single level can be summarized as follows. The convective 
derivatives \1. pU, \1. pUh, and U· \1T at computed at cell centers at t n+% with the second
order upwind scheme. pn+ 1 is then computed by an explicit convective update. We solve the 
Crank-Nicholson difference equations for (21) to compute the predicted temperature Tn+1,p; 
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time n values are used for p) ep, .x, and V . qr in this step. The predicted temperature is 

used to compute (V· qr)n+l. We then compute c;+% = (ep(Tn) + cp (Tn+1,P)/2, pn+% = 
(pn + pn+l )/2, and .xn + 1 = .x(Tn+1,P). We again solve the Crank-Nicholson equations for 
(21) again to recompute T n+1,p; half-time values of p and Cp) and time nand n + 1 values of 
.x and V· qr are now used. We next compute hn+1 by applying an explicit Crank-Nicholson 
update to (20). Time nand n + 1 values of p, .x, and V· qr and time n and n + 1,p values 
of T are used. Finally, T n +1 is computed by solving hn+1 = h(T) for T. 

The motivation for this method is that conservation is expressed in terms of h, but 
boundary conditions for heat conduction are based directly on T. With variable ep we must 
explicitly allow for the nonlinear conversions between these two quantities. 

The radiation synchronization step follows the algorithm in the previous subsection 
with two modifications: h is used instead of CpT, and at the end of the step, T is found by 
inverting h = h(T). 

The algorithm can be further extended for variable viscosity, gravity, multiple species, 
and compressibility. Since these extensions do not directly affect the treatment of radiative 
heat transfer, we omit this discussion; see [12, 13J for further details. 

Numerical Examples 

In this section we present five numerical examples computed using the adaptive mesh algo
rithm for unsteady, combined-mode heat transfer described above. We first show four sets 
of results to validate the algorithm: thermally developing axisymmetric pipe flow, thermally 
developing two-dimensional flow in a parallel plate channel, simultaneously developing ax
isymmetric pipe flow, and simultaneously developing three-dimensional flow in a square 
duct. In the fifth example, we compute a shearing flow in a closed box to demonstrate that 
the algorithm is stable and conservative with a complex adaptive grid structure. 

In all the examples, the computational cells are square and a Courant number of 0.5 
is used. Physical properties are uniform and constant in time within each example, except 
as noted. The results with radiation are obtained using the step approximation unless 
otherwise indicated. The first three examples use an S6 ordinate set, while the last two use 
S4. Both sets are tabulated in [17], and are chosen because they have correct half-range 
first moments and therefore conserve energy at the boundaries. 

In the first four examples, we assume black walls, i.e., f = 1. With respect to radiation, 
symmetry boundary conditions are used at the pipe, channel, or duct exit, while the inlet 
is treated as a nonreflecting wall at the inflow temperature. In the fifth example the walls 
are all perfect diffuse reflectors (f = 0, P = 1), so the heat content of the box is constant in 
time. 

Thermally Developing Laminar Pipe Flow 

The first example is the axisymmetric calculation of heat transfer to fully developed lam
inar flow in the thermal entry region of a circular pipe (see Fig. 5). The initial and inlet 
axial velocities and temperature are 'U = 2uo(1 - (r / R)2) and T = To, respectively. The 
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Figure 5: Specification and coordinate system for circular pipe. 

temperature at the wall of the pipe is T = Tw' We compute the solution on the domain 
o ~ r ~ R, 0 ~ x ~ L .3R . RePr = SR. Symmetry boundary conditions are used at 
r = O. For the results shown here. Re = 35.0S6, Pr = .76, N 1.149, T = 2.277, and 
Tw/To 1.000333. 

We use two analytical solutions as a basis for comparison. The first is the transient con
vective heat transfer solution due to Siegel [18]. This analysis is made under the assumption 
that axial heat conduction can be neglected; hence, we eliminate axial heat conduction from 
the calculations here as well. (Radiative heat transfer is not so restricted, however, and ra
dial conduction is present in all cases.) The time dependent solution in [18J is found as an 
expansion about a steady-state solution, that of the Graetz problem [IS, 19J. The analytic 
formulation is therefore correct only in the large time limit. In particular, at any given time 
there is a distance from the pipe inlet beyond which the temperature has evolved entirely 
by heat conduction from the walls. In this region, the analysis in [IS] is only approximately 
correct. A better solution in this portion of the domain is the solution for conductive heat 
transfer in an infinite pipe [20]. 

We first show results from uniform grid calculations to establish a baseline for the adap
tive results. Figs. 6 and 7 display the bulk temperature profiles resulting from computations 
on a uniform 64 x 512 grid at e .05861, .11721, .23442 and .46884. Both pure convec
tion (N = 00) and combined mode heat transfer results are shown. In Fig. 6, the exact 
solutions for pure convection and for conduction in an infinite pipe are shown as well. The 
computed N = 00 solution does not quite match the analytic solution near the boundary 
of the pure conduction region. We believe this is due to numerical viscosity resulting from 
our convection scheme. 

We next compare combined mode heat transfer results for five different adaptive grid 
hierarchies with the uniform grid results. The six cases, including the uniform grid case, 
are: 
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Figure 6: Comparison of computed solutions of the thermally developing pipe flow problem 
for N = 00 (convection only) and N = 1.149 with analytic solutions for convection [18] 
and for conduction in an infinite pipe [20] at e == .05861, .11721, .23442 and .46884. The 
solutions were computed on a uniform 64x512 grid. The conduction solution is not shown 
at e == .46884 because the other three solutions are at steady-state by that time. The 
computed solutions are also displayed in Fig. 7. 
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Figure 7: Computed solutions on a 64 x 512 uniform grid of the thermally developing pipe 
flow problem for convection only and N = 1.149 at e .05861, .11721, .23442 and .46884. 
These solutions are also shown separately in Fig. 6. 

1) 64 x 512 level 0 grid, '-max = 0 
2) 32 x 256 level 0 grid, '-max = 1, TO = 2 
3) 16 x 128 level 0 grid, '-max = 1, TO = 4 
4) 16 X 128 level 0 grid, '-max = 2, TO = 2, Tl 2 
5) 8 X 64 level 0 grid, '-max = 2, TO = 2, Tl = 4 
6) 4 X 32 level 0 grid, [max = 2, TO = 4, Tl == 4. 

The refinement strategy in cases 2-6 is to tag all cells for which x / L < .0625 and those cells 
for which xlL < .375 and .3 ~ (T - To)/(Tw - To) ~ .7. Note that with this strategy, the 
grids change in time as the temperature solution evolves. Note also that if the refinement 
strategy were instead to refine everywhere, the finest level would consist of a 64 X 512 grid 
covering the entire domain in all five adaptive cases. 

Fig. 8 displays the bulk temperature at e = .05861, .11721, .23442 and .46884 for all the 
cases except 4. The case 4 results are not shown because they are indistinguishable from 
those of case 3. At each time, the region where the profiles differ significantly coincides 
quite closely with the region where no refinement occurs, i.e., (xl R)I RePr > .1125. In 
other words, the discrepancies in the curves are due simply to differences in resolution in 
the unrefined region. Fig. 9 shows a time history of normalized temperature field for case 6. 

We now present timings of the code for the six gridding strategies. The calculations 
were all run on a single 300 Mhz processor of a DEC Alpha workstation to a final time 
of e = .46884. Table 1 shows the CPU time used to complete the calculation, the total 
number of cells advanced, the CPU time per cell, the CPU time per cell for radiation, the 
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Figure 8: Computed solutions of the thermally developing pipe flow problem for N = 1.149 
at e .05861, .11721, .23442 and .46884. The results for four different adaptive grid 
hierarchies are compared with uniform grid results. 
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Figure 9: Computed normalized telnperature (T - To)/(T1L' To) at 8 = .05861, .11721, 
.23442 and .46884 for case 6 of the thermally developing pipe flow example. The boundaries 
of the levelland 2 grids are shown as thin lines. 
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Gridding CPU Time CPU Time Cells I Peak 
for Advanced Memory 

Radiation Usage 
Level 0 grid lmarx: r Tota.l(s) IJsJcell IJsJcell % CPU Number Mb 
1) 64 x 512 0 22470. 429. 99. 22.9 52428800 31 
2) 32 x 256 1 2 16770. 826. 233. 28.3 20308560 18 
3) 16 x 128 2 2,2 12870. 759. 193. 25.5 16958800 16 
4) 16 x 128 1 4 9797. 62~= 117. 18.8 15679488 14 
5) 8 x 64 2 2,4 9442. 619. 113. 18.3 15259632 13 
6) 4 x 32 2 4,4 11950. 617. 116. 18.8 19367296 13 

Table 1: Timings for uniform grid and refined grid calculations on a single processor of a 
DEC Alpha workstation for the thermally developing pipe flow problem. 

Gridding CPU Time CPU Time 
for Multilevel 

Radiation Solves 
Level 0 grid lmax r Total(s) Total (s) I % CPU 
2) 32 x 256 1 2 16770. 3515. I 20.0 
3) 16 x 128 2 2,2 12870. 2317. 18.0 
4) 16 x 128 1 4 9797. 930. 9.5 
5) 8 x 64 2 2,4 9442. 831. 8.8 
6) 4 x 32 2 4,4 11950. 992. 8.3 

Table 2: Radiation timings for refined grid calculations on a single processor of a DEC 
Alpha workstation for the thermally developing pipe flow problem. 

percentage CPU time for radiation, and the approximate peak memory usage. The total 
number of cells advanced is the sum over all levels of the number of cells advanced at that 
level. We note that the average percentage of the domain refined to the finest level is roughly 
the same-21 ± 1 %-in all five cases. (This percentage is found in each case by dividing the 
total number of cells advanced at the finest level by the total number of cells which would 
have been advanced at the finest level if the entire problem domain were refined.) 

The numbers in table 1 show that the adaptive mesh refinement scheme can reduce 
the computational cost in terms of both CPU time and memory usage. For this particular 
problem and refinement strategy, cases 4, 5, and 6 show the best reduction in computational 
cost over the uniform grid calculation. Table 2 shows the total CPU time, the CPU time 
for multilevel radiation solves, and the percentage of time spent on multilevel solves for 
radiation for the five adaptive cases. (Note that the total radiation time in table 1 and the 
multilevel radiation solve time reported in 2 are computed differently and should not be 
compared directly with each other.) In cases 4, 5, and 6 a substantially smaller proportion 
of time was spent on multilevel solves than in cases 2 and 3. The comparative advantage 
of the latter three cases is most likely due, then, to the fact that each uses relatively less 
CPU time on multilevel solves, which is in turn due to the use of one or more refinement 
ratios of 4. The AMR timestepping scheme requires two multilevel solves for every r fine 
time steps, so the overhead due to multilevel solves is smaller for cases 4, 5 and 6 than for 
cases 2 and 3. 
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Thermally Developing Laminar Flow in a Parallel Plate Channel 

In the second example we consider the two-dimensional calculation of heat transfer to fully 
developed laminar flow in the thermal entry region of a parallel plate channel (see Fig. 10) in 
order to confirm that the algorithm is spatially and temporally second order accurate. The 
diamond differencing scheme is used here [21, 22] instead of the step scheme because the 
latter is only first order accurate. We note the diamond differencing scheme is unbounded 
and may lead to nonphysical over- and undershoots [17]. For the calculations performed 
here, however, we did not observe these problems. 

(For the sake of brevity we confine our attention to the uniform grid case. Convergence 
studies of adaptive-mesh examples, e.g. [11], involve assumptions about regridding criteria 
that often differ from the way the methods are used in practice. In most realistic examples 
the portions of the calculation with large errors are confined to the finest level, so a single
level analysis is appropriate.) 

inlet 

~ , \ ~=O _--------~--------\¥~lls-I ~ y=O 

T=TO '\ 

1 
x::O 

symmetry 
line 

T=Tw 

Figure 10: Specification and coordinate system for parallel plate channeL 

The problem specification is the following. The initial and inlet axial velocities and 
temperature are u = {3/2)uo (1 - (r / R)2) and T = To, respectively. The temperature on 
the walls of the channel is T = Tw. We compute the solution on the domain 0 ~ y ~ R, 
o ~ x ~ 8R. Symmetry boundary conditions are used at y = O. For the results shown here. 
Re = 46.781, Pr .76, N 1.149, T 2.277, and Tw/To = 1.000333. 

We compute solutions on 4 x 32, 8 x 64, 16 x 128 and 32 x 256 uniform grids. The errors 
in the solution on the three coarser grids are computed at e = .05861, .11721, .23442 and 
.46884. Because there is no exact solution, we estimate the error in the numerical solution 
by comparing solutions at successive resolutions. We first compute the error eiJ' in a single 
coarse grid computational cell as the difference of the coarse grid result and the average 
of the solution in the overlying fine grid cells. The Ll error on the entire coarse domain 
(assuming L}.x = L}.y) is then defined by 

L~x = L(L}.x)2eij • 

ij 
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B 4 x 32 q 8 x 64 q 16 x 128 
.05861 1.635 x 10-;:J 2.01 4.057 x 10-4 1.99 1.021 x 10 ·4 

.11721 1.127 x 10-3 1.94 2.932 x 10-4 1.96 7.495 x 10-0 

.23442 7.387 x 10-4 1.92 1.951 x 10-4 1.89 I 5.249 x 10-5 

.46884 5.305 x 10-4 1.85 1.468 x 10-4 1.84 4.091 x 10-5 

Table 3: L1 errors and convergence rates for the parallel plate channel flow problem. 

The convergence rate q can then be computed by comparing errors at successive resolutions: 

The errors and convergence rates are shown in table 3. The results show that the numerical 
algorithm is second-order accurate for this problem. 

Simultaneously Developing Laminar Pipe Flow 

The third example is an axisymmetric computation of simultaneously developing laminar 
flow in the entry region of a pipe (see Fig. 5). The initial and inlet axial velocities and 
temperature are both uniform, u = Uo and T = To, respectively. The temperature at 
the wall of the pipe is T = T w' We compute the flow on the domain 0 ~ r ~ R, 0 ~ 
x :s; L = .3R . RePr = 8R. For the results shown here, Re 35.086, Pr = .76, N = 1, 
T = 1 and Tw/To = 1.5. The steady-state solution is found by timestepping until a time 
independent solution is achieved (8 ~ .55). We then compare this numerical solution with 
the steady-state boundary layer solution obtained by Pearce and Emery [23]. 

We compute results for the same six grid hierarchies described in the first subsection. 
For the multiple level calculations, the same refinement strategy is used as welL Fig. 11 
compares the computed results at steady-state (8 = .55) for case 6 with the Pearce-Emery 
results; the bulk temperature curves for the other five cases are indistinguishable from 
the case 6 profile. The computed results and the Pearce-Emery predictions are in fairly 
good agreement. The differences may be due to the fact that Pearce and Emery make two 
approximations which we do not make. Specifically, in [23] the wall is considered to be an 
infinite tube at T = Tw , and axial temperature variations are neglected in the computation 
of "'V . qrad. 

Simultaneously Developing Three-Dimensional Duct Flow 

The fourth example is a three-dimensional calculation of simultaneously developing laminar 
flow in the entry region of a square duct (see Fig. 12). The initial and inlet axial velocities 
and temperature are both uniform, u = Uo and T To, respectively. The temperature 
at the wall of the pipe is T = Tw. We compute the flow on the domain 0 ~ y, z ~ R, 
o ~ x :s; L = .6R· RePr = 42R. Symmetry boundary conditions are used at y = 0 and 
z O. For the results shown here, Re 100, Pr = .7, N 100, T = 2 and To/Tw = .1. 
The steady-state solution is found by timestepping until a time independent solution is 
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Figure 11: Comparison of the bulk temperature curve for CaEe 6 of the simultaneously 
developing pipe flow example with the Pearce-Emery solution. 

reached (8 ~ .6745). We then compare this numerical solution with a computation by a 
steady-state code implementing the algorithms in [17, 2]. 

We compute results for the following four cases: 
1) 16 x 16 x 672 level 0 grid, P.max = 0 
2) 8 x 8 x 336 level 0 grid, f max = 1, TO = 2 
3) 4 x 8 x 168 level 0 grid, P.max = 1, TO = 4 
4) 4 x 4 x 168 level 0 grid, .em ax = 2, TO = 2, Tl = 2 

The refinement strategy in cases 2-4 is to tag all cells for which xl L < .07143. Fig. 13 
compares the computed results at steady-state (8 = .6745) for case 4 with results computed 
by the steady-state code described in [17, 2]; the bulk temperature profiles for the other 
three cases are indistinguishable from the case 4 curve. The results computed using the 
algorithm described here and the steady-state code agree fairly well. 

We now present timings for these four cases. The calculations were all run on a single 
300 Mhz processor of a DEC Alpha workstation to a final time of 8 = .6745. The average 
percentage of the domain refined to the finest level is 7 ± 1 % for cases 2-4. Table 4 shows 
the same fields shown in table 1. The relative cost of modeling radiation is seen to be 
significantly higher in three dimensions than in two. The results in table 4 again show a 
reduction in computational cost when adaptive mesh refinement is used. Case 4 shows the 
best reduction in computational cost over the uniform grid calculation. As in the case of the 
thermally developing pipe flow problem, the comparative advantage of CaEe 4 is probably 
due to the use of a refinement ratio of 4. However, the reduction in cost from using T = 4 
is not as great in three dimensions as it is in two. We are uncertain why the relative cost 
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Figure 12: Specification and coordinate system for square duct. 
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Figure 13: Comparison of the bulk temperature curve for case 4 of the simultaneously 
developing three-dimensional flow through a square duct example with the solution from 
the steady-state code described in [17, 2]. 
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of modeling radiation is higher in three dimensions than in two. We do note that this 
higher cost is not due to the choice of ordinate sets; S6 in two dimensions and S4 in three 
dimensions both both have 24 ordinate directions. 

Gridding CPU Time CPU Time Cells Peak 
for Advanced Memory 

Radiation Usage 
Level 0 grid lmax r Tota1(s) ps/cell ps/cell % CPU Number Mb 

1) 16 x 16 x 672 0 191500. 748. 330. 44.1 256155648 144 
2) 8 x 8 x 336 1 2 53470. 1491. f825. 55.3 35855360 36 
3) 4 x 4 x 168 2 2)2 23120. 1073. 553. 51.5 21550464 I 22 
4) 4 x 4 x 168 1 14 18000. 857. 374. 43.6 21011200 22 

Table 4: Timings for uniform grid and refined grid calculations on a single processor of 
a DEC Alpha workstation for simultaneously developing three-dimensional flow through a 
square duct. 

Shearing Flow in a Box 

In the final example we consider an idealized flow in a closed unit box with reflecting walls 
(f 0) P = 1), to confirm that the algorithm conserves energy even when the grid structure 
is complex and changes with time. The initial velocities are 

U = - sin2(1rx) sin(21rY), 

v = sin2(1TY) sin(21TX), 

(22) 

(23) 

with slip-wall boundary conditions. Viscosity and conduction are set to O. Density is a 
constant p = 1, as is Cp 5.0. Temperature is a constant 150 except for a hot region of 
temperature 400, centered at (0.75, 0.25) and with radius 0.1. (No attempt has been made 
to choose physically reasonable values for any of these parameters, as the goal is only to 
illustrate the numerical properties of the scheme.) 

The absorption coefficient If, is 2 throughout the domain, except for a disk of radius 0.1 
at the center of the box where If, = 50. The base grid is 32 x 32, with two levels of refinement 
by factors of 2 and 4. An S4 ordinate set is used. Figure 14 shows the temperature field at 
timesteps 0, 10 and 100 with no scattering, and at timestep 10 with a uniform scattering 
coefficient (j = 10. Adding scattering to the problem does not have a dramatic effect on the 
plots, but it does eliminate the ray effects visible in the corresponding frame of the purely 
absorbing calculation, and it reduces the heat transmitted to the central absorbing region. 

There is no heat transfer through the walls, so the integral of enthalpy over the domain 
should be constant in time. In the experiment this quantity remained constant to 8 decimal 
places, with or without scattering. This precision is slightly better than expected, since 
the relative tolerance required for convergence of the radiation solutions was 10-7 , and the 
ordinates were taken from a table with only 7 decimal places. 
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Figure 14: Evolution of an off-center hot spot in a spinning flow in a box with a central 
absorbing region. In the first three frames there is no scattering, while for comparison 
purposes the last frame (bottom right) shows the same calculation with scattering turned 
on. 
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Conclusions 

We have presented a conservative, adaptive mesh algorithm for unsteady, combined mode 
heat transfer. The algorithm couples a new scheme for the modeling of unsteady radiative 
transport on locally refined meshes with an adaptive projection method for incompressible 
flow. This radiative transport scheme is itself based on a discrete ordinates algorithm 
for instantaneous radiative heat transfer on locally refined meshes. The methodology also 
incorporates a predictor-corrector formulation for second-order temporal accuracy. 

The algorithm has been implemented and validated in two and three dimensions. The 
examples presented here demonstrate that the adaptive algorithm can compute accurate, 
energy conserving solutions while showing a significant reduction in CPU and memory usage 
over an uniform grid calculation. The results also show that the scheme is second-order 
accurate in time and space if a second-order discretization of the RTE is used. 

In future work, the authors will incorporate the method presented here into an adaptive 
projection method for unsteady low-Mach number combustion [13]. The authors will also 
investigate the use of bounded, high-resolution differencing schemes [22] for the discrete
ordinates equations on locally refined meshes. 
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