A contract-oriented view on threat modelling

Ketil Stølen SINTEF ICT and University of Oslo

Joint work with Gyrd Brændeland, Heidi Dahl, Olav Ligaarden

> FLACOS Malta, November 27, 2008

Motivation

- How to modularize threat modelling
- How to deal with mutual dependencies in threat modeling of complex systems
- We need a notion of contract at the abstraction level of threat models

Problem of risk analysis

- Systems
 - are complex
 - mutually dependent
 - cross national borders
 - are continuously updated
- You never have full access to all documentation
- And, if you had, there would just be too much of it

There is only one way forward

- We need a reductionistic approach to risk analysis
 - Decomposing analyses into smaller parts
 - Composing (already completed) analyses into an overall risk picture
- Methodological reductionism is the idea that developing an understanding of a complex system's constituent parts (and their interactions) is the best way to develop an understanding of the system as a whole

Reductionistic approach to the modeling of threat scenarios

- I will illustrate the approach on CORAS
- CORAS is
 - a method for model-driven security risk analysis
 - a graphical language
 - for structured brainstorming and analysis
 - semantics defined as schematic translation of diagrams into English
 - a tool
- You may do likewise with your favorite threat scenario modeling language – (or your favorite risk table)

Approach

- Extend the graphical CORAS language to cope with context dependencies
 - We refer to the extended language as Dependent CORAS
- Update the semantics of the CORAS language to deal with context dependencies
- Define rules to reason about context dependencies
- Define rules for simplifying composed scenarios

One Step Back: What is Security Risk Analysis?

The CORAS security risk modeling language

Threat Diagram

Semantics: Translation into English

Vertices

- "Hacker" is a deliberate threat.
- Threat scenario "Power supply in Norway breaks down" occurs with undefined likelihood.
- Threat scenario "Power supply in Sweden breaks down" occurs with likelihood "1:5 years".
- Unwanted incident "Blackout in Norway" occurs with likelihood "3:100 years".
- "Power production in Norway" is an asset.

Relations

- Hacker initiates "Power supply in Norway breaks down" with likelihood "1:100" years.
- "Power supply in Norway breaks down" leads to "Blackout in Norway" with conditional likelihood "1.0".
- "Power supply in Sweden breaks down" leads to "Blackout in Norway" with conditional likelihood "0.1".
- "Power supply in Norway breaks down" impacts "Power production in Norway" with consequence "critical".

Checking Likelihoods

[1:5 years] * 0.1 = [1:50 years]

[1:100 years] + [1:50 years] = [3:100 years]

Dependent Diagram

Semantics of Dependent Diagram

Independence of Context

 $C \ \ \ T$: T is independent of C if there are no paths from C to T

Rule of Independence

Modus Ponens

$$C \triangleright T \triangleright C$$
 $\triangleright T$

Applying the Deduction Rules

The Combined Diagram

Asset Composition

Vertical Composition

Horizontal & Asset Composition

Conclusions

We have

- argued the need for a reductionistic approach to risk analysis
- outlined a generic strategy to facilitate modular threat modelling
- illustrated the generic strategy on the CORAS language

Resources: http://coras.sourceforge.net/

Downloads

- The CORAS diagram editor
- The CORAS icons (Visio stencil, PNG, SVG)

Publications:

- Folker den Braber, Ida Hogganvik, Mass Soldal Lund, Ketil Stølen, and Fredrik Vraalsen. **Model-based security analysis in seven steps a guided tour to the CORAS method.** BT Technology Journal, 25(1): 101 117, 2007.
- Ida Hogganvik. A graphical approach to security risk analysis. PhD thesis, Faculty of Mathematics and Natural Sciences, University of Oslo, 2007.
- Gyrd Brændeland, Heidi E.I. Dahl, Iselin Engan, Ketil Stølen.

 Using dependent CORAS diagrams to analyse mutual dependency. To appear in Proc. 2nd International Workshop on Critical Information Infrastructure Security (CRITIS'2007).

Questions?

Ketil Stølen SINTEF ICT and University of Oslo

Ketil.Stolen@sintef.no