
A ‘Cool’ Load Balancer for Parallel Applications

Osman Sarood
Dept. of Computer Science

University of Illinois at
Urbana-Champaign

Urbana, IL 61801, USA
sarood1@illinois.edu

Laxmikant V. Kale
Dept. of Computer Science

University of Illinois at
Urbana-Champaign

Urbana, IL 61801, USA
kale@illinois.edu

ABSTRACT
Meeting power requirements of huge exascale machines of
the future would be one major challenge. Our focus in this
paper is to minimize cooling power and we propose a tech-
nique, that uses a combination of DVFS and temperature
aware load balancing to constrain core temperatures as well
as save cooling energy. Our scheme is specifically designed to
suit parallel applications which are typically tightly coupled.
The temperature control comes at the cost of execution time
and we try to minimize the timing penalty.

We experiment with three applications (with different power
utilization profiles), run on a 128-core (32-node) cluster with
a dedicated air conditioning unit. We calibrate the efficacy
of our scheme based on three metrics: ability to control aver-
age core temperatures thereby avoiding hot spot occurence,
timing penalty minimization, and cooling energy savings.
Our results show cooling energy savings of up to 57% with
timing penalty mostly in the range of 2 to 20%.

1. INTRODUCTION
Cooling energy is a substantial part of the total energy

spent by an High Performance Computing (HPC) computer
room or a data center. According to some reports, this can
be as high as 50% [19], [3], [17] of the total energy budget. It
is deemed essential to keep the computer room adequately
cold in order to prevent processor cores from overheating
beyond their safe thresholds. For one thing, continuous
operation at higher temperatures can permanently damage
processor chips. Also, processor cores operating at higher
temperatures consume more power while running identical
computations at the same speeds due to the positive feed-
back loop between temperature and power [8].

Cooling is therefore needed to dissipate the energy con-
sumed by a processor chip, and thus to prevent overheating
of the core. This consumed energy has a static and dynamic
component. The dynamic component increases as the cube
of the frequency at which the core is run. Therefore, an al-
ternative way of preventing overheating is to reduce the fre-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SC ’11 Seattle, Washington USA
Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

quency. Modern processors and operating systems support
such frequency control (e.g. DVFS). With this, it becomes
possible to run a computer in a room with high ambient
temperature, by simply reducing frequencies whenever tem-
perature goes above a threshold.

However, this method of temperature control is problem-
atic for HPC applications, which tend to be tightly coupled.
If only one of the cores is slowed down by 50%, the entire
application will slow down by 50% due to dependencies be-
tween computations on different processors. This is further
exacerbated when the dependencies are global, such as when
global reductions are used with a high-frequency. Since in-
dividual processors may overheat at different rates, and at
different points in time, and since physical aspects of the
room and the air flow may create regions which tend to be
hotter, the situation where only a small subset of processors
are operating at a reduced frequency will be quite common.
For HPC applications, this method therefore is not suitable
as it is.

The question we address in this paper is whether we can
substantially reduce cooling energy without a significant tim-
ing penalty. Our approach involves a temperature-aware
dynamic load balancing strategy. In some preliminary work
presented at a workshop [16], we have shown the feasibility
of the basic idea in the context of a single eight-core node.
The contributions of this paper include development of a
scalable load-balancing strategy demonstrated on 128 core
machine, in a controlled machine room, and with explicit
power measurements. Via experimental data, we show that
cooling energy can be reduced to the extent of up to to 57%,
with the timing penalty only in the range of 2 to 20% in most
cases.

We begin in Section 2 by introducing the frequency con-
trol method, and documenting the timing penalty it im-
poses on HPC applications. In Section 3 we describe our
temperature-aware load balancer. It leverages object-based
overdecomposition and the load-balancing framework in the
Charm++ runtime system. Section 4 outlines the experi-
mental setup for our work. We then describe (Section 5)
performance data to show that, with our strategy, the tem-
peratures are retained within the requisite limits, while the
timing penalties are small. Some interesting issues that arise
in understanding how different applications react to temper-
ature control are analyzed in Section 6. Section 7 undertakes
a detailed analysis of the impact of our strategies on machine
energy and cooling energy. Section 8 summarizes related
work and sets our work in its context, which is followed by
a summary in Section 9.

2. CONSTRAINING CORE TEMPERATURES
Unrestrained, core temperatures can soar very high. The

most common way to deal with this in today’s HPC cen-
ters is through the use of additional cooling arrangements.
But as we have already mentioned, cooling itself accounts
for around 50% [19, 3, 17] of the total energy consump-
tion of a data center and this can rise even higher with the
formation of hot spots. To motivate the technique of this
paper, we start with a study of the interactions of core tem-
peratures in parallel applications with the cooling settings
of their surroundings. We run Wave2D, a finite differenc-
ing application, for ten minutes on 128 cores in our testbed.
We provide more details of the testbed in Section 4. The
cooling knob in this experiment was controlled by setting
the cooling room air conditioning (CRAC) to different tem-
perature settings. Figure 1 shows the average core temper-
atures and the maximum difference of any core from the
average temperature corresponding to two different CRAC
set points. As expected, cooling settings have a pronounced
effect on the core temperatures. For example, the average
core temperatures corresponding to CRAC set point 23.3 ◦C
are almost 6 ◦C less than those for CRAC set point 25.6 ◦C.
Figure 1 also shows the maximum difference between the av-
erage temperature and any core’s temperature and as can be
seen, the difference worsens as we decrease external cooling
(an increase of 11 ◦C). The result: Hotspots!

 0

 10

 20

 30

 40

 50

 60

 70

 0 100 200 300 400 500 600

A
ve

ra
ge

/M
ax

 D
iff

er
en

ce
 in

 C
or

e
Te

m
pe

ra
tu

re
s

(C
)

Time (secs)

Max. Difference CRAC=25.6C
Max. Difference CRAC=23.3C

Average CRAC=25.6C
Average CRAC=23.3C

Figure 1: Average core temperatures along with
max. difference of any core from the average for
Wave2D

The issue of core overheating is not new. DVFS is a widely
accepted solution to cope with it. DVFS is a technique which
is used to adjust the frequency and input voltage of a micro-
processor. It is mainly used to conserve the dynamic power
consumed by a processor. A shortcoming of DVFS, is that it
comes with an execution time and machine energy penalty.
To establish the severity of these penalties, we performed
an experiment with 128 cores, running Wave2D for a fixed
number of iterations. We used DVFS to keep core temper-
atures under 44 ◦C by periodically checking core tempera-
tures and reducing the frequency by one level whenever a
core got hot. The experiment was repeated for five different
CRAC set points. The results, in Figure 2 show the normal-
ized execution time and machine energy. Normalization is
done with respect to the run where all cores run at full fre-
quency without DVFS. The high timing penalty (seen from
Figure 2) coupled with an increase in machine energy makes

 0

 0.5

 1

 1.5

 2

14.4 16.7 18.9 21.1 23.3 25.6

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e/

E
ne

rg
y

CRAC Set Point (C)

Time
Energy

Figure 2: Normalized time and machine energy us-
ing DVFS for Wave2D

it infeasible for HPC community to use such a technique.
Now that we have established that DVFS on its own can
not efficiently control core temperatures without incurring
unacceptably high timing penalties, we now propose our ap-
proach to ameliorate the deficiencies in using DVFS without
load balancing.

3. TEMPERATURE AWARE LOAD BALANC-
ING

In this section, we propose a novel technique based on
task migration that can efficiently control core temperatures
and simultaneously minimizes the timing penalty. In addi-
tion, it also ends up saving total energy. Although our tech-
nique should work well with any parallel programming lan-
guage which allows object migration, we chose Charm++ for
our tests and implementation because it allows simple and
straightforward task migration. We introduce Charm++
followed by a description of our temperature aware load bal-
ancing technique.

3.1 Charm++
Charm++ is a parallel programming runtime system that

works on the principle of processor virtualization. It pro-
vides a methodology where the programmer divides the pro-
gram into small computations (objects or tasks) which are
distributed amongst the P available processors by the run-
time system [5]. Each of these small problems is a migrat-
able C++ object that can reside on any processor. The
runtime keeps track of the execution time for all these tasks
and logs them in a database which is used by a load bal-
ancer. The aim of load balancing is to ensure equal dis-
tribution of computation and communication load amongst
the processors. Charm++ uses the load balancing database
to keep track of how much work each task is doing. Based
on this information, the load balancer in the runtime sys-
tem, determines if there is a load imbalance and if so, it
migrates object from an overloaded processor to an under-
loaded one [24]. The load balancing decision is based on the
heuristic of principle of persistance, according to which com-
putation and communication loads tend to persist with time
for a certain class of iterative applications. Charm++ load
balancers have proved to be very successful with iterative
applications such as NAMD [13].

3.2 Refinement based temperature aware load
balancing

We now describe our refinement based temperature aware
load balancing scheme which does a combination of DVFS
and intelligent load balancing of tasks according to frequen-
cies in order to minimize execution time penalty. The gen-
eral idea is to let each core work at the maximum possible
frequency as long as it is within the maximum temperature
threshold. Currently, we do DVFS on a per-chip instead of
a per-core basis as the hardware did not allow us to do oth-
erwise. When we change the frequency of all the cores on
the chip, the core input voltage also drops resulting in power
savings. This raises a question: What condition should trig-
ger a change in frequency? In our earlier work [16], we did
DVFS when any core on a chip crossed the temperature
threshold. But our recent results show that basing DVFS
decision on average temperature of the chip provides better
temperature control. Another important decision is to de-
termine how much should the frequency be lowered in case
a chip exceeds the maximum threshold. Modern day pro-
cessors come with a set of frequencies (frequency levels) at
which they can operate. Our testbed had 10 different fre-
quency levels from 1.2GHz to 2.4GHz (each step differs by
0.13GHz). In our scheme, we change the frequency by only
one level at each decision time.

The pseudocode for our scheme is given in Algorithm 1
with the descriptions of variables and functions given in Ta-
ble 1. The application specifies a maximum temperature
threshold and a time interval at which the runtime periodi-
cally checks the temperature and determines whether any
node has crossed that threshold. The variable k in Al-
gorithm 1 refers to the interval number the application is
currently in. Our algorithm starts with each node comput-
ing the average temperature for all cores present on it i.e.
tki . Once the average temperature has been computed, each
node matches it against the maximum temperature thresh-
old (Tmax). If the average temperature is greater than Tmax,
all cores on that chip shift one frequency level down. How-
ever, if the average temperature is less than Tmax, we in-
crease the frequency level of all the cores on that chip (lines
2-6). Once the frequencies have been changed, we need to
take into account the speed differential with which each core
can execute instructions. We start by gathering the load in-
formation from the load balancing database for each core
and task. In Charm++, this load information is maintained
in milliseconds. Hence, in order to neutralize the frequency
difference amongst the loads of each task and core, we con-
vert the load times into clock ticks by multiplying load for
each task and core with the frequency at which it was run-
ning (lines 8-15). It is important to note that without doing
this conversion, it would be incorrect to compare the loads
and hence load balancing would result in inefficient sched-
ules. Even with this conversion, the calculations would not
be completely accurate, but will give much better estimates.
We also compute the total number of ticks required for all
the tasks (line 10) for calculating the weighted averages ac-
cording to new core frequencies. Once the ticks are calcu-
lated, we create a max heap i.e. overHeap, for overloaded
and a set for underloaded cores i.e. underSet (line 16).
The categorization of over and underloaded cores is done
by the isHeavy and isLight procedures on lines (25-28). A
core i is overloaded if its currently assigned ticks are greater
than what it should be assigned i.e. a weighted average of

Table 1: Description for variables used in Algorithm
1

Variable Description

n number of tasks in application
p number of cores
Tmax maximum temperature allowed
Ci set of cores on same chip as core i

eki execution time of task i during step k (in ms)

lki time spent by core i executing tasks during step k (in ms)

fk
i frequency of core i during step k (in Hz)

mk
i core number assigned to task i during step k

tickski num. of ticks taken by ith task/core during step k

tki average temperature of node i at start of step k (in ◦C)

Sk {ek1 , ek2 , ek3 , . . . , ekn}
overHeap heap of overloaded cores
underSet set of underloaded cores

Pk {lk1 , lk2 , lk3 , . . . , lkp}

totalT icks according to the cores new frequency (line 26).
Notice the 1+tolerance factor in the expression at line 26.
We have to use this in order to do refinement only for cores
that are overloaded by some considerable margin. We set it
to 0.03 for all our experiments. This means that a core is
considered to be overloaded if its currently assigned ticks are
greater than its average weighted ticks by a factor of 1.03.
Similar check is in place for isLight procedure (lines 27) but
we do not include tolerance as it does not matter.

Once the max heap for the overloaded cores and a set for
underloaded cores are ready, we start with the load balanc-
ing. We pop the max element (tasks with maximum number
of ticks) out of overHeap (referred as donor). Next, we call
the procedure getBestCoreAndTask which selects the best
task to donate to the best underloaded core. The bestTask
is the largest task currently assigned to donor such that it
does not overload a core from the underSet. And the best-
Core is the one which will remain underloaded after being
assigned the bestTask. After determining the bestTask and
bestCore, we do the migration by recording the task mapping
and (line 20) updating the donor and bestCore with num-
ber of ticks in bestTask. We then call updateHeapAndSet
(line 23) which rechecks the donor for being overloaded. If
it is, we reenter it to overHeap. It also checks donor for be-
ing underloaded so that it is added to the underSet in case
it has ended up with too little load. This ends the job of
migrating one task from overloaded core to an underloaded
core. We repeat this procedure until overHeap is empty. It
is important to notice that the value of tolerance can affect
the overhead of our load balancing. If that value is too large,
it might ignore load imbalance whereas if it is too small, it
can result in a lot of overhead for object migration. We have
noticed that any value from 0.05 to 0.01 performs equally
good.

4. EXPERIMENTAL SETUP
The primary objective of this work is to constrain core

temperature and save energy spent on cooling. Our scheme
ensures that all the cores fall below a user-defined maximum
threshold. We want to emphasize that all results reported
in this work are actual measurements and not simulations.
We have used a 160 core (40 node, single socket) testbed
equipped with a dedicated CRAC. Each node is a single
socket machine with Intel Xeon X3430 chip. It is a quad
core chip supporting 10 different frequency levels ranging
from 1.2GHz to 2.4GHz. We use 128 cores out of the 160
cores available for all the runs that we report. All the nodes

Algorithm 1 Temperature Aware Refinement Load Bal-
ancing

1: At node i at start of step k
2: if tki > Tmax then
3: decreaseOneLevel(Ci) //reduce by 0.13GHz
4: else
5: increaseOneLevel(Ci) //increase by 0.13GHz
6: end if
7: At Master core
8: for i ∈ Sk−1 do
9: ticksk−1

i = ek−1
i × fk−1

mk−1
i

10: totalT icks = totalT icks + ticksk−1
i

11: end for
12: for i ∈ P k−1 do
13: ticksk−1

i = lk−1
i × fk−1

i

14: freqSum = freqSum + fk
i

15: end for
16: createOverHeapAndUnderSet()
17: while overHeap NOT NULL do
18: donor = overHeap->deleteMaxHeap
19: (bestTask,bestCore) =

getbestCoreAndTask(donor,underSet)
20: mk

bestTask = bestCore
21: ticksk−1

donor = ticksk−1
donor − bestSize

22: ticksk−1
bestCore = ticksk−1

bestCore + bestSize
23: undateHeapAndSet()
24: end while
25: procedure isHeavy(i)
26: return (ticksk−1

i > (1 + tolerance) * (totalT icks * fk
i)

/ freqSum)
27: procedure isLight(i)
28: return (ticksk−1

i < totalT icks * fk
i /freqSum)

run ubuntu 10.4 and we use cpufreq module in order to do
DVFS. The nodes are interconnected using a 48-port gigabit
ethernet switch. We use the Liebert Power unit installed
with the rack to get power readings for the machines.

The CRAC in our testbed is an air cooler that uses cen-
trally chilled water for cooling the air. It manipulates the
flow of chilled water to achieve the temperature set point
prescribed by the operator. The exhaust air (Thot) i.e. the
hot air coming in from the machine room, is compared against
the set point and the flow of the chilled water is adjusted ac-
cordingly to cover the difference in the temperatures. This
model of cooling is favorable considering that the tempera-
ture control is responsive to the thermal load (as it tries to
bring the exhaust air to temperature set point) instead of
room inlet temperature [9]. The machines and the CRAC
are located in the Computer Science department of Uni-
versity of Illinois Urbana Champaign. We were fortunate
enough to not only be able to use DVFS on all the available
cores but to also change the CRAC set points.

There isn’t a straightforward way of measuring the exact
power draw of the CRAC as it uses the chilled water to cool
the air which in turn is cooled centrally for the whole build-
ing. This made it impossible for us to use a power meter.
But that isn’t unusual as most data centers use similar cool-
ing designs. Instead of using a power meter, we installed
temperature sensors at the outlet and inlet of the CRAC.
These sensors measure the air temperature coming from and
going out to the machine room.

The heat dissipated into the air is affected by core temper-
atures and the CRAC has to cool this air for maintaining a
constant room temperature. The power consumed by CRAC
(Pac) to bring the temperature of exhaust air (Thot) down
to the cool inlet air (Tac) is [9]:

Pac = cair ∗ fac ∗ (Thot − Tac) (1)

where cair is the hear capacity constant, fac is the constant
flow rate of the cooling system. Although we are not using
a power meter, our results are very accurate because there
is no interference from other heat sources as is the case with
larger data centers where jobs from other users running on
nearby nodes might dissipate a lot of heat which would dis-
tort cooling energy estimation for your experiments.

To the best of our knowledge, this is the largest testbed on
which any HPC researcher has reported results with DVFS.
Also, we are not aware of any other work on constraining
core temperatures and showing its benefit in cooling energy
savings. In contrast to most of the earlier work that em-
phasized on savings from machine power consumption using
DVFS. Most importantly, our work is unique in using load
balancing to mitigate effects of transient speed variations in
HPC world.

We demonstrate the effectiveness of our scheme by us-
ing three applications having different utilization and power
profiles. The first is a canonical benchmark, Jacobi2D, that
uses 5 point stencil to average values in a 2D grid using
2D decomposition. The second application, Wave2D, uses a
finite differencing scheme to calculate pressure information
over a discretized 2D grid. The third application, Mol3D,
is from molecular dynamics and is a real world application
to simulate large biomolecular systems. For Jacobi2D and
Wave2D, we choose a problem size of 22,000x22,000 and
30,000x30,000 grids respectively. For Mol3D however, we
ran a system containing 92,224 atoms. We did an initial run
of these applications without DVFS with CRAC working
at 13.9 ◦C and noted the maximum average core tempera-
ture reached for all 128 cores. We then used our tempera-
ture aware load balancer to keep the core temperatures at
44 ◦C which was the maximum average temperature reached
in the case of Jacobi2D (this was the lowest peak average
temperature amongst all three applications). While keeping
the threshold fixed at 44 ◦C, we decreased the cooling by
increasing the CRAC set point. In order to gauge the effec-
tiveness of our scheme, we compared it with the scheme in
which DVFS is used to constrain core temperatures, without
using any load balancing (we refer to it as w/o TempLDB
throughout the paper).

5. TEMPERATURE CONTOL AND TIMING
PENALTY

Temperature control is important for cooling energy con-
siderations since it determines the heat dissipated into the
air which the CRAC is responsible for removing. In addition
to that, core temperatures and power consumption of a ma-
chine are related with a positive feedback loop, so that an
increase in any of them causes an increase in the other [8].
Our earlier work [16] shows evidence of this where we ran
Jacobi2D on a single node with 8 cores and measured the
machine power consumption along with core temperatures.
The results showed that increase in core temperature can
cause an increase of up to 9% in machine power consump-

tion and this figure can be huge for large data centers. For
our testbed in this work, Figure 3 shows the average temper-
ature for all 128 cores over a period of 10 minutes using our
temperature aware load balancing. The CRAC was set to
21.1 ◦C for these experiments. The horizontal line is drawn
as a reference to show the maximum temperature threshold
(44 ◦C) used by our load balancer. As we can see, irrespec-
tive of how large the temperature gradient is, our scheme
is able to restrain core temperature to within 1 ◦C. For ex-
ample, core temperatures for Mol3D and Wave2D reach the
threshold i.e. 44 ◦C much sooner than Jacobi2D. But all
three applications stay very close to 44 ◦C after reaching the
threshold.

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 100 200 300 400 500 600

A
ve

ra
ge

 T
em

pe
ra

tu
re

 (C
)

Time (secs)

Wave
Jacobi
Mol3D

Figure 3: Average core temperature with CRAC set
point at 21.1 ◦C

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500 600

M
a
x
 D

if
fe

re
n
c
e
 i
n
 C

o
re

 T
e
m

p
e
ra

tu
re

 (
C

)

Time (secs)

 Without DVFS CRAC=25.6C
 Without DVFS CRAC=23.3C

 TempLDB Set Point=25.6C
 TempLDB Set Point=23.3C

Figure 4: Max difference in core temperatures for
Wave2D

Temperature variation across nodes is another very im-
portant factor. Spatial temperature variation is known to
cause hot spots which can drastically increase the cooling
costs of a data center. To get some insight into hot spot for-
mation, we performed some experiments on our testbed with
different CRAC set points. Each experiment was run for 10
minutes. Figure 4 shows the maximum difference any core
has from the average core temperature for Wave2D when
run with different CRAC set points. The Without DVFS
run refers to all cores working at full frequency and no tem-
perature control at core-level. It was observed that for the

case of Without DVFS run, the maximum difference is due
to one specific node getting hot and continuing to be so
throughout the execution i.e. a hot spot. On the other
hand, with our scheme, no single core is allowed to get a lot
hotter than the maximum threshold. Currently, for all our
experiments, we do temperature measurement and DVFS
after every 6-8 seconds. More frequent DVFS would result
in more execution time penalty since there is some overhead
of doing task migration to balance the loads. We will return
to these overheads later in this section.

The above experimental results showed the efficacy of our
scheme in terms of limiting core temperatures. However,
as shown in Section 2, this comes at the cost of execution
time. We now use savings in execution time penalty as a
metric to establish the superiority of our temperature aware
load balancer in comparison to using DVFS without any
load balancing. For this, we study the normalized execution
times, tnorm, with and without our temperature aware load
balancer, for all three applications under consideration. We
define tnorm as follows:

tnorm = tLB/tbase (2)

where tLB represents the execution time for temperature
aware load balanced run and tbase is execution time without
DVFS so that all cores work at maximum frequency. The
value for tnorm in case of w/o TempLDB run is calculated in
a similar manner except that we use tNoLB instead of tLB .
We experiment with different CRAC set points. All the ex-
periments were performed by actually changing the CRAC
set point and allowing the room temperature to stabilize be-
fore any experimentation and measurements were done. To
minimize errors, we averaged the execution times over three
similar runs. Each run takes longer than 10 minutes to allow
fair comparison between applications. The results of this ex-
periment are summarized in Figure 5. The results show that
our scheme consistently performs better than w/o TempLDB
scheme as manifested by the smaller timing penalties for all
CRAC set points. As we go on reducing the cooling (i.e. in-
creasing the CRAC set point), we can see degradation in the
execution times i.e. an increase in timing penalty. This is
not unexpected and is a direct consequence of the fact that
the cores heat up in lesser time and scale down to lower
frequency thus taking longer to complete the same run.

Figure 6: Projections timeline with and without
Temperature Aware Load Balancing for Wave2D

 0

 0.5

 1

 1.5

 2

14.4 16.7 18.9 21.1 23.3 25.6

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

CRAC Set Point (C)

w/o TempLDB
TempLDB

(a) Jacobi2D

 0

 0.5

 1

 1.5

 2

14.4 16.7 18.9 21.1 23.3 25.6

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

CRAC Set Point (C)

w/o TempLDB
TempLDB

(b) Wave2D

 0

 0.5

 1

 1.5

 2

14.4 16.7 18.9 21.1 23.3 25.6

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

CRAC Set Point (C)

w/o TempLDB
TempLDB

(c) Mol3D

Figure 5: Normalized execution time with and without Temperature Aware Load Balancing

Figure 7: Zoomed Projections for 2 iterations

It is interesting to observe from Figure 5 that the differ-
ence in our scheme and the w/o TempLDB scheme is small
to start with but grows as we increase the CRAC set point.
This is because when the machine room is cooler, the cores
take longer to heat up in the first place. As a result, even
the cores falling in the hot spot area do not become so hot
that they go to a very small frequency (we decrease fre-
quency in steps of 0.13GHz). But as we keep on decreasing
the cooling, the hot spots become more and more visible,
so much so that when the CRAC set point is 25.6 ◦C, Node
10 (hot spot in our testbed) runs at the minimum possible
frequency almost throughout the experiment. Our scheme
does not suffer from this problem since it intelligently assigns
loads by taking core frequencies into account. But without
our load balancer, the execution time increases greatly (re-
fer to Figure 5 for CRAC set point 25.6 ◦C). This happens
because in the absence of load balancing, execution time is
determined by the slowest core i.e. core with the minimum
frequency.

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 100 200 300 400 500 600

M
in

im
um

 F
re

qu
en

cy
 (G

H
z)

Time (secs)

Wave2D
Jacobi2D

Mol3D

Figure 8: Minimum frequency for all three applica-
tions

For a more detailed look at our scheme’s sequence of ac-
tions, we use Projections [6], a performance analysis tool
from the Charm++ infrastructure. Projections provides a
visual demonstration of multiple performance data including
processor timelines showing their utilization. We carried out
an experiment on 16-cores instead of 128 and use projections
to highlight the salient features of our scheme. We worked
with a smaller number of cores since it would have been dif-
ficult to visually understand a 128-core timeline. Figure 6
shows the timelines and corresponding utilization for all 16
cores throughout the execution of Wave2D. Both runs in
the figure had DVFS enabled. The upper run i.e. the top 16
lines, is the one where Wave2D is executed without temper-
ature aware load balancing whereas the lower part i.e. the
bottom 16 lines, repeated the same execution with our tem-
perature aware load balancing. The length of the timeline
indicates the total time taken by an experiment. The green
and pink colors show the computations, whereas the white
lines represents idle time. Notice that the execution time
with temperature aware load balancing is much less than
that without it. To see how processors spend their time,
we zoomed into the boxed part of Figure 6 and reproduced
it in Figure 7. It represents 2 iterations of Wave2D. This
zoomed part belongs to the run without temperature aware
load balancing. We can see that because of DVFS, the first
four cores work at a lower frequency than the remaining 12
cores. They, therefore, take longer to complete their tasks as
compared to the remaining 12 cores (longer pink and green
portions on the first 4 cores). The remaining 12 cores finish
their work quickly and then keep on waiting for the first 4
cores to complete their tasks (depicted by white spaces to-
wards the end of each iteration). These results clearly sug-
gest that the timing penalty is dictated by the slowest cores.
We also substantiate this by providing Figure 8 which shows
the minimum frequency of any core during a w/o TempLDB
run (CRAC set point at 23.3 ◦C). We can see from Figure 5
that Wave2D and Mol3d have higher penalties as compared
to Jacobi2D. This is because the minimum frequency reached
in these applications is lower than that reached in Jacobi2D.

We now discuss the overhead associated with our temper-
ature aware load balancing. As outlined in Algorithm 1,
our scheme has to measure core temperatures, do DVFS,
decide new assignments and then exchange tasks according
to the new schedule. The major overhead in our scheme
comes from the last item i.e. exchange of tasks. In compari-
son, temperature measurements, DVFS, and load balancing
decisions take negligible time. To calibrate the communica-

 0

 1

 2

 3

 4

 5

 6

 7

 0 100 200 300 400 500 600

O
bj

ec
ts

 M
ig

ra
te

d
(%

)

Time (secs)

Jacobi2D
Wave2D

Mol3D

Figure 9: Percent objects migrated during temper-
ature aware load balancer run

tion load we incur on the system, we run an experiment with
each of the three applications for ten minutes and count the
number of tasks migrated at each step when we check core
temperatures. Figure 9 shows these percentages for all three
applications. As we can see, the numbers are very small to
make any significant difference. The small overhead of our
scheme is also highlighted by its superiority over the w/o
TempLDB scheme which does temperature control through
DVFS but no load balancing (and so, no object migration).
One important observation to be made from this figure is
the larger number of migrations in Wave2D as compared to
the other two applications. This is because it has a higher
CPU utilization. Wave2D also consumes/dissipates more
power than the other two applications and hence has more
transitions in its frequency. We explain and verify these
application-specific differences in power consumption in the
next Section.

6. UNDERSTANDING APPLICATION REAC-
TION TO TEMPERATURE CONTROL

One of the reasons we chose to work with three different
applications was to be able to understand how application-
specific characteristics react to temperature control. In this
section, we highlight some of our findings and try to provide
a comprehensive and logical explanation for them.

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 100 200 300 400 500 600

A
ve

ra
ge

 F
re

qu
en

cy
 (G

H
z)

Time (secs)

Wave2D
Jacobi2D

Mol3D

Figure 10: Average frequency for all three applica-
tions with CRAC at 23.3 ◦C

We start by referring back to Figure 5 which shows that
Wave2D suffers the highest timing penalty followed by Mol3D
and Jacobi2D. Our intuition was that this difference could
be explained by the frequencies at which each application
is running along with their CPU utilizations (see Table 2).
Figure 10 shows the average frequency across all 128 cores
during the execution time for each application. We were sur-
prised with Figure 10 because it showed that both Wave2D
and Mol3D run at almost the same average frequency through-
out the execution time and yet Wave2D ends up having
a much higher penalty than Mol3D. Upon investigation,
we found that Mol3D is less sensitive to frequency than
Wave2D. To further gauge the sensitivity of our applications
to frequency, we ran a set of experiments in which each ap-
plication was run at all available frequency levels. Figure 11
shows the results where execution times are normalized with
respect to a base run where all 128 cores run at maximum
frequency i.e. 2.4GHz. We can see from Figure 11 that
Wave2D has the steepest curve indicating its sensitivity to
frequency. On the other hand, Mol3D is the least sensitive
to frequency as shown by its small slope. This gave us one
explanation for the higher timing penalties for Wave2D as
compared to the other two. However, if we use this line
of reasoning only, then Jacobi2D is more sensitive to fre-
quency (as shown by Figure 11) and has a higher utilization
(Table 2) and should therefore have a higher timing penalty
than Mol3D. But Figure 5 suggests otherwise. Moreover, the
average power consumption of Jacobi2D is also higher than
Mol3D (see Table 2) which should imply cores getting hotter
sooner while running Jacobi than with Mol3d and shifting
to lower frequency level. On the contrary, Figure 10 shows
Jacobi running with a much higher frequency than Mol3D.
These counter intuitive results could only be explained in
terms of CPU power consumption which is higher in case of
Mol3D than for Jacobi2D. To summarize, these results sug-
gest that although the total power consumption of the entire
machine is smaller for Mol3D, the proportion consumed by
CPU is higher as compared to the same for Jacobi2D.

For some mathematical backing to our claims, we look at
the following expression for core temperatures [9]:

Tcpu = αTac + βPi + γ (3)

Here Tcpu is the core temperature, Tac is temperature of the
air coming from the cooling unit, Pi is power consumed by
the chip, α, β and γ are constants which depend on heat
capacity and air flow since our CRAC maintains a constant
airflow. This expression shows that core temperatures are
dependent on power consumption of the chip rather than the
whole machine, and therefore it is possible that the cores get
hotter for Mol3D earlier than with Jacobi2D due to higher
CPU power consumption.

So far, we have provided some logical and mathemati-
cal explanations for our counter-intuitive results. But we
wanted to explore them thoroughly and find more cogent
evidence to our claims. As a final step towards this ver-
ification, we ran all three applications on 128 cores using
the performance capabilities of Perfsuite [7] and collected
information about different performance counters summa-
rized in Table 2. We can see that Mol3D faces fewer cache
misses and has 10 times more traffic between L1 and L2
cache (counter type ’Data Traffic L1-L2’) resulting in higher
MFLOP/s than Jacobi2D. The difference between the total
power consumption of Jacobi2D and Mol3D can now be ex-

Table 2: Performance counters for one core
Counter Type Jacobi2D Mol3D Wave2D

Execution Time (secs) 474 473 469
MFLOP/s 240 252 292
Traffic L1-L2 (MB/s) 995 10,500 3,044
Traffic L2-DRAM (MB/s) 539 97 577
Cache misses to DRAM (billions) 4 0.72 4.22
CPU Utilization (%) 87 83 93
Power (W) 2472 2353 2558
Memory Footprint(% of memory) 8.1 2.4 8.0

plained in terms of more DRAM access for Jacobi2D. We
sum our analysis up by remarking that MFLOP/s seems to
be the most viable deciding factor in determining the timing
penalty that an application would have to bear when cool-
ing in the machine room is lowered. Figure 12 substantiates
our claim. It shows that Wave2D, which has the highest
MFLOP/s (Table 2) suffers the most penalty followed by
Mol3D and Jacobi2D.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1.4 1.6 1.8 2 2.2 2.4

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

(C
)

Frequency (GHz)

Wave2D
Jacobi2D

Mol3D

Figure 11: Normalized execution time for different
frequency levels

 0

 5

 10

 15

 20

 25

 30

 35

 40

 14 16 18 20 22 24 26

Ti
m

in
g

P
en

al
ty

 (%
)

CRAC Set Point (C)

Wave2D
Jacobi2D

Mol2D

Figure 12: Timing penalty for different CRAC set
points

7. ENERGY SAVINGS
This section is dedicated to a performance analysis for

our temperature aware load balancing in terms of energy
consumption. We first look at machine energy and cooling
energy separately and then combine them to look at the
total energy.

7.1 Machine Energy Consumption
Figure 13 shows the normalized machine energy consump-

tion (enorm), calculated as:

enorm = eLB/ebase (4)

where eLB represents the energy consumed for temperature
aware load balanced run and ebase is execution time with-
out DVFS with all cores working at maximum frequency.
enorm, for w/o TempLDB run is calculated in a similar way
with eLB replaced by eNoLB . Static power of CPU, along
with the power consumed by power supply, memory, hard
disk and the motherboard mainly form the idle power of a
machine. A node of our testbed has an idle power of 40W
which represents 40% of the total power when the machine
is working at full frequency assuming 100% CPU utiliza-
tion. It is this high idle/base power which inflates the total
machine consumption in case of ‘w/o TempLDB’ runs as
shown in Figure 13. This is because for every extra sec-
ond of penalty in execution time, we will pay an extra 40J
per node in addition to the dynamic energy consumed by
the CPU. Considering this, our scheme does well to keep
the normalized machine energy consumption close to 1 as
shown in Figure 13.

We can better understand the reason why the w/o Tem-
pLDB run is consuming much more power than our scheme
if we refer back to Figure 7. We can see that although the
lower 12 cores are idle after they are done with their tasks
(white portion enclosed in the rectangle), they still consume
idle power thereby increasing the total energy consumed.

7.2 Cooling Energy Consumption
While there exists some literature discussing techniques

for saving cooling energy, those solutions are not applicable
to HPC where applications are tightly coupled. Our aim
in this work, is to come up with a framework for analyzing
cooling energy consumption specifically from the perspective
of HPC systems. Based on such a framework, we can de-
sign mechanisms to save cooling energy that are particularly
suited to HPC applications. We now refer to Equation 1 to
infer that Thot and Tac, are enough to compare energy con-
sumption for CRAC as the rest are constants.

So we come up with the following expression for normal-
ized cooling energy (cnorm):

cnorm =
TLB
hot − TLB

ac

T base
hot − T base

ac

∗ tLB
norm (5)

where TLB
hot represents temperature of hot air leaving the ma-

chine room (entering the CRAC) and TLB
ac represents tem-

perature of the cold air entering the machine room respec-
tively when using temperature aware load balancer. Sim-
ilarly, when running all the cores at maximum frequency
without any DVFS, T base

hot is the temperature of hot air leav-
ing the machine room and T base

ac is the temperature of the
cold air entering the machine room. tnorm is the normalized
time for the temperature aware load balanced run. Notice

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

14.4 16.7 18.9 21.1 23.3 25.6

N
or

m
al

iz
ed

 M
ac

hi
ne

 E
ne

rg
y

CRAC Set Point (C)

w/o TempLDB
TempLDB

(a) Jacobi2D

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

14.4 16.7 18.9 21.1 23.3 25.6

N
or

m
al

iz
ed

 M
ac

hi
ne

 E
ne

rg
y

CRAC Set Point (C)

w/o TempLDB
TempLDB

(b) Wave2D

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

14.4 16.7 18.9 21.1 23.3 25.6

N
or

m
al

iz
ed

 M
ac

hi
ne

 E
ne

rg
y

CRAC Set Point (C)

w/o TempLDB
TempLDB

(c) Mol3D

Figure 13: Normalized machine energy consumption with and without Temperature Aware Load Balancing

that we include the timing penalty in our cooling energy
model so that we incorporate the additional time for which
cooling must be done.

Figure 14 shows the normalized cooling energy for both
with and without temperature aware load balancer. We can
see from the figure that both schemes end up saving some
cooling energy but temperature aware load balancing out-
performs w/o TempLDB scheme by a significant margin.
Our temperature readings showed that the difference be-
tween Thot and Tac was very close in both cases i.e. our
scheme and the w/o TempLDB scheme, and the savings in
our scheme was a result of savings from tnorm.

7.3 Total Energy Consumption
Although most data centers report cooling to account for

50% [19, 3, 17] of total energy, we decided to take a con-
servative figure of 40% [11] for it in our calculations of total
energy. Figure 15 shows the percentage of total energy we
save and the corresponding timing penalty we end up pay-
ing for it. Although it seems that Wave2D does not give
us much room to decrease its timing penalty and energy, we
would like to mention that our maximum threshold of 44 ◦C
was very conservative for it. On the other hand, results from
Mol3D and Jacobi2D are very encouraging in the sense that
if a user is willing to sacrifice some execution time, he can
save a considerable amount of energy keeping core temper-
atures in check. It should also be noticed that our current
constraints are very strict considering that we do not allow
any core to go above the threshold. If we were to allow for
a range of temperatures instead of one strict threshold, we
can improve the timing penalty even more. For example, we
did an experiment with Mol3D, where the allowed core tem-
perature range was set to 44 ◦C−49 ◦C and CRAC set point
was 23.3 ◦C. With these settings, we saved 18% energy after
paying only 4% timing penalty.

To quantify energy savings achievable with our technique,
we plot normalized time against normalized energy (Fig-
ure 16). The figure shows data points for both our scheme
and w/o TempLDB scheme. We can see that for each CRAC
set point, our scheme moves the corresponding w/o Tem-
pLDB point towards the left (reducing energy) and down
(reducing timing penalty). The slope of these curves would
give us the number of seconds the execution time increases
for each joule saved in energy. As we see Jacobi2D has a
higher potential for energy saving as compared to Mol3D
because of the lower MFLOP/s.

8. RELATED WORK
Most researchers from HPC have focused on minimiz-

ing machine energy consumption as opposed to cooling en-
ergy [15, 1, 21]. Given a target program, a DVFS enabled
cluster, and constraints on power consumption, they [18]
come up with a frequency schedule that minimizes execu-
tion time while staying within the power constraints. Our
work differs in that we base our DVFS decisions on core tem-
peratures for saving cooling energy whereas they devise fre-
quency schedules according to task schedule irrespective of
core temperatures. Their scheme works with load balanced
applications only whereas ours has no such constraints. In
fact one of the major features of our scheme is that it strives
to achieve a good load balance. A runtime system named,
PET (Performance, power, energy and temperature manage-
ment), by Hanson et al [4], tries to maximize performance
while respecting power, energy and temperature constraints.
Our goal is similar to them but we achieve it in a multicore
environment which adds an additional dimension of load bal-
ancing.

The work of Banarjee et al [1] comes closest to ours in the
sense that they also try to minimize cooling costs in an HPC
data center. But their focus is on controlling the CRAC set
points rather than the core temperatures. In addition, they
need to know the job start and end times beforehand to come
up with the correct schedule whereas our technique does not
rely on any pre-runs. Merkel et al [10] also explore the idea
of task migration from hot to cold cores. However, they do
not do it for parallel applications and therefore do not have
to deal with complications in task migration decisions be-
cause of synchronization primitives. In another work, Tang
et al.[21] have proposed a way to decrease cooling and avoid
hot spots by minimizing the peak inlet temperature from
the machine room through intelligent task assignment. But
their work is based on a small-scale data center simulation
while ours is comprised of experimental results on a reason-
ably large testbed.

Work related to cooling energy optimization and hot-spot
avoidance has been done extensively in non HPC data cen-
ters [2, 12, 22, 23, 20]. But most of this work relies on plac-
ing jobs such that jobs expected to generate more heat are
placed on nodes located at relatively cooler areas in the ma-
chine room and vice versa. Rajan et al [14] discuss the effec-
tiveness of system throttling for temperature aware schedul-
ing. They claim system throttling rules to be the best one
can achieve under certain assumptions. But one of their as-
sumptions, non-migrateability of tasks, is clearly not true

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

14.4 16.7 18.9 21.1 23.3 25.6

N
o

rm
a

liz
e

d
 C

o
o

lin
g

 E
n

e
rg

y

CRAC Set Point (C)

w/o TempLDB
TempLDB

(a) Jacobi2D

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

14.4 16.7 18.9 21.1 23.3 25.6

N
o

rm
a

liz
e

d
 C

o
o

lin
g

 E
n

e
rg

y

CRAC Set Point (C)

w/o TempLDB
TempLDB

(b) Wave2D

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

14.4 16.7 18.9 21.1 23.3 25.6

N
o

rm
a

liz
e

d
 C

o
o

lin
g

 E
n

e
rg

y

CRAC Set Point (C)

w/o TempLDB
TempLDB

(c) Mol3D

Figure 14: Normalized cooling energy consumption with and without Temperature Aware Load Balancing

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

14.4 16.7 18.9 21.1 23.3 25.6

T
im

in
g

 P
e

n
a

lt
y
/

P
o

w
e

r
S

a
v
in

g
 (

%
)

CRAC Set Point (C)

Time Penalty
Total Energy Saving

(a) Jacobi2D

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

14.4 16.7 18.9 21.1 23.3 25.6

T
im

in
g

 P
e

n
a

lt
y
/

P
o

w
e

r
S

a
v
in

g
 (

%
)

CRAC Set Point (C)

Time Penalty
Total Energy Saving

(b) Wave2D

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

14.4 16.7 18.9 21.1 23.3 25.6

T
im

in
g

 P
e

n
a

lt
y
/

P
o

w
e

r
S

a
v
in

g
 (

%
)

CRAC Set Point (C)

Time Penalty
Total Energy Saving

(c) Mol3D

Figure 15: Timing penalty and power savings in percentage for temperature aware load balancing

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15

N
o
rm

a
liz

e
d
 T

im
e

Normalized Energy

 14.4C 16.6C
 18.9C

 21.1C

 23.3C

 25.6C

 14.4C

 16.6C

 18.9C

 21.1C

 23.3C

TempLDB
w/o TempLDB

(a) Jacobi2D

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15

N
o
rm

a
liz

e
d
 T

im
e

Normalized Energy

 14.4C
 16.6C 18.9C

 21.1C

 23.3C

 25.6C

 14.4C

 16.6C
 18.9C

 21.1C

 23.3C
TempLDB

w/o TempLDB

(b) Wave2D

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15

N
o
rm

a
liz

e
d
 T

im
e

Normalized Energy

 14.4C
 16.6C

 18.9C

 21.2C

 23.3C

 25.6C

 14.4C

 16.6C 18.9C

 21.1C

 23.3C

TempLDB
w/o TempLDB

(c) Mol3D

Figure 16: Normalized time as a function of normalized energy

for HPC applications we target. Another recent approach
is used by Le at al [9] where they switch machines on and
off in order to minimize total energy to meet the core tem-
perature constraints. However, they do not consider parallel
applications.

9. CONCLUSION
We experimentally showed the possibility of saving cool-

ing and total energy consumed by our small data center for
tightly coupled parallel applications. Our technique not only
saved cooling energy but also minimized the timing penalty
associated with it. Our approach was conservative in a man-
ner that we set hard limits on absolute values of core tem-
perature. However, our technique can readily be applied
to constrain core temperatures within a specified temper-
ature range which can result in much less timing penalty.
We carried out a detailed analysis to reveal the relationship
between application characteristics and the timing penalty

that can be expected if it were to constrain core tempera-
tures. Our technique was successfully able to identify and
neutralize a hot spot from our testbed.

We plan to extend our work by incorporating critical path
analysis of parallel applications in order to make sure that we
always try to keep all tasks on critical path on the fastest
cores. This would further reduce our timing penalty and
possibly reduce machine energy consumption. We also plan
to extend our work in such a way that instead of using DVFS
to constrain core temperatures, we apply it to meet a certain
maximum power threshold that a data center wishes not to
exceed.

Acknowledgments
We are thankful to Prof. Tarek Abdelzaher for letting us
use the testbed for experimentation.

10. REFERENCES
[1] A. Banerjee, T. Mukherjee, G. Varsamopoulos, and

S. Gupta. Cooling-aware and thermal-aware workload
placement for green hpc data centers. In Green
Computing Conference, 2010 International, pages 245
–256, 2010.

[2] C. Bash and G. Forman. Cool job allocation:
measuring the power savings of placing jobs at
cooling-efficient locations in the data center. In 2007
USENIX Annual Technical Conference on Proceedings
of the USENIX Annual Technical Conference, pages
29:1–29:6, Berkeley, CA, USA, 2007. USENIX
Association.

[3] R. S. C. D. Patel, C. E. Bash. Smart cooling of
datacenters. In IPACK’03: The PacificRim/ASME
International Electronics Packaging Technical
Conference and Exhibition.

[4] H. Hanson, S. Keckler, R. K, S. Ghiasi, F. Rawson,
and J. Rubio. Power, performance, and thermal
management for high-performance systems. In IEEE
International Parallel and Distributed Processing
Symposium (IPDPS), pages 1 –8, march 2007.

[5] L. Kalé. The Chare Kernel parallel programming
language and system. In Proceedings of the
International Conference on Parallel Processing,
volume II, pages 17–25, Aug. 1990.

[6] L. V. Kalé and A. Sinha. Projections: A preliminary
performance tool for charm. In Parallel Systems Fair,
International Parallel Processing Symposium, pages
108–114, Newport Beach, CA, April 1993.

[7] R. Kufrin. Perfsuite: An accessible, open source
performance analysis environment for linux. In In
Proc. of the Linux Cluster Conference, Chapel, 2005.

[8] E. Kursun, C. yong Cher, A. Buyuktosunoglu, and
P. Bose. Investigating the effects of task scheduling on
thermal behavior. In In Third Workshop on
Temperature-Aware Computer Systems (TAC’S 06,
2006.

[9] H. Le, S. Li, N. Pham, J. Heo, and T. Abdelzaher.
Joint optimization of computing and cooling energy:
Analytic model and a machine room case study. In
The Second International Green Computing
Conference (in submission), 2011.

[10] A. Merkel and F. Bellosa. Balancing power
consumption in multiprocessor systems. In Proceedings
of the 1st ACM SIGOPS/EuroSys European
Conference on Computer Systems 2006, EuroSys ’06.
ACM.

[11] L. Minas and B. Ellison. Energy Efficiency For
Information Technolog: How to Reduce Power
Consumption in Servers and Data Centers. Intel
Press, 2009.

[12] L. Parolini, B. Sinopoli, and B. H. Krogh. Reducing
data center energy consumption via coordinated
cooling and load management. In Proceedings of the
2008 conference on Power aware computing and
systems, HotPower’08, pages 14–14, Berkeley, CA,
USA, 2008. USENIX Association.

[13] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kalé.
NAMD: Biomolecular simulation on thousands of
processors. In Proceedings of the 2002 ACM/IEEE
conference on Supercomputing, pages 1–18, Baltimore,

MD, September 2002.

[14] D. Rajan and P. Yu. Temperature-aware scheduling:
When is system-throttling good enough? In Web-Age
Information Management, 2008. WAIM ’08. The
Ninth International Conference on, pages 397 –404,
july 2008.

[15] B. Rountree, D. K. Lowenthal, S. Funk, V. W. Freeh,
B. R. de Supinski, and M. Schulz. Bounding energy
consumption in large-scale mpi programs. In
Proceedings of the ACM/IEEE conference on
Supercomputing, pages 49:1–49:9, 2007.

[16] O. Sarood, A. Gupta, and L. V. Kale. Temperature
aware load balancing for parallel applications:
Preliminary work. In The Seventh Workshop on
High-Performance, Power-Aware Computing
(HPPAC’11), Anchorage, Alaska, USA, 5 2011.

[17] R. Sawyer. Calculating total power requirments for
data centers. American Power Conversion, 2004.

[18] R. Springer, D. K. Lowenthal, B. Rountree, and V. W.
Freeh. Minimizing execution time in mpi programs on
an energy-constrained, power-scalable cluster. In
Proceedings of the eleventh ACM SIGPLAN
symposium on Principles and practice of parallel
programming, PPoPP ’06, pages 230–238, New York,
NY, USA, 2006. ACM.

[19] R. F. Sullivan. Alternating cold and hot aisles
provides more reliable cooling for server farms. White
Paper, Uptime Institute, 2000.

[20] Q. Tang, S. Gupta, D. Stanzione, and P. Cayton.
Thermal-aware task scheduling to minimize energy
usage of blade server based datacenters. In
Dependable, Autonomic and Secure Computing, 2nd
IEEE International Symposium on, pages 195 –202,
2006.

[21] Q. Tang, S. Gupta, and G. Varsamopoulos.
Energy-efficient thermal-aware task scheduling for
homogeneous high-performance computing data
centers: A cyber-physical approach. Parallel and
Distributed Systems, IEEE Transactions on,
19(11):1458 –1472, 2008.

[22] L. Wang, G. von Laszewski, J. Dayal, and T. Furlani.
Thermal aware workload scheduling with backfilling
for green data centers. In Performance Computing and
Communications Conference (IPCCC), 2009 IEEE
28th International, pages 289 –296, 2009.

[23] L. Wang, G. von Laszewski, J. Dayal, X. He,
A. Younge, and T. Furlani. Towards thermal aware
workload scheduling in a data center. In Pervasive
Systems, Algorithms, and Networks (ISPAN), 2009
10th International Symposium on, pages 116 –122,
2009.

[24] G. Zheng. Achieving high performance on extremely
large parallel machines: performance prediction and
load balancing. PhD thesis, Department of Computer
Science, University of Illinois at Urbana-Champaign,
2005.

