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Abstract: - In systems development and integration, whether the instances of a data schema may be recovered 
from those of another is a question that may be seen profound. This is because if this is the case, one system is 
dominated and therefore can be replaced by another without losing the capacity of the systems in providing 
information, which constitutes a correctness criterion for schema dominance. And yet, this problem does not 
seem to have been well investigated. In this paper we shed some light on it. In the literature, works that are 
closest to this problem are based upon the notion of ‘relevant information capacity’, which is concerned with 
whether one schema may replace another without losing the capacity of the system in storing the same data 
instances. We observe that the rational of such an approach is over intuitive (even though the techniques 
involved are sophisticated)  and we reveal that it is the phenomenon that one or more instances of a schema can 
tell us truly what an instance of another schema is that underpins a convincing answer to this question. This is a 
matter of one thing carrying information about another. Conventional information theoretic approaches are 
based upon the notion of entropy and the preservation of it. We observe that schema instance recovery requires 
looking at much more detailed levels of informational relationships than that, namely random events and 
particulars of random events. 
 
Key-Words: - Database design, Schema dominance, Schema transformation, System integration, Information 
content, Information capacity 
 
1   Introduction 
We observe that whether the instances of a data 
schema may be recovered from those of another is a 
question that may be seen profound for systems 
design and integration as this underpins the validity 
of a design and the superiority of one design over 
another. This is because if this is the case, one 
system is dominated and therefore can be replaced 
by another without losing the capacity of the 
systems in providing information. This, we are 
convinced, would constitute a probably more 
insightful and therefore better correctness criterion 
than those presented in the literature for schema 
dominance as defined in the literature. This question 
does not seem thus far to have drawn sufficient 
attention and been made prominent and explicit. The 
notion of ‘schema dominance’ has been 
investigated, which is concerned with how a 

conceptual data schema may have at least the same 
capacity in terms of its instances as that of another, 
for example, references [6], [9] and [10]. In some of 
such investigations, Shannon’s information theory 
[13] is used. For example, Lee in [7] and [8] puts 
forward an entropy preserving approach to 
measuring whether the entropy is lost when a 
schema changes. Arenas and Libkin [1] look at 
normal forms of relational and XML data by means 
of conditional entropy. In [9] and [10], a notion 
called ‘information capacity preserving’ is used to 
verify schema transformation. These alone, we 
maintain, cannot answer our question adequately. 
This is because the notion of ‘information content’ 
in these approaches is based upon the notion of 
‘types’, and yet ‘only particulars can carry 
information’ [2, p.26], that is, it is individual things 
in the world that carry information. The instances of 
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a schema are at the level of particulars of random 
events. We will elaborate these ideas through the 
sections that follow. 
     We motivate the discussion with a simple example 
of normalization of relational data schemata in section 
2. We define the foundation and basic notions for our 
approach in sections 3 and 4 before we describe our 
approach per se in section 5. Then we apply our 
approach to normalization by revisiting the 
motivating example in section 6 and to the schema 
structural transformations of [10] in section 7, which 
shows the validity and usefulness of our ideas. We 
make concluding remarks in section 8.  
 
 
2   A Motivating Example 
Before introducing our approach in details, we present 
a small example first concerning normalization of 
relational databases. Two schemata S1 and S2 with one 
of their respective instances are shown below. S2 is a 
good decomposition of S1 [12]. We also draw their 
respective SIG (this stands for Schema Intension 
Graph proposed by Miller et al [10], which represents 
a schema in terms of nodes and edges) diagrams as 
follows.  

S1 
A B C 
1 2 3 
2 2 3 

 
 

(a) 
 

S2 

 

 
 

(b) 
 

Fig. 1. An Example of Normalization 
 
Let us take a look at how the instances of path PAC of 
S1 may be recovered from that of S2. From the 
normalization decomposition algorithm that was 
used to create S2 from S1, we know that there is a 
bijection (i.e., an ‘one to one’ relationship, and it is 
represented by an arrow and a vertical bar at the both 
ends of an edge) between node A and node A’, and 
also another bijection between node C and node C’. 
We propose to call such things ‘inter-schemata 
constraints’ as they are logical limitations on the 
relationship between two schemata. Inter-schemata 

constraints capture underlying regularities that 
govern the relationship between two schemata. 
Moreover, we find that given an element of path 
PA’C’, there is only one element of path PA’C’

∇ = (A, 
A’, B’, B’’, C’, C) corresponding to it, and each 
element of PA’C’

∇ is uniquely determined by at least 
one element of path PA’C’. For example, PA’C’

∇ = (1, 
1, 2, 2, 3, 3) is uniquely determined by PA’C’ = (1, 2, 
2, 3). PA’C’

∇ = (2, 2, 2, 2, 3, 3) is uniquely determined 
by PA’C’ = (2, 2, 2, 3). 
     Similarly, each element of PAC is uniquely 
determined by at least one element of path PA’C’

∇. 
Through transitivity, each element of PAC is uniquely 
determined by at least one element of path PA’C’. Note 
that PAC is a path in S1, and PA’C’ in S2, thus the 
instance of the former shown in (a) of Fig. 1 above is 
fully recoverable from that of the latter shown in (b) 
of Fig. 1. As the instance shown in Fig. 1 is arbitrarily 
chosen, this example shows that any instance of S1 is 
recoverable from instances of S2, and this is one of the 
main reasons why S1 can be replaced by S2 without 
losing data that would otherwise be stored in S1.  
     This example, even though simple, may show 
something profound. That is, the uniqueness of the 
instance of S1 shown in Fig. 1 given the instance of S2 
shown in Fig. 1 is a result of the latter carrying all the 
information about the former in that the latter can tell 
us truly [4, P.64] all the details of the former. This is 
what we mean by ‘information carrying’ between 
states of affairs, and this is our foundation to approach 
the problem of schema instance recoverability. We 
know define the notion of ‘information carrying’ 
relation between systems. 
 
 
3   Information-carrying Relation 
To answer the question whether a data schema, 
moreover a system may be recovered from another, 
we propose a concept of ‘information carrying’ 
between systems, which means that ‘what information 
a signal carries is what it is capable of “telling” us, 
telling us truly, about another state of affairs’ [4, 
p.64].  

This idea is established upon Dretske’s semantic 
theory of information [4], Devlin’s notion of ‘infon’ 
and situation semantics [3] and Floridi’s information 
philosophy [5]. To address how much (i.e., the 
amount of) information is generated and transmitted 
associated with a given set of state of affairs, Shannon 
[13] uses the notion of entropy, which is based upon 
probability theory to measure the amount of 
information. His approach calculates the quantity of 
information during a process of information 
transmission. However, Dretske [4, p.40] points out 

A’ B’ 
1 2 
2 2 

B’’ C’ 
2 3 

A B C

A’ B’ B’’ C’ 
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that apart from the quantity of information, the 
content of information should be considered, which is 
more relevant to the ordinary notion of ‘information’ 
than the quantity of it. For example, any toss involved 
in tossing a fair coin creates one bit of information 
(i.e., log2 = 1), which is the quantity of information. 
Moreover, we also need the content of information 
that whether it is the ‘tail’ or the ‘head’ that is facing 
up. If this piece of information is carried by a 
message, then the message not only carries one bit of 
information, but also tells us truly that the ‘tail’ or the 
‘head’ is facing up. That is, the message carries both 
the quantity of information and the content of 
information. In this section, we extend Dretske’s idea 
to define the notion of ‘information carrying’, which 
reveals and formulates the phenomenon that ‘what 
information a signal carries is what it is capable of 
“telling” us, telling us truly, about another state of 
affairs’ [4, p.64].  

 
Here is an example of  ‘information carrying’.  
 
Information Source Information Carrier 
Grade A 
Grade B 
Grade C 
Grade D 

PASS 

Grade E 
Grade F FAIL 

 
Table 1. A Grade Evaluation System 

 
The input of this grade evaluation system is taken as 
an information source. The system showing the 
evaluation result is an information carrier for the 
existing information source.  

 
 
3.1   States of Affairs of an  Information 
Source and an Information Carrier 
To describe the notion of ‘information carrying’, we 
look at the information source and the information 
carrier as two separate systems first, and then explore 
how they are related whereby one can tell us truly 
about the other. The whole information transmission 
is represented by the fact that a state of affairs of the 
information carrier is capable of telling us (i.e., carries 
the piece of information) that a particular state of 
affairs of the information source exists.  

Following Shannon [13] and Dretske [4] we 
model both the information source and the 
information carrier as a selection process under a 
certain set of conditions with a certain set of possible 
outcomes. Let s be a set of state of affairs (described 

by a random event) among others at a selection 
process S. Similarly, let r be a set of state of affairs 
among others at a selection process R. Let P(s) denote 
the probability of s and P(r) denote the probability of 
r. Let I(s) denote the surprisal for s [4], which is taken 
as the information quantity created by s and I(r) 
denote the surprisal for r. Then we have:  

 
I(s) = -log P(s) 
I(r) = -log P(r) 

 
Let I(S) denote the entropy of the selection process S, 
namely the weighted mean of surprisals of all random 
events of S. Then 

 
I(S) = -ΣP(si)logP(si), i = 1,…, m. 

 
For the selection process R, we have:  

 
I(R) = -ΣP(rj)logP(rj), j = 1,…, n. 

 
For our grade evaluation system, the input, which is 
the information source, can be seen as a random 
variable having six different possible values, namely 
those listed in the left column in Table 1. The random 
variable having a particular value, i.e., one of the six 
grades being inputted, is a random event. And also, 
such random events, which reflect the results of the 
selection process, show that all possible ‘run’ of the 
selection process results in the realization of all 
possible state of affairs. Therefore and hereafter we 
shall take the term ‘random events’ and the term ‘state 
of affairs’ as interchangeable.  

Let sa, sb, sc, sd, se and sf denote the six random 
events, namely one of the six grades being inputted to 
the system. Suppose that the six random events are 
equally likely, then the probability of sa, sb, sc, sd, se 
and sf are all 1/6. The surprisals of them can be listed 
as:  

 
I(sa) = I(sb) = I(sc) = I(sd) = I(se) = I(sf) = 

-logP(sa) = log 6 (bits) 
 
The entropy would be:  

I(S) = -ΣP(si)logP(si) = 6 ×
6
1
× log 6 = log 6 

(bits)  
 

Similarly, the information carrier can also be taken as 
a selection process. Let ra, rb denote two random 
events ‘PASS’ and ‘FAIL’ respectively. The 
probabilities for the random events of the information 

carrier are: 
3
2

and 
3
1

 respectively.  We would then 
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have the surprisals for the information carrier R 

I(ra) = -logP(ra) = log
2
3

= log3 – 1 bits 

I(rb) = -logP(rb) = log 3 bits 
 

The entropy of R is thus 

I(R) = -ΣP(rj)logP(rj) = 
3
2
× ( log3 – 1) + 

3
1
×  log 3 = log 3 – 

3
2

 bits 

 
The states of affairs of the information carrier namely 
the outputs of the grade evaluation system are not 
independent of those of the information source 
namely the inputs of the system. There is some 
regularity between them as shown in Table 1. For 
example, whenever the input is a ‘Grade A’ then the 
output would be a ‘Pass’. This is to say, seeing the 
‘Pass’, we would know that the grade would 
definitely be one of A, B, C and D  and be neither E 
nor F. But an information carrier may not carry all the 
information created at the information source. 
Moreover, it is not always the case that all the 
information created at an information carrier is 
acounted for by that created at the information source. 
Such situations are captured with the notions of 
‘equivocation’ and ‘noise’. 
 
3.2   Equivocation and Noise 
An information carrier can tell us truly something 
about the information source. When the ‘something’ 
is not ‘everything’, information is not fully carried. 
That is, there must be some information created at the 
information source and not carried by the information 
carrier and therefore lost in the process of information 
transmission. Such information is termed 
equivocation. This is on the one hand. On the other 
hand, the information created at the information 
carrier does not necessarily come from the source. 
This may be caused by some reason of the carrier 
itself or its being affected by something else other 
than the source [11]. Such information is termed 
noise.  

Fig. 2 shows the notions of equivocation and 
noise in relation to the information source and the 
information carrier in an information carrying 
relationship.  

 
 
 
 
 
 

 
 
 
 
 

 
 
 Information 

Source 
Information 

Carrier  
 
 
 
 
 
 
 

Equivocation 

Equivocation 

Noise 

Noise 

 
Fig. 2. Equivocation and Noise 

 
How can we calculate equivocation and noise? Just 
like the measure of surprisal above, these two terms 
can be measured as long as the probabilities of 
random events at the source and the carrier are 
available. We now show how this can be done.  

Recall that equivocation is the lost information 
that is created at the source but not carried by the 
carrier [4]. Let P(si|rj) denote the probability of the 
source event si under the condition that the carrier 
event rj occurs. Let (rj) denote the equivocation in 
relation to si and rj. We would have 

isE

 
isE (rj) = -logP(si|rj) 

 
This is because -logP(si|rj) is the amount of the part of 
the uncertainty reduced due to the occurrence of si 
that is not carried by the occurrence of rj. If the latter 
does carry all the information created due to the 
occurrence of the former, which can be formulated as 
‘whenever the latter happens, the former happens as 
well’, that is P(si|rj) = 1, then -logP(si|rj) would be 0 
bits. That is, the equivocation in relation to si and rj 
would be none.  

Similarly, noise can be seen as the information 
that is created at the carrier but is not accounted for by 
the source. Let P(rj|si) denote the probability of the 
carrier event rj under the condition that the source 
event si occurs. Let (sj) denote the noise between rj 

and si. We would have 
irN

 
irN (sj) = -logP(rj|si) 

 
Here is an example to summarize our analysis of 
equivocation and noise.  
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Information 

Source 
S 

Information 
Carrier 

R 
S1 R1 
S2 R1 
S3 R2 
S3 R3 

 
Table 2 An Example of 
Equivocation and Noise 

 
Assume that some regularity that controls the 
situation illustrated in Table 2 is as such that the 
occurrence of Rj j = 1, 2, 3 are fully determined by 
that of Si, I = 1, 2, 3; S1,  S2  and  S3 are equally likely 
to happen; and R2 and R3 are equally likely to 
happen in responding to S3. Then in relation to S = 
S1 and R = R1, we would have 

 
I(S1) = log3 (bits); 

I(R1) = log3/2 (bits); 

1SE (R1) = -logP(S1|R1) = log2 (bits); 

(S1) = 0 (bits). 
1RN

 
The above results show that equivocation exists and 
noise does not. This means that R = R1 does not carry 
all the information that S = S1. 

We are now in a position to elaborate our 
approach in details. But first let us give a few basic 
notions.  
 
4 Basic Notions  
Definition 1: Paths  
Let G = (N, E) be a SIG and A an annotation (i.e., 
constraints on edges) on G, where N is a finite set for 
nodes, and E a finite set for edges. A path, P: N1 – Nk, 
in G is a (possibly empty) sequence of edges e1: N1 – 
N2, e2: N2 – N3, ..., ek-1: Nk-1 – Nk and is denoted ek-1 ○ 
ek-2 ○ ... ○ e1. A path is functional (respectively 
injective, surjective or total) if every edge in the path 
is functional (respectively injective, surjective or 
total). The trivial path is a path from a node to itself 
containing no edges. 
 
Definition 2: Instances of a Schema in SIG 
An instance of G is a function whose domain is the 
sets N of nodes and E of edges.  
Let IY(S1), IY(S2) denote the set of instances of S1 and 
S2 respectively. Let ℑ1(S1)…ℑ n(S1) denote instances 
of S1. Then IY(S1) = {ℑ1(S1)…ℑ n(S1)}. Let A be part 
of G, ℑ(S1)[A] denotes the part of ℑ(S1) that is 
concerned with A, and it is called the projection of 

ℑ(S1) on A. 
 
Definition 3: Connections  
A connection of a path P is an instance of P made up of 
instances of nodes that are linked by edges of P. That 
is, a connection of a path P is a link that associates 
individuals each of which belongs to one node of P 
and all nodes of P contribute at least one individual to 
the link. Let P = (node1, node2, …, noden), individual 
nodes node11, node12, …node1m belong to node1. For 
example, in a path ‘a student consults with a teacher 
on different occasions’ that connects students and 
teachers, the instances of node student are students 
appearing at different occasions for consulting a 
teacher. Any set of instances of nodes such as (node11, 
node23, …, nodenm) that are linked with one another is 
a connection of P.  
 
As our approach is based upon ‘information carrying’ 
between schemata and their instances, we formalise a 
SIG by means of a set of mathematical notions 
centred on the concept of ‘random event’. As a result, 
a schema is looked at on a number of different levels. 
The following are a few definitions for this purpose. 
 
Definition 4: A connection of a path say P may be of 
one of many possible types, which cannot be 
pre-determined. Thus what a connection of P could be 
is a random variable.  
 
Definition 5: That a connection of a path happens to 
be of a particular type of those possible ones is a 
random event.   
 
Definition 6: A specific connection of a path P that 
happens to be of type σ is a particular (i.e., an 
individual occurrence) of the random event that a 
connection happens to be of σ.  
 
 
5 An Approach Centered on the 
Notion of ‘Information Carrying’  
With the basic notions in place, now we present our 
approach with propositions and a further definition.  
 
Proposition 1.  
All instances of S1 can be recovered from instances of 
S2, if for any arbitrarily chosen instance ℑi(S1) of S1, 
there is at least one instance ℑj(S2) of S2 such that by 
looking at it (i.e., ℑj(S2)), we can know exactly how 
ℑi(S1) would have been.  
 
We now use SIG [10] as a tool to explore how this 
might be possible. 
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Definition 7.  
Let SIG schema S2 (meaning that S2 is expressed in 
SIG format) be G = (N, E). Let N1 be the end nodes of 
a path PS1 in another SIG schema S1. Let E1 be an edge 
between N1 and N due to constraints between N1 and N, 
which can be formulated as annotations. G’ = (N’, E’), 
where N’= N∪N1, E’= E∪E1, is an extended SIG 
schema S2 by taking into consideration inter-schemata 
constraints between S1 and S2.  
 
In some cases, between schemata S1 and S2, there are 
sets of constraints α = {α1, α2, ..., αn} and β = {β1, 
β2, ..., βm} such that α links one end node, say N1 of a 
path PS1 in schema S1 and one end node of each path in 
a set of paths PS2

* = {P1, P2, ..., Pn} in schema S2, and β 
links the other end node, say N2 of PS1 and the other 
end node of each path of PS2

*. That is, PS2
* = {P1, P2, ..., 

Pn} is linked with PS1 through α and β. In such a case 
we would have PS2

∇ = (N1, P1, N2, P2, N1, …) which 
walks through N1, N2 and PS2

* by α and β.  
     Individual connections of a path could be of a same 
type in the sense that individual nodes that are 
connected are the same, for example, Dr Jones and 
Student Jane, and the meanings of the connections are 
also the same, for example, Dr Jones teaches Student 
Jane. Such a connection (a connection of a particular 
kind) may occur more than once for one reason or 
another.   
     For the structure just described, it is a random 
event that an individual connection of PS2

* happens to 
be of type a, denoted PS2

* = a, and it is also a random 
event that an individual connection of PS2

∇ happens to 
be of type b, denoted PS2

∇ = b. If under the condition 
of PS2

* = a, it is always the case that PS2
∇ = b, then we 

have p( PS2
∇=b | PS2

*=a) = 1, which denotes the 
probability of PS2

∇=b under the condition of PS2
*=a is 

1, i.e., a certainty. 
 
Proposition 2.  
For a pair of schemata, say S1 and S2, there could be a 
kind of relationship between them, namely, for every 
possible instance of schema S1, i.e., ℑi(S1) ∈ IY(S1), 
there is at least one instance of S2, i.e., ℑj(S2) ∈ IY(S2), 
such that the following condition holds: 
     If for every possible type a of connections of PS2

∇, 
there is at least one type b of PS2

* such that p( PS2
∇=a | 

PS2
*=b) = 1, and a similar relation holds between PS1 

and PS2
∇. Moreover, each individual connection of 

PS2
∇ can be ascertained by the existence of at least one 

individual connection of PS2
*, and the same applies to 

individual connections of PS1 and individual 
connections of PS2

∇, then ℑi[PS2
*] carries all the 

information of ℑi[PS1].  
      If this applies to every path of S1, then ℑj(S2) 
carries all the information of ℑi(S1). If this in turn 
applies to every possible ℑi(S1) ∈ IY(S1), then every 
instance of schema S1 can be recovered from those of 
schema S2. Following the definitions of annotations of 
SIG [10], the above condition entails a total injective 
binary relation f: PS2

∇ → PS2
* and a total injective 

binary relation f ’: PS1 → PS2
∇.  

 
Lemma 1.  
Let ℑi(S2)∇ denote an instance of S2∪α∪β, where α 
and β are inter-schemata constraints between S1 and 
S2. For each possible type a of connections of ℑj(S1), 
if the following criteria are satisfied then ℑj(S1) can be 
recovered from ℑi(S2):  

 For every type a of ℑj(S1), there is at least one 
type b of ℑi(S2) and one type of c of ℑi(S2)∇ such 
that p(ℑi(S2)∇ = c | ℑi(S2) = b) = 1 and p(ℑj(S1) = 
a | ℑi(S2)∇ = c) = 1.  

 Each individual connection of ℑi(S2)∇ can be 
ascertained by the existence of at least one 
individual connection of ℑi(S2) and the same 
applies to individual connections of ℑj(S1) and 
ℑi(S2)∇.  

Proof: The proof uses the transitivity of conditional 
probability.  
 
 
6 The Example of Normalization 
Revisited 
Now we explore, with our approach centered on the 
notion of ‘information-carrying’, whether 
normalization with non-additive join (also called 
‘lossless join’) satisfies the above condition, i.e., 
whether all instances of the original schema can be 
recovered from those of the resultant schema of 
normalization, and therefore the former can be 
replaced by the latter without losing the capacity of 
storing data. We still use the same example in Fig. 1, 
which shows that S1 has three paths, which are 
denoted as PAB, PBC, PAC respectively, and S2 has paths 
PA’B’, P A’B’’, PA’C’, PB’C’ and PB’’C’ etc.  
     From the perspective of random events and 
particulars of random events, Proposition 2 states that 
for each possible type a of connections of path PS1 in 
ℑi(S1), if the following criteria are satisfied then ℑi(S1) 
can be recovered from ℑj(S2):  

 There is at least one type b of PS2
* and one type of 

c of PS2
∇ in ℑj(S2) such that p( PS2

∇=c | PS2
*=b) = 

1 and p( PS1 =a | PS2
∇=c) = 1.  

 Each individual connection of PS2
∇ can be 
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ascertained by the existence of at least one 
individual connection of PS2

*, and the same 
applies to individual connections of PS1 and PS2

∇.  
 
For the instance of S1 shown in Fig. 1 (a), we find an 
instance of S2 shown in Fig. 1 (b), which is a result of 
restructuring the former according to the structure of 
S2. Now we justify that the condition identified above 
is met, i.e., to justify that the former can be recovered 
by looking at the latter through our approach outlined 
above, rather than the conventional ‘joining the two 
relations in S2’.  
     Here is the SIG diagram, which shows S2 and its 
links with attributes (represented by nodes) A and C 
of S1.  
 
 
 
 
 
 

 
Fig. 3. SIG Diagram for analysing the normalisation 

example 
 
The above diagram explains from ‘binary relation’ or 
topological characteristics we can be sure that the 
connections between A and C are uniquely 
determined by the rest of the diagram. This is one of 
the results from the normalisation having been 
conducted following a standard lossless join 
decomposition algorithm. Now we check PAB in S1 as 
an example to show our approach. 
     For PAB in S1, we find a path PA’C’ in S2 that 
satisfies the condition. Fig. 1 (b) is a restructured Fig. 
1 (a) and thus no new data value is involved. More 
importantly, because it is a lossless-join 
decomposition, which guarantees that a natural join of 
the relations after the decomposition results in exactly 
the same relation as that before the normalisation 
decomposition, each tuple in S1 can be recovered from 
one tuple of the result of the natural join performed on 
relations of S2. That is to say, ℑi(S1) is fully 
recoverable from ℑj(S2). Therefore for individual 
instances of A of PAC and A’ of PA’C’, we have PAC.A = 
PA’C’.A’. Here we denote α as a constraint between PAC 
and PA’C’, which serves as an edge that links PAC.A and 
PA’C’.A’.  
     That is, α = (PAC.A, PA’C’.A’) with individual 
connections (i.e., instances) (1, 1) and (2, 2): 
 

PAC.A PA’C’.A’ 
1 1 
2 2 

 
Fig. 4. Inter-schemata constraint α for path PAC and 

path PA’C’ 
 
Similarly we have β = (PAC.C, PA’C’.C’) with two 
individual connections (2, 2): 
  

PAC.C PA’C’.C’ 
3 3 
3 3 

 
Fig. 5. Inter-schemata constraint β for path PAC and 

path PA’C’ 
 
Notice that the two individual connections of (3, 3) 
should not been seen as one. The first individual 
connection links C in PAC = (1, 3) and C’ in PA’C’ = (1, 
3), and the second links C in PAC = (2, 3) and C’ in 
PA’C’ = (2, 3). 

PS2
∇ 

PS2
* 

     For the type ((1, 1) (1, 3), (3, 3)) of the connections 
of path PS2

∇ = (A, PA’C’, C), we find that the type (1, 3) 
of connections of path PS2

* = PA’C’ such that the 
probability of the latter is 1 given the former. 
Similarly, type ((2, 2) (2, 3), (3, 3)) of the connections 
of path PS2

∇ = (A, PA’C’, C) is ascertained by the type (2, 
3) of connections of path PS2

* = PA’C’. 
     As for individual connections of path PS2

∇, we 
want to check whether ‘each individual connection of 
PS2

∇ can be ascertained by the existence of at least one 
individual connection of PS2

*’. We find that it is the 
case due to the inter-schema constrains α and β both 
being a bijection.  
     Now we examine the relationship between PS1 and 
PS2

∇ along a similar line. Because it is a lossless-join 
decomposition, ℑi(S1) is fully recoverable from ℑj(S2). 
As a result, the two aforementioned bijective 
inter-scheme constraints α and β between node A in S1 
and node A’ in S2 and between node A in S1 and node 
A’ in S2 are in existence between the two schemata. 
Also, because ℑi(S1) is fully recoverable from ℑj(S2), 
each type of instances of any part of S1 can be 
recovered from some types (could be just one type) of 
instances of one or more parts of S2. Therefore, in the 
case of path PAB, we find that type (1, 3) of the 
connections of path PAC is ascertained by the type ((1, 
1) (1, 3), (3, 3)) of the connections of path PAC

∇. As 
path PAB is a constituting part of PAC, type (1, 2) of the 
connections of path PAB is ascertained by type (1, 3) of 
the connections of path PAC. As for individual 
connections, again due to ℑi(S1) being fully 
recoverable from ℑj(S2) and path PAB is a constituting 
part of PAC, each individual connection of any type of 
the connections of PAB is ascertained by a connection 
of PAC of which the former is a constituting part. Thus 

A A’ C’ 
α  β

C 
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each individual connection of PS1 = PAB can be 
ascertained by another individual connection of PS2

* = 
PA’C’ via the individual connection PS2

∇. It means that 
path PAB can be recovered from path PA’C’.  
 
 
7 Miller’s αος-dominance 
We continue with the validly check of our ideas by 
examining an influential work on schema 
transformation by Miller et al [10], which is based 
upon Hull’s [6] notion of ‘relative information 
capacity’. The basic notion of their work is called 
‘αος-dominance relation’ between two data schemata, 
which are set of schema structural transformations. 
We look at the elementary transformations 
(dominance or equivalence) that make up such 
dominance, namely α-dominance, ο-dominance and 
ς-dominance.  
     To examine these transformations, we require a 
couple of definitions.  
 
Definition 8. Corresponding instances of S1 and S2 
For a given instances of S1 denoted ℑs(S1), if there is 
an instance of S2 denoted ℑt(S2) such that from the 
latter the former can be fully recovered, then ℑs(S1) 
and ℑt(S2) are said to be a pair corresponding 
instances.  
 
Definition 9. Corresponding nodes of S1 and S2 
Let Ai (i = 1, …, p) be nodes of S1, and Bj (j = 1, …, q) 
be nodes of S2. If for any Ai there is at least one set of 
Bj such that ψ(Ai) = Bj for any pair of corresponding 
instances of S1 and S2, say ℑs(S1) and ℑt(S2),  that is, 
for ℑs(S1)[Ai], there is at least ℑt(S2)[B1 + B2 + … + 
Bm] such that the former is uniquely determined  by 
therefore fully recoverable from the latter, then Ai and 
(B1 + B2 + … + Bm) are said to be a pair 
corresponding nodes. 
 
With these definitions in place, now we examine each 
elementary transformation in turn. 
 

 α-dominance 
An example of α-transformation is shown in Fig. 6.  
 
 
 

 
Fig. 6.  An α-transformation 

 
Let α denote a set of constraints, which are 
inter-schema constraints formulated in terms of  
annotations defined by Miller et al [10], such that α 
links node A of schema S1 and node A of schema S2, 

and β links B of S1 and B of S2.  
     α-dominance requires that nodes are the same. 
That is, for any node of S1, there must a node of S2 
such that the mapping from the former to the latter is 
total, injective and internal. Therefore, in the above 
example, α and β should be total, injective and 
internal. Now we use our approach to justify whether 
an α-dominance relation satisfies the condition of 
‘information-carrying’ that we defined earlier. 
     Let PS1 denote the path (A, B) of S1 and PS2

* denote 
the path (A, B) of S2. Let PS2

∇ = α ○ PS2
* ○ β (i.e., Let 

PS2
∇ denote the path (α, PS2

*, β)). First of all, we check 
whether there is at least one type b of PS2

* and one 
type of c of PS2

∇ in ℑj(S2) such that p( PS2
∇ = c | PS2

*= 
b) = 1 and p( PS1 = a | PS2

∇ = c) = 1, where a is an 
arbitrary type of PS1 that we want ascertained. 
Secondly, we check whether each individual 
connection of PS2

∇ can be ascertained by the existence 
of at least one individual connection of PS2

*, and the 
same applies to individual connections of PS1 and 
PS2

∇, the purpose of which is to ascertain all 
individual connections of  PS1 so that ℑ[PS1] can be 
fully determined (recovered).  

  As α and β extend PS2
*

 to PS2
∇, and both α and β 

are total, injective and internal, for any type of PS2, 
there must be at least one type of PS2

∇ such that PS2
∇ 

can be ascertained by PS2
*. At the individual 

connections level, also because of both α and β being 
total, injective and internal in a α-transformation,  we 
have that each individual connection of PS2

∇ can be 
ascertained by at least one individual connection of 
PS2

*. 
     The same approach can be applied to the 
examination of the relationship between PS1 and PS2

∇. 
We know that for α-transformation, every instance of 
S1 is also an instance of S2, that is, they are exactly the 
same. That is, the instances of the end nodes of PS1 are 
ascertained by PS2 as they are part of PS2 and the 
connections of the instances of the end nodes are 
ascertained by PS2

 . Therefore given a path PS2
∇ 

(which is determined by PS2 in S2) we would have a 
unique path PS1 in S1.  
     Therefore, an α-dominance (transformation) 
satisfies the condition of ‘information-carrying’.  
 

 ο-dominance 
 
 
 
 
 
 

 
Fig. 7. A case of ο-transformation 

Schema S2 
A B

e 

Schema S1 
A B

e ≤

Schema S2 Schema S1 

≤ 
B

e
A A B

C

p

C
g

p 
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According to Miller et al [10], the above example of 
ο-transformation is an ‘information capacity 
preserving transformation’, which shows that under 
the condition of ℑ[g] = ℑ[e] ○ ℑ[p], every instance of 
edge e determines a unique instance of g so. In terms 
of our approach, they uniquely determine each other, 
and therefore any instance of e is recoverable from an 
instance of g that corresponds to it. We now verify 
ο-transformation is of information carrying. To this 
end,  
 
1. We first check whether edge e ○ p of schema S1 

and its individual connections are ascertained by 
edge g and edge p of schema S2 and its individual 
connections respectively, namely whether ℑ[p] ○ 
ℑ[e] is ascertained by ℑ[g] and ℑ[p].  

2. If it is so, we would then know that edge e of S1 
and its individual connections are ascertained by 
edge e ○ p of S1 and its individual connections 
respectively. 

 
We first check the relationship between edge e ○ p of 
S1 and edge g and edge p of S2. Let PS1 denote path (A, 
B) of S1 and PS1’ denote path (C, A, B) of S1. Let PS2 
denote the whole structure, namely the set of path (C, 
B) and path (C, A)) of S2. Let α denote the 
inter-schema constraints that link node C of S1 and 
node C of S2. Let β links B of S1 and B of S2.  
     Miller’s approach to schema transformation is to 
look at whether it is possible to restructure a given 
instance of S1 to fit S2 such that it becomes a unique 
instance of S2. As all nodes remain the same through 
the transformation, α and β are both total, injective 
and internal. As α and β extend PS2 to PS2

∇, for any 
type, say c, of PS2

∇, there must be at least one type, say 
b, of  PS2 such that  p(PS2

∇ = c | PS2 = b) = 1. At the 
individual connection level, we also have that each 
individual connection of PS2

∇ can be ascertained by at 
least one individual connection of PS2. 
     Now we examine the relationship between PS1’ (C, 
A, B) and PS2

∇ (i.e., edge p and edge g in S2 extended 
with α and β). Under the condition ℑ[g] = ℑ[e] ○ ℑ[p], 
path PS1’ (which walks through node A, C, B) and its 
individual connections are ascertained by the whole 
structure of PS2 and its individual connections 
respectively. Notice that the composite path e ○ p 
cannot be ascertained by edge g only.  
     Secondly, we check the relationship between edge 
e of S1 and edge e ○ p of S1. It can be seen that 
whenever the whole ℑ[e] ○ ℑ[p] is certain, part of it 
ℑ[e] is automatically certain.  
 
 

 
 

 ς-dominance 
 
 
 
 
 
 
 
 

 
Fig. 8.  ς-transformations 

 
Miller et al [10] defines selection transformation 
(ς-transformations) to look at whether information 
capacity is preserved through node creation, node 
deletion (if A = A’), edge creation and edge deletion, 
which are shown in Fig. 8. The idea is to check 
whether the instance of S1 becomes a unique instance 
of S2 after having been restructured to fit S2. This 
implies that data values do not change.  
     Moreover, ς-transformation is only concerned with 
selection edges when talking about edge creation and 
edge deletion, which means that the end nodes of an 
edge are concerned with the same kind of objects that 
are involved in the ‘is a’ relationship. Note also that 
the selection edges that are involved in a 
ς-transformation are all bijections between the 
instances of their end nodes.  
     Therefore, any pair of corresponding instances of 
two schemata linked by a ς-transformation uniquely 
determines each other. That is, ς-transformation 
satisfies the condition of information carrying that we 
defined earlier. As a result, any instance of the 
original schema is ascertained by at least one instance 
of the transformed schema with both its types and 
individual connections. 
 
 
8 Conclusions 
Using a fundamental notion of ‘information carrying’ 
between states of affairs, we have presented in this 
paper an approach to the problem of under what 
conditions the instances of a schema can be recovered 
by those of another, which constitutes a correctness 
criterion for schema dominance. We presented a set of 
conditions in the form of propositions that are 
sufficient for this to take place. In exploration of this 
problem, we find that not only the normal ‘random 
event’ level but also the ‘particulars of random 
events’ level must be involved. We showed how our 
definitions, propositions and lemma would work on 
conventional normalization problems and the schema 

A ≡ A A’ 
σA’ 

a) Node creation 

A ≡ A 

σA 

b) Edge creation 

A ≤ A A’ 
σA’ 

c) Edge deletion 

A’
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structural transformations that are ‘information  
capacity preserving’ put forward in [10]. 
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