
Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition 
Copyright © 2002, American Society for Engineering Education 

Session 3220 
 

 
A Course in Programming and Computer Graphics 

 Using Visual C++ 
 
 

R.W. Mayne 
 

Professor 
Department of Mechanical and Aerospace Engineering 

University at Buffalo 
State University of New York 

Buffalo, NY 14260 
Phone: 716-645-2593 ext. 2254 

Fax: 716-645-3875 
Email: mayne@eng.buffalo.edu 

 
 
 
 
Abstract 
 

This paper describes a course in computer graphics for seniors and graduate students in 
mechanical and aerospace engineering at the University at Buffalo. The course involves 3D 
graphics theory but also focuses on programming for computer graphics. It is taught in a PC 
Windows environment with Microsoft’s Visual C++.  

The paper provides a brief history of the course and its relationship to our other computer 
aided design offerings. We discuss our strategy for introducing students to programming with 
VC++ including initial object-oriented exercises without graphics and then programming 
approaches for basic 2D graphics operations in windows. This is followed by an implementation 
of 3D graphics programming using an object-oriented format and, lastly, our approach to 
introducing OpenGL for the PC.  
 
Introduction 
 

For many years, we have taught a computer graphics course for seniors and graduate 
students in mechanical and aerospace engineering at the University at Buffalo. This course is one 
in our series of courses in computer aided design and computer graphics. Other courses in the 
series include a mechanical design course using AutoCad and ProEngineer for design (recently 
made a requirement for BSME students), a second ProEngineer course considering finite 
elements, mechanisms and manufacturing, and a virtual reality graphics programming course 
based on workstation programming and including World Tool Kit. The course we are discussing 
here is normally a prerequisite for the virtual reality course. 

Our computer graphics coursework originated in the days of Fortran programming and 
Tektronix “green screen” computer terminals well before the popularity of CAD packages. This 
introductory course to computer graphics programming has evolved through various 

P
age 7.37.1



Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition 
Copyright © 2002, American Society for Engineering Education 

instructors, and hardware and software environments including UNIX and DOS. In recent years 
we have made a commitment to windows programming on personal computers using Microsoft’s 
Visual C++. 
  The VC++ programming environment has proven to be very satisfactory. Students who 
have very little computer science background are able to adapt to C++ object-oriented 
programming and to the Application Wizard of VC++. They are able to do their programming in 
our department PC laboratories, they can take their work home easily using their own computers, 
and the programs that they produce look very much like the commercial programs they use 
routinely. At many points in the course there is the common reaction: “so this is the way it’s 
done”. The course develops specific programming and theoretical skills in computer graphics 
which transfer to any computing environment. But, by exposing students to PC windows 
programming, it also considerably broadens their computing skills. 
 This paper summarizes the nature of our computer graphics course and the various topics 
that we cover. It also is intended to provide some insight into Visual C++ programming and the 
way that it can be integrated into a computer graphics course. 
 
Assumptions and Basics 
 
 This course is a cross-listed course offered at the undergraduate level (MAE 473) and at 
the graduate level (MAE 573) under the title Computer Graphics for CAD. Except for an 
occasional special case, the programming backgrounds of the undergraduates and graduates are 
much the same. Typically they will have had an exposure to C programming (probably as 
freshmen or sophomores) but have not done much programming recently. So we begin by 
reviewing C programming at the same time as the Visual C++ environment is introduced. The 
Applications Wizard of VC++ is used for windows programming in the course to facilitate 
programming without requiring  students to become involved in the complete nitty-gritty of 
windows details. However, we initially use the VC++ “Console Application” format. In this form, 
when a compiled and linked program is executed, it produces a DOS-like window with an 
alphanumeric display without graphics capability. The programming, however, is quite simple. It 
can be done in a single file within the Integrated Development Environment of VC++. Code can 
be conveniently edited, compiled and linked. And program execution can be easily performed 
during program development without leaving the environment. 
 The Console Application format is very much appropriate for starting out in Visual C++. 
It provides the place to revisit arrays and pointers (where students usually need work) and to 
discuss object-oriented programming (which students only vaguely understand). This is the way 
Horton’s¹ popular Visual C++ book begins. Other approaches, for example Gurewich and 
Gurewich², that move quickly into windows programming without first developing these concepts 
tend to be less suitable for engineering applications. Two of our example programs using objects 
are shown in Figures 1 and 2. These are the DOS windows of the Console Application format. 
The first of the programs in Figure 1 shows outputs from a “rectangles class” and a “circles class” 
by using appropriate member functions. In the program of Figure 2, the rectangles and circles 
classes are derived from a “TwoDobjects class”. Virtual functions are used here so that an array 
of TwoDobjects containing both the rectangle and circle objects can be manipulated easily. 
Member functions designed for rectangles or circles are automatically called as needed for 
specific objects. 
 P

age 7.37.2



Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition 
Copyright © 2002, American Society for Engineering Education 

Windows Programming Concepts 
 
 The windows programming world is, of course, highly dependent on object-oriented 
methodology not only for programming but for basic organization it self. Writing programs for 
windows involves an incredible amount of detail, most of which is provided by functions and 
organization built into the compiler and the operating system. Like many Microsoft products, 
nearly everything is available in VC++ but in such abundance that it can be hard to find the most 
directly useful and interesting tools for an application. In this course we have tried to focus on 
those things which are most basic for engineering graphics and calculations. As students learn 
these basic tools and understand the VC++ environment they can move rather easily into other 
VC++ capabilities. 

We have used the VC++ AppWizard executable form for our windows programs 
including the Document/View architecture. In this format, VC++ creates a program/project 
structure which serves as a template for the programmer’s application. If the six step AppWizard 
start up process is followed, accepting all defaults for creating an AppWizard project, twenty five 
files of C++ code are created by the AppWizard alone. Without any added code, the resulting 
project can be compiled and linked producing additional files including an executable file. When 
executed, it will create a normal looking but blank window on the screen where nothing happens. 
Basically all of the VC++ prewritten code is used to put the blank window on the screen and 
provide the resources so that application programming can begin. In many ways, this makes 
programming for windows much more like writing a part of someone else’s program rather than 
writing your own. Of course, plenty of work must still be done, but it requires an understanding of 
the environment and how to work within it.  

The Document/View architecture of the AppWizard provides a program organization 
where data is considered to be part of a “document”. Most programming takes place in two C++ 
classes. One class is a Document class for storing and manipulating the data in the document. 
The other class is a View class for visually displaying the document data and for handling 
interactions with a program user. The Document and View classes are both derived from higher 
level classes and have access to many convenient functions, classes and resources through the 
Visual C++ libraries and the Microsoft Foundation Classes (MFC). These include the graphics 
capabilities of OpenGL and Microsoft’s DirectX which both facilitate software/hardware 
interaction through advanced graphics cards. 
 
Beginning Windows Programming 
 
 The View class of a project contains the functions designed to place information on the 
screen and to interact with the user. The “OnDraw” function of the View class is called by the 
windows operating system as a program begins execution and also every time that it needs to 
update or redraw the program window. Figure 3 shows the window for our first windows 
program called “FirstWin”. It contains both graphics and text drawn by the OnDraw function 
listed below. OnDraw is a member function of the View class. In the FirstWin program, the 
View class was automatically given the specific name CFirstWinView by the VC++ AppWizard 
as shown in line 01 (the prefix “C” simply means “class”). The OnDraw function was also 
prepared automatically in template form by the AppWizard and originally consisted of lines 01 – 
05 and line 17 below. Line 05 provides the cue for the programmer to add his/her own code. We 
have added lines 06 – 16 and these are the only lines of code that have been added anywhere in P

age 7.37.3



Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition 
Copyright © 2002, American Society for Engineering Education 

the FirstWin program. In the code, line 01 indicates that the pointer pDC is passed into the 
OnDraw function as it is called by the windows operating system. This pointer identifies the 
device context (i.e., the current window) where OnDraw should be drawing. Line 08 uses the 
pDC pointer to activate the TextOut function, placing "This is a Box and a Dot!" in the window 
beginning 25 pixels from the top of the window and 50 pixels from the left edge. Line 07 
declares a CString object called “Buffer” and line 09 formats Buffer to contain some text and the 
two integer variables that define the box center. Line 10 again uses the pointer pDC to identify 
the window and then writes Buffer just below the box and dot phrase. Line 11 sets the pixel at 
the box center and lines 12 – 16 actually draw the box. 
  

01 void CFirstWinView::OnDraw(CDC* pDC) 
02 { 
03  CFirstWinDoc* pDoc = GetDocument(); 
04  ASSERT_VALID(pDoc); 
05  // TODO: add draw code for native data here 
06  int CenterX = 300, CenterY =50; 
07  CString Buffer; 
08  pDC->TextOut(50,25,"This is a Box and a Dot!"); 
09  Buffer.Format("The Dot is at %d, %d",CenterX, CenterY); 
10  pDC->TextOut(50,50,Buffer); 
11  pDC->SetPixel(CenterX,CenterY,0); 
12  pDC->MoveTo(CenterX - 25, CenterY - 25); 
13  pDC->LineTo  (CenterX + 25, CenterY - 25); 
14  pDC->LineTo  (CenterX + 25, CenterY + 25); 
15  pDC->LineTo  (CenterX - 25, CenterY + 25); 
16  pDC->LineTo  (CenterX - 25, CenterY - 25); 
17 } 

 
 The OnDraw function above draws the window shown in Figure 3 very nicely but does 
not do anything else. In order to interact with a user, windows messages (which result, for 
example, when a key is pressed or a mouse is clicked) must be processed or command functions 
must be developed to respond to clicks on the menu or tool bars. The appropriate functions can be 
created through the VC++ ClassWizard and can be automatically introduced into the View class 
or Document class as desired. The function below is shown as an example of a mouse message 
handler in a simple drawing program called SimpleDraw. The View class in this case is called 
CSimpleDrawView and this particular function (called OnLButtonDown) will be executed 
whenever a left mouse click is received in the SimpleDraw window. Lines 01 – 03 and line 14 
were furnished by VC++ as the function was created. Lines 04 – 13 contain the code which has 
been added. 

 
01 void CSimpleDrawView::OnLButtonDown(UINT nFlags, CPoint point)  
02 { 
03  // TODO: Add your message handler code here and/or call default 
04  CSimpleDrawDoc* pDoc = GetDocument(); 
05  CClientDC aDC(this); 
06  aDC.SelectObject(&m_BluePen); P

age 7.37.4



Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition 
Copyright © 2002, American Society for Engineering Education 

07  int i = pDoc->NumLines; 
08  aDC.MoveTo(pDoc->FPoint[i]); 
09  aDC.LineTo(point); 
10  pDoc->LPoint[i] = point; 
11  pDoc->FPoint[i+1] = point; 
12  pDoc->NumLines++; 
13  CView::OnLButtonDown(nFlags, point); 
14 } 
 

Line 04 obtains a pointer pDoc to the “document” that is being used to store data for the drawing 
being made. Line 05 associates the “client device context” aDC with the current window. Line 06 
gets a blue pen ready for drawing. Line 07 uses the document pointer to find the current number 
of lines in the drawing. Line 08 moves to the first point on the current line (already stored in the 
document).  Line 09 draws a line to the point just clicked. The variable “point” takes on the 
mouse cursor position when the mouse is clicked as shown in the argument list of line 01. Then, 
lines 10 and 11 store the new point in the document both as the last point on the current line and 
also as the first point on the next line. Finally, line 12 increments the line counter in the 
document. In this arrangement, the OnDraw function of the SimpleDraw program is coded so that 
it redraws the whole set of lines from first to last when it is called by Windows as a resizing, 
minimizing or adjustment of the program window takes place.  

Figure 4 is an example of a mouse drawing program that has been extended to 
demonstrate the development of specialized menu bar and tool bar items. The VC++ resource 
package makes each of these items readily definable and allows them to be associated with 
functions that will be activated by clicking on them. In this program, mouse clicks on menu items 
and drop down menu items activate functions which can change parameter values to adjust line 
color, line thickness, etc. The tool bar items are normally defined to act as shortcuts to the drop 
down menu items. 

 
Further into Windows 
 
 While the programming above becomes rapidly intricate, students are able to understand 
the concepts very well. Although it’s not practical to have them program completely from 
scratch, student assignments have been typically defined to begin with an example program from 
the wide set of examples that we have been developing. For 2D graphics, we have often asked 
students to develop a mini CAD system including circles, arcs, rubber banding, and even 
including snap-to-grid operations for accurate drawings. Saving data to file is also included using 
the Serialize function from the Document class which provides access to the normal windows 
filing process. Programs similar to Figure 5 might often result from student projects. This 
contains adjustable snap-to-grid, a multidocument format and a customized file extension As 
shown in Figure 5, there are two open documents (2Sq.snp is the active one) and the file window 
is Open ready to give access to another file. 
 It is also possible to expand student horizons by including functions available for their 
use in programming. In the 2D graphics world, a possibility that we will explore in the next 
offering of MAE 473/573 will be the inclusion of classes and functions for drawing graphs as 
part of the example program files available to students. We currently have a basic 2D curve 
plotting function as well as a color contour plotter to use, for example, in plotting temperature or P

age 7.37.5



Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition 
Copyright © 2002, American Society for Engineering Education 

stress distributions. Figure 6 contains representative graphs for an end-loaded beam. The beam 
sketch was created with a version of the mouse drawing program. The plot of beam tensile stress 
and the stress contour plot were drawn in the View class OnDraw function using the graph 
plotting tools and based on data generated by program code in the OnNewDocument function of 
the Document class. This function executes as the program starts. 
 
Graphics in 3D 

 
One difficulty in teaching computer graphics is to decide how much canned software to 

make available to students and how much individual programming is required by students. If 
students are required to program everything from scratch, too much effort is required even for 
modestly interesting programs. On the other hand, if too many “black box” functions are used, it 
is possible for students to create impressive programs while avoiding important programming 
issues and theoretical details of computer graphics such as those in Foley and van Dam³.  

In dealing with 3D graphics we have made a successful compromise by making basic 3D 
classes and functions available to students. The complete coding for these classes and functions 
is contained in example programs and is used for in-class discussion of theory and programming. 
Students are also asked, as part of their programming projects, to modify and extend the code in 
the existing examples. These modifications have included the removal of hidden lines in a 
projection algorithm, the improvement of 3D rotation functions, and the creation of 3D solid 
representations for extrusions and bodies of revolution. The object-oriented programming 
structure of C++ used in the examples makes it quite easy to focus on particular parts of the 
program and consider the applicable theory. 

To generate 3D solid objects, we have used a series of derived classes to represent the 
object. The first class is the BasePoint class which contains the global coordinates of the object 
in three dimensions. The second class is the Points class which contains all of the vertices 
representing the object in local coordinates (relative to the BasePoint). The third class is the 
Polygons class which defines each of the polygons forming the solid in terms of the vertices. 
Finally, the Shapes class is used to describe any specific shape by defining its base point, vertices 
and polygons. A shape can be easily translated by changing its base point, it can be rotated by 
rotating its vertices and it can be displayed by projecting and drawing its polygons. The code 
fragment below is taken from the declaration of the Shapes class to provide an indication of the 
organization. In line 01 you can see that Shapes is derived from Polygons (which is derived from 
Points and BasePoint). Line 03 is the empty Shapes constructor function and lines 04, 05 and 06 
show the argument list for the function which actually defines an object shape. The base point 
coordinates are included in the argument list, the number of vertices (NPts), pointers to the 
vertex coordinates, number of polygons, number of points per polygon, etc. Coding is not shown 
 
01 class Shapes : Polygons { 
02 public: 
03 Shapes(){}; 
04  void Shapes::AdjustShape (double Xbp, double Ybp, double Zbp, int NPts, 
05   double* ptX, double* ptY, double* ptZ, int NPolys, int* ptNPPts, 
06   int* ptMPPts){……….} 
07  void Shapes::RotateX(double thetaX){ 
08  Points::PRotateX(thetaX);} P

age 7.37.6



Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition 
Copyright © 2002, American Society for Engineering Education 

09  void Shapes::RotateY(double thetaY){ 
10  Points::PRotateY(thetaY);} 
11  void Shapes::RotateZ(double thetaZ){ 
12  Points::PRotateZ(thetaZ);} 
13  void Shapes::Move(double nx, double ny, double nz){ 
14  Basepoint::MoveBP(dx,dy,dz);} 
15  void Shapes::Dmove(double dx, double dy, double dz){ 
16  Basepoint::DmoveBP(nx,ny,nz);} 
17  void Shapes::Show(CDC* aDC){ 
18  Polygons::Trace(aDC); } 

  
for this function. However, lines 07 – 18 do show complete functions for the rest of the Shapes 
class. For example, lines 07 and 08 will rotate a shape about an X axis through its base point by 
simply calling the Points function which rotates all of its vertices. Lines 13 and 14 can move a 
shape in three dimensions by calling the BasePoint function which changes the base point 
coordinates. The Show function of lines 17 and 18 displays the shape on the screen by calling the 
Polygons function which carries out the drawing of each polygon. 
 This program structure has proven to be very robust and useful. Projection algorithms can 
be studied by focusing on the Polygons function “Trace”. This has been done for hidden line 
removal and for stereo projection. Higher level shape constructors have been easily written for 
cylinders and bodies of revolution. And a Bezier curve class has been written which makes use 
of the BasePoint and Points classes. Students can explore the coding in particular functions and 
assignments can be conveniently made to modify or improve the code. Figure 7 shows some 
simple 3D projections made from the basic programs. Figure 8 shows a display from a version 
with hidden line removal and Bezier curve capability. 
 
OpenGL 
 
 For advanced level graphics on a personal computer, it is ultimately necessary to use 
OpenGL (Silicon Graphics) or DirectX (Microsoft). These software packages operate in 
conjunction with compatible graphics cards which allow hardware implementation of graphics 
functions. The software will let the hardware function at its limit and fill in with software 
implementation where necessary. We have been successful in incorporating OpenGL capability 
into this course and into our set of program examples for the course. We have found the official 
OpenGL guide 4  to be useful for OpenGL programming issues. The SuperBible 5 and the tutorial 
by Oursland 6  are especially useful for working with OpenGL in a PC environment. These later 
references offer strategies for inserting OpenGL graphics into the AppWizard. Interestingly it 
has been possible to adapt our object-oriented 3D graphics discussed above almost directly into 
OpenGL graphics and achieve impressively quick rendering. We will not attempt to discuss the 
implementation detail here. But, with modest modification of our Polygon “Trace” function, 
OpenGL commands can be used directly. The overall result is that 3D shapes can be easily 
generated, moved, rotated and displayed with our object-oriented programming tools. The higher 
level OpenGL programming tends to control viewing position and angle, lighting, background 
color, etc. 
 Figure 9 shows a first OpenGL program with the cylinder and box of Figure 7. In Figure 
9, the OpenGL shading quality and ability to remove hidden surfaces by depth buffering is very P

age 7.37.7



Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition 
Copyright © 2002, American Society for Engineering Education 

clear. With this capability it is reasonably easy to produce quality graphics and animations. The 
driving simulator of Figure 10 is an example discussed in class and which students can modify 
for their own projects. The number on the car hood in Figure 10 is an example of a student 
modification where the texture mapping necessary to place the number on the hood was 
introduced as part of a final project for the course. The roller coaster animation of Figure 11 is 
another example of a student course project. In this animation, a six car roller coaster follows the 
track and can be viewed from adjustable positions including the front seat. The robot of Figure 
12 is a further example. It can be moved in steps or animated and can pick up the small object 
shown near its gripper. 

 
Conclusions 
 

This paper has presented an approach to teaching computer graphics in a PC Windows 
environment. The course has been quite successful and of interest to both seniors and graduate 
students. It provides an exposure to the process of windows programming in general and into the 
operation of both CAD and computer animation programs. In addition, the course serves the 
purpose of preparing students for further study and research in computer graphics. 

The paper is also intended to provide some insights into the process of Visual C++ 
programming and an indication of programming approaches for basic two-D graphics operations. 
A strategy for using object-oriented 3D graphics in instruction has also been described. This 
process is attractive for being able to allow students to inspect and modify functions which 
service different aspects of creation, manipulation and display of 3D representations. The 
strategy extends directly into the higher-level graphics capabilities of OpenGL where significant 
animations and simulations can be conveniently developed. 

In terms of scheduling - students typically complete the 2D graphics project about half 
way through the course. Lecturing on 3D graphics begins at about the 40 percent point. Two 3D 
graphics projects are also required. One is a specifically defined project performed without 
OpenGL and one is a student selected project using OpenGL. 
 
 
 
 
Bibliography 
 
1. Horton, I., Beginning Visual C++ 6, Wrox Press Ltd, Birmingham, UK, 1998. 
2. Gurewich, O. and Gurewich, N., Teach Yourself Visual C++ in 21 Days, Fourth Edition, 

Sams Publishing, 1997. 
3. Foley, J.D., et al., Computer Graphics Principles and Practice, Second Edition, Addison 

Wesley, 1990. 
4. Wright, R.S. and Sweet, M., OpenGL SuperBible, Second Edition, Waite Group Press, 2000. 
5. Woo, M., et al., OpenGL Programming Guide, Third Edition, Addison Wesley, 1999. 
6. Oursland, N.A., Using OpenGL in Visual C++, www.DevCentral.Iftech.com. 
 
 
 

P
age 7.37.8



Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition 
Copyright © 2002, American Society for Engineering Education 

 
 
 

Figure 1. Object-Oriented Concepts 

Figure 2. Object-Oriented with Pointers and Virtual Functions 

P
age 7.37.9



Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition 
Copyright © 2002, American Society for Engineering Education 

 
 

 

Figure 4. Drawing with the Mouse and 
Creating Menu and Toolbar Items 

Figure 3. First Graphics in a Window 

P
age 7.37.10



Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition 
Copyright © 2002, American Society for Engineering Education 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 6. Mouse Drawn Sketch with Program Drawn Graphs 

Figure 5. Drawing in a MultiWindow Environment 

P
age 7.37.11



Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition 
Copyright © 2002, American Society for Engineering Education 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 8. A Bezier Curve and Removed Hidden Lines 

Figure 7. Simple 3D Projections 

P
age 7.37.12



Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition 
Copyright © 2002, American Society for Engineering Education 

 
 

 
 

Figure 9. Starting with OpenGL 

Figure 10. Basics of Driving Simulation 

P
age 7.37.13



Proceedings of the 2002 American Society for Engineering Education Annual Conference & Exposition 
Copyright © 2002, American Society for Engineering Education 

 
 

Figure 12. Student Robot Project 

Figure 11. Student Roller Coaster Project 

P
age 7.37.14


