
1

Company Confidential

1

A Course on

Object Oriented Concepts

Prepared for: *Stars*

New Horizons Certified Professional

Course

2

Course Objective

• To Explain the principles and concepts of OOPS

• To understand to manage complex scenarios using OOPS

• To introduce UML diagrams for representing Object

Oriented Design

• To understand the differences between Structured

programming approach and Object Oriented Programming

approach.

• To understand best practices in Object oriented design

At the end of this course, you will

• understand the inherent complexity involved in software systems and will gain the knowledge of

handling such complex software systems

• be able to differentiate between the two programming styles – Structured Programming and

Object Oriented Programming

• learn the different features of Object Oriented Technology

3

Course Plan

• Comparison of various programming techniques

• Introduction to Object Oriented Concepts

• What is an Object

• Abstraction, Encapsulation, Message Passing

• Class, Access Specifiers, Examples

• UML Class diagrams

Manage Software Complexity

• Different approaches for solving a problem which is complex in nature

Why Object Orientation to solve a complex problem ?

Differentiate between Structured programming and Object Oriented Programming approach

To discuss the different features of Object Oriented Technology

4

Course Plan

• Advanced Object Oriented Concepts

• Relationships

• Inheritance

• Abstract Classes

• Polymorphism

• Object Oriented Design Methodology

• Trends in OO Technology

• Case Study and Solution

5

Software Complexity

• The following are some reasons for Software

Complexity:

– Too Many Business rules (Functional Requirements)

– Non-Functional Requirements like

• Usability

• Performance

• Cost

• Reliability

• Distributed nature

• Portability

– Complexity due to development process

William James’ definition in the slide above points at handling complexity. We need to use a

technique that will reduce the amount of facts we have to deal with simultaneously. Comprehension

is not automatic. The time we need to comprehend something is inversely proportional to the number

of things we are presented with and to the relevance of those items.

• Example 1:

• Physician find the facts about the patient

• Normally when a patient goes for a general check-up, the Physician on looking at

the previous history of the patient, will understand the situation much faster than if he

has to go for a full investigation.

• The physician is trying to avoid the irrelevant data items so that he can come to

the root cause as soon as possible.

• Example 2:

• Take an entity as BOOK. Let us try to find out the different characteristics of the same

entity from the perspective of the viewer.

• Let us take 2 cases where the same entity BOOK can be viewed differently:

• Library System

• In this case we will be focusing on Access Number, Book Name, Author

Name

• Shopkeeper

• In this case we will be focusing on Item Number, Item Name, Price,

Quantity On Hand.

6

Ways of handling Software Complexity

�Top Down

“Divide and Rule”

“Algorithmic Decomposition

�Bottom Up

Emphasizing only on required details.

Ignoring unnecessary details

7

Programming Techniques

• Unstructured

– Sequence of instructions, which manipulated global data

– As size increases, code becomes more complex to maintain

• Procedural Programming

– Brought in Modularity in coding, enhancing maintainability

– Common functionalities grouped into separate modules

– Complexity made manageable by hiding complexity inside

functions (Concept of APIs)

– Introduced the concept of structures (also known as data

structures)

8

Programming Techniques

• Object Oriented Programming

– Data structures combined with relevant functions to create

reusable objects

– Focus of this course

9

Structured Programming (Procedure-Oriented)

• The structured programming paradigm is:

• Decide which procedure you want

• Use the best algorithm you can find

• Here the focus is on the algorithm required to

perform the desired computation

• Complexity hiding is also one of the objectives in

structured programming

• In this style of programming, importance is given

to procedure (logic) and not to the data on which

these procedures operate

•Key points in structured programming

• Focus is on process rather than on data

• It is best suited for a simple solution

• Design approach is “Top-Down” where the entire solution is divided into smaller units

(Functions and procedures)

• All these smaller units need to work on a data item to return the result

• For this reason the data items used are Global

• Modules are tightly coupled because of which the same module cannot be reused in

another scenario.

• Coupling :

• Coupling refers to the manner and degree of interdependence between software

modules. (IEEE)

• Coupling applies to any relationship between software components.

• Can be defined as mutual dependence of methods. Low coupling is good for

design.

• What is the problem if the modules are tightly coupled?

• If the modules are tightly coupled, it makes the system complex as the module is

tough to understand. Also it is hard to change or correct such a module by itself if it

is highly interrelated with another module.

10

Limitations of Structured Programming

• Modules are tightly coupled

• Scope of reusability is limited

• As the code size grows, maintaining code

becomes difficult

• Any major changes required to functionality later

may result in a lot of changes in code

11

Limitations of Structured Programming

• Large programs written using procedural

approach have a tendency of turning into

‘Spaghetti code’

• Spaghetti code: Refers to code where the flow

becomes very convoluted, specially when there are

multiple developers working on same code. This

happens due to frequent modification of code without

analyzing the impact

Structured Programming becomes difficult to manage as the complexity increases the code paths

become complex.

• Procedural method for developing information systems

• works fine for automating routine processes like processing payroll checks.

• works well in cases where data and applications are separate.

• works well in cases where data comes in the start of the program, flows through a number

of predefined procedures, and exits at the end.

• Structured Programming fails to address the complexities and needs of interactive environments

where the flow control is not linear. The program flow dictates the flow of control to the user.

• Object Oriented Technology promises to ease the software complexity by providing a fundamental

change to the way information systems are developed.

• Top-Down Approach:

• Programmer should break larger pieces of code into shorter subroutines that are small

enough to be understood easily.

12

What is an Object ?

• An object

• Is an unique, identifiable, self-contained entity that

contains attributes and behaviors.

• A software object is modeled after real world

objects

• A software object is a representative of the real world object

• Can be viewed as a "black box" which receives and

sends messages

– Examples

• Car

• Telephone

• Pen etc

As procedures are used to build structured program, objects are the building blocks of object

oriented programs

•A primary rule of object-oriented programming is - as the user of an object, you would never need

to know what is there inside the object!

•These characteristics represent a pure approach to object-oriented programming:

•Every object contain some member variables and member methods which work upon the

member variable.

•A program is collection of objects, which needs to interact among them to do a process. The

interaction of objects is also called as message passing.

•Every object has a type as objects instantiated from a class, Here class is considered as a

type.

•Objects have state, behavior, and identity

•Every object:

Contains data: The data stores information that describes the state of the object.

Has a set of defined behavior. This behavior consist of all the things that the object

"knows" how to do. These are the methods present inside the object.

Has an individual identity. Each object is different from the other object even if they

are instantiated from the same class.

13

State and Behavior

• Example: Car object

– State

• Current Speed

• Current Gear

• Engine State (Running,

Not Running)

– Behavior (Acts on the object

and changes state)

• Slow down

• Accelerate

• Stop

• Switch Off Engine

• Start Engine

• Example: Dog Object

– State

• Color

• Breed

• Activity (Barking/Not

barking)

• Tail Activity

(Wagging/Not

Wagging)

– Behavior

• Bark

• Wag Tail

• Eat

14

Advantages Of Object Orientation

• Modularity: Since the whole system is being modeled

as classes and various methods are divided according

to the respective functionalities in respective classes

modularity increases.

• Deferred Commitment: Since classes can be

modified without modifying the actual code where the

classes are being used, flexibility towards the

commitment increases (Easier maintenance). The

internal workings of an object can be redefined without

changing other parts of the system.

The main advantages of object orientation are,

�The main advantage of an OO system is that the class tree is dynamic and can grow.

The main Advantage of Object orientation is the enhancement that can be made

without making changes in the previous written code.

I.e we can add new sub-system altogether without affecting already made system in

place.

�You function as a developer in an OO system is to foster the growth of the class tree by

defining new, more specialized classes to perform the tasks your applications require.

what our role as a developer is that we have to build new classes using previously

build classes thus reusing the system as much as possible which saves time, decreases cost and

takes less time to build the software.

15

Advantages Of Object Orientation

• Reusability: Since defining classes through

inheritance helps in reusability thus faster

production.

• Higher Quality: Since deriving classes from existing

classes which are working successfully.

• Reduced cost: Because of reusability

• Increased Scalability: Easier to develop large

systems from well tested smaller systems.

16

What is a Class ?

• A Class

• Is a blue print used to create objects.

• Is a software template that defines the methods and

variables to be included in a particular kind of Object.

• Examples :

• Animal, Human being, Automobiles, Bank Account,

Customer

• We never actually write the code for an object: what you write is the classes that is used to make

objects..

• Classes increase the efficiency and power of the object by:

• Classifying objects

• Relating objects to one another

• Providing a mechanism to define and manage objects

17

Class Contains ..
• State (Member variables)

• The internal state of the object

represented by values stored in

member variables

• Variables defined inside a class form

the State of the class

• Not exposed to external world

Behavior (Member Methods)

• Behavior exhibited by the class to

external world

• Functions defined inside the class

form the behavior of the class

• Exposed to external world

Class ‘Car’

• Every object belongs to (is an instance of) a class.

• An object may have fields, or variables

• The class describes those fields with the help of member data.

• An object may have methods

• The class describes those methods with the help of member methods.

18

Example: Objects and Classes

Daria

R002

Jane

R003

Brittany

R004

Jodie

R001

classobject

Class Student

Name

Regn_No

setName()

setRegnNo()

CalcMarks()

19

Abstraction

• The process of forming general and relevant concepts from

a more complex scenario

– Helps simplify the understanding and using of any complex system

– Hide information that is not relevant

– Simplifies by comparing to something similar in real world

– Example: one doesn’t have to understand how the engine works to

drive a car

20

Abstraction Example
(Making of a Computer chip)

Diode

Capacitor

Resistor

Transistor

MOSFET

Basic Electronic

Components

AND Gate

Inverter

Buffer

XOR Gate

OR Gate

Boolean Logic Gates

built using basic

electronic components

(1st Level abstraction)

A

H

Q
1

Q
8

ENB

Register

Digital circuits built

using Boolean logic

gates

(2nd Level abstraction)

U/D

Reset

B
1

B
8

Carry out

ENB

Binary Counter

Central Processing unit -

Built using complex

digital circuits

(3rd level abstraction)

21

Encapsulation

• Encapsulate = “En” + “Capsulate”

– “En” = “In a”

– Encapsulate = “In a Capsule”

• Encapsulation means localization of information of

knowledge within an object.

• Encapsulation also means “Information hiding”

– "The process of hiding all the details of an object that do

not contribute to its essential characteristics; typically, the

structure of an object is hidden, as well as the

implementation of its methods. The terms information

hiding and encapsulation are usually interchangeable.“

Example: A car’s dashboard hides the complexity and internal

workings of its engine.

22

Encapsulation (Data hiding)

• Process of hiding the members from outside the

class

• Implemented using the concept of access

specifiers

• public, private etc.

• Typically in a class

• State is private (not accessible externally)

• Behavior is public (accessible externally)

• By enforcing this restriction, Object oriented

programming allows isolation of complexity in a

manageable way

• This is also called as information hiding.

• IEEE defines Information Hiding as :

• A software development technique in which each module’s interfaces reveal as little as

possible about the module’s inner working and other modules are prevented from using

information about the module that is not in the module’s interface specification.

23

Message Passing

• An object by itself may not be very

useful

• Useful work happens when one object

invokes methods on other objects

– Accessing data members of another object

directly is not a good programming practice

• Example:

– A car by itself is not capable of any activity

– A person interacts with the car using

steering wheel, gauges on dashboard and

various pedals

– This interaction between objects result in

‘change of state’ achieving something useful

24

Procedural versus Object Oriented Programming

Object1

Methods

Data

Object2

Methods

Data

Object3

Methods

Data

Object4

Methods

Data
Invokes

In
vo

ke
s

Function 1

Local Data

Function 2

Local Data

Function 3

Local Data

Global Data

Operates on

Operates on

Invokes

Invokes

Calls in Procedural Language Message passing between Objects

• In procedural programming, functions operate based on either local

or global data

• In Object oriented programming, Objects exist and objects interact

with other objects (message passing)

25

Access specifiers in a class

• Access specifiers specify the accessibility of member

variables and member methods

• Private: Accessible only within the class

• Public: Accessible externally (and also within the class)

• Protected: Similar to private under normal

circumstances.

• Note: Some OO language uses more access specifiers

also.

– Example: Java supports ‘package’

26

UML and UML Class Diagrams

• Unified Modeling language (UML) is a set of diagrams

which pictorially represent object oriented design

• UML is extensively used by software engineers to

communicate design

• In OO Design

– Pictures are easier to understand than textual

explanation

• UML Class diagram is a technique to represent classes

and their relationships pictorially

27

Representing a class in UML Class

Diagrams

+getName() : string

+getAge() : int

+getEmployeeNumber() : int

+getBasicSalary() : float

+getAllowances() : float

+getTotalSalary() : float

-name : string

-age : int

-employeeNumber : int

-basicSalary : float

-allowances : float

Employee

UML Class Diagram Representation of

Employee class

Class name

Member

Variables

Member

Functions

• Consider an Employee class
• Notations in UML

– ‘+’ before a member

indicates ‘public’

– ‘-’ before a member

indicates ‘private’

– ‘#’ before a member

indicates ‘protected)

• Many more notations

exist. Will be covered

later

Here, you need to understand the various visibility labels (Access specifier) supported by different

OO Languages.

The purpose of protected access specifier is discussed later.

28

Relationships

• Different types of relationships can exist

between classes

• Identifying relationships helps design the objects

better

– Analogous to relations between entities in RDBMS

design

– (Entity Relationship Diagram)

• There are 3 types of relationships

– Is-A (or Kind-Of)

– Has-A (or Part-Of)

– Uses-A

29

Relationships – Case Study – 1/2

• To understand

relationships, let us

consider a case study of a

banking software

• Global Commerce Bank

offers different types of

loans

– Housing Loan

• Long Term (More than 5

years)

• Fixed or Floating interest

option

• Documents and details of

property to be mortgaged

– Business Loan

• Short and Long Term

• Fixed or Floating interest

option

• Special interest rate can be

approved by the Bank

Manager

Floating Interest Rate: For some types of loans, banks offer interest rate which

keeps changing with time based on the economic situation.

Moratorium Period: Lead time after which the repayment of loan starts in case of

large loans.

30

Relationships – Case Study – 1/2

– Consumer Loan

• Short Term (Few

Months)

• Fixed interest rate

– Large Business Loan

• Short and Long Term

• Fixed or Floating interest

option

• Special interest rate can be

approved by the Bank

Manager

• Moratorium period for

repayment

Floating Interest Rate: For some types of loans, banks offer interest rate which

keeps changing with time based on the economic situation.

Moratorium Period: Lead time after which the repayment of loan starts in case of

large loans.

31

Relationships identified in

the case study

• Is-A Relationship

(Inheritance)
– A class is similar to another

class

– Class is a different type of

another class

• Has-A Relationship

(Aggregation)

– Class contains another class

(as member)

– Another class is part of the

class

• Uses-A Relationship

(Association)
– Loosely coupled relationship

– A class interacts with another

class

Housing Loan Loan
Is-A

Personal Loan

Is-A

Housing Loan
Property Details

(Details of property)
Address

Has-A Has-A

Part-Of Part-Of

LoanAdvisor Loan
Uses-A

32

Has-A Relationship - Aggregation

• class HousingLoan has ‘PropertyDetails’ as a member

variable

• class PropertyDetails has ‘Address’ as a member variable

– Address is a generic class which can store any address (address of

a property or address of a person etc)

– Has-A relationship is represented with a diamond headed line

in UML

33

Uses-A Relationship - Association

• Objects interacting with other objects. It may

include

– Creation of another type of object

– Method invocation (Message passing) on already

existing object

• Examples:

– LoanAdvisor creates a Loan object for a new loan

– LoanAdvisor invokes a method on Loan object

34

Relationships – Multiplicity of Relationships

One or Many1..*

Zero or Many0..*

Zero or One0..1

Many (More than one

always)

*

One only1

MeaningNotation

Person CreditCard1
0..*

One to Many Association

(Many = one or more)

In a bank, a customer can use one or

more accounts.

One to Many Aggregation

(Many = zero or more)

A person can have zero or more credit

cards.

One to One Aggregation

A car can have only one engine

RepresentationMultiplicity

* Applies only to Has-A and

Uses-A Relationships

35

Inheritance

Types of Inheritance

• Inheritance are of the following types

• Simple or Single Inheritance

• Multi level or Varied Inheritance

• Multiple Inheritance

• Hierarchical Inheritance

• Hybrid Inheritance

• Virtual Inheritance

36

Simple or Single Inheritance

• This a process in which a sub class is derived

from only one superclass.

• a Class Student is derived from a Class Person

Person

Student subclass(derived class)

superclass(base class)
class Person

{ ….. };

class Student : public Person

{

…………

};

visibility mode

37

Multilevel or Varied Inheritance

• The method of deriving a class from another

derived class is known as Multiple or Varied

Inheritance.

• A derived class CS-Student is derived from

another derived class Student.

Person

Student

CS -Student

Class Person

{ ……};

Class Student : public Person

{ ……};

Class CS -Student : public Student

{ …….};

38

Multiple Inheritance

• A class is inheriting features from more than

one super class

• Class Part-time Student is derived from two

base classes, Employee and Student

Employee Student

Part-time Student

Class Employee

{……..};

Class Student

{……..};

Class Part-time Student : public Employee,

public Student

{…….};

39

Hierarchical Inheritance

• Many sub classes are derived from a single base

class

• The two derived classes namely Student and

Employee are derived from a base class Person.

Person

Student Employee

Class Person

{……};

Class Student : public Person

{……};

Class Employee : public Person

{……};

40

Hybrid Inheritance

• In this type, more than one type of inheritance are used

to derive a new sub class

• Multiple and multilevel type of inheritances are used to

derive a class PG-Student

Person

Student

PG - Student

Gate Score

Class Person

{ ……};

Class Student : public Person

{ ……};

Class Gate Score

{…….};

Class PG - Student : public Student

public Gate Score

{………};

41

Virtual Inheritance

• A sub class is derived from two super classes

which in-turn have been derived from another

class.

• The class Part-Time Student is derived from two

super classes namely, Student and Employee.

• These classes in-turn derived from a common

super class Person.

• The class Part-time Student inherits, the features

of Person Class via two separate paths

42

Person

Student Employee

Part-time Student

Virtual Inheritance

Class Person

{……};

Class Student : public Person

{……};

Class Employee : public Person

{……};

Class Part-time Student : public Student,

public Employee

{…….};

43

Is-A Relationship -

Inheritance
• Inheritance refers to a class

replicating some features or

properties from another class

• Inheritance allows definition of

new classes on similar lines of a

base class (Also called parent

or Super class)

• The class which inherits from

another class is called as

‘derived class’

+GetInterestRate() : float

+GetLoanAmount() : double

+GetDuration() : int

+GetCustomerID() : int

+SetDuration()

+SetLoanAmount()

+SetInterestRate()

+SetCustomerID()

-LoanAmount : double

-InterestRate : float

-Duration : int

-CustomerID : int

Loan

+GetInterestType() : char

+SetInterestType()

-InterestType : char

Housing Loan

Wealth

Inherits

Note: Inheritance is

represented by a triangle

head arrow in UML Class

diagrams

44

Is-A Relationship -

Inheritance
• Example: The HousingLoan

class inherits from Loan class

– Need not redefine member

variables and methods defined

in parent class ‘Loan

– Loan � Base Class

– HousingLoan � Derived Class

+GetInterestRate() : float

+GetLoanAmount() : double

+GetDuration() : int

+GetCustomerID() : int

+SetDuration()

+SetLoanAmount()

+SetInterestRate()

+SetCustomerID()

-LoanAmount : double

-InterestRate : float

-Duration : int

-CustomerID : int

Loan

+GetInterestType() : char

+SetInterestType()

-InterestType : char

Housing Loan

Wealth

Inherits

Note: Inheritance is

represented by a triangle

head arrow in UML Class

diagrams

45

protected access specifier

• Protected is similar to private in normal

circumstances

– Access is restricted to only within the class

• Derived classes can also access protected

members

46

Multi-Level Inheritance

• A class can inherit from

another class

– Derived class inherits all the

members of base class

• Another class can inherit from

the derived class

– The new class inherits all the

member of all its ancestor classes

• Example:

– BusinessLoan Inherits from Loan

class

– LargeBusinessLoan Inherits from

BusinessLoan class

+GetInterestRate() : float

+GetLoanAmount() : double

+GetDuration() : int

+GetCustomerID() : int

+SetDuration()

+SetLoanAmount()

+SetInterestRate()

+SetCustomerID()

-LoanAmount : double

-InterestRate : float

-Duration : int

-CustomerID : int

Loan

+GetInterestType() : char

+SetInterestType()

+GetTerm() : char

+SetTerm()

-InterestType : char

-Term : char

BusinessLoan

+GetMoratoriumPeriod() : int

+SetMoratoriumPeriod()

-MoratoriumPeriod : int

LargeBusinessLoan

Data required

for all types

loans

Data additionally

required for

BusinessLoan.

Common

members inherited

from base class

Special type of

BusinessLoan.

Has some more

additional

members

47

Multiple Inheritance (Rarely used)

• Concept of a class inheriting

from more than one base class

• Example: A Hybrid car can

inherit from FuelCar and

BatteryCar

• Note:

– Multiple inheritance is rarely

used because of the

complexities it brings in

– Modern OO languages like

Java and C# don’t support

Multiple Inheritance

48

Advantages and Disadvantages of

inheritance

• Advantages

– Promotes reusability

– Helps in better abstraction, thereby resulting in better

design

– Eliminates duplication of code

• Disadvantages

– Overuse of this concept (in cases where not

necessary) leads to bad design

– Wrong usage of inheritance can lead to code and

design complexity

49

Generalization and Specialization

• To use inheritance

– One has to identify similarities in among different

classes

– Move common data and methods to base class

• Generalization: Process of identifying the

similarities among different classes

• Specialization: Process of creating classes for

specific need from a common base class

50

Generalization and Specialization

- Example

• ‘Loan’ class represents

generalization

– Common data and methods of

all types of loans are in Loan

class

• Derived classes

‘HousingLoan’,

• ‘BusinessLoan’, ‘Personal

Loan’ represent specialization

– Specific functionality has been

achieved by extending the

Loan class

51

Abstract class

• Outlines (sets a blueprint) for behavior of a class

• But does not implement the behavior fully

• Provides method signatures without implementation

• (May or may not implement some methods)

+Draw()

Shape

+Draw()

-...

Line

+Draw()

-...

Rectangle

+Draw()

-...

Circle

+Draw()

-...

Octagon

Abstract class

(Does not implement

Draw function)• Also called Abstract

Base Class

• Abstract class cannot be

instantiated

• The derived class must

implement all the methods

that are not implemented

52

Polymorphism

• Refers to an object’s ability to behave differently

depending on its type

– Poly = ‘many’

– morph = ‘form’

• This characteristic enables making extensions to

a class’s functionality

• Two features of an object which achieve

polymorphism

– Method Overloading (or Function overloading)

– Method Overriding (or Function overriding)

53

Method Overloading

• Practice of using same method name to denote

several different operations

– Some OO languages allow overloading of both

functions and Operators (like +, - etc)

• Example:

– Consider a String class which is a utility class

designed to abstract and simplify string operations

– ‘Append’ functions are overloaded to accept different

types of data

• One Append function appends an integer value to

string, another Append function appends a float value

54

Method Overloading -

Example
class String {class String {class String {class String {

private:private:private:private:

char* char* char* char* m_strm_strm_strm_str;;;;

public:public:public:public:

String (char* String (char* String (char* String (char* strstrstrstr););););

String (int size);String (int size);String (int size);String (int size);

............

............

void Append (int value);void Append (int value);void Append (int value);void Append (int value);

void Append (float value);void Append (float value);void Append (float value);void Append (float value);

void Append (char value);void Append (char value);void Append (char value);void Append (char value);

void Append (String* void Append (String* void Append (String* void Append (String* strstrstrstr););););

void Append (char* void Append (char* void Append (char* void Append (char* strstrstrstr););););

}}}}

// Object // Object // Object // Object strRatestrRatestrRatestrRate created with created with created with created with ““““INRINRINRINR””””

String* String* String* String* strRatestrRatestrRatestrRate = new String (= new String (= new String (= new String (““““INRINRINRINR””””););););

// Object // Object // Object // Object strItemsstrItemsstrItemsstrItems created with created with created with created with ““““ OnlyOnlyOnlyOnly””””

String* String* String* String* strItemsstrItemsstrItemsstrItems = new String (= new String (= new String (= new String (““““ OnlyOnlyOnlyOnly””””););););

// Appending a space character to String.// Appending a space character to String.// Appending a space character to String.// Appending a space character to String.

strRatestrRatestrRatestrRate---->Append (>Append (>Append (>Append (‘‘‘‘ ’’’’););););

// Appending a float to String// Appending a float to String// Appending a float to String// Appending a float to String

StrStrStrStr---->Append (199.95f);>Append (199.95f);>Append (199.95f);>Append (199.95f);

// Appending another String to // Appending another String to // Appending another String to // Appending another String to strRatestrRatestrRatestrRate!!!!

strRatestrRatestrRatestrRate---->Append (>Append (>Append (>Append (strItemsstrItemsstrItemsstrItems))))

// Final contents is // Final contents is // Final contents is // Final contents is ““““INR 199.95 OnlyINR 199.95 OnlyINR 199.95 OnlyINR 199.95 Only””””

55

Company Confidential

55

Object Oriented Design and

Best Practices

56

Case Study of Global

Commerce Bank

• Let us consider a portion of the requirement from the
case study

• We have seen the class design for Loans already in
earlier slides

• Excerpts from Case Study (Course Material: Page 25)

There are three types of bank employees who deal with

Loans in the bank

Loan Advisors: Advises customers on various loans and can

also initiate loans. The final approval of loans can be done only by

the Bank Manager.

Bank Manager: Primarily responsible for approving all loans and

fixing of special interest rates for Business Loans. The bank

manager can also initiate loans

Teller: Can accept EMIs.

57

Steps in Object Oriented

Design – 1/6

• Step 1: Identify all the ‘nouns’ (type of objects or

classes) in the requirement (Loan part has been

done already)

– Loan Advisor

– Bank Manager

– Teller

58

Steps in Object Oriented

Design – 1/6

• Step 2: Identify the commonalities between classes

(Generalization) if it is obvious.

– Do not force fit generalization where it doesn’t

make sense

– Common factor is that all of them are employees

of bank

– Employees have some common attributes

59

Steps in Object Oriented

Design – 2/6

• Step 3: In any given situation, start with the

simplest object which can be abstracted into an

individual class

– In the classes identified above, Employee is the

simplest class

• Step 4a: Identify all the member variables and

methods the class should have

– Class Employee

• Member Variables: EmployeeID, Email

• Methods: Get/Set Employee ID, Get/Set Email

60

Steps in Object Oriented

Design – 3/6

• Step 4b: Let us go ahead and identify the

member variables and methods for the rest of

the classes

– Class LoanAdvisor

• Member Variables: EmployeeID, Email

• Methods: Get/Set EmployeeID, Get/Set Email,

Initiate Loan

61

Steps in Object Oriented

Design – 3/6

– Class BankManager

• Member Variables: EmployeeID, Email

• Methods: Get/Set EmployeeID, Get/Set Email,

InitiateLoan, ApproveLoan

– Class Teller

• Member Variables: EmployeeID, Email

• Methods: Get/Set EmployeeID, Get/Set Email,

AcceptEMI

62

Steps in Object Oriented

Design – 4/6

• Step 5: Ensure that the class is fully independent of

other classes and contains all the attributes and

methods necessary.

• Step 6: Keep All data members private or protected.

63

Steps in Object Oriented

Design – 5/6

• Step 7 and 8: The methods

in class should completely

abstract the functionality. The

methods in the class should

not be a force fit of

procedural code into a class

• Step 9: Inherit and extend

classes from the base class

ONLY IF situation has scope

for it.

– Shift the commonalities

among classes to the base

class

64

Steps in Object Oriented

Design – 6/6

• Step 10: Define the “Has-A” and “Uses-A”

relationship among classes

– (Is-A has been defined already in previous step)

– Uses-A and Has-A could’ve been defined if we

had considered the entire case study

65

Steps in Object Oriented

Design – 6/6

• Step 11: Keep the number of classes in your

application under check (Do not create any

unnecessary classes)

– (Design in previous slide doesn’t have any unnecessary

classes)

• Step 12: Always REVIEW your design

– To eliminate any redundancy

– To assess whether the relationships identified make sense

66

Best Practices in OO Design – 1/3

• Defining a class

– Keep data members private or protected

– Only data members which can be made public should

be constants

– Methods should completely abstract functionality

(behavior) of the class

– For an existing class, if any new functionality

(behavior) is required, expose it only as methods

– If your class has only ONE DATA member check and

see if this class is really required or it can be made as

data member in another class

67

Best Practices in OO Design – 2/3

• Relationships, Complexity management

– Class should be always self-sufficient in functionality

• (If required it should be used in another project as is)

– If two classes are inter-dependent so much that one

cannot function without the other, there may be a

possible defect in design

• (Do not partition functionality across different classes)

68

Best Practices in OO Design – 2/3

– Do not create unnecessary relationships between

classes

– Do not try to force fit all OO concepts into design

• It is not mandatory that your design should have

inheritance and polymorphism etc.

• Purely, the situation decides what needs to be in the

class

69

Best Practices in OO Design – 3/3

• Common Design practices

– Avoid writing too many classes for every single

functionality in the class

– When using frameworks (or Third Party APIs or Built

in Libraries) reuse as many classes from them as

much as possible. Do not reinvent the wheel

• Example: Java provides a Calendar and

GregorianCalendar class for date related functions.

Many programmers tend to write their own date logic

instead of simply using this class

70

Best Practices in OO Design – 3/3

• Always REVIEW Your design before

implementations

– To eliminate any redundancy

– To assess whether the relationships identified make

sense

71

Procedural versus Object Oriented

Programming – 1/2

Program modules are integrated

parts of overall program. Objects

interact with each other by Message

passing

Program modules are linked

through parameter passing

mechanism

Data (State) is encapsulated

effectively by methods (Behavior)

In a given module, data and

procedures are separate

Real world is represented by objects

mimicking external entities. Allows

modeling of real life problem into

objects with state and behavior

Real world is represented by

logical entities and control flow.

Tries to fit real life problem into

procedural language

Emphasis on Data; binding of data

structures with methods that operate

on data

Emphasis on algorithms,

procedures

Object Oriented ProgrammingProcedural Programming

72

Procedural versus Object Oriented

Programming – 2/2

OO Languages: C++, Small Talk,

Java, C#

Procedural languages: C,

COBOL, PASCAL

Active and intelligent data

structures (object) encapsulates

all passive procedures

Passive and dumb data

structures used by active

methods

Object Oriented decomposition

focuses on abstracted objects

and their interaction

Algorithmic decomposition

tends to focus on the

sequence of events

Uses abstraction at class and

object level

Uses abstraction at

procedure level

Object Oriented ProgrammingProcedural

Programming

73

Company Confidential

73

Appendix – Case Studies

74

Case Study 1: SpedFast

Courier Company

• Create a UML Class diagram with the design for the

requirements of SpedFast Courier Company

Microsoft Word

Document

75

Case Study 2: Review the

OO Design of D-Rail Inc.

• Read and understand the requirements of D-Rail

Inc

• Review the OO design of D-Rail Inc and suggest a

better design

• Refer to the “Best Practices”
Microsoft Word

Document

76

Case Study 2: D-Rail Inc design

77

Thank You

