
Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 1

A Course on Software
Test Automation Design

Doug Hoffman, BA, MBA, MSEE, ASQ-CSQE
Software Quality Methods, LLC. (SQM)

www.SoftwareQualityMethods.com
doug.hoffman@acm.org

Winter 2003

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 2

Copyright Notice

These slides are distributed under the Creative Commons License.
In brief summary, you may make and distribute copies of these slides so long as you give
the original author credit and, if you alter, transform or build upon this work, you distribute
the resulting work only under a license identical to this one.
For the rest of the details of the license, see http://creativecommons.org/licenses/by-
sa/2.0/legalcode.

The class and these notes may include technical recommendations, but you are
not Doug Hoffman’s client and Doug is not providing specific advice in the
notes or in the course. Even if you ask questions about a specific situation, you
must understand that you cannot possibly give enough information in a
classroom setting to receive a complete, competent recommendation. I may use
your questions as a teaching tool, and answer them in a way that I believe
would “normally” be true but my answer could be completely inappropriate for
your particular situation. I cannot accept any responsibility for any actions that
you might take in response to my comments in this course.
The practices recommended and discussed in this course are useful for testing and
test automation, but more experienced testers will adopt additional practices. This
course was made with the mass-market software development industry in mind.
Mission-critical and life-critical software development efforts involve specific and
rigorous procedures that are not described in this course.

Copyright © 2000-2003 SQM, LLC.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 3

About Doug Hoffman

I advocate and provide advice and services in software testing and quality assurance.

Software quality assurance, and especially software testing, have a reputation of being where failed programmers or
programmer “wanta be’s” congregate. I don’t believe it’s true, and it’s through courses like this that we can change the
perception. I gravitated into quality assurance from engineering. I’ve been a production engineer, developer, support
engineer, tester, writer, instructor, and I’ve managed manufacturing quality assurance, software quality assurance,
technical support, software development , and documentation. Along the way I have learned a great deal about software
testing and measurement. I enjoy sharing what I’ve learned with interested people.
Current employment

• President of Software Quality Methods, LLC. (SQM)

• Management consultant in strategic and tactical planning for software quality.

• Adjunct Instructor for UCSC Extension.
Education

• MBA, 1982.

• MS in Electrical Engineering, (digital design and information science) 1974.

• B.A. in Computer Science, 1972.
Professional

• Past Chair, Silicon Valley Section, American Society for Quality (ASQ).

• Founding Member and Past Chair, Santa Clara Valley Software Quality Association (SSQA, 1992-1997)

• Certified in Software Quality Engineering (ASQ, 1995).

• Previously a Registered ISO 9000 Lead Auditor, (RAB 1993).

• I also participate in the Los Altos Workshops on Software Testing.

Copyright © 2000-2003 SQM, LLC.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 4

Acknowledgment to Cem Kaner
(Original Co-author)

He’s in the business of improving software customer satisfaction.
He has worked as a programmer, tester, writer, teacher, user interface designer, software salesperson, organization
development consultant, as a manager of user documentation, software testing, and software development, and as an
attorney focusing on the law of software quality. These have provided many insights into relationships between
computes, software, developers, and customers.
Current employment

• Professor of Software Engineering, Florida Institute of Technology
• Private practice in the Law Office of Cem Kaner

Books
• Testing Computer Software (1988; 2nd edition with Hung Nguyen and Jack Falk,1993). This received the Award

of Excellence in the Society for Technical Communication’s Northern California Technical Publications
Competition and has the lifetime best sales of any book in the field.

• Bad Software: What To Do When Software Fails (with David Pels). Ralph Nader called this book “a how-to book
for consumer protection in the Information Age.”

• Lessons Learned in Software Testing (2002, with James Bach and Bret Pettichord) Doug describes the chapter on
test automation better than any book on the subject available today.

Education
• J.D. (law degree, 1993). Elected to the American Law Institute, 1999.
• Ph.D. (experimental psychology, 1984) (trained in measurement theory and in human factors, the field concerned

with making hardware and software easier and safer for humans to use).
• B.A. (primarily mathematics and philosophy, 1974).
• Certified in Quality Engineering (American Society for Quality, 1992). Examiner (1994, 1995) for the California

Quality Awards.
• He also co-founded and/or co-host the Los Altos Workshops on Software Testing, the Software Test Managers’

Roundtable, the Austin Workshop on Test Automation, the Workshop on Model-Based Testing, and the Workshop
on Heuristic & Exploratory Techniques.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 5

Acknowledgment

Many of the ideas in this presentation were presented and refined
in Los Altos Workshops on Software Testing and The Austin
Workshops on Test Automation.
LAWST 5 focused on oracles. Participants were Chris Agruss,
James Bach, Jack Falk, David Gelperin, Elisabeth Hendrickson, Doug
Hoffman, Bob Johnson, Cem Kaner, Brian Lawrence, Noel Nyman,
Jeff Payne, Johanna Rothman, Melora Svoboda, Loretta Suzuki, and
Ned Young.
LAWST 1-3 focused on several aspects of automated testing.
Participants were Chris Agruss, Tom Arnold, Richard Bender,
James Bach, Jim Brooks, Karla Fisher, Chip Groder, Elizabeth
Hendrickson, Doug Hoffman, Keith W. Hooper, III, Bob Johnson,
Cem Kaner, Brian Lawrence, Tom Lindemuth, Brian Marick,
Thanga Meenakshi, Noel Nyman, Jeffery E. Payne, Bret
Pettichord, Drew Pritsker, Johanna Rothman, Jane Stepak, Melora
Svoboda, Jeremy White, and Rodney Wilson.
Bret Pettichord organized and led AWTA 1, 2, and 3.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 6

Demographics:
How long have you worked in:

• software testing
0-3 months ____ 3-6 months ____
6 mo-1 year ____ 1-2 years ____
2-5 years ____ > 5 years ____

• programming
» Any experience _____

» Production programming _____

• test automation
» Test development _____

» Tools creation _____

• management
» Testing group _____
» Any management _____

• marketing _____

• documentation _____

• customer care _____

• traditional QC _____

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 7

Outline

Day 1
Automation Example
Foundational Concepts
Some Simple Automation Approaches
Automation Architectures
Patterns for Automated Software Tests

Day 2
Quality Attributes
Costs and Benefits of Automation
Test Oracles
Context, Structure, and Strategies

Copyright © 2000-2003 SQM, LLC.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 8

Starting Exercise

Before I start talking about the different types
of automation, I’d like to understand where you are
and what you’re thinking about (in terms of
automation).

So

Please take a piece of paper and write out
what you think automation would look like in your
environment.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 9

Automation in Your Environment

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 10

An Example to
Introduce the Challenges

Automated Automated
GUI Regression TestsGUI Regression Tests

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 11

The Regression Testing Strategy

Summary
• “Repeat testing after changes.”

Fundamental question or goal
• Manage the risks that (a) a bug fix didn’t fix the bug, (b)

an old bug comes back or (c) a change had a side effect.
Paradigmatic cases

• Bug regression (Show that a bug was not fixed.)
• Old fix regression (Show that an old bug fix was broken.)
• General functional regression (Show that a change

caused a working area to break.)
Strengths

• Reassuring, confidence building, regulator-friendly.
Blind spots

• Anything not covered in the regression series.
• Maintenance of this test set can be extremely costly.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 12

Automating Regression Testing

The most common regression automation
technique:
• conceive and create a test case
• run it and inspect the output results
• if the program fails, report a bug and try again later
• if the program passes the test, save the resulting outputs
• in future tests, run the program and compare the output

to the saved results
• report an exception whenever the current output and the

saved output don’t match

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 13

A GUI Regression Test Model

User
GUI
Test
Tool

System Under
Test

SUT GUI

Scripts Results

1
124 25

2

36

35 7

8

1 Launch tool
2 Test; tool captures script
3 Test; capture result
4 Launch automated run
5 Play script
6 Capture SUT response
7 Read recorded results
8 Compare and report

Copyright © 2000-2003 SQM, LLC.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 14

But, Is This Really Automation?

Analyze product -- human
Design test -- human
Run test 1st time -- human
Evaluate results -- human
Report 1st bug -- human
Save code -- human
Save result -- human
Document test -- human

Re-run the test -- MACHINE

Evaluate result -- MACHINE
(plus human is needed if there’s any mismatch)

Maintain result -- human

We really
get the
machine to
do a whole lot
of our work!
(Maybe, but
not this way.)

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 15

Automated Regression Pros and Cons

Advantages

• Dominant automation
paradigm

• Conceptually simple

• Straightforward

• Same approach for all tests

• Fast implementation

• Variations are easy

• Repeatable tests

Disadvantages

• Breaks easily (GUI based)

• Tests are expensive

• Pays off late

• Prone to failure because:

• difficult financing,

• architectural, and

• maintenance issues

• Low power even when
successful (finds few defects)

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 16

Scripting

COMPLETE SCRIPTING is favored by people who believe
that repeatability is everything and who believe that with
repeatable scripts, we can delegate to cheap labor.

1 ____ Pull down the Task menu
2 ____ Select First Number
3 ____ Enter 3
4 ____ Enter 2
5 ____ Press return
6 ____ The program displays 5

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 17

Scripting: The Bus Tour of Testing

• Scripting is the Greyhound Bus of software
testing:

“Just relax and leave the thinking to us.”

• To the novice, the test script is the whole tour. The tester
goes through the script, start to finish, and thinks he’s
seen what there is to see.

• To the experienced tester, the test script is a tour bus.
When she sees something interesting, she stops the bus
and takes a closer look.

• One problem with a bus trip. It’s often pretty boring, and
you might spend a lot of time sleeping.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 18

GUI Automation is Expensive

• Test case creation is expensive. Estimates run from 3-5 times the
time to create and manually execute a test case (Bender) to 3-10
times (Kaner) to 10 times (Pettichord) or higher (LAWST).

• You usually have to increase the testing staff in order to generate
automated tests. Otherwise, how will you achieve the same
breadth of testing?

• Your most technically skilled staff are tied up in automation

• Automation can delay testing, adding even more cost (albeit
hidden cost.)

• Excessive reliance leads to the 20 questions problem. (Fully
defining a test suite in advance, before you know the program’s
weaknesses, is like playing 20 questions where you have to ask
all the questions before you get your first answer.)

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 19

GUI Automation Pays off Late

• GUI changes force maintenance of tests
» May need to wait for GUI stabilization

» Most early test failures are due to GUI changes

• Regression testing has low power
» Rerunning old tests that the program has passed is

less powerful than running new tests

» Old tests do not address new features

• Maintainability is a core issue because our main
payback is usually in the next release, not this one.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 20

Maintaining GUI Automation

• GUI test tools must be tuned to the product and the
environment

• GUI changes break the tests
» May need to wait for GUI stabilization

» Most early test failures are due to cosmetic changes

• False alarms are expensive
» We must investigate every reported anomaly

» We have to fix or throw away the test when we find
a test or tool problem

• Maintainability is a key issue because our main
payback is usually in the next release, not this one.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 21

GUI Regression Automation
Bottom Line

Extremely valuable under some circumstances

THERE ARE MANY ALTERNATIVES
THAT MAY BE MORE APPROPRIATE

AND MORE VALUABLE.

If your only tool is a hammer, every
problem looks like a nail.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 22

Brainstorm Exercise

I said:
• Regression testing has low power because:

» Rerunning old tests that the program has passed is less
powerful than running new tests.

OK, is this always true?

When is this statement more likely to
be true and when is it less likely to be true?

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 23

Notes

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 24

GUI Regression Strategies:
Some Papers of Interest

Chris Agruss, Automating Software Installation Testing
James Bach, Test Automation Snake Oil
Hans Buwalda, Testing Using Action Words
Hans Buwalda, Automated testing with Action Words:

Abandoning Record & Playback
Elisabeth Hendrickson, The Difference between Test

Automation Failure and Success
Cem Kaner, Avoiding Shelfware: A Manager’s View of

Automated GUI Testing
John Kent, Advanced Automated Testing Architectures
Bret Pettichord, Success with Test Automation
Bret Pettichord, Seven Steps to Test Automation Success
Keith Zambelich, Totally Data-Driven Automated Testing

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 25

Software Test Automation:

Foundational Concepts

Why To Automate

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 26

The Mission of Test Automation

What is your test mission?
• What kind of bugs are you looking for?
• What concerns are you addressing?
• Who is your audience?

Make automation serve your mission.

Expect your mission to change.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 27

Possible Missions for Test Automation

• Find important bugs fast

• Measure and document product quality

• Verify key features

• Keep up with development

• Assess software stability, concurrency,
scalability…

• Provide service

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 28

Possible Automation Missions

Efficiency
• Reduce testing costs
• Reduce time spent in the

testing phase
• Automate regression tests
• Improve test coverage
• Make testers look good
• Reduce impact on the bottom

line

Service
• Tighten build cycles
• Enable “refactoring” and

other risky practices
• Prevent destabilization
• Make developers look good
• Play to computer and human

strengths
• Increase management

confidence in the product

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 29

Possible Automation Missions

Extending our reach
• API based testing
• Use hooks and scaffolding
• Component testing
• Model based tests
• Data driven tests
• Internal monitoring and control

Multiply our resources
• Platform testing
• Configuration testing
• Model based tests
• Data driven tests

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 30

Software Test Automation:

Foundational Concepts

Testing Models

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 31

Simple [Black Box] Testing Model

System
Under
Test

Test Inputs Test Results

Copyright © 2000-2003 SQM, LLC.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 32

Implications of the Simple Model

• We control the inputs

• We can verify results

But, we aren’t dealing with all the factors
• Memory and data

• Program state

• System environment

Copyright © 2000-2003 SQM, LLC.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 33

Expanded Black Box Testing Model

System
Under
Test

Test Inputs

Precondition Data

Precondition
Program State

Environmental
Inputs

Test Results

Post-condition Data

Post-condition
Program State

Environmental
Results

Copyright © 2000-2003 SQM, LLC.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 34

Implications of the Expanded Model

We don’t control all inputs

We don’t verify everything

Multiple domains are involved

The test exercise may be the easy part

We can’t verify everything

We don’t know all the factors

Copyright © 2000-2003 SQM, LLC.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 35

An Example Model For SUT

System Under Test

User GUI

Functional
EngineAPI Data

Set

Remote GUI User

Copyright © 2000-2003 SQM, LLC.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 36

Notes

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 37

Software Test Automation:

Foundational Concepts

The Power of Tests

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 38

Size Of The Testing Problem

• Input one value in a 10 character field

• 26 UC, 26 LC, 10 Numbers

• Gives 6210 combinations

• How long at 1,000,000 per second?

What is your domain size?

We can only run a vanishingly We can only run a vanishingly
small portion of the possible small portion of the possible

teststests

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 39

A Question of Software Testability

Ease of testing a product

Degree to which software can be
exercised, controlled and monitored

Product's ability to be tested vs. test
suite's ability to test

Separation of functional components

Visibility through hooks and interfaces

Access to inputs and results

Form of inputs and results

Stubs and/or scaffolding

Availability of oracles

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 40

An Excellent Test Case

• Reasonable probability of catching an error

• Not redundant with other tests

• Exercise to stress the area of interest

• Minimal use of other areas

• Neither too simple nor too complex

• Makes failures obvious

• Allows isolation and identification of errors

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 41

Good Test Case Design:
Neither Too Simple Nor Too Complex

• What makes test cases simple or complex? (A simple
test manipulates one variable at a time.)

• Advantages of simplicity?
• Advantages of complexity?

• Transition from simple cases to complex cases (You
should increase the power and complexity of tests over time.)

• Automation tools can bias your development toward
overly simple or complex tests

Refer to Testing Computer Software, pages 125, 241, 289, 433

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 42

Testing Analogy: Clearing Weeds

weeds Thanks to James Bach for letting us use his slides.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 43

Totally repeatable tests
won’t clear the weeds

weeds fixes

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 44

Variable Tests are
Often More Effective

weeds fixes

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 45

Why Are Regression Tests Weak?

• Does the same thing over and over

• Most defects are found during test creation

• Software doesn’t break or wear out

• Any other test is equally likely to stumble
over unexpected side effects

• Automation reduces test variability

• Only verifies things programmed into the test

Copyright © 2000-2003 SQM, LLC.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 46

Regression Testing:
Some Papers of Interest

Brian Marick’s, How Many Bugs Do Regression Tests
Find? presents some interesting data on regression
effectiveness.

Brian Marick’s Classic Testing Mistakes raises several
critical issues in software test management, including
further questions of the places of regression testing.

Cem Kaner, Avoiding Shelfware: A Manager’s View of
Automated GUI Testing

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 47

Software Test Automation:

Foundational Concepts

Automation of Tests

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 48

Common Mistakes about Test
Automation

The paper (Avoiding Shelfware) lists 19 “Don’ts.”
For example,

Don’t expect to be more productive over the short term.

• The reality is that most of the benefits from automation
don’t happen until the second release.

• It takes 3 to 10+ times the effort to create an automated
test than to just manually do the test. Apparent
productivity drops at least 66% and possibly over 90%.

• Additional effort is required to create and administer
automated test tools.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 49

Test Automation is Programming

Win NT 4 had 6 million lines of code, and 12
million lines of test code
Common (and often vendor-recommended)
design and programming practices for
automated testing are appalling:

• Embedded constants
• No modularity
• No source control
• No documentation
• No requirements analysis

No wonder we fail

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 50

Designing Good Automated Tests

• Start with a known state

• Design variation into the tests

• Check for errors
• Put your analysis into the test itself

• Capture information when the error is found (not later)

• Don’t encourage error masking or error
cascades

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 51

Start With a Known State

Data
• Load preset values in advance of testing
• Reduce dependencies on other tests

Program State
• External view
• Internal state variables

Environment
• Decide on desired controlled

configuration
• Capture relevant session information

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 52

Design Variation Into the Tests

• Dumb monkeys

• Variations on a theme

• Configuration variables

• Data driven tests

• Pseudo-random event generation

• Model driven automation

Copyright © 2000-2003 SQM, LLC.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 53

Check for Errors

• Put checks into the tests

• Document expectations in the tests

• Gather information as soon as a
deviation is detected

• Results
• Other domains

• Check as many areas as possible

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 54

Error Masks and Cascades

• Session runs a series of tests

• A test fails to run to normal completion
• Error masking occurs if testing stops
• Error cascading occurs if one or more

downstream tests fails as a consequence

• Impossible to avoid altogether

• Should not design automated tests that
unnecessarily cause either

Copyright © 2000-2003 SQM, LLC.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 55

Good Test Case Design:
Make Program Failures Obvious

Important failures have been missed because
they weren’t noticed after they were found.

Some common strategies:

• Show expected results.

• Only print failures.

• Log failures to a separate file.

• Keep the output simple and well formatted.

• Automate comparison against known good output.

Refer to Testing Computer Software, pages 125, 160, 161-164

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 56

Notes

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 57

Some Simple
Automation Approaches

Getting Started With Automation of Getting Started With Automation of
Software TestingSoftware Testing

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 58

Six Sometimes-Successful
“Simple” Automation Architectures

• Quick & dirty

• Equivalence testing

• Frameworks

• Real-time simulator with event logs

• Simple Data-driven

• Application-independent data-driven

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 59

Quick & Dirty

• Smoke tests

• Configuration tests

• Variations on a theme

• Stress, load, or life testing

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 60

Equivalence Testing

• A/B comparison

• Random tests using an oracle

(Function Equivalence Testing)

• Regression testing is the

weakest form

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 61

Framework-Based Architecture

Frameworks are code libraries that separate routine calls
from designed tests.
• modularity
• reuse of components
• hide design evolution of UI or tool commands
• partial salvation from the custom control problem
• independence of application (the test case) from user interface

details (execute using keyboard? Mouse? API?)
• important utilities, such as error recovery

For more on frameworks, see Linda Hayes’ book on automated testing, Tom
Arnold’s book on Visual Test, and Mark Fewster & Dorothy Graham’s
excellent new book “Software Test Automation.”

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 62

Real-time Simulator

• Test embodies rules for activities

• Stochastic process

• Possible monitors

• Code assertions
• Event logs
• State transition maps
• Oracles

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 63

Data-Driven Architecture

In test automation, there are (at least) three interesting programs:
• The software under test (SUT)
• The automation tool that executes the automated test code
• The test code (test scripts) that define the individual tests

From the point of view of the automation software, we can assume
• The SUT’s variables are data
• The SUT’s commands are data
• The SUT’s UI is data
• The SUT’s state is data
• The test language syntax is data

Therefore it is entirely fair game to treat these implementation details
of the SUT as values assigned to variables of the automation software.
Additionally, we can think of the externally determined (e.g.
determined by you) test inputs and expected test results as data.
Additionally, if the automation tool’s syntax is subject to change, we
might rationally treat the command set as variable data as well.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 64

Data-Driven Architecture

In general, we can benefit from separating the
treatment of one type of data from another with an
eye to:
• optimizing the maintainability of each
• optimizing the understandability (to the test case creator

or maintainer) of the link between the data and whatever
inspired those choices of values of the data

• minimizing churn that comes from changes in the UI, the
underlying features, the test tool, or the overlying
requirements

You store and display the different data can be in
whatever way is most convenient for you

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 65

Table Driven Architecture:
Calendar Example

Imagine testing a calendar-making program.
The look of the calendar, the dates, etc., can all be
thought of as being tied to physical examples in the world,
rather than being tied to the program. If your collection of
cool calendars wouldn’t change with changes in the UI of
the software under test, then the test data that define the
calendar are of a different class from the test data that
define the program’s features.
• Define the calendars in a table. This table should not be

invalidated across calendar program versions. Columns name
features settings, each test case is on its own row.

• An interpreter associates the values in each column with a set
of commands (a test script) that execute the value of the cell
in a given column/row.

• The interpreter itself might use “wrapped” functions, i.e.
make indirect calls to the automation tool’s built-in features.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 66

Calendar Example

Y
ea

r

S
ta

rt
 M

o
n

th

N
u
m

b
er

 o
f M

o
n
th

s

P
ag

e
S

iz
e

P
ag

e
O

ri
en

ta
tio

n

M
o
n
th

ly
 T

itl
e

T
itl

e
F
o
n
t N

am
e

T
itl

e
F

o
n

t S
iz

e

P
ic

tu
re

 L
o

ca
tio

n

P
ic

tu
re

 F
ile

 T
yp

e

D
ay

s
p

er
 W

ee
k

W
ee

k
S

ta
rt

s
O

n

D
at

e
L

o
ca

tio
n

L
an

g
u

ag
e

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 67

Data-Driven Architecture:
Calendar Example

This is a good design from the point of view of optimizing for maintainability
because it separates out four types of things that can vary
independently:
• The descriptions of the calendars themselves come from real-world and

can stay stable across program versions.
• The mapping of calendar element to UI feature will change frequently

because the UI will change frequently. The mappings (one per UI element)
are written as short, separate functions that can be maintained easily.

• The short scripts that map calendar elements to the program functions
probably call sub-scripts (think of them as library functions) that wrap
common program functions. Therefore a fundamental change in the
software under test might lead to a modest change in the program.

• The short scripts that map calendar elements to the program functions
probably also call sub-scripts (library functions) that wrap functions of the
automation tool. If the tool syntax changes, maintenance involves
changing the wrappers’ definitions rather than the scripts.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 68

Data Driven Architecture

Note with the calendar example:
• we didn’t run tests twice
• we automated execution, not evaluation
• we saved SOME time
• we focused the tester on design and results, not

execution.
Other table-driven cases:

• automated comparison can be done via a pointer in
the table to the file

• the underlying approach runs an interpreter against
table entries

Hans Buwalda and others use this to create a structure that
is natural for non-tester subject matter experts to manipulate.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 69

Application-Independent
Data-Driven

• Generic tables of repetitive types

• Rows for instances

• Automation of exercises

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 70

Reusable Test Matrices

Test Matrix for a Numeric Input Field
Additional Instructions:

N
ot

hi
ng

V
al

id
 v

al
ue

A
t L

B
 o

f v
al

ue

A
t U

B
 o

f v
al

ue

A
t L

B
 o

f v
al

ue
 -

1

A
t U

B
 o

f v
al

ue
 +

 1

O
ut

si
de

 o
f L

B
 o

f v
al

ue

O
ut

si
de

 o
f U

B
 o

f v
al

ue

0 N
eg

at
iv

e

A
t L

B
 n

um
be

r o
f d

ig
its

 o
r c

ha
rs

A
t U

B
 n

um
be

r o
f d

ig
its

 o
r c

ha
rs

E
m

pt
y

fie
ld

 (c
le

ar
 th

e
de

fa
ul

t v
al

ue
)

O
ut

si
de

 o
f U

B
 n

um
be

r o
f d

ig
its

 o
r c

ha
rs

N
on

-d
ig

its

W
ro

ng
 d

at
a

ty
pe

 (e
.g

. d
ec

im
al

 in
to

 in
te

ge
r)

E
xp

re
ss

io
ns

S
pa

ce

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 71

Notes

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 72

Think About:

• Automation is software development.

• Regression automation is expensive and

can be inefficient.

• Automation need not be regression--you

can run new tests instead of old ones.

• Maintainability is essential.

• Design to your requirements.

• Set management expectations with care.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 73

Automation Architecture

and High-Level Design

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 74

What Is Software Architecture?

“As the size and complexity of software systems increase, the
design and specification overall system structure become more
significant issues than the choice of algorithms and data structures of
computation. Structural issues include the organization of a system as
a composition of components; global control structures; the protocols
for communication, synchronization, and data access; the assignment
of functionality to design elements; the composition of design
elements; physical distribution; scaling and performance; dimensions
of evolution; and selection among design alternatives. This is the
software architecture level of design.”

“Abstractly, software architecture involves the description of
elements from which systems are built, interactions among those
elements, patterns that guide their composition, and constraints on
these patterns. In general, a particular system is defined in terms of a
collection of components and interactions among those components.
Such a system may in turn be used as a (composite) element in a
larger design system.”

Software Architecture, M. Shaw & D. Garlan, 1996, p.1.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 75

What Is Software Architecture?

“The quality of the architecture determines the conceptual integrity of the
system. That in turn determines the ultimate quality of the system. Good
architecture makes construction easy. Bad architecture makes construction
almost impossible.”

• Steve McConnell, Code Complete, p 35; see 35-45
“We’ve already covered some of the most important principles associated with
the design of good architectures: coupling, cohesion, and complexity. But what
really goes into making an architecture good? The essential activity of
architectural design . . . is the partitioning of work into identifiable components.
. . . Suppose you are asked to build a software system for an airline to perform
flight scheduling, route management, and reservations. What kind of
architecture might be appropriate? The most important architectural decision is
to separate the business domain objects from all other portions of the system.
Quite specifically, a business object should not know (or care) how it will be
visually (or otherwise) represented . . .”

• Luke Hohmann, Journey of the Software Professional: A Sociology
of Software Development, 1997, p. 313. See 312-349

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 76

Automation Architecture

1. Model the SUT in its environment

2. Determine the goals of the automation and
the capabilities needed to achieve those
goals

3. Select automation components

4. Set relationships between components

5. Identify locations of components and events

6. Sequence test events

7. Describe automation architecture
Copyright © 2000-2003 SQM, LLC.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 77

Issues Faced in A
Typical Automated Test

• What is being tested?

• How is the test set up?

• Where are the inputs coming from?

• What is being checked?

• Where are the expected results?

• How do you know pass or fail?

Copyright © 2000-2003 SQM, LLC.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 78

Automated Software Test Functions

• Automated test case/data generation

• Test case design from requirements or code

• Selection of test cases

• No intervention needed after launching tests

• Set-up or records test environment

• Runs test cases

• Captures relevant results

• Compares actual with expected results

• Reports analysis of pass/fail

Copyright © 2000-2003 SQM, LLC.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 79

Hoffman’s Characteristics of
“Fully Automated” Tests

• A set of tests is defined and will be run together.

• No intervention needed after launching tests.

• Automatically sets-up and/or records relevant
test environment.

• Obtains input from existing data files, random
generation, or another defined source.

• Runs test exercise.

• Captures relevant results.

• Evaluates actual against expected results.

• Reports analysis of pass/fail.

Not all automation is full automation.
Partial automation can be very useful.

Copyright © 2000-2003 SQM, LLC.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 80

Key Automation Factors

• Components of SUT
• Important features, capabilities, data

• SUT environments
• O/S versions, devices, resources,

communication methods, related processes
• Testware elements

• Available hooks and interfaces
» Built into the software
» Made available by the tools

• Access to inputs and results
• Form of inputs and results

• Available bits and bytes
• Unavailable bits
• Hard copy or display only

Copyright © 2000-2003 SQM, LLC.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 81

Functions in Test Automation

Here are examples of automated test tool capabilities:
• Analyze source code for bugs
• Design test cases
• Create test cases (from requirements or code)
• Generate test data
• Ease manual creation of test cases
• Ease creation/management of traceability matrix
• Manage testware environment
• Select tests to be run
• Execute test scripts
• Record test events
• Measure software responses to tests (Discovery Functions)
• Determine expected results of tests (Reference Functions)
• Evaluate test results (Evaluation Functions)
• Report and analyze results

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 82

Capabilities of Automation Tools

Automated test tools combine a variety of
capabilities. For example, GUI regression
tools provide:

• capture/replay for easy manual creation of tests

• execution of test scripts

• recording of test events

• compare the test results with expected results

• report test results

Some GUI tools provide additional
capabilities, but no tool does everything well.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 83

Tools for Improving Testability by
Providing Diagnostic Support

• Hardware integrity tests. Example: power supply deterioration can
look like irreproducible, buggy behavior.

• Database integrity. Ongoing tests for database corruption, making
corruption quickly visible to the tester.

• Code integrity. Quick check (such as checksum) to see whether
part of the code was overwritten in memory.

• Memory integrity. Check for wild pointers, other corruption.

• Resource usage reports: Check for memory leaks, stack leaks,
etc.

• Event logs. See reports of suspicious behavior. Probably requires
collaboration with programmers.

• Wrappers. Layer of indirection surrounding a called function or
object. The automator can detect and modify incoming and outgoing
messages, forcing or detecting states and data values of interest.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 84

An Example Model For SUT

System Under Test

User GUI

Functional
EngineAPI Data

Set

Remote GUI User

Copyright © 2000-2003 SQM, LLC.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 85

Breaking Down The
Testing Problem

System Under Test

User GUI

Functional
EngineAPI Data

Set

Remote GUI User

Copyright © 2000-2003 SQM, LLC.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 86

Identify Where To Monitor and Control

• Natural break points

• Ease of automation

• Availability of oracles

• Leverage of tools and libraries

• Expertise within group

Copyright © 2000-2003 SQM, LLC.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 87

Location and Level for
Automating Testing

• Availability of inputs and results

• Ease of automation

• Stability of SUT

• Project resources and schedule

• Practicality of Oracle creation and use

• Priorities for testing

Copyright © 2000-2003 SQM, LLC.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 88

Automated Software Testing Process
Model Architecture

1. Testware version control and configuration management
2. Selecting the subset of test cases to run
3. Set-up and/or record environmental variables
4. Run the test exercises
5. Monitor test activities
6. Capture relevant results
7. Compare actual with expected results
8. Report analysis of pass/fail

Tester Test List

Automation
Engine Data

Set

Testware

SUTTest
Results

1

2

3

4

4

5

4
5
6

6

7

8

Copyright © 2000-2003 SQM, LLC.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 89

Automation Design Process

1. List the sequence of automated events

2. Identify components involved with each event

3. Decide on location(s) of events

4. Determine flow control mechanisms

5. Design automation mechanisms

Copyright © 2000-2003 SQM, LLC.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 90

Making More Powerful Exercises

Increase the number of combinations

More frequency, intensity, duration

Increasing the variety in exercises

Self-verifying tests and diagnostics

Use computer programming to extend your reach

• Set conditions

• Monitor activities

• Control system and SUT

Copyright © 2000-2003 SQM, LLC.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 91

Random Selection Among Alternatives

Pseudo random numbers

Partial domain coverage

Small number of combinations

Use oracles for verification

Copyright © 2000-2003 SQM, LLC.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 92

Pseudo Random Numbers

Used for selection or construction of inputs
• With and without weighting factors
• Selection with and without replacement

Statistically “random” sequence

Randomly generated “seed” value

Requires oracles to be useful

Copyright © 2000-2003 SQM, LLC.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 93

Mutating Automated Tests

Closely tied to instrumentation and oracles

Using pseudo random numbers

Positive and negative cases possible

Diagnostic drill down on error

Copyright © 2000-2003 SQM, LLC.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 94

Mutating Tests Examples

Data base contents (Embedded)

Processor instruction sets (Consistency)

Compiler language syntax (True)

Stacking of data objects (None)

Copyright © 2000-2003 SQM, LLC.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 95

Architecture Exercise

There are two important architectures
(Software Under Test and Automation Environment)
to understand for good test automation. These may
or may not be articulated in your organization.

So

Please take a piece of paper and sketch out
what you think the automation (or SUT) architecture
might look like in your environment.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 96

Automation Architecture:
Some Papers of Interest

Doug Hoffman, Test Automation Architectures:
Planning for Test Automation

Doug Hoffman, Mutating Automated Tests

Cem Kaner & John Vokey: A Better Random Number
Generator for Apple’s Floating Point BASIC

John Kent, Advanced Automated Testing
Architectures

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 97

Notes

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 98

Notes

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 99

Notes

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 100

Notes

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 101

Notes

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 102

Alternate Paradigms of
Black Box Software Testing

This material was prepared jointly by Cem
Kaner and James Bach.

We also thank Bob Stahl, Brian Marick,
Hans Schaefer, and Hans Buwalda for

several insights.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 103

Automation Requirements Analysis

Automation requirements are not just about the
software under test and its risks. To understand
what we’re up to, we have to understand:
• Software under test and its risks
• The development strategy and timeframe for the

software under test
• How people will use the software
• What environments the software runs under and their

associated risks
• What tools are available in this environment and their

capabilities
• The regulatory / required record keeping environment
• The attitudes and interests of test group management.
• The overall organizational situation

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 104

Automation Requirements Analysis

Requirement: “Anything that drives design
choices.”

The paper (Avoiding Shelfware) lists 27 questions.
For example,

Will the user interface of the application be
stable or not?

• Let’s analyze this. The reality is that, in many
companies, the UI changes late.

• Suppose we’re in an extreme case. Does that mean we
cannot automate cost effectively? No. It means that
we should do only those types of automation that will
yield a faster return on investment.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 105

Data Driven Architectures

Test
Script Script

Language

Language
Specs

Test
Config

Test
Data

SUT
State

Model

SUT

SUT
Commands

SUT
UI

Model

SUT
Config

Copyright © 2000-2003 SQM, LLC.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 106

Table Driven Automation

this row will be skipped when
the test is executed

action words

expected result

input data

© CMG Finance BV

Hans Buwalda, Automated Testing with Action Words

last first date of birth

enter client Buwalda Hans 2-Jun-57 ...
...
check age 39

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 107

Tables: Another Script Format

Observation
notes

Design
notes

What to
see

What to
do

Check
?

Step
#

This starts
the blah
blah test,
with the blah
blah goal

Task
menu
down

Pull down
task menu

____1.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 108

Capture Replay:
A Nest of Problems

Methodological
• Fragile tests
• What is “close enough”
• Must prepare for user interface changes
• Running in different configurations and environments
• Must track state of software under test
• Hard-coded data limits reuse

Technical
• Playing catch up with new technologies
• Instrumentation is invasive
• Tools can be seriously confused
• Tools require customization and tuning
• Custom controls issues

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 109

Capture Replay:
An Approach Without a Context

When could Capture Replay work?
• User interface is defined and frozen early
• Programmers use late-market, non-customized interface

technologies

These situations are rare -
• There are very few reports of projects actually using

Capture Replay successfully
» Monitoring exploratory sessions
» Quick and dirty configuration tests

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 110

Automated Test Paradigms

• Regression testing
• Function/Specification-based

testing

• Domain testing

• Load/Stress/Performance
testing

• Scenario testing

• Stochastic or Random testing

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 111

Automated Test Mechanisms

• Regression approaches
• Grouped individual tests

• Load/Stress/Performance
testing

• Model based testing

• Massive (stochastic or
random) testing

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 112

Regression Testing

• Automate existing tests

• Add regression tests

• Results verification = file compares

• Automate all tests

• One technique for all

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 113

Parochial and Cosmopolitan Views

Cosmopolitan View

• Engineering new tests

• Variations in tests

• Outcome verification

• Extend our reach

• Pick techniques that fit

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 114

Regression Testing

Tag line
• “Repeat testing after changes.”

Fundamental question or goal
• Manage the risks that (a) a bug fix didn’t fix the bug or

(b) the fix (or other change) had a side effect.
Paradigmatic case(s)
• Bug regression (Show that a bug was not fixed)
• Old fix regression (Show that an old bug fix was broken)
• General functional regression (Show that a change

caused a working area to break.)
• Automated GUI regression suites

Strengths
• Reassuring, confidence building, regulator-friendly

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 115

Regression Testing

Blind spots / weaknesses
• Anything not covered in the regression series.

• Repeating the same tests means not looking for
the bugs that can be found by other tests.

• Pesticide paradox

• Low yield from automated regression tests

• Maintenance of this standard list can be costly
and distracting from the search for defects.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 116

Domain Testing

Tag lines
• “Try ranges and options.”
• “Subdivide the world into classes.”

Fundamental question or goal
• A stratified sampling strategy. Divide large

space of possible tests into subsets. Pick best
representatives from each set.

Paradigmatic case(s)
• Equivalence analysis of a simple numeric field
• Printer compatibility testing

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 117

Domain Testing

Strengths
• Find highest probability errors with a relatively

small set of tests.
• Intuitively clear approach, generalizes well

Blind spots
• Errors that are not at boundaries or in obvious

special cases.
• Also, the actual domains are often unknowable.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 118

Function Testing

Tag line
• “Black box unit testing.”

Fundamental question or goal
• Test each function thoroughly, one at a time.

Paradigmatic case(s)
• Spreadsheet, test each item in isolation.
• Database, test each report in isolation

Strengths
• Thorough analysis of each item tested

Blind spots
• Misses interactions, misses exploration of

the benefits offered by the program.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 119

A Special Case: Exhaustive

Exhaustive testing involves testing all
values within a given domain, such as:
• all valid inputs to a function
• compatibility tests across all relevant

equipment configurations.

Generally requires automated testing.

This is typically oracle based and
consistency based.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 120

A Special Case: MASPAR Example

MASPAR functions: square root tests
• 32-bit arithmetic, built-in square root

» 2^32 tests (4,294,967,296)
» 65,536 processor configuration
» 6 minutes to run the tests with the oracle
» Discovered 2 errors that were not associated with any

obvious boundary (a bit was mis-set, and in two cases,
this affected the final result).

• However:
» Side effects?
» 64-bit arithmetic?

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 121

Domain Testing: Interesting Papers

• Thomas Ostrand & Mark Balcer, The Category-
partition Method For Specifying And Generating
Functional Tests, Communications of the ACM, Vol.
31, No. 6, 1988.

• Debra Richardson, et al., A Close Look at Domain
Testing, IEEE Transactions On Software Engineering,
Vol. SE-8, NO. 4, July 1982

• Michael Deck and James Whittaker, Lessons learned
from fifteen years of cleanroom testing. STAR '97
Proceedings (in this paper, the authors adopt boundary
testing as an adjunct to random sampling.)

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 122

Domain Testing:
Some Papers of Interest

Hamlet, Richard G. and Taylor, Ross, Partition Testing
Does Not Inspire Confidence, Proceedings of the Second
Workshop on Software Testing, Verification, and
Analysis, IEEE Computer Society Press, 206-215, July
1988
abstract = { Partition testing, in which a program's input domain is divided
according to some rule and test conducted within the subdomains, enjoys
a good reputation. However, comparison between testing that observes
partition boundaries and random sampling that ignores the partitions gives
the counterintuitive result that partitions are of little value. In this paper we
improve the negative results published about partition testing, and try to
reconcile them with its intuitive value. Partition testing is show to be more
valuable than random testing only when the partitions are narrowly based
on expected faults and there is a good chance of failure. For gaining
confidence from successful tests, partition testing as usually practiced has
little value.}

From the STORM search page:
http://www.mtsu.edu/~storm/bibsearch.html

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 123

Stress Testing

Tag line
• “Overwhelm the product.”

Fundamental question or goal
• Learn about the capabilities and weaknesses of the product by driving

it through failure and beyond. What does failure at extremes tell us
about changes needed in the program’s handling of normal cases?

Paradigmatic case(s)
• Buffer overflow bugs
• High volumes of data, device connections, long transaction chains
• Low memory conditions, device failures, viruses, other crises.

Strengths
• Expose weaknesses that will arise in the field.
• Expose security risks.

Blind spots
• Weaknesses that are not made more visible by stress.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 124

Stress Testing:
Some Papers of Interest

Astroman66, Finding and Exploiting Bugs 2600

Bruce Schneier, Crypto-Gram, May 15, 2000

James A. Whittaker and Alan Jorgensen, Why

Software Fails

James A. Whittaker and Alan Jorgensen, How

to Break Software

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 125

Specification-Driven Testing

Tag line:
• “Verify every claim.”

Fundamental question or goal
• Check the product’s conformance with every statement in every spec,

requirements document, etc.
Paradigmatic case(s)

• Traceability matrix, tracks test cases associated with each specification item.
• User documentation testing

Strengths
• Critical defense against warranty claims, fraud charges, loss of credibility

with customers.
• Effective for managing scope / expectations of regulatory-driven testing
• Reduces support costs / customer complaints by ensuring that no false or

misleading representations are made to customers.
Blind spots

• Any issues not in the specs or treated badly in the specs /documentation.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 126

Specification-Driven Testing:
Papers of Interest

Cem Kaner, Liability for Defective Documentation

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 127

Scenario Testing

Tag lines
• “Do something useful and interesting”
• “Do one thing after another.”

Fundamental question or goal
• Challenging cases that reflect real use.

Paradigmatic case(s)
• Appraise product against business rules, customer data,

competitors’ output
• Life history testing (Hans Buwalda’s “soap opera testing.”)
• Use cases are a simpler form, often derived from product

capabilities and user model rather than from naturalistic
observation of systems of this kind.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 128

Scenario Testing

The ideal scenario has several characteristics:

• It is realistic (e.g. it comes from actual customer or competitor
situations).

• There is no ambiguity about whether a test passed or failed.
• The test is complex, that is, it uses several features and functions.
• There is an influential stakeholder who will protest if the

program doesn’t pass this scenario.
Strengths
• Complex, realistic events. Can handle (help with) situations that

are too complex to model.
• Exposes failures that occur (develop) over time

Blind spots

• Single function failures can make this test inefficient.
• Must think carefully to achieve good coverage.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 129

Scenario Testing:
Some Papers of Interest

Hans Buwalda, Testing With Action Words
Hans Buwalda, Automated Testing With Action Words,
Abandoning Record & Playback
Hans Buwalda on Soap Operas (in the conference
proceedings of STAR East 2000)

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 130

Random / Statistical Testing

Tag line
• “High-volume testing with new cases all the time.”

Fundamental question or goal
• Have the computer create, execute, and evaluate huge

numbers of tests.
» The individual tests are not all that powerful, nor all that

compelling.
» The power of the approach lies in the large number of tests.
» These broaden the sample, and they may test the program

over a long period of time, giving us insight into longer term
issues.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 131

Random / Statistical Testing

Paradigmatic case(s)
• Some of us are still wrapping our heads

around the richness of work in this field. This
is a tentative classification

» NON-STOCHASTIC [RANDOM] TESTS

» STATISTICAL RELIABILITY ESTIMATION

» STOCHASTIC TESTS (NO MODEL)

» STOCHASTIC TESTS USING A MODEL OF
THE SOFTWARE UNDER TEST

» STOCHASTIC TESTS USING OTHER
ATTRIBUTES OF SOFTWARE UNDER TEST

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 132

Random Testing: Independent and
Stochastic Approaches

Random Testing
• Random (or statistical or stochastic) testing involves generating

test cases using a random number generator. Because they are
random, the individual test cases are not optimized against any
particular risk. The power of the method comes from running
large samples of test cases.

Independent Testing
• For each test, the previous and next tests don’t matter.

Stochastic Testing
• Stochastic process involves a series of random events over time

» Stock market is an example
» Program typically passes the individual tests: The

goal is to see whether it can pass a large series of the
individual tests.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 133

Random / Statistical Testing:
Non-Stochastic

Fundamental question or goal
• The computer runs a large set of essentially independent

tests. The focus is on the results of each test. Tests are often
designed to minimize sequential interaction among tests.

Paradigmatic case(s)
• Function equivalence testing: Compare two functions (e.g.

math functions), using the second as an oracle for the first.
Attempt to demonstrate that they are not equivalent, i.e. that
the achieve different results from the same set of inputs.

• Other test using fully deterministic oracles (see discussion of
oracles, below)

• Other tests using heuristic oracles (see discussion of oracles,
below)

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 134

Independent Random Tests:
Function Equivalence Testing
Hypothetical case: Arithmetic in Excel

Suppose we had a pool of functions that
worked well in a previous version.

For individual functions, generate random numbers to select
function (e.g. log) and value in Excel 97 and Excel 2000.

• Generate lots of random inputs

• Spot check results (e.g. 10 cases across the series)

Build a model to combine random functions into arbitrary
expressions

• Generate and compare expressions

• Spot check results

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 135

Notes

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 136

Random / Statistical Testing:
Statistical Reliability Estimation

Fundamental question or goal
• Use random testing (possibly stochastic, possibly

oracle-based) to estimate the stability or reliability
of the software. Testing is being used primarily to
qualify the software, rather than to find defects.

Paradigmatic case(s)
• Clean-room based approaches

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 137

Random Testing: Stochastic Tests--
No Model: “Dumb Monkeys”

Dumb Monkey

• Random sequence of events

• Continue through crash (Executive Monkey)

• Continue until crash or a diagnostic event
occurs. The diagnostic is based on knowledge
of the system, not on internals of the code.
(Example: button push doesn’t push—this is
system-level, not application level.)

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 138

Random Testing: “Dumb Monkeys”

Fundamental question or goal
• High volume testing, involving a long sequence of tests.
• A typical objective is to evaluate program performance

over time.
• The distinguishing characteristic of this approach is that

the testing software does not have a detailed model of
the software under test.

• The testing software might be able to detect failures
based on crash, performance lags, diagnostics, or
improper interaction with other, better understood parts
of the system, but it cannot detect a failure simply based
on the question, “Is the program doing what it is
supposed to or not?”

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 139

Random Testing: “Dumb Monkeys”

Paradigmatic case(s)
• Executive monkeys: Know nothing about the system.

Push buttons randomly until the system crashes.
• Clever monkeys: More careful rules of conduct, more

knowledge about the system or the environment. See
Freddy.

• O/S compatibility testing: No model of the software
under test, but diagnostics might be available based on
the environment (the NT example)

• Early qualification testing
• Life testing
• Load testing

Note:
• Can be done at the API or command line, just as well

as via UI

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 140

Random / Statistical Testing:
Stochastic, Assert or Diagnostics Based

Fundamental question or goal
• High volume random testing using random sequence

of fresh or pre-defined tests that may or may not self-
check for pass/fail. The primary method for detecting
pass/fail uses assertions (diagnostics built into the
program) or other (e.g. system) diagnostics.

Paradigmatic case(s)
• Telephone example (asserts)
• Embedded software example (diagnostics)

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 141

The Need for Stochastic Testing:
An Example

Refer to Testing Computer Software, pages 20-21

Idle

Connected

On Hold

Ringing Caller
hung up

You
hung up

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 142

Stochastic Test Using Diagnostics

Telephone Sequential Dependency

• Symptoms were random, seemingly irreproducible
crashes at a beta site

• All of the individual functions worked

• We had tested all lines and branches

• Testing was done using a simulator, that created long
chains of random events. The diagnostics in this case
were assert fails that printed out on log files

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 143

Random Testing:
Stochastic, Regression-Based

Fundamental question or goal
• High volume random testing using random sequence

of pre-defined tests that can self-check for pass/fail.

Paradigmatic case(s)
• Life testing
• Search for specific types of long-sequence defects.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 144

Random Testing:
Stochastic, Regression-Based

Notes

• Create a series of regression tests. Design them so that they
don’t reinitialize the system or force it to a standard starting
state that would erase history. The tests are designed so that the
automation can identify failures. Run the tests in random order
over a long sequence.

• This is a low-mental-overhead alternative to model-based
testing. You get pass/fail info for every test, but without having
to achieve the same depth of understanding of the software. Of
course, you probably have worse coverage, less awareness of
your actual coverage, and less opportunity to stumble over
bugs.

• Unless this is very carefully managed, there is a serious risk of
non-reproducibility of failures.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 145

Random Testing:
Sandboxing the Regression Tests

Suppose that you create a random sequence of
standalone tests (that were not sandbox-tested),
and these tests generate a hard-to-reproduce
failure.

You can run a sandbox on each of the tests in
the series, to determine whether the failure is
merely due to repeated use of one of them.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 146

Random Testing:
Sandboxing

• In a random sequence of standalone tests, we might want
to qualify each test, T1, T2, etc, as able to run on its own.
Then, when we test a sequence of these tests, we know that
errors are due to interactions among them rather than
merely to cumulative effects of repetition of a single test.

• Therefore, for each Ti, we run the test on its own many
times in one long series, randomly switching as many other
environmental or systematic variables during this random
sequence as our tools allow.

• We call this the “sandbox” series—Ti is forced to play in its
own sandbox until it “proves” that it can behave properly
on its own. (This is an 80/20 rule operation. We do want to
avoid creating a big random test series that crashes only
because one test doesn’t like being run or that fails after a
few runs under low memory. We want to weed out these
simple causes of failure. But we don’t want to spend a
fortune trying to control this risk.)

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 147

Stochastic Test: Regression Based

Testing with Sequence of Passed Tests

• Collect a large set of regression tests, edit

them so that they don’t reset system state.

• Randomly run the tests in a long series and

check expected against actual results.

• Will sometimes see failures even though all

of the tests are passed individually.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 148

Random / Statistical Testing:
Sandboxing the Regression Tests

In a random sequence of standalone tests, we might want to qualify each test,
T1, T2, etc, as able to run on its own. Then, when we test a sequence of these
tests, we know that errors are due to interactions among them rather than
merely to cumulative effects of repetition of a single test.

Therefore, for each Ti, we run the test on its own many times in one long
series, randomly switching as many other environmental or systematic
variables during this random sequence as our tools allow. We call this the
“sandbox” series—Ti is forced to play in its own sandbox until it “proves”
that it can behave properly on its own. (This is an 80/20 rule operation. We just
don’t want to create a big random test series that crashes only because one
test doesn’t like being run one or a few times under low memory. We want to
weed out these simple causes of failure.)

=============
In a random sequence of standalone tests (that were not sandbox-tested) that
generate a hard-to-reproduce failure, run the sandbox on each of the tests in
the series, to determine whether the failure is merely due to repeated use of
one of them.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 149

Notes

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 150

Random / Statistical Testing:
Model-based Stochastic Tests

The Approach

• Build a state model of the software. (The analysis will reveal
several defects in itself.) For any state, you can list the
actions the user can take, and the results of each action
(what new state, and what can indicate that we transitioned
to the correct new state).

• Generate random events / inputs to the program or a
simulator for it

• When the program responds by moving to a new state, check
whether the program has reached the expected state

• See www.geocities.com/model_based_testing/online_papers.htm

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 151

Random / Statistical Testing:
Model-based Stochastic Tests

The Issues

• Works poorly for a complex product like Word
• Likely to work well for embedded software and

simple menus (think of the brakes of your car or
walking a control panel on a printer)

• In general, well suited to a limited-functionality client
that will not be powered down or rebooted very often.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 152

Random / Statistical Testing:
Model-based Stochastic Tests

The applicability of state machine modeling to mechanical computation dates
back to the work of Mealy [Mealy, 1955] and Moore [Moore, 1956] and persists to
modern software analysis techniques [Mills, et al., 1990, Rumbaugh, et al., 1999].
Introducing state design into software development process began in earnest in
the late 1980’s with the advent of the cleanroom software engineering
methodology [Mills, et al., 1987] and the introduction of the State Transition
Diagram by Yourdon [Yourdon, 1989].
A deterministic finite automata (DFA) is a state machine that may be used to
model many characteristics of a software program. Mathematically, a DFA is the
quintuple, M = (Q, S, d, q0, F) where M is the machine, Q is a finite set of states, S
is a finite set of inputs commonly called the “alphabet,” d is the transition
function that maps Q x S to Q,, q0 is one particular element of Q identified as the
initial or stating state, and F ⊆ Q is the set of final or terminating states [Sudkamp,
1988]. The DFA can be viewed as a directed graph where the nodes are the states
and the labeled edges are the transitions corresponding to inputs.
When taking this state model view of software, a different definition of software
failure suggests itself: “The machine makes a transition to an unspecified state.”
From this definition of software failure a software defect may be defined as:
“Code, that for some input, causes an unspecified state transition or fails to reach
a required state.”

Alan Jorgensen, Software Design Based on Operational Modes,
Ph.D. thesis, Florida Institute of Technology

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 153

Random / Statistical Testing:
Model-based Stochastic Tests

…
Recent developments in software system testing exercise state transitions
and detect invalid states. This work, [Whittaker, 1997b], developed the
concept of an “operational mode” that functionally decomposes (abstracts)
states. Operational modes provide a mechanism to encapsulate and
describe state complexity. By expressing states as the cross product of
operational modes and eliminating impossible states, the number of
distinct states can be reduced, alleviating the state explosion problem.

Operational modes are not a new feature of software but rather a different
way to view the decomposition of states. All software has operational
modes but the implementation of these modes has historically been left to
chance. When used for testing, operational modes have been extracted by
reverse engineering.

Alan Jorgensen, Software Design Based on Operational Modes,
Ph.D. thesis, Florida Institute of Technology

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 154

Random / Statistical Testing:
Thoughts Toward an Architecture

We have a population of tests, which may have been sandboxed and
which may carry self-check info. A test series involves a sample of
these tests.

We have a population of diagnostics, probably too many to run every
time we run a test. In a given test series, we will run a subset of these.

We have a population of possible configurations, some of which can be
set by the software. In a given test series, we initialize by setting the
system to a known configuration. We may reset the system to new
configurations during the series (e.g. every 5th test).

We have an execution tool that takes as input
• a list of tests (or an algorithm for creating a list),
• a list of diagnostics (initial diagnostics at start of testing, diagnostics at start

of each test, diagnostics on detected error, and diagnostics at end of session),
• an initial configuration and
• a list of configuration changes on specified events.

The tool runs the tests in random order and outputs results
• to a standard-format log file that defines its own structure so that
• multiple different analysis tools can interpret the same data.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 155

Random / Statistical Testing

Strengths
• Testing doesn’t depend on same old test every time.
• Partial oracles can find errors in young code quickly and cheaply.
• Less likely to miss internal optimizations that are invisible from outside.
• Can detect failures arising out of long, complex chains that would be

hard to create as planned tests.

Blind spots
• Need to be able to distinguish pass from failure. Too many people think

“Not crash = not fail.”
• Executive expectations must be carefully managed.
• Also, these methods will often cover many types of risks, but will

obscure the need for other tests that are not amenable to automation.
• Testers might spend much more time analyzing the code and too little

time analyzing the customer and her uses of the software.
• Potential to create an inappropriate prestige hierarchy, devaluating the

skills of subject matter experts who understand the product and its
defects much better than the automators.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 156

Random Testing:
Some Papers of Interest

Larry Apfelbaum, Model-Based Testing, Proceedings of
Software Quality Week 1997 (not included in the
course notes)
Michael Deck and James Whittaker, Lessons learned from
fifteen years of cleanroom testing. STAR '97 Proceedings
(not included in the course notes).

Doug Hoffman, Mutating Automated Tests
Alan Jorgensen, An API Testing Method
Noel Nyman, GUI Application Testing with Dumb Monkeys.
Harry Robinson, Finite State Model-Based Testing on a
Shoestring.
Harry Robinson, Graph Theory Techniques in Model-Based
Testing.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 157

Paradigm Exercise

Do any of the paradigms listed reflect a dominant
approach in your company? Which one(s)?

Looking at the paradigms as styles of testing, which
styles are in use in your company? (List them
from most common to least.)

Of the ones that are not common or not in use in
your company, is there one that looks useful,
that you think you could add to your company’s
repertoire? How?

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 158

Costs & Benefits of

Software Test Automation

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 159

Return on Investment?

Classic equation
En = Aa/Am = (Va + n*Da)/ (Vm + n*Dm)

• Subscript “a” stands for automated, “m” stands for manual

• Va: Expenditure for test specification and implementation

• Vm: Expenditure for test specification

• Da: Expenditure for test interpretation after automated testing

• Dm: Expenditure for single, manual test execution

• n: number of automated test executions

Linz, T, Daigl, M. “GUI Testing Made Painless. Implementation and results of the
ESSI Project Number 24306”, 1998.
Analysis in Case Study: Value of Test Automation Measurement, p. 52+ of Dustin, et.
al., Automated Software Testing, Addison-Wesley, 1999

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 160

Return on Investment?

It is unrealistic to compare N automated test runs
against the same number of manual test runs.

• Manual tests have built-in variance, and reruns of passed
tests are weak.

• It can’t be five times as valuable to run an automated test
daily as to run the same test manually once in a week.

• What should be compared is the number of times the
automated test is run, and the actual cost of running it
those times, versus the actual cost of running the manual
test the number of times we would run it.

This doesn’t make automation look as good as an
investment, but it better reflects actual value.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 161

Falsely Expected Benefits

• All tests will be automated

• Immediate payback from automation

• Automation of existing manual tests

• Zero ramp up time

• Automated comprehensive test planning

• Capture/Play back for regression testing

• One tool that fits perfectly

• Automatic defect reporting (without human

intervention)

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 162

Intangibles

Automation may have positive or negative effects on the
following:

• Professionalism of the test organization
• Perceived productivity of the test organization
• Expansion into advanced test issues
• Quality of tests
• Willingness to experiment and change on the part of the test team
• Trust between testers and management
• Ability of the corporation to run many builds quickly through

testing (e.g. for silent patch releases or localization testing)
• Testing coverage
• Residual ability of the test group to do exploratory testing

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 163

Conceptual Background

Time vs cost curve

Bugs found late are more expensive than bugs

found early

The paradoxes of automation costing:
• Techniques to find bugs later that are cheaper are more

expensive
• Techniques to find bugs earlier that are more expensive

are cheaper

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 164

Cost vs time

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 165

Conceptual Background to Costing

Most automation benefits come from discipline in
analysis and planning
Payback from automation is usually in the next
project or thereafter
Automating usually causes significant negative
schedule and performance impacts at introduction
Automated tests are more difficult to design and
write, and require more programming and design
skills from testers
Automated tests frequently require maintenance
Software metrics aren’t unbiased statistics

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 166

ROI Computations

En = Aa/Am = (Va + n*Da) / (Vm + n*Dm) †

En = Aa/Am = (Va + n1*Da) / (Vm + n2*Dm)

ROIautomation(in time t) = (Savings from

automation) / (Costs of automation)

ROIautomation(in time t) = ∆(Savings from

automation) / ∆(Costs of automation)

† Linz, T, Daigl, M. “GUI Testing Made Painless. Implementation and results of the ESSI
Project Number 24306”, 1998. Analysis in Case Study: Value of Test Automation
Measurement, p. 52+ of Dustin, et. al., Automated Software Testing, Addison-Wesley, 1999.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 167

Costs and Benefits:
Some Papers of Interest

Doug Hoffman, Cost Benefits Analysis of Test Automation

Linz, GUI Testing Made Painless

Brian Marick, When Should a Test Be Automated?

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 168

Test Oracles

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 169

The Test Oracle

Two slightly different views on the meaning of the word
• Reference Function: You ask it what the “correct”

answer is. (This is how I use the term.)
• Reference and Evaluation Function: You ask it whether

the program passed the test.
Using an oracle, you can compare the program’s result
to a reference value (predicted value) and decide
whether the program passed the test.
• Deterministic oracle (mismatch means program fails)

(This is the commonly analyzed case.)
• Probabilistic oracle (mismatch means program

probably fails.) (Hoffman analyzes these in more detail.)

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 170

Reference Functions:
Some Typical Examples

Spreadsheet Version N and Version N-1
• Single function comparisons
• Combination testing
• What about revised functions?

Database management operations

• Same database, comparable functions across
DBMs or query languages

Bitmap comparisons (output files)

• The problem of random variation

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 171

Deterministic Reference Functions

Saved result from a previous test.

Parallel function
• previous version
• competitor
• standard function
• custom model

Inverse function
• mathematical inverse
• operational inverse (e.g. split a merged table)

Useful mathematical rules (e.g. sin2(x) + cos2(x) = 1)

Expected result encoded into data

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 172

Test Result Possibilities

 Situation

Test Results
No Error Error

As Expected Correct Missed It

Red Flag False Alarm Caught

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 173

True Oracle Example

 Situation

Test Results
No Error Error

As Expected Correct Missed It

Red Flag False Alarm Caught

Simulator

Separate Implementation

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 174

Incomplete Oracle Example 1

 Situation

Test Results
No Error Error

As Expected Correct Missed It

Red Flag False Alarm Caught

Zip Code check of 5/9 digits

Sine2(x) = 1 - Cosine2(x)

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 175

Incomplete Oracle Example 2

 Situation

Test Results
No Error Error

As Expected Correct Missed It

Red Flag False Alarm Caught

Profile of Orders by Zip Code

Filter Testing (round-tripping)

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 176

Incomplete Oracle Example 3

 Situation

Test Results
No Error Error

As Expected Correct Missed It

Red Flag False Alarm Caught

Age Checking

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 177

Oracles: Challenges

•Completeness of information

•Accuracy of information

•Usability of the oracle or of its results

•Maintainability of the oracle

•May be as complex as SUT

•Temporal relationships

•Costs

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 178

A “Complete” Oracle

Test Results
Test Results

Postcondition Data
Postcondition Data

Postcondition
Program State

Postcondition
Program State

Environmental
Results

Environmental
Results

Test Oracle

System
Under
Test

Test Inputs

Precondition Data

Precondition
Program State

Environmental
Inputs

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 179

Notes

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 180

Oracle Completeness

• Input Coverage

• Result Coverage

• Function Coverage

• Sufficiency

• Types of errors possible

• SUT environments

May be more than one oracle for the SUT

Inputs may affect more than one oracle

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 181

Oracle Accuracy

How similar to SUT
• Arithmetic accuracy
• Statistically similar

How independent from SUT
• Algorithms
• Sub-programs & libraries
• System platform
• Operating environment

Close correspondence makes common mode faults
more likely and reduces maintainability

How extensive
• The more ways in which the oracle matches the SUT,

i.e. the more complex the oracle, the more errors
Types of possible errors

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 182

Oracle Usability

Form of information
• Bits and bytes
• Electronic signals
• Hardcopy and display

Location of information

Data set size

Fitness for intended use

Availability of comparators

Support in SUT environments

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 183

Oracle Maintainability

COTS or custom
• Custom oracle can become more

complex than the SUT
• More complex oracles make more errors

Cost to keep correspondence through

SUT changes
• Test exercises
• Test data
• Tools

Ancillary support activities required

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 184

Oracle Complexity

Correspondence with SUT

Coverage of SUT domains and functions

Accuracy of generated results

Maintenance cost to keep

correspondence through SUT changes
• Test exercises
• Test data
• Tools

Ancillary support activities required

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 185

Temporal Relationships

• How fast to generate results

• How fast to compare

• When is the oracle run

• When are results compared

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 186

Oracle Costs

• Creation or acquisition costs

• Maintenance of oracle and comparitors

• Execution cost

• Cost of comparisons

• Additional analysis of errors

• Cost of misses

• Cost of false alarms

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 187

Evaluation Functions: Heuristics

Compare (apparently) sufficiently complete attributes
• compare calculated results of two parallel math functions

(but ignore duration, available memory, pointers, display)
An almost-deterministic approach: Statistical
distribution
• test for outliers, means, predicted distribution

Compare incidental but informative attributes
• durations

Check (apparently) insufficiently complete attributes
• ZIP Code entries are 5 or 9 digits

Check probabilistic attributes
• X is usually greater than Y

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 188

Results Comparison

Strategies

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 189

Comparison Functions

Data Comparisons (Oracle based)
• Previous version
• Competitor
• Standard function
• Custom model

Computational or Logical Modeling
• Inverse function

» mathematical inverse
» operational inverse (e.g. split a merged table)

• Useful mathematical rules (e.g. sin2(x) + cos2(x) = 1)

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 190

Oracle Strategies for Verification

No Oracle True Oracle Consistency Self Referential Heuristic Strategy
Definition -Doesn’t check

correctness of
results, (only that
some results were
produced)

-Independent
generation of all
expected results

-Verifies current run
results with a previous
run
(Regression Test)

-Embeds answer
within data in the
messages

-Verif ies some
values, as well as
consistency of
remaining values

Advantages -Can run any
amount of data
(limited only by the
t ime the SUT
takes)

-No encountered
errors go undetected

-Fastest method using
an oracle
-Verification is
straightforward
-Can generate and
verify large amounts
of data

-Allows extensive
post-test analysis
-Verification is
based on message
contents
-Can generate and
verify large amounts
of complex data

-Faster and easier
than True Oracle
-Much less
expensive to create
and use

Disadvantages -Only spectacular
failures are noticed.

-Expensive to
implement
-Complex and often
time-consuming
when run

-Original run may
include undetected
errors

-Must define
answers and
generate messages
to contain them

-Can miss
systematic errors
(as in sine wave
example)

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 191

‘No Oracle’ Strategy

• Easy to implement

• Tests run fast

• Only spectacular errors are noticed

• False sense of accomplishment

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 192

“True” Oracle

Independent implementation

Complete coverage over domains

• Input ranges
• Result ranges

“Correct” results

Usually expensive

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 193

Consistency Strategy

A / B compare

Checking for changes

Regression checking
• Validated
• Unvalidated

Alternate versions or platforms

Foreign implementations

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 194

Consistency Strategy

Consistency-based testing involves comparing the
results of today’s test with a prior result. If the
results match (are consistent), the program has
“passed” the test.
Prior result can be from:
• Earlier version of SUT.
• Version of SUT on another platform.
• Alternate implementation (Oracle, Emulator, or Simulator).
• Alternative product.

More generally, A/B comparison where the set {B} is
a finite set of saved reference data, not a program
that generates results.
Typical case: Traditional automated regression test.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 195

Consistency Example:
Regression Automation

Run a test manually. If the program passes the
test, automate it.
• Create a script that can replay the test procedure, create

a reference file containing screen output or result data.
• Then rerun the script, and compare the results to the

reference file.

Only becomes interesting when the results are
different:
• Something was just fixed.
• Something is now broken.
• We’re comparing data that can validly change.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 196

Self-Referential Strategies

Embed results in the data

Cyclic algorithms

Shared keys with algorithms

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 197

Self Verifying Results

1. Generate a coded identifier
when the test data is created

2. Attach the identifier to the data

3. Verify data using the identifier

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 198

Simple SVD Example 1

Create a random name:

• Generate and save random number Seed (S)

• Use the first random value using RAND(S) as
the Length (L)

• Generate random Name (N) with L characters

• Concatenate the Seed (S) to name

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 199

Simple SVD Example 1

Assume the Seed (S) is 8 bytes, and
Name (N) field is maximum of 128 characters
Generate a name with Length (L) random characters

(a maximum of 120)

Name = … L Random characters … 8 character S

9 to 128 characters long

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 200

Simple SVD Example 1

To verify the names:

• Extract the 8 character S

• Use RAND(S) to generate the random name length L

• Generate random string N' of length L

• Compare the name N in the record to the new
random string N'

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 201

Simple SVD Example 2

Create random data packets

• Generate Random values for

» Start (S),

» Increment (I), and

» Character count (C)

• First data (V1) = S

• Next data (Vi+1) = Mod8(Vi + I)

• Generate until VC = Mod8((VC - 1) + I)

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 202

Simple SVD Example 2

To verify the data packets

• First data V1 => S

• Next data Mod8(256+ V2 - V1) => I

• Verify each next data Vi = Mod8((Vi-1) + I)

• Count the number of values => C

• Return values of Start (S), Increment (I),
and Count of values (C)

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 203

Non-Unique SVD Fields

• Shared value fields
• last names
• job titles
• company

• Non-string data
• numeric values
• date fields

• Limited length
• first name
• state

Add a new field to the data set for each record

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 204

Self-Referential Oracle Examples

Data base
• embedded linkages

Data communications
• value patterns (start, increment, number of values)

Noel Nyman’s “Self Verifying Data”*

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 205

Notes

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 206

Heuristics

“Heuristics are criteria, methods, or principles for deciding which among
several alternative courses of action promises to be the most effective in order
to achieve some goal. They represent compromises between two
requirements: the need to make such criteria simple and, at the same time, the
desire to see them discriminate correctly between good and bad choices.

“A heuristic may be a rule of thumb that is used to guide one’s actions.
For example, a popular method for choosing rip cantaloupe involves pressing
the spot on the candidate cantaloupe where it was attached to the plant . . .
This . . . Does not guarantee choosing only ripe cantaloupe, nor does it
guarantee recognizing each ripe cantaloupe judged, but it is effective most of
the time. . . .

“It is the nature of good heuristics both that they provide a simple means
of indicating which of several courses of action is to be preferred, and that
they are not necessarily guaranteed to identify the most effective course of
action, but do so sufficiently often.”

Judea Pearl, Heuristics: Intelligent Search Strategies for Computer Problem Solving (1984).

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 207

Heuristic Oracles

Heuristics are rules of thumb that support but do not
mandate a given conclusion. We have partial
information that will support a probabilistic evaluation.
This won’t tell you that the program works correctly
but it can tell you that the program is broken. This can
be a cheap way to spot errors early in testing.

Example:
• History of transactions à Almost all transactions

came from New York last year.
• Today, 90% of transactions are from Wyoming.

Why? Probably (but not necessarily) the system is
running amok.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 208

Choosing / Using a Heuristic

Rules of thumb
• similar results that don’t always work
• low expected number of false errors, misses

Levels of abstraction
• General characteristics
• Statistical properties

Simplify
• use subsets
• break down into ranges
• step back (20,000 or 100,000 feet)
• look for harmonic patterns

Other relationships not explicit in SUT
• date/transaction number
• one home address
• employee start date

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 209

Strategy: Heuristic

Predict a characteristic and check it against a
large random sample or a complete input or output
domain. This won’t tell you that the program works
correctly but it can tell you that the program is
probably broken. (Note that most heuristics are
prone to both Type I and Type II errors.) This can
be a cheap way to spot errors early in testing.
• Check (apparently) insufficient attributes

» ZIP Code entries are 5 or 9 digits
• Check probabilistic attributes

» X is usually greater than Y
• Check incidental but correlated attributes

» durations
» orders

• Check consistent relationships
» Sine similar to a sawtooth wave
» sin(x)2 + cos(x)2 = 1

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 210

Heuristic Oracle Examples

Data base
• selected records using specific criteria
• selected characteristics for known records
• standard characteristics for new records
• correlated field values (time, order number)
• timing of functions

Data communications
• value patterns (start, increment, number of values)
• CRC

Sine function example

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 211

Heuristic Oracle Relationships

Nice
• follow heuristic rule for some range of values
• ranges are knowable
• few or no gaps

Predictable
• identifiable patterns

Simple
• easy to compute or identify
• require little information as input

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 212

Heuristic Oracle Drawbacks

• Inexact
• will miss specific classes of errors
• may miss gross systematic errors
• don’t cover entire input/result domains

• May generate false errors

• Can become too complex
• exception handling
• too many ranges
• require too much precision

• Application may need better verification

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 213

Where Do We Fit In The Oracle?

• Identify what to verify

• How do we know the “right answer”

• How close to “right” do we need

• Decide when to generate the expected results

• Decide how and where to verify results

• Get or build an oracle

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 214

Choosing an Oracle Strategy

• Decide how the oracle fits in

• Identify the oracle characteristics

• Prioritize testing risks

• Watch for combinations of approaches

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 215

Oracles:
Some Papers of Interest

Doug Hoffman, Heuristic Test Oracles
Doug Hoffman, Oracle Strategies For Automated Testing
Noel Nyman, Self Verifying Data - Validating Test Results
Without An Oracle

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 216

Designing of Test Sets

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 217

A Classification Scheme for Test Sets

Source of test cases
• Old
• Intentionally new
• Random new

Size of test pool
• Small
• Large
• Exhaustive

Serial dependence among tests
• Independent
• Sequence is relevant

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 218

A Classification Scheme for Test Sets

Evaluation strategy

• Comparison to saved result
• Comparison to an oracle
• Comparison to a computational or logical model
• Comparison to a heuristic prediction.

(NOTE: All oracles are heuristic.)
• Crash
• Diagnostic
• State model

Examples:
•

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 219

Regression Testing

Source of test cases

• Old

Size of test pool

• Small

Serial dependence among tests
• Independent

Evaluation strategy

• Comparison to saved result

Examples:

• GUI based, Capture/Playback

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 220

Independent Random Tests:
Function Equivalence Testing

Source of test cases

• Random new

Size of test pool

• Large

Serial dependence among tests

• Independent

Evaluation strategy

• Comparison to an oracle

Examples

• Arithmetic in Excel

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 221

Stochastic Test: Random Inputs

Source of test cases
• Random new

Size of test pool
• Large

Serial dependence among tests
• Sequence is relevant

Evaluation strategy
• Crash or Diagnostics

Examples
• Dumb Monkeys

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 222

Stochastic Test: Model Based

Source of test cases
• Random new

Size of test pool
• Large, medium or small

(different substrategies)
Serial dependence among tests

• Sequence is relevant
Evaluation strategy

• State model or crash
Examples

• Navigation through windows

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 223

Stochastic Test: Saved Tests Based

Source of test cases

• Old

Size of test pool

• Large

Serial dependence among tests

• Sequence is relevant

Evaluation strategy

• Saved results or Crash or Diagnostics

Examples

• Sandboxed tests

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 224

Stochastic Test: Using Diagnostics

Source of test cases
• Random new

Size of test pool
• Large

Serial dependence among tests
• Sequence is relevant

Evaluation strategy
• Diagnostics in code

Examples
• Telephone system Hold

function

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 225

Notes

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 226

Sorting it Out:
Structure and Strategies

of Automation

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 227

Strategies for Automation

The following slides are not complete. They are a
structure for thinking about your situation. (For us, they
are a work in progress, and we’ll fill in new items as we
think of them, but they will always be incomplete.)

Consider them in the context of the questions on
the previous slides, and list:
• more of the relevant characteristics (ones relevant to your

situation)
• more examples of the strategies (e.g. more heuristic rules, more

items for consistency comparison, etc.)

Please note that factors that are favorable to one
strategy or another are just that, “favorable.” They might
or might not be necessary and they are not sufficient.
They simply push you in one direction or another.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 228

Evaluation of Strategies for Automation

What characteristics of the

• goal of testing
• level of testing (e.g. API, unit,

system)
• software under test
• environment
• generator
• reference function
• evaluation function
• users
• risks

would support, counter-
indicate, or drive you toward
• consistency evaluation

• small sample, pre-specified values

• exhaustive sample

• random (a.k.a. statistical)

• heuristic analysis of a large set

• embedded, self-verifying data

• model-based testing

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 229

Favorable Conditions: Consistency

Goal of Testing
• Smoke testing
• Port or platform testing
• Demo to regulators
• Next version tests
•

Level of Testing (e.g. API, unit, system)
•

Software Under Test
• For a GUI-based test, uses standard controls, not custom controls.
• Hooks provided (e.g. API) for testing below the UI level.
• Stability of design / result set [if unstable, unsuitable for consistency testing].
• Must be repeatable output, e.g. postscript output and dithered output are

unsuitable.
•

Environment
• Some embedded systems give non-repeatable results.
• Real time, live systems are usually not repeatable.
•

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 230

Favorable Conditions: Consistency

Generator
• Expensive to run tests in order to create reference data. Therefore it is

valuable to generate test results once and use them from archives.
•

Reference Function
• captured screen, captured state, captured binary output file, saved database.
• duration of operation, amount of memory used, exiting state of registers, or

other incidental results.
• finite set of reference data against which we can compare current behavior.
• It’s nutty to compare 2 screens in order to see whether a sorted file compares

to a previously sorted file. If you want to check the sorting, compare the files
not the displays. Capture the essence of the things you want to compare.

•
Evaluation Function

•
Users

• Non-programmers are typical users (and are the normal targets of vendors of
capture/playback tools).

•
Risks

• Tests a few things (sometimes well), does nothing with the rest.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 231

Confounding Factors: Consistency

• The displayed (or printed) value may not be the same as
that generated by the SUT. [Interface defects]

• Assumptions made may not be valid and need to be
reconfirmed during and after testing.

• Smart tools limit visibility into actual SUT behaviors
(smart tools –> less tester control).

• Small sample consistency testing -> see the discussion
of automated regression testing weaknesses.

• Often mistaken for complete or true oracle comparisons.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 232

Evaluation: Consistency

Advantages
• Straightforward.
• The program can serve as its own oracle.
• Easily used at an API.
• Effective when test cases are very expensive or

when the software design is very stable.
Disadvantages
• Every time the software changes, tests that relied

on that characteristic of the software must change.
• Unless the test code is carefully architected, the

maintenance cost is impossibly high.
• Common mode of failure errors won’t be detected.
• Legacy errors won’t be detected.

Bottom line
•

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 233

Strategy: Small Sample

The small sample strategy is about limiting the
number of tests used to exercise a product.
Typically we use pre-specified values and
compare results against some type of oracle.

Examples

API-based tests;
Function
equivalence

Silk / GUI
regression

Regression

StochasticSoap OperaUnique

Large SampleSmall Sample

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 234

Examples: Small Sample

Equivalence and boundary analysis follow this
approach. We divide a large population of possible
tests into subsets and choose a few values that are
representative of each set.

Scenario tests are often expensive and complex.
Some companies create very few of them. In UI-
intense situations, scenarios and exploratory tests
might be manual. However, other applications are
most naturally tested by writing code and creating
sample data. Thus, an exploratory test or a one-use
scenario test might be automated.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 235

Favorable Conditions: Small Sample

Goal of Testing
• Destructive testing (can’t test often if your test is designed to break the

machine every time).
• Enormously long, repetitive test (too boring and tedious and time

consuming to make a human run it even once).
•

Level of Testing (e.g. API, unit, system)
•

Software Under Test
• Regular function or any other input or output domain that is well-tested

by a small group of representative values (such as boundary values).
•

Environment
• Environment or data cost high (e.g. Beizer’s report of costs of Y2K

time machine tests).
• High cost of renting machine.
• Mainframe (only have one, must share it with everyone else).
• Live system, can’t feed much artificial data to it because you have to

take it down each time or do special accounting stuff each time.
•

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 236

Favorable Conditions: Small Sample

Generator
• High cost to generate test cases (e.g., no automated generator).
•

Reference Function
• High cost to generate comparison data (e.g., no oracle).
• Huge comparison cost (e.g. the 1 terabyte database).
•

Evaluation Function
• Automated evaluation is slow, expensive.
•

Users
• Tolerant of errors.
• Intolerant of errors, but at a point at which we have done

extensive function and domain testing and are now doing
extremely complex tests, such as high-power soap operas.

•

Risks
• Low risk.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 237

Evaluation: Small Sample

Advantages
• Can be fast to create and run.
• Identifies results of changes.
• Automation can be customized.
• Automated comparisons are straightforward.
• Product can be oracle for itself.

Disadvantages
• Saved results may contain unrecognized errors.
• Doesn’t necessarily consider specific, key data values, especially special

cases not at visible boundaries.
• False security if domains are not correctly analyzed.
• Already-missed errors will remain undetected by repeated regression tests.
• If this testing is done before SW is cooked, then the code becomes tailored

to the tests.

The fundamental problem is, it only checks a few values (we don’t
know anything about the rest).

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 238

Favorable Conditions: Exhaustive

Goal of Testing
•

Level of Testing (e.g. API, unit, system)
•

Software Under Test
• Limited input domain.
•

Environment
• The range of environments is limited: embedded software

or system configuration that is fully controlled by vendor.
• The important parameters (key elements of the

environment) can be identified and are known.
•

Generator
• Easy to create tests.
•

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 239

Favorable Conditions: Exhaustive

Reference Function
• Oracle available.
•

Evaluation Function
• Evaluation function available.
•

Users
• ?
•

Risks
• Safety-critical or business-critical.
•

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 240

Evaluation: Exhaustive

Advantages
• Complete management of certain risks.
• Discover special case failures that are

not visible at boundaries or suggested
by traditional test design approaches.

•

Disadvantages
• Expensive.
• Often impossible.
•

Bottom line

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 241

Strategy: Random

Examples:Examples:
NON-STOCHASTIC RANDOM TESTS

• Function Equivalence Testing.
• Data value generation using a statistical profile.
• Heuristic data profiles.

STATISTICAL RELIABILITY ESTIMATION
• Clean Room.

STOCHASTIC TESTS (NO MODEL)
• Dumb monkeys, such as early analysis of

product stability, O/S compatibility testing.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 242

Strategy: Random

ExamplesExamples (continued)(continued)::

STOCHASTIC TESTS USING ON A MODEL OF THE
SOFTWARE UNDER TEST

• Random transition from state to state. Complex simulations,
involving long series of events or combinations of many
variables. Check whether the program has actually reached
the expected state.

STOCHASTIC TESTS USING OTHER ATTRIBUTES OF
SOFTWARE UNDER TEST

• Random transition from state to state. Complex simulations,
involving long series of events or combinations of many
variables. Check for assertion fails or other debug warning
messages.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 243

Favorable Conditions: Random

Goal of Testing
• Load / life test
• Qualify embedded software (simple state

machines that run for long periods)
• Statistical quality control.

Level of Testing (e.g. API, unit, system)
•

Software Under Test
• knockoff of a successful competitor
• upgrade from a working program
• conditions under test are very complex
•

Environment
•

Generator
• Random inputs through a generator function, such

as creating random formulas for a spreadsheet

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 244

Favorable Conditions: Random

Reference Function
• Need some way to evaluate pass or fail. For example, compute

the value of a formula from a reference spreadsheet.
•

Evaluation Function
• Must be available.
•

Users
•

Risks
• Significant errors that involve complex sequences of states or

combinations of many inputs
•

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 245

Evaluation: Random

Advantages
• Can run a huge number of test cases
• Few or no evaluation errors

Disadvantages
• Doesn’t consider specific, key data values (no special allowance for

boundaries, for example).
Risks

• People sometimes underestimate the need for a good oracle. They run so
many tests that they think they are doing powerful work even though they are
merely testing for crashes.

• Some of the random models generate sequences that make it impossible to
reproduce a bug.

• Risk of false negatives (i.e. bug is missed when it is there) (oracle has same
errors as software under test, so no bug is discovered)(see Leveson’s work on
common mode errors).

• Risk of overestimating coverage--miss need for other types of tests to check
for risks not tested for by this series of tests. E.G., might test individual
functions but miss need to check combinations.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 246

Favorable Conditions: Heuristic

Goal of Testing
• Early testing for plausibility of results

Level of Testing (e.g. API, unit, system)
•

Software Under Test
• Nice

» follows heuristic rule for some range of values
» ranges are knowable
» few or no gaps

• Predictable
» identifiable patterns

• Simple
» easy to compute or identify
» requires little information as input

Environment

Generator
•

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 247

Favorable Conditions: Heuristic

Reference Function
• Usually there are multiple choices for oracles

(can select “best” for the circumstances).
•

Evaluation Function
•

Users
•

Risks
• The risks that you manage by this type of testing

are based on your knowledge of any testable fact
about code or data that might be proved false by
testing across a large set of data.

•

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 248

Evaluation: Heuristic

Advantages
• May allow exhaustive testing of values of inputs (or results).
• Handy, powerful for detection early in testing
• Heuristic oracles are often reusable.

Disadvantages
• The results are not definitive.

» will miss specific classes of errors
» may miss gross systematic errors
» might not cover entire input/result domains
» may generate false errors

• Can become too complex
» exception handling
» too many ranges
» require too much precision

• Application may need better verification
Bottom line

• Handy, powerful for early detection, but should not be the
only test type that you use.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 249

Favorable Conditions:
Embedded, SVD

Goal of Testing
• Independent verification after testing
•

Level of Testing (e.g. API, unit, system)
•

Software Under Test
• Persistent data
• Packetized data
•

Environment
•

Generator
•

Reference Function
• Inverse function

Evaluation Function
• Inverse function

Users
•

Risks
• Software subject to hidden errors identifiable from data
•

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 250

Evaluation: Embedded, SVD

Advantages
• Can uncover subtle side effects.
• Allows random data generators.
•

Disadvantages
• Some data types not conducive to SVD.

» dates
» numeric values
»

• May require additional data fields.

Bottom line
• Useful technique for some tests.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 251

Favorable Conditions:
Model Based

Goal of Testing
• Testing of a state machine
•

Level of Testing (e.g. API, unit, system)
•

Software Under Test
• Identified state machine model

Environment
•

Generator
• State machine based

Reference Function
• State machine model

Evaluation Function
• State verification

Users
•

Risks
• State transition errors possible

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 252

Evaluation: Model Based

Advantages
• Can find state transition errors.
• Allows random walks.
• Can be designed as generalized model tester
•

Disadvantages
• Only applicable to state based SUT.
• May require significant work to keep model in

sync with SUT.
• Works poorly for a complex or changing product
•

Bottom line
• Useful technique for some SUT.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 253

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 254

Software Test Automation Design

Testing Resources on the Net

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 255

Testing Resources on the Net
Various Web Sites

DOUG HOFFMAN’S HOME PAGE www.SoftwareQualityMethods.com
Consulting and training in strategy and tactics for software quality. Articles on software
testing, quality engineering, and management. Look here for updated links.

CEM KANER’S HOME PAGE www.kaner.com
Articles on software testing and testing-related laws

JAMES BACH www.satisfice.com
Several interesting articles from one of the field’s most interesting people.

BRETT PETTICHORD www.io.com/~wazmo/qa.html
Several interesting papers on test automation. Other good stuff too.

BRIAN LAWRENCE www.coyotevalley.com
Project planning from Brian Lawrence & Bob Johnson.

BRIAN MARICK www.testing.com
Brian Marick wrote an interesting series of papers for CenterLine. This particular one is a
checklist before automating testing. The CenterLine site has a variety of other useful papers.

ELISABETH HENDRICKSON www.QualityTree.com
Consulting and training in software quality and testing.

JOHANNA ROTHMAN www.jrothman.com
Consulting in project management, risk management, and people management.

HUNG NGUYEN www.logigear.com
Testing services, training, and defect tracking products.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 256

Testing Resources on the Net
Various Web Sites

LESSONS LEARNED IN SOFTWARE TESTING www.testinglessons.com
This is the home page for Cem’, James’, and Bret’s book, Lessons Learned in Software Testing.

BAD SOFTWARE HOME PAGE www.badsoftware.com
This is the home page for Cem’s book, Bad Software. Material on the law of software quality
and software customer dissatisfaction.

SOFTWARE QUALITY ENGINEERING www.sqe.com
Several interesting articles on current topics.

SOFTWARE QUALITY ENGINEERING www.stqe.com www.stickyminds.com
Articles from STQE magazine, forum for software testing and quality engineering.

QA DUDE’S QUALITY INFO CENTER www.dcez.com/~qadude
“Over 200 quality links” -- pointers to standards organizations, companies, etc. Plus artic les,
sample test plans, etc.

QUALITY AUDITOR www.geocities.com/WallStreet/2233/qa-home.htm
Documents, links, listservs dealing with auditing of product quality.

THE OBJECT AGENCY www.toa.com
Ed Berard’s site. Object-oriented consulting and publications. Interesting material.

RBSC (BOB BINDER) www.rbsc.com
A different approach to object-oriented development and testing.

DILBERT www.unitedmedia.com/comics/dilbert.
Home of Ratbert, black box tester from Heck.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 257

Testing Resources on the Net
Various Web Sites

SSQA www.ventanatech.com/ssqa
Silicon Valley Software Quality Association is a local professional software QA
organization with monthly meetings, newsletter, more.

AMERICAN SOCIETY FOR QUALITY (ASQ) www.asq.org
National/international professional QA organization.

SILICON VALLEY SECTION OF (ASQ) www.asq-silicon-valley.org
ISO www.iso.ch

Describes ISO (International Organization for Standardization), with links to other
standards organizers

AMERICAN NATIONAL STANDARDS INSTITUTE www.ansi.org
NSSN www.nssn.org

National Standards Systems Network. Find / order various standards. Lots of links to
standards providers, developers and sellers.

IEEE Computer Society www.computer.org
Back issues of IEEE journals, other good stuff.

SOFTWARE ENGINEERING INSTITUTE www.sei.cmu.edu
SEI at Carnegie Melon University. Creators of CMM and CMMI.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 258

Testing Resources on the Net
Various Web Sites

CENTER FOR SOFTWARE DEVELOPMENT www.center.org
Non-profit in San Jose with a big test lab and various other support facilities.

RELIABLE SOFTWARE TECHNOLOGIES www.rstcorp.com
Consulting firm. Hot stuff on software reliability and testability. Big archive of downloadable papers.
Lots of pointers to other software engineering sites.

SOFTWARE TESTING INSTITUTE www.ondaweb.com/sti
Membership-funded institute that promotes professionalism in the industry. BIG list of pointers to
resources in the industry (the Online STI Resource Guide).

SOFTWARE PRODUCTIVITY CENTRE www.spc.ca
Methodology, training and research center that supports software development in the Vancouver BC
area.

CENTRE FOR SOFTWARE ENGINEERING www.cse.dcu.ie
“Committed to raising the standards of quality and productivity within Ireland’s software development
community.”

EUROPEAN SOFTWARE INSTITUTE www.esi.es
Industry organization founded by leading European companies to improve the competitiveness of the
European software industry. Very interesting for the Euromethod contracted software lifecycle and
documents.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 259

Testing Resources on the Net
Various Web Sites

QUALITY.ORG www.casti.com
Links to quality control source materials.

CSST (CLIENT-SERVER SOFTWARE TESTING) www.cse.dcu.ie
D. J. Mosley’s home page. Lots of client / server publications.

FORMAL TECHNICAL REVIEW ARCHIVE www.ics.Hawaii.edu/~johnson/FTR
Documents, links, listservs dealing with auditing of product quality.

SOCIETY FOR TECHNICAL COMMUNICATION www.stc.org
Links to research material on documentation process and quality.

BUGNET www.bugnet.com
Lists of bugs and (sometimes) fixes. Great source for data.
TRY THIS SOMETIME -- With a product you own, look up bugs in BugNet that doesn’t list a
workaround or a bugfix release, and replicate it on your computer. Then call the publisher’s tech
support group and ask if they have an upgrade or a fix for this bug. Don’t tell them that you found it in
BugNet. The question is, what is the probability that your publisher’s support staff will say, “Gosh,
we’ve never heard of that problem before.”

JPL TEST ENGINEERING LAB tsunami.jpl.nasa.gov
Jet Propulsion Lab’s Test Engineering Laboratory. Includes the comp.software.testing archives.
Additionally, there are many sites for specialized work, such as sites for HTML compatibility tests of
browsers. The usual search tools lead you to the key sites (the list changes weekly.)

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 260

Testing Resources on the Net
Various Web Sites

SOFTWARE RESEARCH INC. www.soft.com
Also a major consulting and toolbuilding firm. Organizes the Quality Week conference.
Publishes the TTN-Online newsletter. Excellent links.

QUALITY ASSURANCE INSTITUTE www.qai.com
Quality control focused on the needs of Information Technology groups.

AETG WEBSITE http://aetgweb.argreenhouse.com/
Home page for the AETG combinatorial testing product. Includes articles describing the theory
of the product.

UNIFORM COMMERCIAL CODE ARTICLE 2B www.law.upenn.edu/bll/ulc/ulc.htm
These hold the drafts of the proposed Article 2B (UCITA), which will govern all sales of software.
This will become the legal foundation of software quality. Currently, the foundation looks like it will
be made of sand, Jell-O, and invisible ink.

SOFTWARE PUBLISHERS ASSOCIATION www.spa.org
Software & Information Industry Association is the main software publishers’ trade association.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 261

Testing Resources on the Net:
Some News Groups

comp.software.testing
This covers issues of general interest to software testers. Plagued by too much
spamming, this is not quite as interesting a spot as it used to be.

comp.human-factors
User interface issues, usability testing, safety, man-machine reliability, design tools.

comp.software.international
Internationalization and localization issues

comp.software.config-mgmt
Various configuration management issues.

comp.software-eng
Discussions of all areas of software engineering, including design, architecture,
testing, etc. The comp.software-eng FAQ is the one that lists sources of bug
tracking systems, for example. (You’d think it would be in comp.software.testing,
but comp.software-eng got there first.)

comp.software.measurement
Not much there, but the goal is picking up metrics / measurements / data.

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 262

Testing Resources on the Net:
Some News Groups

comp.answers
The home of many, many FAQs (documents that answer Frequently Asked
Questions).

comp.jobs, comp.jobs.offered, ba.jobs, misc.jobs, etc.
A good way to check out market values for testers (or to find your new home when
you need one).

comp. risks
Daily discussions of newsworthy bugs.

comp.dcom.modems
Lots and lots and lots of discussion of modems.

misc.industry.quality
Various discussions of quality control paradigms and experiences.

alt.comp.virus
This covers viruses, explaining things at end-user and more technical levels. The
group often has very-up-to-date stuff. And like most alt-based groups, it seems to
have a lot of spam mixed in. . .

Copyright © 1994-2003 Cem Kaner and SQM, LLC. All Rights Reserved. 263

Testing Resources on the Net
Mailing Lists, etc.

swtest-discuss@convex.convex.com
Mail swtest-discuss-digest-request@rstcorp.com with
"subscribe" in the body of the message to subscribe.

baldrige, qs9000, many others
contact bill casti The Quality Czar <help@quality.org>

DEMING-L
contact LISTSERV@UHCCVM.UHCC.HAWAII.EDU

testing technology newsletter
contact ttn@soft.com, software research assocs

