A CUDA IMPLEMENTATION OF THE

HPCG BENCHMARK

Everett Phillips

Massimiliano Fatica




OUTLINE
High Performance Conjugate Gradient Benchmark

> Motivation

> Overview

> Optimization

» Performance Results
> Single GPU

> GPU Supercomputers

» Conclusion



WHY HPCG ?
HPL (Linpack) Top500 benchmark

> Supercomputer Ranking / Evaluation

Dense L-I near Algebra (AX — b) Already factored

Current

> Compute intensive Plock

Pivot and

> DGEMM (Matrix-Matrix Multiply) scale

> O(N3)FLOPS / O(N2) Data

> 10-100 Flop/Byte

> Workload does not correlate with many modern applications



WHY HPCG?

> New Benchmark to
Supplement HPL

> Common Computation ;
Patterns not addressed by ¥ ¥g
HPL

> Numerical Solution of
PDEs

> Memory Intensive

> Network



HPCG BENCHMARK

> Preconditioned Conjugate Gradient Algorithm
> Sparse Linear Algebra (Ax = b), Iterative solver

> Bandwidth Intensive: 1/6 Flop/Byte

> Simple Problem (sparsity pattern of Matrix A)
» Simplifies matrix generation/solution validation
» Regular 3D grid, 27-point stencil
» Nx x Ny x Nz local domain / Px x Py x Pz Processors

> Communications: boundary + global reduction




HPCG ALGORITHM

Algorithm 1 Preconditioned Conjugate Gradient
1: k=0

2: Compute the residual ro = b — Axg

3: while (||u || < ) do

if k =1 then
P1 = 20
else
Br = ’g—if«l —1/’ k—2%k—2
Pk = Zk—1 + BrPr—1
end if
&L = ?"{71.3;;*1 / p{ ADr
Tp = Th—1 + OpPk
ek = Tr—1 — pApPE

> Sparse Matrix Vector Multiply (SPMV) end _lyhﬂé
> Dot Product - MPI_Allreduce() |




HPCG BENCHMARK

> Problem Setup - initialize data structures

> Optimization (required to expose parallelism in SYMGS smoother)

» Matrix analysis / reordering / data layout

> Time counted against final performance result

» Reference Run - 50 iterations with reference code - Record Residual
~ Optimized Run - converge to Reference Residual

> Matrix re-ordering slows convergence (55-60 iterations)

» Additional iterations counted against final performance result

> Repeat to fill target execution time (few minutes typical, 1 hour for official run )



HPCG
SPMV (y = Ax)

Exchange_Halo(x) //neighbor communications
for row = 0 to nrows
sum < 0
for j = 0 to nonzeros_in_row[ row ]
col < A_col[j]
val < A_val[ j ]
sum < sum + val * x[ col ]
y[ row ] € sum

No dependencies between rows, safe to process rows in parallel



HPCG
SYMGS (Ax =y, smooth x)

Exchange_Halo(x) //neighbor communications
for row = 0 to nrows
sum <
for j = 0 to nonzeros_in_row[ row ]
col < A_col[j]
val < A_val[ j ]
sum < sum - val * x[ col ]
[ row ] € sum

if col < row, must wait for x[col] to be updated



MATRIX REORDERING (COLORING)

> SYMGS - order requirement

> Previous rows must have new value
> reorder by color (independent rows)
> 2D example: 5-point stencil -> red-black

» 3D 27-point stencil = 8 colors




MATRIX REORDERING (COLORING)

> Coloring to extract parallelism

> Assignment of “color” (integer) to vertices (rows), with no two
adjacent vertices the same color

» “Efficient Graph Matching and Coloring on the GPU” - (Jon Cohen)
> Luby / Jones-Plassman based algorithm
> Compare hash of row index with neighbors

> Assign color if local extrema

> Optional: recolor to reduce # of colors



MORE OPTIMIZATIONS

> Overlap Computation with neighbor communication
> Overlap 1/3 MPI_Allreduce with Computation
__LDG loads for irregular access patterns (SPMV + SYMGS)



GPU
CPU

OPTIMIZATIONS

> SPMV Overlap Computation with communications

» Gather to GPU send buffer

Copy send_buffer to CPU

MPI_send / MPI_recv \

Launch SPMV Kernel

/

N 4

~N

Time

/7



OPTIMIZATIONS

> SPMV Overlap Computation with communications

» Gather to GPU send_buffer
Copy send_buffer to CPU
Launch SPMV interior Kernel
MPI_send / MPI_recv

N

Launch SPMV boundary Kernel

GPU Stream A [ S
GPU Stream B .

CPU .

Time

a



RESULTS - SINGLE GPU

Optimized HPCG time (K20X)
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RESULTS - SINGLE GPU

Single GPU HPCG GFLOPS

mSPMY B MG TOTAL

K10 ECC K20X ECC K20X K40 ECC K40+ ECC




RESULTS - SINGLE GPU

HPCG vs STREAM Memory Bandwidth

BK20X mK40 ®IVB
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204
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RESULTS - SINGLE GPU

HPCG GF vs STREAM BW
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RESULTS - GPU SUPERCOMPUTERS

» Titan @ ORNL

» Cray XK7, 18688 Nodes

> 16-core AMD Interlagos + K20X

> Gemini Network - 3D Torus Topology
> Piz Daint @ CSCS

» Cray XC30, 5272 Nodes

> 8-core Xeon E5 + K20X

> Aries Network - Dragonfly Topology



RESULTS - GPU SUPERCOMPUTERS

> 1 GPU = 20.8 GFLOPS (ECC ON)

Parallel Efficiency

» ~7% iteration overhead at scale

» Titan @ ORNL

» 322 TFLOPS (18648 K20X)

> 89% efficiency (17.3 GF per GPU)
» Piz Daint @ CSCS

> 97 TFLOPS (5265 K20X)

» 97% efficiency (19.0 GF per GPU)




RESULTS - GPU SUPERCOMPUTERS

Titan Parallel Scaling Overhead

> DDOT (-10%)

> MPI_Allreduce()

> Scales as Log(#nodes)

> MG (-2%)

> Exchange Halo (neighbor)
> SPMV (-0%)

> Overlapped w/Compute

128 512 2048 8192 18648
Nodes




SUPERCOMPUTER COMPARISON

HPCG| Systen /G |Itera FOCS "OCessor G |Bandwidth| Efficiency

19,145

2:600 T@Hld K 2(]\ .-2..5..52. GF




CONCLUSIONS

> GPUs proven effective for HPL, especially for power efficiency
> High flop rate

> GPUs also very effective for HPCG

> High memory bandwidth

» Stacked memory will give a huge boost

» Future work will add CPU + GPU
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