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WHY HPCG ? 

Supercomputer Ranking / Evaluation 

Dense Linear Algebra  (Ax = b) 

Compute intensive 

DGEMM (Matrix-Matrix Multiply) 

O(N3)FLOPS / O(N2) Data 

10-100 Flop/Byte  

Workload does not correlate with many modern applications 

 

HPL (Linpack) Top500 benchmark 

 



WHY HPCG? 

New Benchmark to 
Supplement HPL 

Common Computation 
Patterns not addressed by 
HPL 

Numerical Solution of 
PDEs 

Memory Intensive 

Network 



Preconditioned Conjugate Gradient Algorithm 

Sparse Linear Algebra (Ax = b), Iterative solver 

Bandwidth Intensive: 1/6 Flop/Byte 

Simple Problem (sparsity pattern of Matrix A)  

Simplifies matrix generation/solution validation  

Regular 3D grid, 27-point stencil  

Nx x Ny x Nz local domain / Px x Py x Pz Processors 

Communications: boundary + global reduction 

 

HPCG BENCHMARK 



HPCG ALGORITHM 

Multi-Grid Preconditioner 

Symmetric-Gauss-Seidel Smoother (SYMGS) 

 

 

 

 

 

Sparse Matrix Vector Multiply (SPMV) 

Dot Product – MPI_Allreduce() 

 

 



HPCG BENCHMARK 

Problem Setup – initialize data structures 

Optimization (required to expose parallelism in SYMGS smoother) 

Matrix analysis / reordering / data layout 

Time counted against final performance result  

Reference Run – 50 iterations with reference code – Record Residual  

Optimized Run – converge to Reference Residual 

Matrix re-ordering slows convergence (55-60 iterations) 

Additional iterations counted against final performance result 

Repeat to fill target execution time (few minutes typical, 1 hour for official run ) 



HPCG 

Exchange_Halo(x)  //neighbor communications 

for row = 0 to nrows 

    sum  0 

    for j = 0 to nonzeros_in_row[ row ] 

        col  A_col[ j ]  

        val  A_val[ j ] 

        sum  sum + val * x[ col ] 

    y[ row ]  sum 

 

No dependencies between rows, safe to process rows in parallel 

 

SPMV (y = Ax) 



HPCG 

Exchange_Halo(x)  //neighbor communications 

for row = 0 to nrows  (Fwd Sweep, then Backward Sweep for row = nrows to 0) 

    sum  b[ row ] 

    for j = 0 to nonzeros_in_row[ row ] 

        col  A_col[ j ] 

        val  A_val[ j ] 

        if( col != row ) sum  sum – val * x[ col ] 

    x[ row ]  sum / A_diag[ row ] 

 

if col < row, must wait for x[col] to be updated 

 

SYMGS (Ax = y, smooth x) 



MATRIX REORDERING (COLORING) 

SYMGS - order requirement 

Previous rows must have new value 

reorder by color (independent rows) 

2D example: 5-point stencil -> red-black  

3D 27-point stencil = 8 colors 

 

 



MATRIX REORDERING (COLORING) 

Coloring to extract parallelism 

Assignment of “color” (integer) to vertices (rows), with no two 
adjacent vertices the same color 

“Efficient Graph Matching and Coloring on the GPU” – (Jon Cohen) 

Luby / Jones-Plassman based algorithm 

Compare hash of row index with neighbors 

Assign color if local extrema 

Optional: recolor to reduce # of colors 

 

 



MORE OPTIMIZATIONS 

Overlap Computation with neighbor communication 

Overlap 1/3 MPI_Allreduce with Computation 

__LDG loads for irregular access patterns (SPMV + SYMGS) 

 



OPTIMIZATIONS 

SPMV Overlap Computation with communications 

Gather to GPU send_buffer 
Copy send_buffer to CPU 
MPI_send / MPI_recv 
Copy recv_buffer to GPU 
Launch SPMV Kernel 
 

Time 

GPU 
 
CPU 



OPTIMIZATIONS 

SPMV Overlap Computation with communications 

Gather to GPU send_buffer 
Copy send_buffer to CPU 
Launch SPMV interior Kernel 
MPI_send / MPI_recv 
Copy recv_buffer to GPU 
Launch SPMV boundary Kernel 
 

Time 

GPU Stream A 
GPU Stream B 
CPU 



RESULTS – SINGLE GPU 

 



RESULTS – SINGLE GPU 



RESULTS – SINGLE GPU 



RESULTS – SINGLE GPU 



RESULTS – GPU SUPERCOMPUTERS 

Titan @ ORNL 

Cray XK7, 18688 Nodes 

16-core AMD Interlagos + K20X 

Gemini Network - 3D Torus Topology 

Piz Daint @ CSCS 

Cray XC30, 5272 Nodes 

8-core Xeon E5 + K20X 

Aries Network – Dragonfly Topology 



RESULTS – GPU SUPERCOMPUTERS 

1 GPU = 20.8 GFLOPS (ECC ON) 

~7% iteration overhead at scale 

Titan @ ORNL 

322 TFLOPS (18648 K20X) 

89% efficiency (17.3 GF per GPU) 

Piz Daint @ CSCS 

97 TFLOPS (5265 K20X)  

97% efficiency (19.0 GF per GPU) 



RESULTS – GPU SUPERCOMPUTERS 

DDOT (-10%)  

MPI_Allreduce() 

Scales as Log(#nodes) 

MG (-2%)  

Exchange Halo (neighbor)  

SPMV (-0%) 

Overlapped w/Compute 



SUPERCOMPUTER COMPARISON 



CONCLUSIONS 

GPUs proven effective for HPL, especially for power efficiency 

High flop rate 

GPUs also very effective for HPCG 

High memory bandwidth 

Stacked memory will give a huge boost 

Future work will add CPU + GPU 
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