
Everett Phillips

Massimiliano Fatica

A CUDA IMPLEMENTATION OF THE

HPCG BENCHMARK

OUTLINE

Motivation

Overview

Optimization

Performance Results

Single GPU

GPU Supercomputers

Conclusion

High Performance Conjugate Gradient Benchmark

WHY HPCG ?

Supercomputer Ranking / Evaluation

Dense Linear Algebra (Ax = b)

Compute intensive

DGEMM (Matrix-Matrix Multiply)

O(N3)FLOPS / O(N2) Data

10-100 Flop/Byte

Workload does not correlate with many modern applications

HPL (Linpack) Top500 benchmark

WHY HPCG?

New Benchmark to
Supplement HPL

Common Computation
Patterns not addressed by
HPL

Numerical Solution of
PDEs

Memory Intensive

Network

Preconditioned Conjugate Gradient Algorithm

Sparse Linear Algebra (Ax = b), Iterative solver

Bandwidth Intensive: 1/6 Flop/Byte

Simple Problem (sparsity pattern of Matrix A)

Simplifies matrix generation/solution validation

Regular 3D grid, 27-point stencil

Nx x Ny x Nz local domain / Px x Py x Pz Processors

Communications: boundary + global reduction

HPCG BENCHMARK

HPCG ALGORITHM

Multi-Grid Preconditioner

Symmetric-Gauss-Seidel Smoother (SYMGS)

Sparse Matrix Vector Multiply (SPMV)

Dot Product – MPI_Allreduce()

HPCG BENCHMARK

Problem Setup – initialize data structures

Optimization (required to expose parallelism in SYMGS smoother)

Matrix analysis / reordering / data layout

Time counted against final performance result

Reference Run – 50 iterations with reference code – Record Residual

Optimized Run – converge to Reference Residual

Matrix re-ordering slows convergence (55-60 iterations)

Additional iterations counted against final performance result

Repeat to fill target execution time (few minutes typical, 1 hour for official run)

HPCG

Exchange_Halo(x) //neighbor communications

for row = 0 to nrows

 sum  0

 for j = 0 to nonzeros_in_row[row]

 col  A_col[j]

 val  A_val[j]

 sum  sum + val * x[col]

 y[row]  sum

No dependencies between rows, safe to process rows in parallel

SPMV (y = Ax)

HPCG

Exchange_Halo(x) //neighbor communications

for row = 0 to nrows (Fwd Sweep, then Backward Sweep for row = nrows to 0)

 sum  b[row]

 for j = 0 to nonzeros_in_row[row]

 col  A_col[j]

 val  A_val[j]

 if(col != row) sum  sum – val * x[col]

 x[row]  sum / A_diag[row]

if col < row, must wait for x[col] to be updated

SYMGS (Ax = y, smooth x)

MATRIX REORDERING (COLORING)

SYMGS - order requirement

Previous rows must have new value

reorder by color (independent rows)

2D example: 5-point stencil -> red-black

3D 27-point stencil = 8 colors

MATRIX REORDERING (COLORING)

Coloring to extract parallelism

Assignment of “color” (integer) to vertices (rows), with no two
adjacent vertices the same color

“Efficient Graph Matching and Coloring on the GPU” – (Jon Cohen)

Luby / Jones-Plassman based algorithm

Compare hash of row index with neighbors

Assign color if local extrema

Optional: recolor to reduce # of colors

MORE OPTIMIZATIONS

Overlap Computation with neighbor communication

Overlap 1/3 MPI_Allreduce with Computation

__LDG loads for irregular access patterns (SPMV + SYMGS)

OPTIMIZATIONS

SPMV Overlap Computation with communications

Gather to GPU send_buffer
Copy send_buffer to CPU
MPI_send / MPI_recv
Copy recv_buffer to GPU
Launch SPMV Kernel

Time

GPU

CPU

OPTIMIZATIONS

SPMV Overlap Computation with communications

Gather to GPU send_buffer
Copy send_buffer to CPU
Launch SPMV interior Kernel
MPI_send / MPI_recv
Copy recv_buffer to GPU
Launch SPMV boundary Kernel

Time

GPU Stream A
GPU Stream B
CPU

RESULTS – SINGLE GPU

RESULTS – SINGLE GPU

RESULTS – SINGLE GPU

RESULTS – SINGLE GPU

RESULTS – GPU SUPERCOMPUTERS

Titan @ ORNL

Cray XK7, 18688 Nodes

16-core AMD Interlagos + K20X

Gemini Network - 3D Torus Topology

Piz Daint @ CSCS

Cray XC30, 5272 Nodes

8-core Xeon E5 + K20X

Aries Network – Dragonfly Topology

RESULTS – GPU SUPERCOMPUTERS

1 GPU = 20.8 GFLOPS (ECC ON)

~7% iteration overhead at scale

Titan @ ORNL

322 TFLOPS (18648 K20X)

89% efficiency (17.3 GF per GPU)

Piz Daint @ CSCS

97 TFLOPS (5265 K20X)

97% efficiency (19.0 GF per GPU)

RESULTS – GPU SUPERCOMPUTERS

DDOT (-10%)

MPI_Allreduce()

Scales as Log(#nodes)

MG (-2%)

Exchange Halo (neighbor)

SPMV (-0%)

Overlapped w/Compute

SUPERCOMPUTER COMPARISON

CONCLUSIONS

GPUs proven effective for HPL, especially for power efficiency

High flop rate

GPUs also very effective for HPCG

High memory bandwidth

Stacked memory will give a huge boost

Future work will add CPU + GPU

ACKNOWLEDGMENTS

Oak Ridge Leadership Computing Facility (ORNL)

Buddy Bland, Jack Wells and Don Maxwell

Swiss National Supercomputing Center (CSCS)

Gilles Fourestey and Thomas Schulthess

NVIDIA

Lung Scheng Chien and Jonathan Cohen

