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Abstract

Replication and majority voting are well-known and widely-used methods for achieving fault-tolerance in distributed sys-
tems. An open area of investigation is coordinating the voting in a secure manner, so as to withstand malicious attacks. The
Timed-Buffer Distributed Voting Algorithm (TB-DVA), a secure distributed voting protocol, is introduced for this purpose. It
is contrasted with several other distributed voting schemes in order to show its unique contribution for both fault-tolerance and
security, which are essential ingredients for system dependability.

1 Introduction

Dependability can be defined as the trustworthiness of a system, so that a high level of confidence can be placed in the service
it performs. Dependability encompasses (but is not limited to) the concepts of availability (the service is ready whenever it
is needed), continuity (the service is never prematurely terminated), and security (unauthorized access and tampering of the
system is not permitted) [1].

One aspect of dependability is fault-tolerance, which is mainly concerned with the first two concepts described above
– availability and continuity. Distributed voting is a common method for achieving fault-tolerance, consisting of a set of
distributed processors all working on the same task, then voting on the independent results to pick one as the correct answer.
This technique has been in use in the Space Shuttle’s Primary Computer System since the 1970s [2]. Obviously, all the voters
involved must have a similar amount of complexity in order to work on a given task. It is a truism that the more complex the
system, the more likely it is to fail – in other words, the more complex the voter, the more unreliable it is. If one voter is chosen
to coordinate the voting and resolve the votes into a final answer, the dependability of the system as a whole revolves around
the dependability of that one voter. Current distributed voting schemes assume that there is a sufficiently low probability of
failure during that last stage that this doesn’t become a problem.

This voting methodology has had several embodiments ([3, 4, 5, 6]) in the development of fault-tolerant computing. More
recently, distributed voting has been used for fault diagnosis in linear processor arrays ([7]) where, in the absence of a cen-
tralized voter, the array elements share error flags stemming from output comparisons performed between connected elements.
Nevertheless, in fault tolerance terms, current distributed voting schemes continue to subscribe to the idea called the two-phase
commit protocol [8]: they undertake a voting phase, in which all participants prepare to commit, followed by a second phase,
in which they execute the commit. A distinguished process coordinates the commit. We discovered a way to improve upon
distributed voting by taking the somewhat non-intuitive approach of actually reversing the two-phase commit protocol: we
initiate the commit first, then we vote. This simple idea turns out to have profound implications for security.

Security is another important aspect of dependability. Even if in normal operation a system is perfectly reliable, the intro-
duction of malicious logic can have a wide range of undesired effects, from denying availability of the system (i.e., the denial
of service threat) to causing the system to give users incorrect results (i.e., the integrity threat). Current voting schemes for
tolerating faults (e.g. the two-phase commit protocol) do not involve the question of security, assuming that it can be grafted
onto the system at some other level. For example, fault tolerance is designed into the security kernel of operating systems so
that unavoidable faults do not result in security policy compromise [9]. It then becomes conceivable to build trusted services
upon this underlying layer that will remain secure even in the presence of faults. It should be noted that evidence ([10]) strongly
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suggests the need for security measures at the lower levels of software abstraction to form the foundation for secure computing
at the higher levels. This motivates us to consider distributed voting at the processor level without assuming an over-arching
computing environment to provide security. Rather than treating fault-tolerance and security as two entirely separate issues, our
new algorithm provides both of them at the same time, meaning additional security over and above what is provided elsewhere
in the system.

There are a number of systems that require both security and fault-tolerance. An example might be air traffic control or a
target acquisition system. Such a system might have a number of independent sensors which gather data on an aircraft’s IFF
(Identification Friend or Foe), altitude, heading, etc., and vote amongst themselves to resolve the redundant data into a coherent
picture for the user. This system must be able to function correctly in the presence of faults in its component sensors. Also
essential is security against an intruder (who could be a curious college student or a malicious terrorist organization) tampering
with the data that is sent to the user in any way.

The next section reviews the basic concepts of distributed voting, and presents several algorithms that have been proposed in
the past. Then our new proposal, the timed-buffer distributed voting algorithm (TB-DVA) is described and analyzed in sections
three and four.

2 Past Work

Replication and majority voting are the conventional methods for achieving fault tolerance in distributed systems. Decentralized
voting, in which the replicated voters independently determine the majority rather than relying on a central server to tally the
results, has become the strategy of choice, and has had a number of incarnations [11]. Most of these systems have used the
2-phase commit protocol [8] in order to implement the voting scheme. In this protocol, the replicated voters first exchange their
votes and independently determine the majority result. Once a final result has been calculated, one of the voters is arbitrarily
chosen to commit that result (i.e. to pass the result on to the user). This method is widely advocated in designing fault-tolerant
open distributed systems [15]. The problem with this type of protocol lies in the committal phase. If the voter chosen to commit
the result fails right before or during the committal, the user will receive a bad result. The probability of this happening is slight,
and usually falls within acceptable risk parameters. However, if security as well as fault-tolerance is to be taken into account,
then the problem is greatly exacerbated. If a hostile attacker has taken control of the committing voter, then the attacker can
control what results the user sees, regardless of the other voters’ results.

There have been several protocols proposed that attempt to overcome this problem. For example, the algorithm presented
in [16] works as follows (in a very simplified presentation):

1. A client sends a request to one of the voters.

2. The voter multi-casts the request to the other voters.

3. The voters execute the request and send a reply to the client.

4. The client waits for replies from different voters with the same result, where is the number of faults to be tolerated;
this is the final result.

While this strategy obviously is not subject to the same problem as the 2-phase commit protocol, since in essence all the
voters commit a result, it does require substantial computation on the part of the client, which must collect and compare all the
replies until have been collected that carry the same result. As a result, this system does not scale very well.

Another protocol that attempts to alleviate this problem is described in [17]. It makes use of a (k,n)-threshold signature
scheme. Informally, this describes a scheme wherein a public key is generated, along with shares of the corresponding private
key, each of which can be used to produce a partial result on a signed message . Any of these partial results can then be used
to reconstruct the whole of . In this particular protocol, is the number of voters, and is set as one more than the number
of tolerated faults. Each voter signs its result with its particular share of the private key and broadcasts it to the other voters.
The voter then sorts through the broadcast messages for partial results which agree with its own result and can be combined
into the whole message , where would be the signed final result. The voter then sends to the client, which accepts the
first such valid sent. Again, this protocol is not subject to the error inherent in the 2-phase commit protocol, and it is also
not computationally expensive for the client. However, it achieves this by shifting the computational burden to the voters. As a
result, this system also does not scale very well.

Other protocols have also been proposed, each with its own advantages and disadvantages [18, 19, 20, 21]. However, all
of the above schemes for securing the distributed voting process make the common assumption which underlies the idea of
state-machine replication – two different voters, starting in the same state and following the same instructions, will inevitably
arrive at the same result. While there are many cases when this assumption holds, there are also times when it does not. This is
true in the case of so-called inexact voting [11].
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Figure 1: System Architecture

In inexact voting, two results do not have to be bit-wise identical in order to be considered equal, as long as they fall within
some pre-defined range of tolerance. This situation often arises when data is gathered from sensors interacting with the real
world – it is extremely unlikely that two different sensors will collect exactly the same data, even if they are arbitrarily close to
one another and sampling the same phenomena; therefore some analysis needs to be done to determine if the sensors’ data is
effectively equal, even if not identical.

In such situations the schemes described above will encounter problems, because of the common assumption they all make
that the replicated voters’ data will be identical. The second algorithm described above, which uses a (k,n)-threshold scheme,
cannot be used for inexact voting – in order for the partial results to be combined together into a whole result for the client, the
partial results must be identical.

While some of the algorithms could be modified to handle inexact voting, the performance cost incurred through multiple
inexact comparisons would be prohibitive. For example, the first algorithm described in this section, in which all voters send
their results to the client, would force the client to make multiple inexact comparisons in order to determine the majority. Since
inexact comparisons can be very complex operations, this places an unacceptable burden on the client.

3 The Algorithm

3.1 Assumptions

The proposed algorithm has two sets of participants. One is the set of voters, which can be arbitrarily large but must have at
least three elements. These voters are completely independent; the only exchange of information that takes place between them
is communicating the voters’ individual results. The other set contains the user and an interface module. The interface module
buffers the user from the voters (see Figure 1). The interface module consists, in its abstract form, of a simple memory buffer
and timer. A task is sent from the user, through the interface module, to the voters. At the termination of the algorithm, the
interface module passes the final result back to the user.

The environment for the algorithm is a network with an atomic broadcast capability and bounded message delay (e.g., a
local area network). It is assumed that a fair-use policy is enforced, so that no host can indefinitely appropriate the broadcast
medium [22]. It is also assumed that no voter will commit an answer until all voters are ready – this can be easily enforced
by setting an application dependent threshold beyond which all functional voters should have their results ready; any commits
attempted before this threshold is reached are considered automatically invalid. Each voter can commit only once – this is
enforced at the interface module, which ignores commits from a voter which has previously committed. The most important
assumption made is that a majority of the participating voters are fault-free and follow the protocol faithfully. Increasing the
effort to breach security can enforce this. To successfully overtake a majority of voters, each having diverse intrusion detection
packages and user interfaces, requires attackers to possess greater experience and ability, and costs them more in terms of both
financial cost and elapsed time [23]. No assumptions are made about the remaining voters – they can refuse to participate, send
arbitrary messages, commit incorrect results, etc.; they are not bound in any way.



3.2 Description

Each of the (correct) voters will follow the steps below:

1. If no other voter has committed an answer to the interface module yet, the voter does so with its own vote; it then skips
the remaining steps.

2. In the case that another voter has committed, the voter compares the committed value from the other voter with its own
vote.

3. If the results agree, the voter does nothing; otherwise it broadcasts its dissenting vote to all the other voters.

4. Once all voters have had a chance to compare their votes with the committed value (this interval would be determined by
a timer), the voter analyzes all the dissenting votes to determine if a majority dissenting vote exists.

5. If no majority exists, then the voter does nothing.

6. If a new majority exists (or if another, perhaps faulty, voter commits a new result), then the voter returns to step 1.

The interface module will follow these steps:

1. Once a commit is received, the result is stored in the buffer and the timer is started. The timer is set to allow time for all
the voters to check the committed value and dissent if necessary.

2. If a new commit is received before the timer runs out, the new result is written over the old one in the buffer, and the
timer is restarted.

3. If no commit occurs before the timer runs out, then the interface module sends the result in its buffer to the user, and the
algorithm is terminated.

4 Discussion

Replication and majority voting are the conventional methods for achieving fault tolerance in distributed systems. Distributed
voting has become the strategy of choice, and has had a number of incarnations [12, 13, 14]. Heavy reliance has been placed
on the 2-phase commit protocol [8], in which the voters first exchange votes and independently determine the majority result,
and then one arbitrary voter within the majority commits this value to the user. This method is widely advocated in designing
fault-tolerant open distributed systems [15]. The problem with this type of protocol lies in the committal phase. If the voter
chosen to commit the result fails right before or during the committal, the user will receive a bad result. The probability of this
happening is slight, and usually falls within acceptable risk parameters. However, if security as well as fault-tolerance is to be
taken into account, then the problem is greatly exacerbated. If a hostile attacker has taken control of the committing voter, then
the attacker can control what results the user sees, regardless of the other voters’ results.

The purpose of the TB-DVA algorithm is to provide the user with a correct answer despite a known number of the participat-
ing voters being faulty, or even actively hostile. It also allows for inexact voting (voting in which two votes may be effectively
equal, even if not necessarily bit-wise identical). This is particularly important for applications which interface with the real
world, such as distributed sensor arrays. TB-DVA is a radical approach to distributed voting because it reverses the 2-phase
commit protocol: a committal phase (to a timed buffer) is followed by a voting phase. This conceptually simple change greatly
enhances security by forcing an attacker to compromise a majority of the voters in order to corrupt the system; whereas in the
2-phase commit protocol only one voter must be compromised to achieve the same end.

For the correct execution of the voting algorithm it is necessary that the commits sent to the interface module from the
various voters be authenticated, as well as the messages between the voters themselves. Any known sophisticated authentication
techniques can be used to enforce secure communication (such as those in [24]), but it should be done without increasing the
complexity of the interface module. For authentication between the voters, the particular method used isn’t as important since
there is plenty of computational power available. The interface module, however, should be kept as simple as possible.

The function of the interface module is to record a commit from a voter, set up a timer, wait until the timeout expires, and
deliver the result to the user. It is possible that the timer may be reset several times before passing the final result to the user.
In addition, the interface module should have the capability to authenticate voters, so that it can track the voters to ensure that
each can commit only once in a given voting cycle. In order to reduce the likelihood of attacks on the interface, it should be
isolated from the rest of the voter complex and be built to have minimal interaction with the outside world.

Depending upon the level of voting, the design of the interface module may vary. Voting may proceed at either hardware or
software levels. It essentially depends on the volume of data, complexity of computation, and the approximation and context



dependency of the voting algorithms. If low-level, high-frequency voting is to be done, a hardware implementation might be
preferred; if high-level voting with low-frequency is desired, a software implementation of the interface module may be suitable.
This is because the voting is generally much more complex at higher levels of abstraction. A software implementation is fairly
simple, although considering the real-time nature of the timer, a real-time operating system would provide better performance
than a non-real-time operating system; the non-real-time operating system would require multiple context switches in order to
process each event, providing a much courser time granularity than a real-time operating system.

4.1 Correctness

The algorithm described here has been formally specified in Lamport’s Temporal Logic of Action [25], and verified to be
correct. The proof of this result, however, is beyond the scope of this paper. As expected, the process of formalizing the
algorithm led to the discovery of several ambiguities or outright errors in the initial formulation of the algorithm, which were
subsequently corrected. As an example, initially the algorithm provided for the case where a voter would commit a value to the
user before the other voters had a chance to calculate a result – if the other voters didn’t have a result, then they didn’t know
whether they should dissent or not. We overcame this difficulty by providing a special ’not ready’ vote, which a voter would
use for exactly this cicumstance. A majority of ’not ready’ votes would then force the timer in the interface module to stop,
giving the voters time to finish their computations. However, upon closer examination this wasn’t a very effective method. It
is possible for each voter to finish its calculations before any of the remaining voters do (e.g., the first voter finishes before the
others and commits; the other voters vote ’not ready’ and stop the timer; the second voter finishes before the rest and commits;
the other voters vote ’not ready’ and stop the timer; et cetera). In such a situation, a faulty voter could commit an incorrect
result, and there may not be a majority of trustworthy voters left that have not committed. We solved this difficulty by getting
rid of the ’not ready’ votes and establishing a global time threshold, beyond which all functional voters should have calculated
a result. Any voter which tries to commit before this time is ignored; therefore all trustworthy voters are guaranteed to have a
result ready when a value is committed.

The specification also forced us to detail the exact assumptions we were working under, as specified in the Asusmptions
section. We found TLA and TLA+ to be easy to work with, and they gave us excellent results. The experience gained through
this process has served to convince us even more of the importance of formal methods in algorithm design and analysis.

4.2 Performance

Besides the security and fault-tolerance attributes of the algorithm, another important characteristic is its performance. A
detailed analysis was performed in [26], and showed that this algorithm had definite performance advantages. To summarize
the conclusions of that paper, it was determined that this algorithm had an average performance in relation to the number
of voters used – i.e., the algorithm scales extremely well to systems with large numbers of voters. This result is especially
important given that the security and fault-tolerance (as opposed to performance) of a system using this algorithm rises linearly
with the number of voters in the system.

5 Conclusion

Society’s growing dependence upon critical computations together with the increase in network hostilities motivated us to
further investigate the issue of security in conjunction with fault-tolerance. This prompted us to devise new approaches to
distributed voting. We replaced the ubiquitous 2-phase commit protocol with one that is light-weight and improves both per-
formance and security without losing any of the traditional fault coverage. This algorithm uniquely enhances the dependability
of distributed information systems – protecting them from faults and hostile attacks. Applying this algorithm to distributed
systems contributes significantly to their dependability.
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