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Abstract— This paper proposes a passive islanding detection 
technique for microgrid. The proposed technique relies on 
capturing the underlying signatures of a wide variety of system 
events on critical system parameters through the utilization of 
pattern recognition tools for islanding detection in a microgrid. 
The proposed technique is tested on a microgrid model 
implemented on IEEE 13-node distribution feeder system under 
a wide variety of system operating states. Results from test case 
study have been analyzed to evaluate the effectiveness of the 
proposed method. Case study results indicate that the proposed 
method can detect islanding events with high accuracy and 
reliability.  

Index Terms—Distributed generation, decision tree, islanding 
detection, microgrids. 

I. INTRODUCTION 

Interconnection of distributed generations (DGs) with area 
electric power systems (EPS) presents numerous benefits. 
However, DG integration introduces several technical issues 
which needs to be considered in system planning and 
operations. Inadvertent islanding is one of the prime concerns 
associated with DG interconnections. Islanding is defined in 
IEEE Std. 1547 as "A condition in which a portion of an area 
electric power system (EPS) is energized solely by one or 
more local EPSs through the associated points of common 
couplings (PCC) while that portion of the area EPS is 
electrically separated from rest of the area EPS". IEEE Std. 
1547 recommends isolation of DG units within a maximum of 
2 seconds in events of island formation in distribution 
networks and microgrids [1]. 

Islanding detection techniques are generally divided into 
three main categories, namely- active, passive and 
communication based techniques. Communication based 
islanding detection methods mainly use “transfer trip” or 
“power line signaling” in order to detect islanding conditions. 
These methods require extensive communications 
infrastructures and hence expensive. Active techniques rely 
upon perturb and observe methods. Although active methods 
have smaller non-detection zones (NDZ) compared to passive 

techniques, they cause degradation of power quality and 
require complex control for the perturbation injections [2-3]. 

 
 
 
 
 
 
 
 
 

Figure 1. Illustration of micro-grid islanding 
 
Passive islanding detection methods rely on local 

measurements of critical system parameters (such as- voltage, 
current, frequency, and phase etc.) and detects islanding 
events by locating abnormalities in those system parameters. 
Several passive islanding detection methods have been 
proposed in literature [4-11], including under voltage and 
frequency relays, rate-of-change of frequency [4] and rate-of-
change of voltage [5], vector surge relays [6], rate-of-change 
of phase angle deviation [7], voltage unbalance and total 
harmonic distortion [8], intelligent based methods [9-10] and 
wavelet based methods [11] etc. Passive islanding detection 
methods do not degrade power quality, but these methods 
suffer from a larger non-detection zone (NDZ). Especially, in 
presence of power balance in the island (i.e. generation and 
load are approximately balanced in the islanded system). 

This paper proposes a passive islanding detection method 
for DG units. The proposed method uses a unique set of 
critical system features derived from voltage and current 
measurements at target DG location, and utilizes decision tree 
based classifier for detection and classification of event 
specific signatures associated with islanding events. The set of 
critical system features is selected to enhance islanding 
detection accuracy in the presence of multiple types of DG 
units, under different system operating and loading conditions. 
The decision tree classifier is trained with a prescribed system 
events database obtained via extensive off-line event 
simulations. Case study has been performed on a microgrid 
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model implemented with IEEE 13 node distribution feeder 
system. A brief description of the proposed methodology and 
obtained case study results are presented in this paper. 

 
Figure 2. Conceptual model of the proposed islanding detection scheme. 

 

II. PROPOSED ISLANDING DETECTION METHODOLOGY 

The conceptual model of the proposed islanding detection 
method is presented in Fig. 2. The proposed method relies on 
extraction of critical system features from local measurements 
of voltage and currents, and recognition of event specific 
signatures associated with these critical features through the 
application of decision tree (DT) based classifiers for 
detection of islanding events. DT based methods have been 
developed for transmission system islanding and other power 
system monitoring and control problems [12]-[15].  

A. Decision Tree Classifier and Performance Indices 

The DTs built in the proposed scheme are classification 
trees which are built from a training dataset containing n-
dimensional feature vectors and corresponding class values. 
The DTs can predict the class of an event (e.g. non-islanding 
or islanding events) from the n-dimensional feature vector 
presented to it for the classification [16]. The feature vector 
consists of critical system attributes whose values are utilized 
in the classification process. 

Classifier accuracy and misclassification rate are 
commonly used to evaluate the performance of DT classifiers. 	 	 		 	 	 		 1  

	 		 	 	 			 2  

In assessing the performance of protective devices, 
dependability index (DI) and security index (SI) is used to 
quantify the reliability and nuisance tripping tendency. The 
dependability and security indices are expressed as follows: . 	 	 	. 	 	 	 																	 3  . 	 	 	. 	 	 	 									 4  

 

B. Mathematical Modeling 

The concept of the proposed technique can be 
mathematically illustrated as follows: 〈 , , ……… , 〉 																																												 5  〈 , , , ……… , 〉; 	 1,2,3,…… , 					 6  〈 , , ……… , 〉 																																														 7  
 

where,  contains the feature vectors of selected features 
under each of the n prescribed system events, 	is the feature 
vector for ith event and  is the vector of class values 
associated with each of the feature vectors, . With the 
above definitions, any vector  of n credible system events 
can be represented as: 
 …⋮ …⋮			…		 ⋮ ⋮ 																																		 8  

The system features for the classification task are selected 
to include all possible information that could be affected by 
islanding events and can be measured locally. The following 
table lists all independent system feature variables used in the 
proposed method. 

TABLE I.  CRITICAL FEATURES USED IN ISLANDING DETECTION ∆  Voltage deviation (V) under ith event;  ∆ ∆  Rate-of-change of voltage (V/sec) under ith event; ∆  Frequency deviation (Hz) under ith event;  ∆ ∆  Rate-of-change of Frequency (Hz/sec) under ith 
event; 

 Active power output (Watts) at target DG location 
under ith event; ∆ ∆  Rate-of-change of active power output (Watts/sec) at 
target DG location under ith event; 

 Reactive power output (VARs) at target DG location 
under ith event; ∆ ∆  Rate-of-change of reactive power output (VARs/sec) 
at target DG location under ith event; ∆ ∆  Change in frequency with respect to DG active 
power output (Hz/Watts) under ith event;  ∆ ∆  Change in voltage with respect to DG reactive power 
output (V/VARs) under ith event; 

 Total harmonic distortion in voltage under ith event; 

 Total harmonic distortion in current under ith event; ∆ ∆  
Rate-of-change of phase angle deviation (ROCPAD) 
at target DG location under ith event; 

 Voltage unbalance at target DG location under ith 
event. 

 

C. Prescribed Events 

Extensive off-line simulations were carried out to capture 
essential characteristics of the system for generation of the 
training dataset. The following is a list of some possible 
events: 

• All possible tripping of circuit breakers that might 
lead to islanding events in microgrids and 
distribution networks; 

• Events that could trip all breakers which can lead to 
islanding of the DG under study; 

• Islanding in EPS transmission network or loss of any 
distribution line in distribution network; 

• Abrupt change in the loading at the target DG 
location, at PCC bus and in distribution network; 

• Capacitor bank switching in the distribution 
network.  

 

These events have been simulated under various network 
operating states of area EPS and distribution network or 



microgrid. The operating states include operations with 
normal, minimum and maximum loading conditions. 
Different loading conditions at the PCC bus and various 
operating levels of target DG unit have also been considered 
in development of the training dataset.  

D. Outline of the Methodology 

The methodology of the proposed decision tree based 
passive islanding detection approach can be outlined 
according to the flow diagram presented in Fig. 3.  

 
Figure 3. Outline of the proposed islanding detection methodology. 

 

III. TEST SYSTEM MODELING 

In this paper, a detailed case study on a grid connected 
microgrid model has been performed in order to evaluate the 
effectiveness of the proposed method. The test system model 
is developed using Matlab/Simulink platform. A brief 
overview of the test system is presented in this section. 

A. Main Grid Model 

As described by Table II, the 4-generator, 2-area Kundur 
system model in [17] is selected as the main grid to be 
connected with a microgrid model. The system has a relative 
small size but is able to exhibit typical power system 
dynamics. Thus, interactions between the main grid and 
microgrid/DG can be studied.  

TABLE II. TWO AREA SYSTEM MODEL OVERVIEW 

Generators G-1: 700MW,185MVar 
G-2: 700MW, 235MVar 

G-3: 719MW, 176MVar 
G-4: 700MW, 202MVar 

Load Bus-7: 967MW, 100MVar Bus-9: 1767MW, 100MVar 
Shunt 

Capacitors 
Bus-7: 200MVar. Bus-9: 350MVar. 

 

B. Microgrid Model 

The microgrid model is implemented using IEEE 13 node 
distribution feeder test system model with two different types 
of distributed generators (i.e. diesel generator and PV array) 
and one storage unit (i.e. battery). The 13-node test feeder 
system is operated at 4.16kV with unbalanced loads (both 

single-phase and there-phase loads) and shunt capacitor banks 
to model a representative distribution system. The microgrid 
model is connected to area-2 of the main grid model.  

 
Figure 4. Microgrid model implemented in IEEE 13 node distribution feeder. 

 

IV. CASE STUDY RESULTS AND DISCUSSIONS 

In this case study, a total of 486 system events under 27 
different system operating conditions (i.e. EPS loading, PCC 
bus loading, microgrid loading) have been used to generate 
the measurement database at the target DG location (at the 
point of common coupling of the DG unit with microgrid). 
Table III lists all 18 events that have been simulated for each 
of the 27 different system operation conditions. Critical 
system features are extracted from obtained measurement 
dataset and data model for setting the islanding relay at the 
target DG location (DG-1) is developed.  

Based on this data model, decision trees are constructed 
using the J48 decision tree algorithm. Decision trees were 
developed using the “Waikato Environment for Knowledge 
Analysis (WEKA)” [18] data mining platform. Initially, all 14 
system features were used in training the DTs and a ranking of 
the features were generated according to their merit to the 
classification process. Table IV shows the average merit of 
each of the system features in DT training. 

Two different testing methods -a) 10-fold cross validation 
and b) percent split were employed to test the developed 
decision trees and performances were evaluated based on four 
indices- classifier accuracy, dependability index, security 
index and misclassification rate. The 10-fold cross-validation 
approach divides the entire dataset into 10 equal pieces, and 
utilizes nine of them for training and one for testing the 
decision tree in first 10 out of the 11 iterations. In the 11th 
iteration the entire dataset is entire dataset is treated as the 
testing data set. From each of the iterations, accuracies are 
calculated and their average is computed which is the final 
accuracy result.  

The percent split (80%) method used in this study divides 
the entire dataset into a training set and a test set. The training 
set contains 389 events (262 non-islanding events and 127 



islanding events) and the test set contains 97 events (62 non-
islanding events and 35 islanding events). Table V and Table 
VI presents the DT performance evaluation results with 10 
fold cross validation and percent split methods respectively. 

TABLE III. LIST OF SYSTEM EVENTS AND ISLANDING STATUS 

Index Event description Status 
E-1 Tripping of utility circuit breaker (CBgrid) Islanding 
E-2 Tripping of PCC breaker (CB1) Islanding 
E-3 Tripping of CB1 and CB2 simultaneously Islanding 
E-4 Tripping of CB5 leading to loss of dist. line Islanding 
E-5 Tripping of CB8 leading to loss of dist. line Islanding 

E-6 Tripping of CB6 causing loss of PV unit Non-islanding 
E-7 Tripping of CB4 causing loss of storage unit Non-islanding 
E-8 Tripping of CB3,CB4,CB5; loss of dist. line Islanding 
E-9 Tripping of CB18 leading to loss of dist. line Non-islanding 
E-10 Tripping of CB19 leading to loss of dist. line Non-islanding 
E-11a Sudden load change (increase) at PCC Non-islanding 
E-11b Sudden load change (decrease) at PCC Non-islanding 
E-12a Abrupt load increase at target DG location Non-islanding 
E-12b Abrupt load decrease at target DG location Non-islanding 
E-13a Sudden increase in microgrid loading Non-islanding 
E-13b Sudden decrease in microgrid loading Non-islanding 
E-14 Capacitor bank switching Non-islanding 
E-15 Normal system operation Non-islanding 

TABLE IV. AVERAGE MERIT OF FEATURES IN DT CLASSIFIER TRAINING 

Feature Average Merit Feature Average Merit 
VU 0.901 ROCPAD 0.690 

∆V/∆Q 0.881 ∆P/∆t 0.68 
∆V/∆t 0.881 CTHD 0.674 
∆f/∆t 0.881 VTHD 0.653 
∆f 0.843 P 0.566 
∆V 0.823 ∆Q/∆t 0.485 
∆f/∆P 0.691 Q 0.305 

 
The developed DTs were ranked based on their overall 

classification accuracy, security index (SI), dependability 
index (DI) and misclassification rate. Test results from cross 
validation based test method indicate that the best DT obtains 
an overall classification accuracy of 99.38% with 
dependability index (DI) and security index (SI) being 99.38 
as well. The classifier depends only on one critical system 
feature  (i.e. ∆ /∆ , rate of change of frequency) for the 
classification process. Based on the threshold value 
associated with the classifier, when, ∆ ∆⁄ ≤ 3.648, a total 
of 323 events are classified as non-islanding events out of 
which 322 are accurately classified instances. When, ∆ ∆⁄ > 3.648, 163 events are classified as islanding events 
out of which 161 are correctly classified instances. The 
misclassification rate for the non-islanding event (i.e. rate of 
false detection) is 0.617% whereas misclassification rate for 
islanding events (i.e. rate of false dismissal) is 0.62%. These 
results are based on the dataset containing 486 events 
including cases with load and generations within the islanded 
microgrid are approximately balanced (cases with load and 
generation mismatches of 5%, 10% and 20%).   

The best performing DT obtained from the second testing 
method attains a maximum overall accuracy, dependability 
and security indices of 100%. Since the DT does not 
misclassify any of the test instances, hence rate of false 
dismissal and rate of false detection are both zero. 

TABLE V. DT PERFORMANCE [10 FOLD CROSS VALIDATION METHOD] 

Critical System 
Feature 

Classifier 
Accuracy 

DI SI Misclassific
ation Rate 

∆f/∆t 99.38 99.38 99.38 0.617 
VU 99.18 99.38 99.07 0.823 

∆V/∆Q 99.18 99.38 99.07 0.823 
∆V/∆t 99.18 99.38 99.07 0.823 

VTHD, ∆f/∆P, CTHD, 
Q, ∆Q/∆t 

98.76 97.53 99.38 1.24 

∆V, VTHD, ∆P/∆t 98.35 98.15 98.45 1.65 
CTHD, P, ∆f/∆P 98.35 98.14 98.46 1.65 
∆f, ∆f/∆P, VTHD 98.14 98.76 97.84 1.86 

∆P/∆t, VTHD, ∆f/∆P, 
ROCPAD 

97.53 96.29 98.15 2.47 

ROCPAD, CTHD, Q, 
VTHD, ∆f/∆P 

97.53 96.91 97.84 2.47 

∆f/∆P, ∆Q/∆t, P 96.91 96.29 97.22 3.09 
P, ∆Q/∆t, Q 95.26 96.91 94.44 4.74 
∆Q/∆t, Q 85.60 91.35 82.72 14.4 

TABLE VI. DT PERFORMANCE [PERCENT SPLIT-80% TEST METHOD] 

Critical System 
Feature 

Classifier 
Accuracy 

DI SI Misclassific
ation Cost 

∆f/∆t 100 100 100 0 
VU 100 100 100 0 

∆V/∆Q 100 100 100 0 
∆V/∆t 100 100 100 0 

∆V, VTHD, ∆P/∆t 98.97 100 98.36 1.03 
∆f, ∆f/∆P, VTHD 98.97 100 98.36 1.03 

VTHD, ∆f/∆P, CTHD, 
Q, ∆Q/∆t 

97.94 97.15 98.35 2.06 

∆f/∆P, ∆Q/∆t, P 97.94 97.14 98.39 2.06 
CTHD, P, ∆f/∆P 96.91 100 95.16 3.09 

ROCPAD, CTHD, Q, 
VTHD, ∆f/∆P 

96.91 100 95.16 3.09 

P, ∆Q/∆t, Q 94.85 94.25 95.16 5.15 
∆P/∆t, VTHD, ∆f/∆P, 

ROCPAD 
94.84 91.45 96.77 5.16 

∆Q/∆t, Q 82.47 94.29 75.81 17.53 
 

However, accuracy of DTs heavily depends on the dataset 
used in training and testing. Misclassification in DTs can be 
caused by a wide variety of reasons. If the dataset used in 
training have a greater similarity with the one used for 
testing, then resulting DTs have better prediction accuracies. 
Otherwise, a high accuracy in prediction cannot be 
guaranteed. Performances of DTs can be enhanced with 
periodically including new and unknown system states in the 
training dataset. Moreover, overall performance of DTs in the 
proposed method also depends on the set of critical features 
selected. Tables VII and VIII present the performance of the 
DTs for balanced system operating conditions (i.e. relatively 
smaller mismatch between generation and load). The results 
indicate that the best DT demonstrates a high accuracy. 

TABLE VII. DT CLASSIFIER PERFORMANCE EVALUATION UNDER BALANCED 
OPERATING CONDITIONS [10-FOLD CROSS VALIDATION]  

 Islanding Cases Non-Islanding Cases 
 Total 

Cases 
Correctly 
Classified 

Total 
Cases 

Correctly 
Classified 

DT-1 36 36 (100%) 72 71 (98.61%) 
DT-2 36 36 (100%) 72 71 (98.61%) 
DT-3 36 36 (100%) 72 71 (98.61%) 
DT-4 36 36 (100%) 72 70 (97.22%) 
DT-5 36 35 (97.22%) 72 71 (98.61%) 



TABLE VIII. DT CLASSIFIER PERFORMANCE EVALUATION UNDER BALANCED 
OPERATING CONDITIONS [PERCENT SPLIT-80%]  

 Islanding Cases Non-Islanding Cases 
 Total 

Cases 
Correctly 
Classified 

Total 
Cases 

Correctly 
Classified 

DT-1 18 18 (100%) 36 36 (100%) 
DT-2 18 18 (100%) 36 36 (100%) 
DT-3 18 18 (100%) 36 36 (100%) 
DT-4 18 18 (100%) 36 36 (100%) 
DT-5 18 18 (100%) 36 36 (100%) 

  

 
Figure 5. Decision tree structures based on system features ∆f/∆t and ∆U. 

Both of the trees have one internal node and two terminal nodes. 
 

 
Figure 6. Decision tree structure based on system features ∆V, VTHD and 

∆P/∆t. The tree has three internal nodes and four terminal nodes. 
 

The proposed DT based islanding relays from both testing 
methods show similar response times. The maximum and 
minimum response times observed are 0.0232 seconds (DT4) 
and 0.0204 seconds (DT2) respectively. 

Multiple optimal DTs trained with combinations of 
different system features can be utilized to improve the 
reliability and prediction accuracy of the proposed islanding 
detection method. In this approach, DTs satisfying a desired 
performance threshold can be incorporated in the detection 
process instead of relying on the best performing DT since 
cases misclassified by the DT can be accurately classified by 
other DTs employing a different combination of system 
features for classification. 

V. CONCLUSION 

A passive islanding detection technique for DG islanding 
detection is proposed in this paper. The proposed method 
utilizes a comprehensive set of critical system features and 
employs decision tree based classifiers for recognition and 
classification of underlying pattern of different types of 
system events for islanding detection. Case studies on grid 
connected microgrid model consisting of multiple DGs and 
storage unit indicate that the proposed method is capable of 

detecting islanding events with a high degree of accuracy in 
microgrids or distribution networks under different system 
operational and loading states. Furthermore, the classification 
accuracy and robustness of the proposed method can be 
enhanced by adaptively expanding the training dataset.  
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