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A Deep Leaning Graphical User Interface Application on 
MATLAB 

Abstract 

Deep learning, as a new era of machine learning techniques, shows the ability to generalize 
computational model through hierarchical layers by learning the features from a large amount of 
training data with ignorable human interventions. Deep learning is mainly implemented in areas 
of computer vision, audio, and speech processing. Moreover, deep learning has significantly 
improved state of the art in image classification. Image-based classification, the most classic but 
significant research topic, has been critically improved using deep learning architecture and 
outperformed the majority of state-of-the-art achievements. No bells and whistles, deep learning 
becomes the most popular research area. However, to train a comprehensive classifier, a large 
amount of data is inescapable, which apparently needs lots of computational time so that it 
requires fast GPUs to accomplish fast training. In general, powerful GPUs are expensive, and the 
process of solving compatibility problems in both hardware and software are reluctant due to 
very limited access to GPUs’ implementations in most universities. The primary purpose of this 
paper is how to propagate principles of deep learning to students and build the bridge to make 
them learn and use deep learning more comfortable or more accessible. In this paper, we develop 
a Graphic User Interface (GUI) deep learning beginners to test classification results through CPU 
without massive training computation. We use the high-performance GPU to train the model, 
once finish the training, we save the parameters of training model, load it to the GUI and let the 
student do the testing. 
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Introduction and Background 

Deep learning is a learning algorithm based on learning data representations. It also called deep 
structured learning. Deep learning is a part of machine learning family, but it is in a specific 
machine learning category. Compare to the traditional machine learning methodology, due to the 
architectures of deep networks, deep learning approaches need a significant amount of data for 
training. Fortunately, by training enormous amount of data, the deep learning network learns the 
predicted model of this data, and usually, this predicted model contains high representations of 
this data and gives users high accuracy to solve the classification problem. Nowadays, deep 
learning powers numerous parts of current society, such as web searching, recommendations 
from e-commerce websites, autonomous car and many applications that involve computer 
vision[1]. Deep learning algorithms work exceptionally well on the image classification 
problems, for both simple and complicated images. Notably, the deep convolutional neural 
networks work excellent on image classification. In this paper, we introduce a deep learning 
graphical user interface application based on the deep convolutional neural network.  

The deep convolutional neural network has been in the core position of deep learning domain. 
Although convolutional neural network used as an image classification technique for simple 
digits or character recognition task in earlier time. However, due to the success of recent work, 



[2] use a deep convolutional neural network to beat state-of-art in the ImageNet challenge, the 
deep convolutional neural network becomes the common and useful tool for image classification 
problems[3]. 

The convolutional neural network is similar to the traditional neural network; it also has weights 
and bias in each neuron. However, the convolutional neural network is more focus on 
complicated inputs, such as images. Convolutional neural networks are structured by three 
essential ideas, local receptive fields, shared weights and subsampling. A typical convolutional 
neural network contains multiple hidden layers, such as a convolutional layer, pooling layer, and 
fully connected layer[4]. 

A neural network is based on affine transformations, the input vector is multiplied by weights 
vector to produce an output. When the input is an image, depends on the type of image, it can be 
seen as a single signal channel multi-dimensional array or a three-channel multi-dimensional 
array(a color image consisting of three channels, the red, green and blue). A convolutional layer 
performs a linear transformation. In this process, only a couple of input information contribute to 
an output unit, the shared weights are applied to different locations in the input[3]. Figure 2 
shows an example of convolution computation with a 3×3 kernel. 

 

Figure 1: Compute the output values of convolution[3] 

In a conventional neural network, pooling operations decrease the size of feature maps by 
utilizing some functions. Generally, there are two types of pooling, max pooling, and average 
pooling (also have other advanced poolings). Max pooling means to take the max pixel value of 
one specific region. On the other hand, average pooling means to take the average of one 
particular region. Figure 3 shows an example of max pooling. 



 

Figure 2: Max pooling[3] 

Methodology 

In order to help students to understand the deep learning concept easier, we design this graphic 
user interface(GUI) based on the Modified National Institute of Standards and Technology 
database(MNIST). The MNIST dataset contains 28×28 pixel images of ten different categories, 
from digit 0 to 9. It consists of 60,000 training and 10,000 testing samples[5]. Figure 3 shows a 
sample of MNIST dataset.  

 

Figure 3: A sample of MNIST dataset 

Convolutional neural network(CNN), as one of the most popular deep learning architectures, is 
the only deep learning algorithm we use without the necessity of unsupervised pre-training. 
Namely, we can directly feed our raw data into the network. Because the neural network with 
several full-connected layers is not practical for training when initialized randomly, the CNN 
structure we develop in this study is based on LeCun’s model: a fully-connected layer followed 



by several convolutional layers and subsampling layers, and each layer has a topographic 
structure.  

The algorithm begins by extracting random sub-patches from the ROIs mentioned above, with 
the size of the sub-patches referred to as the “receptive field size.” In each layer, the neuron is 
associated with a fixed two-dimensional position, and its receptive field is corresponding to the 
input from previous layer (the first layer is corresponding to the original input image).  

Several neurons are connected to the same location at every layer, and each neuron is a linear 
combination of its corresponding neurons in the previous layer with its set of input weights. The 
neurons at different locations are associated with the same set of weights, but different 
corresponding input patches.  

The architecture of this CNN contains two convolution layers, two max-pooling layers, and one 
fully-connected layer is showed in figure 4.  

 

Figure 4: The architecture of the CNN. 

The GUI contains two parts, the training GUI, and the testing GUI. Due to the training process 
took much longer to run, separate them would be more comfortable for students. Figure 5 and 6 
show these two GUIs. For the training GUI, the student can type the name of the 
model(classifier), and save the model. Epoch number, learning rate, and batch size are also 
adjustable. The loss function can express the performance of the training.  

The testing GUI is more sample than the training GUI. The student can type the order number of 
the testing dataset, for this example, we have 10,000 testing images, test from first to 10,000th 
images. Prediction bar shows the predicating valve that predicted by the model; the actual input 
bar shows the input value, from 0 to 9. 



 

Figure 5: The training GUI. 

 

Figure 6: The testing GUI. 

 



Figure 7: Training the CNN, and the saved model named cnnmodel. 

 

Figure 8: The testing result based on the cnnmodel.  

 

Figure 9: One example of the wrong prediction.  

 

 



Conclusion 

In this paper, we designed a simple and easy-to-use GUI for deep learning beginners who are 
passionate to learn and implement deep learning algorithms. Furthermore, our design prototype 
is model compatible, which can be utilized to train or test on any deep learning models with 
minor modifications. For the purpose of simplicity, we used a popular and well-organized public 
dataset MNIST as an example. We introduced some basic principles of CNN architecture 
including convolution and pooling, the two components of our GUI design: training and testing 
GUI, as well as how to functionally load a well-trained deep learning model and test the 
prediction results on specific cases, which aims to serve as a trigger to make more students 
benefit from studying deep learning, one of the most popular and promising techniques in the 
21st century. 
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