
A Description Language and
Analysis Tool for a Software
Development Environment

Mats Anderberg

Kongens Lyngby 2005

IMM-THESIS-2005-08

Technical University of Denmark

Informatics and Mathematical Modelling

Building 321, DK-2800 Kongens Lyngby, Denmark

Phone +45 45253351, Fax +45 45882673

reception@imm.dtu.dk

www.imm.dtu.dk

IMM-THESIS: ISSN 0909-3192

i

Preface

This master thesis project has been carried out in cooperation with the de-
partment of Informatics and Mathematical Modeling (IMM) at the Technical
University of Denmark (DTU) in Copenhagen and Ericsson Mobile Platforms
(EMP) in Lund. The project constitutes the final part of the requirements for
obtaining a degree in Master of Science in Computer Systems Engineering at
DTU. The work has been carried out in the period between January 11th 2005
and August 19th 2005. The project was supervised by Le Chi Thu at EMP, and
Associate Professor Michael R. Hansen at the department of IMM at DTU.

Mats Anderberg, s031392
Lund, August 2005

ii

Acknowledgments

First of all I would like to thank my two supervisors, Michael R. Hansen at DTU
and Le Chi Thu at EMP for their guidance, support and contributions during
the progress of this master thesis.

I would also like to thank Bo Johansson for his invaluable thoughts and endless
patience when discussing the project with me.

The guys at the tools department at EMP for their support and comments on
my work and all other employees at EMP for always having a moment to spare.

My family for always encouraging and supporting my studies and finally my
girlfriend, Lina, for your love and for always being so considerate.

iii

Abstract

Ericsson Mobile Platforms in Lund have for configuration purposes of the their
software development environment developed a small description language. The
purpose of the language is to configure a number of tools present in the environ-
ment and provide them with information making them capable of fulfilling their
tasks, which involves building software executables, configuration management
and delivery packing. The language provides the developer with a higher level
of abstraction when configuring these tools.

The language however is not supported by a formal grammar nor any capabilities
of checking the language for errors. It is this thesis task to formally define
the syntax of the language, as much as possible compatible with the existing
language, and to develop a tool capable of performing error checking of the
language.

The outcome of this thesis is a formal grammar and semantic definition for the
language and a analysis tool providing syntactical and semantical checks as well
as analysis possibilities.

Keywords: BNF, EBNF, CFG, DSL, syntax tree, compiler compiler, lexical
analysis, syntactical analysis, semantic analysis, formal grammar, visitor design
pattern, software development.

iv

Contents

1 Introduction 1

1.1 Background . 1

1.2 Problem Description . 2

1.3 Objectives . 2

1.4 A description language application example 3

1.5 Report Structure . 4

2 The EMP Software Development Environment 7

2.1 Introduction . 7

2.2 Environment architecture . 7

2.3 Tools . 9

2.3.1 SDE . 10

2.3.2 CME . 11

2.3.3 PPZ . 11

2.4 Summary . 12

3 The Current Description Language 13

3.1 Introduction . 13

3.2 Description file types . 13

3.2.1 Product description . 15

3.2.2 Module description . 15

3.2.3 Private description . 15

3.2.4 Target description . 15

3.2.5 Include description . 15

vi CONTENTS

3.2.6 Priority between file types 16

3.2.7 Description file tree . 16

3.3 The language . 16

3.3.1 Variables . 18

3.3.2 Conditional statements 22

3.3.3 Include directive . 23

3.3.4 Options directive . 24

3.3.5 Sections . 24

3.3.6 Perl . 28

3.4 Processing of description files . 29

3.4.1 Multiple file processing 29

3.4.2 Single file processing . 31

3.5 Fallacies and pitfalls . 32

3.5.1 Absence of formal grammar 32

3.5.2 Handwritten parser . 33

3.5.3 File processing . 33

3.5.4 Variable handling . 33

3.5.5 The extensive Perl availability 34

3.6 Summary . 34

4 The New Description Language 37

4.1 Introduction . 37

4.2 Design decisions . 37

4.2.1 Formal grammar . 38

4.2.2 Handwritten parser . 38

4.2.3 File processing . 38

4.2.4 Perl dependencies . 39

4.2.5 Variable handling . 39

4.3 Grammar . 41

4.3.1 Directive grammar . 42

4.3.2 Adding a grammar for the sections 46

4.4 Semantics . 47

4.4.1 Directive semantic . 48

CONTENTS vii

4.4.2 Section semantic . 51

4.5 Summary . 53

5 The Analysis Tool 55

5.1 Introduction . 55

5.2 Tool objectives . 55

5.3 Tool architecture . 56

5.4 Preprocessor . 57

5.5 Front End . 60

5.5.1 Lexical analysis . 60

5.5.2 Syntactical analysis . 64

5.5.3 Building the AST . 68

5.6 Back End . 69

5.6.1 The Visitor Pattern Technique 70

5.6.2 Recursive analysis . 74

5.6.3 Semantic analysis . 76

5.6.4 InitVariantMatrix . 79

5.6.5 FileAnalysisVisitor . 80

5.6.6 VariableAnalysisVisitor 81

5.6.7 BackEndManager . 82

5.6.8 ASTTable . 82

5.6.9 BackEndError . 83

5.7 Summary . 83

6 Conclusion 85

6.1 Status . 85

6.2 CDL vs. NDL . 86

6.2.1 Syntax . 86

6.2.2 Semantic . 87

6.2.3 Language processing . 87

6.3 Further work . 88

6.3.1 Migration and integration 89

A Terminology and Abbreviations 91

viii CONTENTS

B Domain Specific Languages 93

C Compiler Theory 95

C.1 Introduction . 95

C.2 Compiler theory . 95

C.3 Formalism and notation . 96

D JavaCC 99

D.1 Introduction . 99

D.2 Lexical Analysis . 101

D.3 Syntactical Analysis . 104

D.4 AST . 106

D.5 Summary . 108

E New Description Language BNF 109

F Example of generated AST 113

List of Figures

1.1 An example description file . 3

1.2 The description hierarchy pinpointed by the example 4

2.1 Modules and description files . 8

2.2 Example of description file hierarchy 9

2.3 Description file interaction with tools. 10

2.4 Generating the make file . 11

3.1 Description file types . 14

3.2 Description file tree . 17

3.3 Variables states . 18

3.4 Variables states with some override aspects added 20

3.5 SDE description file processing steps 30

3.6 SDE description file processing steps 31

4.1 Example description file tree . 39

4.2 Variable handling . 40

4.3 Example of how the variables are handled 41

4.4 AST for an if statement. 44

5.1 Phases in the analysis tool mapping to a typical compiler 57

5.2 Analysis tool architecture . 58

5.3 The preprocessor step . 58

5.4 A preprocessed file and corresponding non preprocessed file . . . 59

5.5 The solution to corrupted line number 59

x LIST OF FIGURES

5.6 The approach of having two parsers 65

5.7 Block diagram depicting the back end 70

5.8 Class diagram depicting the back end design 71

5.9 Vistor pattern overview . 72

5.10 Traversing the AST with a visitor 73

5.11 Building the file tree . 75

5.12 Infinite loop of inclusions . 76

5.13 Example on how the variables are handled 77

5.14 Variant target matrix . 80

5.15 ASTTable . 83

C.1 Typical phases in a compiler . 96

C.2 The steps involved in constructing the AST 97

D.1 Generation of JavaCC parser . 99

D.2 State machine features in lexical analyzer. 102

D.3 The Node interface . 107

List of Tables

3.1 Section classes . 26

4.1 General non terminal symbols . 42

4.2 Main differences between CDL and NDL 54

5.1 Predefined function library . 78

C.1 Regular expression notation . 98

D.1 Expression kinds of JavaCC tokens 101

xii LIST OF TABLES

Chapter 1

Introduction

1.1 Background

Ericsson Mobile Platforms (EMP) develops platforms for mobile phones. The
mobile platform is a complex architecture that involves several years of research
and development.

Building software for large scale software systems, such as the mobile platforms
developed at EMP, is a challenging task and when the number of files the soft-
ware implementations reside in goes beyond several thousands it is important
that the environment responsible for typical activities, such as building the soft-
ware, configuration management and distributing the software to customers, is
able to handle those in an efficient and time-saving manner.

To meet these requirements, at least to some extent, imposed on the software
system, EMP has developed a small description language with the purpose of
supporting the activities mentioned above. The language is used when setting
up the build environment, meaning the software environment supporting the
development of executable units, of the mobile platform software. The language
is also used by the configuration management and when delivery packing the
platform for different releases to customers. Easily put, the language describes
for different tools present in the software environment what to build, what
to version control and what to delivery pack. The purpose is to release the
developer from the burden of writing for example make programs, in the case
building the software executable, by hand. Instead the description language can
be used to simplify the software development.

In the sense of lifting the abstraction of software development for a particular
domain the description language can be considered a Domain Specific Language
(DSL). A DSL is language with a small vocabulary dedicated to particular do-

2 Introduction

main or problem, which in the case of the description language is the EMP
software development environment. Hence the description language is not a
General Purpose Language (GPL) like Java or C but a highly specialized lan-
guage with small array of possible applications. A small introduction of DSLs
are given in appendix B.

1.2 Problem Description

The language was originally designed to be used in somewhat simpler applica-
tions but as time has progressed it has evolved to be more complex and hard
to maintain. Functionality has been added but not documentation or any error
checking capabilities. The language of today is powerful (partly because it pro-
vides an interface to the scripting language Perl), but unfortunately there is no
formally defined syntax for the language. This means that it is hard to find e.g.
errors and difficult for the developer to correctly implement descriptions in the
language.

Not having a strictly defined grammar nor a proper tool to syntactically and se-
mantically check the language for errornous constructions causes possible faults
in the files to be detected at a very late stage in the chain of actions that lead
to the building of an executable or delivery packing of a product. This is not
feasible and the purpose of this master thesis is to provide the language with a
formal definition and a tool capable of performing checks to pinpoint errornous
constructions.

1.3 Objectives

The goal of this master thesis project aims at achieving three major objectives:

A Learn and briefly document the approximate syntax of the current descrip-
tion language (CDL) language in a precise (informal) way. Understand the
language and its applications.

B Define a new description language (NDL) as much as possible compatible
with the present language and describe it formally.

C Design and implement an prototype analysis tool capable of performing
syntactical and semantic checks and analysises based on the NDL.

The objectives of this thesis aims of supplying EMP with a grammar and a
tool that supports a more strict language with defined rules and constrained
behaviour. Hence the objective is not to design a whole new concept for the

1.4 A description language application example 3

description language and its applications but to define the syntax more strictly
and to develop a tool adhering to that syntax. The major objective of the thesis
could alternatively be expressed as providing EMP with a basic foundation and
a new paradigm for checking and evaluating the description files.

1.4 A description language application example

To illustrate how the description language is used, this section gives a concrete
example of an application of the language, namely the building of an executable.
An example description file is depicted in figure 1.1.

!set VAR1 = module1

!set VAR2 = target2

[Modules]

!if VAR1 == module1

module1

!else

module2

!endif

[Targets]

!if VAR2 == target1

target1 .\dir\target1.cfg

!else

target2 .\dir\target2.cfg

!endif

[SourceFiles]

.\dir\file1.c

.\dir\file2.c

.\dir\file3.c

[IncludeFiles]

.\dir\file1.h

.\dir\file2.h

.\dir\file3.h

variable definition

sections

diretives

target inclusion

module inclusion

Figure 1.1: An example description file

The description language is made up of directives, like variable definition and
conditional statements, and sections. Each section, which starts with a unique
identifier enclosed in square brackets (e.g. ”[Modules]” provides a particular
functionality.

In the case of the example in figure 1.1 the file defines two variables (VAR1 and
VAR2) that is later used in the conditional statements. The ”[Modules]” section
identifies the inclusion of other description files. The module concept will be

4 Introduction

further explained in section 2.2. The ”[Targets]” section identifies the inclusion
of a description file that specifies the configuration of the target, meaning the
special compilation settings etc. for a given target (see section 3.2 for more
information). A target can for example be Windows or the real processor used
in the mobile platform. The two sections in the end of the file, ”[SourceFiles]”
and ”[IncludeFiles]”, lists the names of files that is a part of for example the
building of an executable unit.

The module and target inclusion identifies a file hierarchy of description files
that describes for the build tool what to build and how to build the executable.
The file hierarchy for the example file in figure 1.1 is given in figure 1.2.

product

module1
 target2

Defines indivudal

settings for a module

Defines the configuration

of a target

Defines the overall

composition of a product

Figure 1.2: The description hierarchy pinpointed by the example

The root description in the file hierarchy is called a product description and
typically defines the overall composition of the product (or the executable).
When processing these files the build tool is able to extract the information
needed to build the executable, which includes the files to be build and their
individual settings as well as the configuration of the target.

This example only shows one application of the language and only gives a brief
overview of it. The purpose is the give a short introduction to the language with-
out going into to much detail that will hopefully provide a basic understanding
that could be useful when reading the rest of the report.

1.5 Report Structure

The report is separated into chapters that map to the objectives described above:

• Chapter 2 describes the domain of the description language, namely the
EMP software development environment.

• Chapter 3 covers objective A, including an identification of possible weak-
nesses of the current language.

1.5 Report Structure 5

• Chapter 4 covers objective B, proposing a new language based on the
current one.

• Chapter 5 covers objective C, invoking the new language into an analysis
tool.

• Chapter 6 summarizes the thesis and pinpoints further work.

At the end of each section there is a summary section intended to briefly inform
the reader of the key information described in the chapter.

The reader is recommended to read the report in a top down fashion since
the sections are dependent on one another in the order they appear. Also
fundamental knowledge of language theory and compiler techniques are assumed
although appendix C provides an brief overview on the fundamentals of compiler
and language construction.

6 Introduction

Chapter 2

The EMP Software

Development Environment

2.1 Introduction

This section aims at briefly presenting the EMP software development environ-
ment as seen from the description language point of view. Only the parts of
the environment where the description language plays a vital role will be intro-
duced, hence this section will not give a comprehensive and detailed description
of the complex structure that forms the EMP software development environ-
ment. It will merely present the tools using the description files and how these
files interact with the environment.

The description files are in this section regarded as black boxes with informa-
tion somehow needed by the software development environment, although a
brief example is given in the introducton. The detailed description of what
the description files actually contain and implement are left to chapter 3 which
will thoroughly describe the actual language. For now it is enough to know
that the description files holds information that the tools incorporated in the
environment needs.

2.2 Environment architecture

The EMP software platform is structured as set of platform modules, each
defining its own well-defined functionality of the mobile platform. Examples
of different functionality incorporated into these modules are SMS, MMS, data
communication etc.

8 The EMP Software Development Environment

All modules present in the software development environment contain a so called
description file as depicted in figure 2.1. Figure 2.1 is oversimplified in the sence
that it only illustrates that each module has a description file. It doesn’t show
the internal structure of the modules nor the different software layers that exist
in the platform architecture. A module is basically a number of files (source
files, document files, etc.) that together defines the functionality of the module
and the description file for the module describes for the environment which files
the module contains and how it should be configured.

Module

descr. file

Module

descr. file

Module

descr. file

Module

descr. file

Module

descr. file

Module

descr. file

Module

descr. file

Module

descr. file

Module

descr. file

...

...

...

...
 ...
 ...
 ...

SW Platform

Figure 2.1: Modules and description files

The modules together form something that can be viewed as a file hierarchy
where each module have the capability of including other modules and it is the
description files responsibility to pinpoint how the modules are hierarchically
chained together. The root description of the file hierarchy defines which sub-
sequent description files (and their modules) that forms the specific product.
Figure 2.2 gives an example of how the modules and their respective description
file forms a file tree.

Depending on how the different description files are included and what kind of
functionlity they implement they can be divided into different classes to distin-
guish between different types of descriptions. Figure 2.2 gives an overall picture

2.3 Tools 9

Module

descr. file

Module

descr. file

Module

descr. file

Module

descr. file

Module

descr. file

Module

descr. file

Module

descr. file

Figure 2.2: Example of description file hierarchy

of the module hierarchy. The notion of the different description file types is
introduced in chapter 3.2.

2.3 Tools

The description files mainly participates in three activities of the software de-
velopment environment, namely:

1 Software building, meaning the chain of events leading to generating a
software executable.

2 Software delivery packing, meaning when the software is packed to-
gether and shipped to EMP customers.

3 Configuration management, for example version control and configu-
ration of the software.

The tools responsible for performing the activities mentioned above are:

10 The EMP Software Development Environment

1 SDE, Software building

2 PPZ, Software delivery packing

3 CME, Configuration management

All of these tools use the description files in one way or the other to extract
information needed for their respective functionality. The main purpose of the
description language is to ”configure” SDE and CME so that these can be used
in a wide array of applications without having to modify the tools. Figure 2.3
helps in resolving how the various tools interact with the description files.

Figure 2.3: Description file interaction with tools.

In figure 2.3 the role of the description files in the software environment is
illustrated. As can be seen, almost all interaction with the description files are
done via the intermediate usage of SDE. Therefore SDE is not only present in
the process of building the software executable but also provides an interface
to the configuration management (CME) and the delivery packing (PPZ). The
doted lines in figure 2.3 represents usage and the filled lines represent that some
kind of output is produced. The subsequent sections will elaborate further on
the specific purpose of each tool and and how they interact with the description
files.

2.3.1 SDE

SDE handles the vital role of building executable units for the mobile platform
products (see also section 1.4). It interfaces compilers, make programs, config-
uration management systems and debuggers. The main objective for SDE is to
provide a tool for software development that can generate executable units both

2.3 Tools 11

for the different mobile platform CPUs and for simulation and debugging the
software on a PC. This main objective and how SDE uses the description files
for this purpose is illustrated in Figure 2.4.

Description

files
 SDE
 Make file
 Make
 Executable unit

Figure 2.4: Generating the make file

The input to SDE are description files hierarchy identifying the entire software
platform to SDE. SDE parses these files to extract the information needed to
produce the makefile. This basically includes extracting information regarding
which files in the platform that should be apart of the build and detailed make
rules needed by the make tool. The platform can be built for different software
targets and different variants of the platform. A variant is basically a subset
of the software platform that defines individual settings. Different variants
typically only differ in a few source files or settings.

2.3.2 CME

The major CM system for software development within EMP is ClearCaseTMand
CME is a software plugin to that tool. CME uses SDE to get product informa-
tion from the description files necessary when performing version handling of
the platform software.

CME uses the description files to extract file information needed when per-
forming a ”freeze” on a software product. A freeze is when files are versioned
together to form a well-defined portion of software. CME can extract infor-
mation from the description files on three different levels of abstraction; 1) the
modules for a given product, 2) the files for a given product or, 3) the files in
a given module. Hence the CME usage of the description files are not neces-
sarily applied to the entire file hierarchy but can also be invoked on a single
module and thereby a single description file. CME usage of the description files
are always done through SDE, which provides an interface for the functionality
desired by CME.

2.3.3 PPZ

The tool responsible for delivery packing the platform software into a zip-file is
PPZ. The zip-file , that is based on the content of the description files, is then
released to the EMP customers. PPZ is a perl script that uses SDE to extract
the useful information from the description files.

12 The EMP Software Development Environment

PPZ takes the informations extracted from the description files, via SDE, and
transforms the original structure and contents of the description files to fit the
purposes of the customer, which is illustrated as the delivery/customer portion
in figure 2.3. SDK is a tool used by the customer to extract information from the
description files used by the customers. Therefore the SDK includes a version
of the SDE tool in addition to the transformed description files.

2.4 Summary

The description language dictates some important aspects of the software de-
velopment environment for a couple of tools present in the very same. It helps
these tools in resolving which files are a part of the software platform and how
the software should be built, delivery packed and version controlled.

The platform is composed of a number of modules that each implement a por-
tion of the mobile platform functionality. Each module contain a description
file, implemented in the descripition language, responsible for defining the con-
tents and specific configurations for the module. Together the modules form a
hierarchy where the description files act as ”glue”, linking the platform product
together.

Chapter 3

The Current Description

Language

3.1 Introduction

This chapter describes the current description language (CDL), both in terms
of the functionality provided by it and in terms of the detailed syntax and how
the files are processed. The disadvantages and possible pitfalls of the language
are also investigated and highlighted.

The chapter is organized as follows; Section 3.2 describes the different de-
scription file types of the language and the detailed syntax of the language
is described in section 3.3. Section 3.4 describes how the files are parsed and
processed as of today and section 3.5 highlights identified weaknesses of CDL.

3.2 Description file types

As mentioned in section 2.2 the platform software is made up of modules where
each module contains a description file. Each description file adheres to one of
five different types of descriptions, namely:

• Product description file, the root file of the description file hierarchy.

• Module description file, the file identifying the configuration and content
of a module.

• Target description file, the file specifying the configuration of a target.

14 The Current Description Language

• Private description file, developer unique description file capable of over-
riding settings made in the modules.

• Include description file, description file that gets included via a include
directive.

The type a file is given is not a constant property of the file, but depends
on the way the file is referenced in the description file tree. This is typically
only applied for the product and module descriptions. A file that is a product
description in one run could very well be a module description in the next.
To simplify the distinction between different types, naming conventions exists.
But hypothetically a arbitrary description file can be any of the above listed
description types, which is solely dependent on the the way it is referenced. The
notion of description file types is depicted in figure 3.1 using a UML notation.

<<Description file>>

"sub module"

<<Description file>>

"module"

<<Description file>>

"private"

<<Description file>>

"target"

<<Description file>>

"product"

Include

Sub Module

<<Description file>>

"include"

<<Description file>>

"any"

Figure 3.1: Description file types

As illustrated in figure 3.1 a description file can include other description files,
either via the Include concept or the sub-module concept. It is important to
distinguish between these two notions of inclusion. The Include concept is a
logical include and the included file is a part of the file it is being included from.
Typically the include file is of the type include description file but could theo-
retically be any description file type. The sub-module concept is a logical part
of the module which is independently version controlled. The sub-module are
CM-modules of their own. The inclusion and sub-modules create a description
file hierarchy which for a platform contains several hundred description files.

3.2 Description file types 15

3.2.1 Product description

This is normally the top level file for the product. The product description can
either list all the files to be used for the build by itself or it can reference other,
via the Sub-module concept software modules descriptions that in turn list the
files to be used, see for example the example in section 1.4. You could say that
the product description defines the composition of the product.

3.2.2 Module description

This is the top level file in a CM-module. It defines the contents of the module
and how the module participates in the building of system. A software module
description file typically contains the name of all the files needed to build the
module and the individual compilation settings for the files. The fact that the
product only references the module description means that it has no knowledge
of the modules individual files. This also means that the module has full control
of which files to use and the individual settings.

3.2.3 Private description

This type of file is normally unique for each individual developer. They are used
to add new files or settings to the main configuration or to override specifications
in the main configuration. This facilitates testing without the need to check out
or modify the official description files. More than one private description file
can be used for the same product.

3.2.4 Target description

This type of description file describe the specifics of a software target (compiler
etc.). SDE has a standard set of supported software targets and compilers. A
description file for another new target can easily be created. A software module
can for instance define a specific software target of its own. Within this module
the actual executables for compilers and alike can be stored and CM controlled.
Other description files in the hierarchy chain can also replace the definitions in
the target description files, completely or in part.

3.2.5 Include description

An include description is the type of description file that gets included via the
include concept. This file typically defines settings needed by the module from
which it is included. The inclusion is made through the include directive which
is described in section 3.3.3.

16 The Current Description Language

3.2.6 Priority between file types

SDE defines a specific order in which the file types are prioritized. This means
that the information in one file type can override the information stated in
another file type. The files types have the following priority:

1. Private description file

2. Product description file

3. Module description file

4. Target description file

Hence the private description has highest priority and the module description
lowest. A certain priority also exist within a file. The part of the file that is
parsed last is the part that has highest priority. Because the files are parsed
from top to bottom a statement in the end of a file can override a statement in
the beginning. Because the include description file is a logical part of the file it
is being included from it obeys the priority rules that exist within a file.

3.2.7 Description file tree

By referencing other description files using The Sub-module inclusion concept
the description files together form a file tree. If it exists the private descriptions
is the root of this tree and its sole leaf file is the product description. The
product description then references its modules and target descriptions. Target
descriptions are typically only invoked from the product descriptions and not
from module descriptions. The module descriptions can then invoke other mod-
ule descriptions and so on. Figure 3.2 depicts and example of how a hierarchy
of descriptions files can look like.

Each description file in figure 3.2 have the possibility if including additional
include descriptions files via the Include concept which is not shown in the
figure but should be kept in mind.

3.3 The language

The current description language does not just contain one uniform context free
syntax, but several context dependable syntaxes. CDL can be described as a
language with three different levels or steps:

1. Directives

3.3 The language 17

Product

Private

Target
Module2
Module1

Module3
 Module4

Figure 3.2: Description file tree

2. Sections

3. Section languages

Step 1, Directives, can be considered as a preprocessing step of the language.
This step defines a number of directives which main purpose is to define variables
and conditional statements that control the flow when the files are parsed. The
directives can be considered context free and are applicable in any context. A
directive is always proceeded by the ”!” character. The directives currently
defined by the language are:

• Variable definition

• Variable deletion

• Conditional statements

• Include directive

• Options directive

Step 2, Sections, is concerned with dividing the syntax into several so called
sections. Each section defines its own syntax or language with its own specific
functionality; step 3. Hence the languages residing in the sections are context
dependable.

The syntax of today is dictated by SDE which is responsible for parsing the
description files. Step 1 and 2 are parsed line by line and not file by file.
Hence the language can be considered as a row-oriented language and thus
each statement has to be completed in one line.

18 The Current Description Language

It’s important to distinguish between the directive part of the language on one
hand and the section part on the other hand. CDL can be seen as a language
with two phases; 1) the directives are evaluated in a preprocessing step where the
variables are given values and the conditional statements defines which rows that
are ”active”, 2) The ”active” rows in the sections are extracted and processed.
Sections 3.4 describes in more detail how the language is parsed and processed.
The following subsections will elaborate further on the syntax of the directives
and sections.

3.3.1 Variables

Defining a variable in the description language is accomplished with the use of
the set directive. The syntax is as follows:

!set [Option]* Identifier [= Value]

Hence the ”!set” string identifying the kind of directive is followed by zero or
many options then a variable unique identifier to identify the variable, followed
by a possible value. The value assigned to the variable could theoretically be
any sequence of characters. The language of today does not support any kind
of typed variables and SDE will handle all variables as strings. SDE will match
all characters, beginning with the first character after the equality sign (exclud-
ing white spaces) and ending with the character proceeding the new line (also
excluding white spaces).

Variable states

Basically a variable in the description language can be in one of four different
states, depicted as a state chart in figure 3.3.

1. Undefined

2. VN def, VAL undef

3. VN def, VAL def

4. Deleted

/ !set ID

/ !set ID = foo
 / !unset ID

/ !unset ID

Figure 3.3: Variables states

3.3 The language 19

In figure 3.3 VN represents a arbitrary variable identifier and VAL represents
a possible value assigned to the variable. Figure 3.3 depicts that a variable is
in one of the following states; 1) the variable is undefined, 2) the variable name
is defined but not the value, 3) the variable name is defined and so is the value
and 4) the variable is deleted. The figure implies that if a variable is in the
state adhering to number 2, it is not possible with a subsequent use of the set
directive also to assign a value to the variable. This is however not the whole
truth. SDE defines a number of options to the set directive that can be used to
override the logic defined in figure 3.3. These options are:

• -i, irreplaceable set, i.e. from the point the variable is defined and onwards
no other definition can override this definition. However a variable that is
defined irreplaceable can be overridden if the -i option is used again.

• -f, forced set, i.e. the variable is defined and/or assigned regardless of a
possible previous flag, unless it has been set as irreplaceable before.

• -l, the variable is defined locally. The variable scope is the remaining part
of the file it has been defined in and in subsequently included files via
the include directive (see further section 3.3.3). At the end of the file a
possible previous value for the variable is restored. If no previous value has
been defined the variable is deleted. The definition is ignored if a variable
with the same name previously have been defined with the -i option.

• -a, appends text to an existing variable. This option is necessary due to
the fact that a file can be parsed multiple times, and prevents the variable
to contain arbitrary duplicates of the appended text.

• -e, the value is first evaluated as perl expression before assigned to the
variable.

To further illustrate how these options can be used an example is given:

!set VAR = A

!set -f VAR = B

!set -i VAR = C

!set -i VAR = D

The final value of the the variable VAR is D in the example above. The only
way to override the initial definition (A) is to use -f or -i and the only way to
override a variable defined with -f (B) is to use -i and finally, the only way to
override a a variable defined with -i (C) is to use -i again (D).

20 The Current Description Language

Hence it is possible by using the right options to override the behaviour described
in figure 3.3. Figure 3.4 gives a more correct view of the states a variables can
reside in. In this figure only the options -f and -i are considered. Should all the
options be added, the state diagram would be immense and not very intuitive.

VN def, VAL undef, forced

VN def, VAL def

Undef

VN def, VAL undef, irreplaceable

VN def, VAL undef

VN def, VAL def, forced

VN def, VAL def, irreplaceable

/ forced set

/ set

/ irreplaceable set

/ irreplaceable set

/ forced set

/ set

/ forced set

/ irreplaceable set

/ irreplaceable set

/ forced set

/ irreplaceable set

/ irreplaceable set

/ irreplaceable set

/ irreplaceable set

Deleted

/ unset

/ unset

/ unset

/ unset

/ unset

/ unset

Figure 3.4: Variables states with some override aspects added

However this figure suffices to show the complex logic in defining a variable’s
scope and controlling the way it can be overridden. In addition with the fact
that SDE parses the description files in multiple passes (explained in sections 3.4
cause implications that are obvious. These implications will not be investigated
here, but in section 3.5, describing the fallacies and pitfalls the current language
produce.

Variable reference

Once a variable has been defined it can be referred to in any context of the
description file using the following construct:

!set ID = foo

%ID%

3.3 The language 21

As seen from the example above a variable reference is a variable identifier en-
closed by ”%” characters (%ID%). Here %ID% will get the value ”foo”.

Variable expansion

The variable reference is expanded by SDE in the preprocessing step. SDE al-
lows variables to be referred to anywhere within a description file. Theoretically
constructions like this are legitimate:

!set IF = if A == 1

!set SET = !set A = 2

!set ENDIF = !endif

%IF%

%SET%

%ENDIF%

Here an if statement (conditional statements will be explained in a later section)
is declared as variables and then expanded to form the actual directives. The
preprocessed file will have the following appearance:

!if A == 1

!set A = 2

!endif

This feature works fine with the way SDE is currently implemented but may
form an intolerable ambiguity when building a syntax tree, which will be inves-
tigated further in chapter 4.

Multi line values

A variable defined with a value can consist of several lines (including line breaks)
and can be defined using a line-oriented quoting of the value:

!set SOME_VARIABLE = << END_OF_DEF

This is one line

This is another line

END_OF_DEF

The ”END OF DEF” identifier can be an arbitrary string that is not part of
the definition. When using the variable the full value including the line breaks
will be expanded.

Variable deletion

The language also the defines the possibility to delete a previously defined vari-
able. This is accomplished with the use of the unset directive which corresponds
to the actions leading to the Delete state in figure 3.3 and 3.4:

22 The Current Description Language

!unset ID

This construct will cause the variable to be deleted, but also to be blocked for
further use. Thus, a variable that has once been deleted can never be defined
again with the same variable identifier nor can it be referenced again.

Variable scope

The variable scope is per default defined to be global if the variable has not
explicitly been declared as local. A variable having been defined is applicable
everywhere in the file hierarchy. As explained earlier the language is a two phase
language and it is therefore legitimate to refer to a variable before it has been
defined. The preprocessing step in SDE takes care of evaluating all variables
regardless of their position in the file tree.

3.3.2 Conditional statements

The language defines the possibility to define conditional statements which
makes it possible to control the flow of the file being ”executed”. The semantics
and the syntax resembles the one used in C source files. The following keywords
are recognized:

• !if logical-statement

• !elseif logical-statement

• !else

• !endif

• !ifdef variable identifier

• !ifndef variable identifier

The logical statements support comparison between variables and string literals
using the operators ”==” for equality and ”!=” for not equal. The comparisons
are textual and not case sensitive. Several comparisons can be grouped together
with the logical operators conjunction (”&&”) and disjunction (”||”). Consider
the example:

!if A == 1 || B == 2 && C == 3

...

!elseif D != 4

...

!else

...

!endif

3.3 The language 23

Here the string preceding the equality operator is implicitly interpreted by SDE
as a variable reference and the one following the operator is a value to SDE.
Hence it’s legal to refer to a variable on the right side of the comparison but
not the left. Using a variable reference on the left side would make SDE first
expand the variable and then try to look up the expanded value in the variable
database. The variable would not be found because it is a value and has no
entry in the table and the comparison would evaluate to false which may not
have been the intension in the first place. Hence, the language contain some
inconsistency in the use of variables. A string proceeding a comparison operator
in an if statement (ifdef and ifndef also for that matter) is implicitly meant as
a reference but anywhere else the string has to be encapsulated between ”%”
characters to take the desired effect.

As seen from the sample code above it is also possible to use the conditional
statements elseif and else following and if statement, that resembles the most
frequently used programming languages in their semantic and syntax to great
extent. The conditional statements are also allowed to be nested.

In conditional statements conjunction has higher precedence than disjunction.
The precedence can however be overridden by grouping the logical expressions
inside parenthesis.

ifdef and ifndef

The language also defines the conditional statements ifdef and ifndef, identical
to the two directives #ifdef and #ifndef used by the C preprocessor and their
semantic and syntax are identical:

• !ifdef variable name, the branch is taken if the variable is defined.

• !ifndef variable name, the branch is taken if the variable is not defined.

All conditional statements have to be ended with an ”!endif” to close the state-
ment. This syntax is also inspired by the C preprocessor. Example:

!ifdef VAR

...

!endif

!ifndef VAR

...

!endif

3.3.3 Include directive

This directive is once again an inheritance from the C preprocessor and has the
following syntax:

24 The Current Description Language

!include filepath

Where filepath is a string identifying the file to be included. Files referenced
with the include statement are automatically added to the description file from
which they are included. The file path can either be absolute or relative to the
file containing the include statement. The file path may also contain variable
references as parts of, or the whole file path.

3.3.4 Options directive

The options directive dictates the activation of specific flags that bear a special
meaning to SDE when parsing a file. The syntax is as follows:

!options option

Where option is one of the following:

• Silent: Turns of various information messages that are triggered by the
product description file.

• MultipleSections: Forces SDE to parse the entire file. The default
behaviour of the SDE parser is to search a file for a given section. Once
found the parse is stopped.

• CheckDescrConditionals: Makes SDE check that if statements and
closing endif’s match.

These options all triggers the activation of a behaviour that is per default un-
activated.

3.3.5 Sections

Besides the directives, that are applicable everywhere, the language defines so-
called sections. Each section starts with a tag consisting of a name enclosed
in square brackets which is similar to the syntax used in Windows ”ini” files.
Example:

[Variants]

...

[SourceFiles]

...

3.3 The language 25

Each section provides different functionality to the environment. The number of
different sections defined by the language is approximately 30 but this number
is not fixed and sections are constantly added and removed.

Additive or replacive sections

A section or more accurately the information it contains can either be replacive
or additive. In a replacive section the information can be overridden or replaced
by an identical section in another file provided that the file has a higher priority.
Additive means that the information is simply concatenated with other section
information residing in identical sections.

Section classes

The sections can be grouped into a number of classes, each defining similar or
identical syntax and functionality. The identified sections classes are defined in
table 3.1.

Besides the section classes defined in table 3.1 there are a number of miscella-
neous sections which have not been able to put in specific class of sections.

File list sections

The sections adhering to this class are used to list file names in the build process
for a software product. Examples of file list sections are; ”[IncludeFiles]” and
”[SourceFiles]” listing header files and compilable source files. Typically these
sections merely list the names of the files, each separated by a new line and
nothing more:

[IncludeFiles]

.\dir\file1.h

.\dir\file2.h

.\dir\file3.h

But some sections also exposes the possibility of defining a number of options for
the specified file. An example of this is the ”[SourceFiles]” section that allows a
number of compilation options to be stated on the same line following the name
of the file:

[SourceFiles]

.\dir\file.c AVR(=-z9)

The compiler option is typically specified with an identifier unique for each
target followed by a value enclosed in parenthesis.

The file list sections are additive meaning that the contents of each section are
concatenated. However two identical file names defining different options will

26 The Current Description Language

• File list sections: These sections list files. In addition to the files listed
a number of options can be stated (although only for a small number of
the file list sections). The options might include different compiler options
that is to be mapped to the specified file.

• File list modification sections: Each file list section has a correspond-
ing modification section with the intended functionality to remove a file
listed in the file list section.

• Packaging section These sections also lists files. The files stated in the
packaging sections are intended to be exposed to the tool responsible for
packing the platform software (PPZ) to customers.

• Packaging modification sections: Same functionality as file list mod-
ification sections but for the packaging sections.

• Variant sections: The product typically produces several different ex-
ecutables and the variants sections identify the names of these and how
they can be grouped together etc.

• Target specific sections: These sections identify targets specific actions
and contains all the information on how to create the makefiles for the
build process.

• Target section: Identifies the Sub-module inclusion of target description
files.

• Module section: Identifies the Sub-module inclusion of module descrip-
tion files.

Table 3.1: Section classes

result in the option to the file listed in the description file with the highest pri-
ority taking precedence over the other. The typical behaviour when extracting
the files is that there are never duplicates of the same file (the key being the
actual file name, excluding the path). Hence a file defined twice will result in
only one entry in the final list of files, that being the file listed in the file with
the highest priority ignoring possibly different paths.

File list modification sections

All file list sections have a corresponding modification section. These section
are denoted with a name identical to one of the file list sections preceded with
a minus:

[-SourceFiles]

3.3 The language 27

.\dir\file1.c

Each of these section can be used to remove a file that has previously been de-
fined in a file list section. The removal of a files listed in these class of sections
is done after all file list sections have been examined. The removal is also done
per section, meaning that a file listed in a ”[SourceFiles]” section can only be
removed using the ”[-SourceFiles]” section.

Packaging sections

These sections are a complementary to the previously explained file list sections
and contain information (files) about what parts of the platform that should
be exposed to the EMP customers. What these sections do is to divide the
platform logically in three partitions, namely exposed files, forbidden files and
other files. The exposed files are such files that always should be available to
EMPs customers. The sections exposing files are named ”[Packaging Exposed*]
where * is the name of one of the file list sections. Example:

[Packaging_ExposedSourceFiles]

...

[Packaging_ExposedIncludeFiles]

...

Forbidden files are the opposite of exposed, files that never should be sent to cus-
tomers. These files should be listed in a section named ”[Packaging ForbiddenFiles]”.
The third category, other files, consists of the files (the files listed in the file list
sections subtracted by the ones listed in the packaging sections) that are neither
exposed nor forbidden. When packing the platform the platform packer decides
which files that are to be included in addition to the exposed files with respect
to the dependencies that exist between the files.

Variants sections

The product typically produces several different executables each differing in
a few source files or settings. Each executable is denoted with a unique name
called a variant. SDE defines a couple of sections that define the names of the
variants and how they can be grouped together when their individual settings
are very similar. The variant name is used throughout the description file hierar-
chy to the control the ”execution” of the files with respect to the chosen variant.

Target section

The ”[Target]” section is responsible for identifying which target description file
to include. The target description file then describes the specifics for how to
build an executable unit for that target. The syntax is typically a target unique
identifier followed by the path to the target description file:

28 The Current Description Language

[Targets]

IAR-ARM7 .\dir\iar-arm7.cfg

On the encounter of such a statement, provided that the target identifier matches
the chosen target, the target description file will be included by SDE.

Target specific sections

The target specific sections are those residing in the target description file pin-
pointed from the ”[Targets]” section and contains some more advanced instruc-
tions. The sections defined in this type of file control the actual generation of
the target specific makefiles. These sections are an example of replacive sections
meaning that can be overruled by another alike section residing in a file with
higher precedence.

Module section

The ”[Modules]” section identifies the inclusion of module description files. A
module can be included from any type of file and the ”[Modules]” sections to-
gether with the ”[Targets]” sections identifies the platform file tree when SDE
parses the files. The syntax is a path pointing to the module folder in the file
tree followed by a label. SDE will search the module folder for its description
file. A label (CNH160676 R3E) is string identifying what version of the module
that should be included:

LD_FuncBlocks_011\cnh160676_level0 CNH160676_R3E

There also a ”[-Modules]” section in case it is desired to remove a whole module.
The syntax is identical to ”[Modules]” except the label preceding the path.

Miscallenous sections

The sections and sections classes listed above are not a complete description
of the various sections that are possible to use. They are however the most
important ones and the reader will not be exhausted with extensive knowledge
of every single existing section.

3.3.6 Perl

The description language is highly incorporated with the scripting language Perl.
This due to the fact that the SDE parser is implemented in that very language.
The description language itself also offers the writer to express arbitrary perl
statements, although constrained within a certain context (like the -e option
to the set directive). Whether or not this is a recommendable feature will
subsequent sections elaborate further on. For now it is just explain what is

3.4 Processing of description files 29

possible and what is not. As mentioned before the use of perl is allowed in
certain predefined contexts of the files,

• In the set directive

• In if statements

• In certain sections

The perl expressions can be either arbitrary or following a strict syntax dictated
by a number of predefined functions that follow a strict syntax. Examples of
such are functions that return whether or not a variables name is defined and
if a given variable contains a another explicitly given substring. The arbitrary
expressions, that can be invoked by using the ”-e” option to the set directive,
will force SDE to interpret the assigned value as a perl expression and evaluate
it as such. The arbitrary perl expressions can also be used in if statements. SDE
automatically evaluate the expressions as perl and no options has to explicitly
be stated.

The typical usage of perl is in the context of if or set directives. But SDE also
defines sections that contain entire perl sub routines.

3.4 Processing of description files

SDE is the tool responsible for parsing and processing the description files in
order to obtain information and to produce the output needed to perform the
tasks imposed on SDE by the environment. This includes providing CME and
PPZ with information enabling them to fulfill their task, namely configuration
management and delivery packing, and building software executables.

The SDE processing of a file hierarchy of description files is not performed in one
single parse. Instead the file system is parsed in multiple passes and eventually
all information needed have been retrieved to form a complete information base
of the system. Figure 3.5 gives an overview of how SDE processes the description
files.

3.4.1 Multiple file processing

A ”start” description file is provided to SDE identifying the root of the file
tree to be parsed (this is the typical behaviour, the objective could also be to
only process a single file). This file is typically the product description. SDE
performs an initial ”dummy parsing” of the entire file tree pinpointed by the
root description file. The dummy parsing’s main objective is to extract variable
information and to build up a variable database for the file tree. The dummy

30 The Current Description Language

file array

Product

Private

Target
Module
Module

Module
 Module

Module
 Module
Module
Module
Product
Private
 Target

Variable DB

"Section

parsing"

"dummy

parsing"

n times

generate
 use

priority

read/write

read/write

high
 low

Figure 3.5: SDE description file processing steps

parsing also creates an array of all file paths to the included files from the root
file. Hence the structure is no longer a tree but a flat structure organized in such
a way that the priority order explained in section 3.2.6 is fulfilled. The array is
organized in descending priority order, the file with the highest priority is located
first in the array and the file with the lowest priority is located last. By retrieving
the files from the array in the order they are arranged the priority order between
the file types is ensured. This also implies that a priority order exists within a
file type which will be based on their individual location in the file tree and in
the order in which they are defined. As mentioned in section 3.3.5 sections can
be either replacive or additive. By accessing the array either backwards or from
the front the information in sections can be ensured to be replaced or added
with respect to the file priorities.

The objective of the ”dummy parsing” is to ensure that all variables are defined.
This is because a parent file might have variable dependencies to variables de-
fined in a leaf file. Once the ”dummy parsing” is completed the following parses
will use the created file array and variable database. These parses are illus-
trated in figure 3.5 as the section parsing. The section parsing will continuously
update the variable database given the rules explained in section 3.3.1 adhering
to the variable definition and deletion. The objective of the section parsing is
to extract information from the sections needed by the activity accessing the
description file, where activity is implied to be either, build, packaging or CM
specific actions. Each scan of the files will search for different sections and re-
trieve section specific data. SDE has a number of data structures that saves the

3.4 Processing of description files 31

information extracted from the sections. Once the processing of the descrip-
tion file system is ended these data structures holds the information base of the
product (which can also be for a single file).

Because the files are parsed first one initial time and then several subsequent
times the variable scope will be global, unless the variable is explicitly defined
to be local. A variable defined further down the file tree is accessible in parent
files in the next scan of the file array. This feature is a bit unorthodox but
probably not unintended. For example the product description may want to
include a file depending on a specific kind of target, which is not known until
later in the processing. The inclusion is dependent on a target specific variable
defined after the product description have been parsed. But considering the
complex way the variables can be overridden and the global variables scope
in addition to the multiple parsing gives a very unintuitive variable handling
and it’s difficult to predict a variable’s value at a given time. The question is
whether the possibilities provided by the current implementation overshadow
its disadvantages.

3.4.2 Single file processing

Each individual scan of a description file can be divided into two phases as
mentioned in previous section:

• Preprocessing

• Section retreiving

As mentioned in the previous section some of the directives are very much influ-
enced by the preprocessor used in the C programming language. The preprocess-
ing done by SDE includes executing the directives in the language and provides
the section retrieving step with a preprocessed description file for further com-
pilation. This step then parses the files again to extract desired information
from the sections. Figure 5.4 depicts this.

Preprocessing
Description file

Preprocessed

description file
 Section retreiving

Figure 3.6: SDE description file processing steps

Preprocessing

What the preprocessor step effectively does is to parse the directive part evalu-
ating every conditional statement in the file. Depending on whether or not the

32 The Current Description Language

conditionals evaluates to true or false, the branch will be included or excluded
from the preprocessed file. The preprocessor also handles the variables defined
and expands all references made to one of those. When the preprocessing is
done parsing the file the information contained in the file will be reduced and
all variable references will be expanded leaving only the ”active” rows in the
preprocessed file.

Section retrieving

This step retrieves and processes information contained in the sections. The
section or sections that is to be found is explicitly requested and differs from
scan to scan. In each scan of the file array, different sections are extracted to
eventually form a complete information base of the system. The data is then ei-
ther used to generate the make file, provide the platform packer with packaging
specific information or CME with file information.

3.5 Fallacies and pitfalls

The description language of today gives great flexibility when implementing
descriptions, partly because the powerful perl availability but also due to the
fact that there is no strict grammar and very limited error checks. In addition to
the complex and unintuitive way the files are processed and parsed the language
of today highlights a number of fallacies that makes it feasible to elaborate on
a refinement of the current language which regards the following matters:

• Absence of formal grammar

• Handwritten parser

• File processing

• Variable handling

• The extensive Perl availability

The following sections will elaborate further on each of these weaknesses and
the implications they impose.

3.5.1 Absence of formal grammar

The CDL is not formally defined and it is therefore difficult to know how to
correctly implement descriptions in the language. Defining a formal grammar
would eliminate many of the ambiguities and risks in the current language and
would simplify error checking and handling.

3.5 Fallacies and pitfalls 33

3.5.2 Handwritten parser

The SDE parser is handwritten implemented in the Perl scripting language.
Having a ad-hoc developed parser makes maintenance of the language very dif-
ficult and also produces consistency problems in the sense that modifying the
parser has to be done carefully to maintain a correct implementation.

It is therefore feasible to elaborate on another paradigm in how the language is
processed and handled. Instead of implementing the parser by hand it would
be sufficient if the parser is generated using one of the vast amount of compiler
compiler tools available.

3.5.3 File processing

As previously mentioned SDE parses an individual description file several times.
After each scan the evaluated file (the preprocessed file) is simply thrown away
and no knowledge of the file is kept except the extracted information intended
for the particular parse in addition with variable database that is continuously
updated. Parsing the files several times is time consuming and it would be more
feasible to parse a file one time extracting all information at the same time.

3.5.4 Variable handling

The multiple parsing of the description files and the fact the variables are kept
from scan to scan implies that all variables are global if not explicitly stated
otherwise. In addition to the overriding possibilities available basically means
that every parse can tamper with all variables which in turn imposes a number
of possible unwanted ”features” in the variable handling. For example consider
a variable being defined and assigned a value:

!set A = 1

Then in a subsequent file the variable is overridden:

!set -f A = 2

When the first set statement is parsed in a subsequent scan of the file, the
assignment will be ignored by SDE because it has not been defined with the
proper option and the variable will hold the value ”2”. This might not be the
intention when defining the variable in the first place, at least if the intention is
to be able to use the variable with the original value in the file it is defined in.

A similar behaviour can be reproduced by using the unset statement. A variable
defined and then deleted will be deleted and unable for use in the next parse as
well.

34 The Current Description Language

Given the current implementation the only way to make sure that the value
you assign to a variable is actually the value used when referring (provided that
you refer to it before it is overridden) to it is to, without exception, define the
variable as irreplaceable (with -i).

The difficulties imposed by the variable handling is mainly the cause of multiple
parsing and the dependencies between them with respect to the variables. As
described above this might lead to undesired behaviour but might also be a
feature that is needed given the current implementations of the description files.
However having a more constrained handling of the variables that limit the risks
the current implementation produce is definitely desirable.

3.5.5 The extensive Perl availability

The Perl availability the language offers gives a powerful, but difficult to control,
functionality. It is very easy to make mistakes but also increase the capabili-
ties and adds a dimension to the language. However no errors or warnings will
be issued if the expressed perl statement contains any syntactical errors. The
functionality typically expressed in perl can be replaced by a number of prede-
fined functions implemented by the language. It is therefore recommended that
the use of arbitrary perl statements is abolished and replaced by a library of
available functions providing a constrained and well-defined functionality. This
would provide a more language independent solution instead of the very much
Perl dependent solution that exist today.

3.6 Summary

The EMP software development environment uses the CDL to extract informa-
tion regarding the configuration of some of the tools present in the environment.
The language can be said to be a two phase language; phase one being the di-
rectives and phase two being the sections. The directives define fundamental
constructs such as conditional statements and variables. The sections contain
information regarding for example the files a module contains and the individual
settings of a target. The directives are evaluated in preprocessing step, leaving
a preprocessed file with only the sections remaining which are then extracted to
fulfill the needs of the environment.

The descriptions files where the language are implemented in forms a file tree
that identifies the configuration of an entire product to the environment. The
description files can be one of five different types; 1) private description, 2)
product description, 3) target description, 4) module description, 5) include
description. The type a file adheres is dependent on how it is referenced in the
file tree.

3.6 Summary 35

A number of fallacies has been identified in CDL; 1) the file processing is not
optimal, 2) the variable handling difficult to understand and may produce un-
wanted features, 3) the extensive perl availability is hazardous and 4) having no
formal grammar and a handwritten parser makes language maintenance difficult
and the language difficult to understand. Chapter 4 will take these highlighted
weaknesses into consideration when defining the NDL.

36 The Current Description Language

Chapter 4

The New Description

Language

4.1 Introduction

One of the objectives of this thesis project is to formally define a grammar and
semantic for a partly new description language (NDL), which however should
be to as much extent as possible compatible with the current one.

Considering the highlighted weaknesses of CDL this chapter defines a new lan-
guage, in terms of a formal grammar and semantic. This chapter also introduces
possible constraints and improvements to the given language. Although one of
the requirements imposed on the thesis project is to as much as possible define
the new language to be backwards compatible with the existing, some aspects
of the current implementation is however considered hazardous and therefore
feasible to alter and improve.

This chapter is structured as follows; section 4.2 introduces a number of design
decisions based on the weaknesses identified in chapter 3, section 4.3 defines a
formal grammar for NDL and section 4.4 the semantic. It is recommended that
appendix C.3 is read before section 4.3 because it introduces the formalism and
notation of the language definition.

4.2 Design decisions

Chapter 3 highlighted a number of fallacies in the CDL and the implications
they impose to the environment:

38 The New Description Language

• No formal grammar

• Handwritten parser

• File processing

• Variable handling

• Perl dependencies

In NDL these items are revoked and alternative solutions are used regarding
how the files the language reside in are treated and how the language is defined
and implemented. The following sections elaborate on these solutions.

4.2.1 Formal grammar

CDL have no formally defined grammar. NDL however, will have a formal
grammar using the EBNF notation described in section C.3. This grammar is
however not complete in the sense that a formal definition have been found for
every aspect of the language. The grammar for NDL is described in section 4.3.

4.2.2 Handwritten parser

The lexer and parser for NDL is not handwritten as opposed to the parser for
CDL. Instead a compiler compiler tool (JavaCC) is used to generate the lexer
and parser as well as a tree representation (AST) of the file being parsed. Input
to the parser is the formal grammar defined in sections 4.3. The detailed design
of the parser is described in chapter 5.

4.2.3 File processing

The description files form a well defined file hierarchy of descriptions that iden-
tifies and defines the platform product, which is depicted in figure 4.1.

The product description typically includes module and target descriptions and
each modules can invoke further modules. However this structure is not kept
when SDE processes the file tree. Instead the tree is transformed into a flat
structure, or more accurately an array of the description files present in the
product. This is explained in more detail in section 3.4.

However, when defining the new language the file tree structure is assumed to
be intact, meaning that the files are processed according to their location in the
file tree. Also the feature of parsing the files multiples times, done by SDE, is no
longer applicable. The new language is assumed to be parsed only one time, or
more correctly, the tool developed as a part of this project performs no multiple

4.2 Design decisions 39

Product

Private

Target
Module2
Module1

Module3
 Module4

Figure 4.1: Example description file tree

parsing. The tool scans the files a single time and in contrary to SDE, builds
an Abstract Syntax Tree (AST), representing the language grammar.

The file processing have no special meaning when defining the formal grammar,
but will play a vital role when defining the language semantics. Given the
new way of processing the files, the new language is handled in more orthodox
manner that resembles the way a traditional compiler works.

4.2.4 Perl dependencies

The current language gives great flexibility that is the extension of being able
to invoke Perl expressions, although not entirely context free, in the descrip-
tion files. The new language will forbid the use Perl expressions motivated by
the possible dangers and unpredictable behaviour they might produce. Instead,
inherited from the current language, a library of predefined functions are avail-
able. These functions are implemented by the language and should not have
any dependencies to the Perl language.

The Perl abolishing is however only restricted to the if and set directives. It is
still possible to use Perl in other contexts.

4.2.5 Variable handling

As an extension of the assumptions made in section 4.2.3, keeping the file tree
intact and single parsing, but also the implications imposed by the current vari-
able handling described in section 3.5, a new more intuitive way of handling
the variables is feasible to introduce. Instead of all variables being global, the
variables are given a more constrained scope adhering to where in the tree they

40 The New Description Language

are defined. A variable being defined in file A is applicable in that very file and
in all leaf files to file A. A lot of variables defined in the product description
should be regarded as constants by the sub-modules included from the product
description. Also the private description typically defines variables that should
override subsequently defined ones. Therefore it is feasible to regard the vari-
ables as constants when they are propagated down their scope. In other words,
a variable is override able in the file it is being defined in but in leaf files the
variable is regarded as constant and can not be overridden. This solution might
however be to general and occasions might occur where a variable should be
able to override by leaf nodes. However for now, this kind of constrained and
general variable handling suffices. Figure 4.2 illustrates gives a general depiction
on how the variables are handled.

Product

Target
Module2
Module1

Module3
 Module4

v
pv

v
pv
,v
pd

v
pv
,v
pd
,v
tg

v
pv

v
pd

v
tg
v
m1

v
pv
,v
pd
,v
tg

v
pv
,v
pd
,v
tg
, v
m1

v
pv
,v
pd
,v
tg
, v
m1

Private

Figure 4.2: Variable handling

In figure 4.2 vpv denotes a set of variables defined in the private description,
vpd variables defined in the product description, vtg variables defined in a tar-
get description and finally vm variables defined in a module description. The
variables are propagated down to their leaf files. An exception is the target
description, these variables are returned back to its parent, motivated by that
the target description defines a number of variables that should also be visible
in the modules.

To further illustrate the scope a variable is given an simple example is given i
figure 4.3. Here, the variables C and D are inherited down to root file of the
figure from a the parent file (which is not visible in the figure). In the root file
two new variables are defined (A and B). The file invokes two leaf modules and

4.3 Grammar 41

!set A = 3

!set B = 4

[Modules]

module1.cfg

module2.cfg

Local variables

Inherited variables

const C
 "3"

const D
 "4"

A
 "1"

B
 "2"

!if A == 1

...

const A
 "1"

const B
 "2"

const C
 "3"

const D
 "4"

!set B = 5

!set E = 5

Inherited variables

ERROR!

E
 "5"

Local variables

module1.cfg
 module2.cfg

Figure 4.3: Example of how the variables are handled

variables defined in the file (A and B) in addition to the inherited variables (C
and D) are merged together and passed to the included modules. In these files
the variables are free to use (”!if A == 1” in the figure) but trying to override
them is not possible and will produce an error (”!set B = 5” in the figure).
Figure 4.3 shows that the inherited variables are regarded as constants and can
not be overridden and that variables are only visible in leaf files. If this semantic
is violated an error is issued.

As a consequence of the above defined variable handling the options to the set
directive are obsolete and looses their meaning. Hence it is no longer possible to
define a variable as irreplaceable, forced or local (mapping to the -i, -f, -l flags),
it is already implicitly defined by the variable handling semantics. Also given
that the files are parsed a single time the append flag (-a) is also obsolete and
can be abolished as well as the perl flag (-e) since arbitrary Perl expressions is
no longer applicable.

4.3 Grammar

Using the notation introduced in appendix C.3, this section will formally define
a grammar for the description language. First the directive part is defined and

42 The New Description Language

then the languages residing in the sections are added. Before defining the actual
grammar, table 4.1 gives a number of general terminal symbols used universally
throughout the grammar.

Terminal Regular Expression Description

ID [A-Za-z0-9-]+ Identifier, typically identifies
the name to a variable

Ref ”%”Identifier”%” Variable reference
Opt ”-”[iflea]+ Option to set directive
Str [.]+ String literal
QStr ”””[.]+””” Quoted string literal
Drive [A-Za-z]”:\” Identifier denoting the beginning of

an absolute file path
RelPath ”.\” Identifying the beginning of a

relative file path
NL ”\r\n” — ”\r” — ”\n” New line

Table 4.1: General non terminal symbols

4.3.1 Directive grammar

Given the possible directives available in the language described in section 3 the
following start symbol for the language can be defined:

Stmt → (Set | Unset | If | Ifdef | Ifndef | Include | Options)*

where each nonterminal on the right hand side corresponds to a directive in the
language and Stmt is an arbitrary sequence (zero or many) of directives. Here
follows the production rules for each of the directives.

Set directive

The set directive can be described by the following BNF productions:

Set → ”!set” (Opt)? ID (”=” (Val | Func)+)? NL

Val → (Str | Ref)+

Func → ID ”(” Param (”,” Param())* ”)”

Param → QStr | Ref | ID | Func

Hence the value assigned to the variable, which is optional to define, can be
a arbitrary sequence of strings, variable references and functions, where Func
corresponds to the predefined functions defined by the language described in

4.3 Grammar 43

section 4.2.4. A possible function application will be evaluated and its value
concatenated with the rest of the value. In the current language the options to
a set statement, here defined as the terminal Opt, have a special meaning. In
the new language they are allowed by the grammar but simply ignored by the
semantical analysis (however resulting in a warning message) since their mean-
ing is obsolete. The grammar for a function also shows that they can be nestled.

If directive

the if directive can be described by the following BNF productions.

If → ”!if” BExp NL Stmt (”!elseif” BExp NL Stmt)* (”!else” NL Stmt)? ”!endif” NL

BExp → OrExp

OrExp → AndExp (”——” AndExp)*

AndExp → (EqExp | Func) (”&&” (EqExp | Func))*

EqExp → (ID (”==” | ”!=”) Val) | (”(” BExp ”)”)

The recursive call to Stmt from within the if statement shows the nestling ca-
pabilities of the construct. An if statement can have zero or many branching
elseif’s and an optional else before the statement is finalized with the keyword
”!endif”. The rules defined for the logical expression dictates that conjunction
binds tighter than disjunction. Defining the precedence between conjunction
and disjunction ensures an unambiguous grammar [1] as opposed to an ambigu-
ous one. In an ambiguous grammar a sentence in the language can be derived
with two different parse trees which is highly unsatisfactory. The grammar also
allows the boolean expressions to be grouped together in parenthesis to change
the precedence of the expression. For example !if A == 1 || (B == 2 && C
== 3) gets a different meaning than !if (A == 1 || B == 2) && C == 3. The
rules defined above map directly to the current implementation of the language
with the exception of not allowing arbitrary perl expressions within a boolean
expression.

Given a the above defined rule for an if statement, the following example,

!if A = 1

!set X

!elseif A = 2

!set Y

!else

!set Z

!endif

44 The New Description Language

IfStmt

Exp

EQ

Identifier
 value

A
 "1"

Elseif
 Else

Set

Identifier

X

Exp

EQ

Identifier
 value

A
 "2"

Identifier

X

Set

Set

Identifier

Y

Set

Identifier

Z

Figure 4.4: AST for an if statement.

would result in the AST depicted in figure 4.4. In figure 4.4 it can be seen how
IfStmt has its branching elseif’s and else’s as children and they in turn define
their respective boolean expressions and statements as their children.

Ifdef and Ifndef directive

The ifdef and ifndef directive can be described by the following BNF produc-
tions:

Ifdef → ”!ifdef” ID NL Stmt (”!else NL Stmt)? ”!endif” NL

Ifndef → ”!ifndef” ID NL Stmt (”!else NL Stmt)? ”!endif” NL

The grammar for the ifdef and ifndef statements are identical, differing only in
keyword identifying the directive (”!ifdef” or ”!ifndef”). The rules depicted here
map to the current implementation of the language with the exception that SDE
allows branching elseif’s, whereas the new language do not. That feature is not
considered adding any considerable functionality to the language and therefore
removed.

Unset directive

The unset directive can be described by the following BNF production:

Unset → ”!unset” ID NL

4.3 Grammar 45

This rule is straightforward and maps directly to the language given by SDE.

Options directive

The options directive can be described by the following BNF production:

Options → ”!options” (”-l”)? ((”CheckDescrConditionals” (”error” | ”fatal”)?)
| ”MultipleSections” | ”Silent”) NL

This rule is straightforward and maps directly to the language given by SDE.

Include directive

The include directive can be described by the following BNF production:

IncludeStmt → ”!include” (”-b”)? FilePath NL

FilePath → (Ref | Drive | RelPath)? (Ref | ID)* (File)?

File → ID ”.” ID

The rule for an include statement is straightforward and maps directly to the
current language. Defining a grammar for file paths in the description language
is however a bit trickier. A file path can be either absolute or relative and
therefore beginning with one of the regular expressions defined by AbsPath or
RelPath. This however not the whole truth. The file path can also be a variable
reference, either as a part of the path or the entire file path. The file path
typically ends with File. This is however only the case when the full file path
is written explicitly and the file path is not a directory. The FilePath grammar
does not constrain the user to only write legal file paths but does resolve some
ambiguities and provides the semantic analysis with a tree structure defining
the full file path.

Define macro

This is a new directive introduced in NDL. Its objective is to replace the exist-
ing possibility of defining multi line values to variable and its syntax is identical
with the exception of the new keyword ”!define”:

!define SOME_VARIABLE = << END_OF_DEF

This is one line

This is another line

END_OF_DEF

The reason for defining a new directive for multi line variables is that the value
could be an arbitrary number of statements of the language. Because the vari-
ables are expanded after the syntax tree is build (see chapter 5 for details) it

46 The New Description Language

would contain an ambiguity and the expressions has to be re parsed in order
to obtain the correct information. Therefore multi line variables are separated
from ”ordinary” variables by the use of this macro construct. In order to re-
solve the ambiguity in the AST this construct is handled by a preprocessing
step described in more detail in chapter 5.4.

4.3.2 Adding a grammar for the sections

The sections each define a grammar of their own. Each section grammar contains
the directives which are allowed anywhere together with a section specific syntax.
However a unique grammar has not been defined for every section alone since
many of them are very similar or even identical in their syntax. It is therefore
feasible to group the sections that define similar syntax together in a class.

The grammar extended with sections results in the following start symbol in-
stead of the one defined in the previous section 4.3.1:

Stmt → Directive | Section

where Directive is the previously defined Stmt describing the syntax for the di-
rectives. Section is the non-terminal defining the section part of the grammar.
The full section grammar will not be elaborated here. Instead a pseudo gram-
mar is introduced giving a general view of the real grammar. The non-terminal
Section can be described as choice between the identified section classes:

Section → SectionClass1 | SectionClass2 | SectionClass3 | ...

where SectionClass is the non-terminal denoting the start of a new section fol-
lowed by a number of section specific statements which also includes possible
directives:

SectionClass → (”[SectionName1]” | ”[SectionName2]” | ”[SectionName3]” | ...)
(SectionStmt)*

SectionStmt → SectionSyntax | Directive

SectionName denotes the tag identifying the name of the section. Each sec-
tion class contains one or many sections which all have identical syntax, here
denoted with SectionSyntax.

Defining the grammar this way forces the parser to only parse constrained BNF
productions adhering to a section class. As opposed to having a more general
grammar where all section specific syntax is allowed everywhere, this solution
eliminates ambiguities in the resulting AST and errors are discovered at an
earlier stage. However, the start symbol (Stmt) for the grammar implies that a

4.4 Semantics 47

recursive calls to Stmt from within a conditional statement can be a any section
and the syntax it defines. This should however not be allowed. Each section
should only allow its specific syntax and the directives. However this has not
been able to express with the BNF notation but is constrained by the tool which
will described further in chapter 5.

It has not been possible to define a grammar for the entire language. Some sec-
tions have been found to be impossible to define a strict syntax for. Instead each
line in these sections are kept intact in the AST, except for possible directives
which are parsed as usual.

The detailed grammar for the sections will not be elaborated further in this
report. The full BNF is however depicted in appendix E and it’s left to the
reader to further examine it.

4.4 Semantics

The semantics of a language is concerned with specifying the meaning, or be-
haviour of a program. Having a well defined semantics can simplify the imple-
mentation and reveal ambiguities in the language. This section defines a formal
semantic, where applicable and feasible, for the description language.

Given the grammar and syntax defined in the previous section the following
meta-variables, that will be used to range over constructs of each categories, are
identified:

x will range over variables, Var

s will range over values, String

b will range over boolean expressions, Bexp

S will range over statements , Stmt

The meta-variables can be primed or subscripted. The BNFs for the individual
constructs are given in section 4.3.

A definition consists of a finite subset X ⊆ Var and a function:

δ : x 7→ String ∪ { undef }

δ(y) = undef, means that y is defined, but y’s value is not defined.

48 The New Description Language

A state (ν,(X,δ)) consists of:

1. A finite set ν ⊆ Var of illegal variables where, ν ∩ x = ∅

2. A definition δ : x 7→ String ∪ { undef }

The execution of a statement S changes the state:

Eval [[S]] : Stateerror → Stateerror

where State is a set of states and Stateerror denotes a state resulting in a
possible error:

Stateerror = State ∪ { error }

Eval is strict in the sense that Eval [[S]] maps error to error.

Before defining the semantics for each individual statement in the language,
lets define the semantics for executing an arbitrary sequence of statements:

Eval[[S1, S2]](ν,(X,δ)) = Eval[[S2]](Eval[[S1]](ν,(X,δ))

where S1 and S2 are two arbitrary statements of the language.

4.4.1 Directive semantic

A value s can be expressed as given in the following BNF production rule:

s → c | %x% | ss

Here c denotes string expressed literally and %x% a reference to a variable.
A value can be concatenated in arbitrary long sequences of these terminal sym-
bols. The evaluation of a value can be expressed as follows:

EString[[s]] : Stateerror → Stringerror

And for the individual rules:

EString[[c]](ν, (X, δ)) = c

EString[[%x%]](ν, (X, δ)) =

{

error if x 6∈ X

δ′(x) if x ∈ X

4.4 Semantics 49

EString[[s1s2]](ν, (X, δ)) = EString[[s1]](ν, (X, δ)) ∧ EString[[s2]](ν, (X, δ))

Now that a semantic for values have been defined it is possible to define a
semantic for the set directive:

Eval[[set x]](ν, (X, δ)) =

{

error if x ∈ ν

(ν, (X ∪ {x}, δ′)) if x 6∈ ν

where,
δ′(y) = δ(y) for y ∈ X\{x}
δ′(x) = undef

and for an assignment:

Eval[[set x = y]](ν, (X, δ)) =

{

error if x ∈ ν

(ν, (X ∪ {x}, δ′)) if x 6∈ ν

where,
δ′(y) = δ(y) for y ∈ X\{x}
δ′(x) = δ′(y)

Hence executing the set directive will result in an error provided that the vari-
able is already defined and belongs to ν, otherwise the variable will be given a
String or an undef value and added to δ resulting in a change of the State.
The opposite applies for the unset statement:

Eval[[unset x]](ν, (X, δ)) =

{

error if x 6∈ X

(ν ∪ {x}, (X\{x}, δ′)) if x ∈ X

Given the semantic for the set statement, defining the semantics for the ifdef
statement is straightforward.

Eval[[ifdef x {S}]](ν, (X, δ)) =

{

Eval[[S]](ν, (X, δ)) if x ∈ X

(ν, (X, δ)) if x 6∈ X

And equivalent for ifndef :

Eval[[ifndef x {S}]](ν, (X, δ)) =

{

(ν, (X, δ)) if x ∈ X

Eval[[S]](ν, (X, δ)) if x 6∈ X

Returning to the grammar for a BExp given in the previous chapter and slightly
revising it, results in the following BNF:

b → v = s | v 6= s | b1 && b2 | b1 ‖ b2

Note that the operators used for the equality and not equality are substituted
but still bear the same meaning. Given the above defined BNF, it’s possible to
define the semantics for Bexp:

50 The New Description Language

EBool[[v = s]](ν, (X, δ)) =

{

true if δ(v) = EString[[s]](ν, (X, δ))
false if δ(v) 6= EString[[s]](ν, (X, δ))

EBool[[v 6= s]](ν, (X, δ)) =

{

true if δ(v) 6= EString[[s]](ν, (X, δ))
false if δ(v) = EString[[s]](ν, (X, δ))

EBool[[b1 && b2]](ν, (X, δ)) =

{

true if Eval(b1) = true and Eval(b2) = true

false if Eval(b1) = false or Eval(b2) = false

EBool[[b1 ‖, b2]](ν, (X, δ)) =

{

true if Eval(b1) = true or Eval(b2) = true

false if Eval(b1) = false and Eval(b2) = false

where EBool denotes the evaluation of a boolean expression:

EBool[[b]] : Stateerror → Boolerror

Given the semantics for boolean expressions, defining the semantics for if state-
ments is straightforward:

Eval[[if b {S}]](ν, (X, δ)) =

{

Eval[[S]](ν, (X, δ)) if Bexp[[b]] = true

(ν, (X, δ)) if Bexp[[b]] = false

The semantics for an elseif branch is identical to an if statement. However
the dangling elseif’s and else branches are not executed if one of the preceding
conditionals have evaluated to true.

The include statement involves importing a file and executing its contents with
the so far obtained illegal variables ν and the variable definitions δ. The se-
mantics for the statement can be expressed as given in the following somewhat
informal rule:

Eval[[include file]](ν, (X, δ)) = Eval(S)(ν, (X, δ))

where S denotes the contents of file.

The example below illustrates how the above defined semantics for the set and
unset statements is applied. In the example, ”{...}” denotes the set of illegal
variables and ”[...]” denotes the map from legal variables to values.

4.4 Semantics 51

{} []
set X

{} [X 7→ undef]
set Y = A

{} [X 7→ undef
Y 7→ ”A”]

set Z = %Y%
{} [X 7→ undef

Y 7→ ”A”
Z 7→ ”A”]

set Z = %Z%%Z%C
{} [X 7→ undef

Y 7→ ”A”
Z 7→ ”AAC”]

unset Y
{Y} [X 7→ undef

Z 7→ ”AAC”]

4.4.2 Section semantic

The most interesting part of the section grammar to define a formal semantic
for are the sections listing files, simply because the main part of the description
files syntax reside in such sections. As seen from the BNF in appendix E each
row in these section define a file. Some sections also defines the possibility of
expressing zero or many file specific options to the file. In addition to the file
listing sections there are sections that provide functionality to override a file
listed in a file list section, the file list modification sections. A file listed in a
file list modification section modifies the contents of a previously defined file
list section in the sense that it is removed from the list of defined. Hence the
semantic for these two types of sections resembles the semantic for the set and
unset directive to great extent. But instead of having a variable name mapping
to a value we have a file mapping to a possible file option and instead of blocking
a variable for further use, a file is removed.

A file listed in a file list section, simplifying the grammar slightly, can be ex-
pressed as a string s followed by another string s, the first string mapping to
the file path and the second string mapping to a possible options to the file. It
should be mentioned that the majority of the sections merely list files without
any options but the semantic is expressed assuming options to all sections which
gives a more general semantic. If the option is empty, then the entry in the file
list is also empty.

52 The New Description Language

IncSec → File | File IncSec

File → s NL | s s NL

The evaluation of a file listed in a file list section, here denoted with EInc-

Sec, will result in the file path and the option being added to a list of file
descriptions, fileDescr*:

EIncSec[[s1]](ν, (X, δ)) =< (EString[[s1]](ν, (X, δ)), ”” >

EIncSec[[s1, s2]](ν, (X, δ)) =< (EString[[s1]](ν, (X, δ)), EString[[s2]](ν, (X, δ))) >

EIncSec[[File IncSec]](ν, (X, δ)) =< EIncSec[[File]](ν, (X, δ)) ∧ EIncSec[[IncSec]](ν, (X, δ)) >

EIncSec[[IncSec]] : State → fileDescr*

where

fileList = fileName × Options

In extension of having the possibility to list a file it is possible to subsequently
remove the file from the list. The grammar is simply a string denoting the file
to be overridden:

ModSec → File | File ModSec

File → s NL

The semantics for a file listed in a file list modification section is simply re-
moving it from the list of files. Hence:

EModSec[[s]] : fileList* → State → fileList*

and

EModSec[[dels]]fileList* = fileList*\{s}

where del denotes the deletion of a file s from the list of files (fileList).

Finally an example to illustrate the defined semantic for file list sections and file
list modification sections. As in the previous example ”{...}” denotes the set of
overridden files and ”[...]” denotes the list of files.

4.5 Summary 53

{} []
[SourceFiles]
.\dir\file1.c
.\dir\file2.c AVR=(-z9)
.\dir\file3.c

{} [.\dir\file1.c , ””
.\dir\file2.c , ”AVR=(-z9)”
.\dir\file3.c , ””]

[-SourceFiles]
.\dir\file1.c {.\dir\file1.c} [.\dir\file2.c , ”AVR=(-z9)”

.\dir\file3.c , ””]

The file list modification sections are always evaluated last, hence would ”[-
SourceFiles]” in the example have been followed by another ”[SourceFiles]” list-
ing file.c again it would still not be not be part of the file list.

4.5 Summary

This chapter has described the new description language (NDL) which is based
on the current implementation (CDL). The syntax of CDL is to great extent
kept as it is in NDL. The main difference is that NDL has a formal definition
of the grammar whereas CDL does not. In other words NDL implements a
more strict syntax with defined rules and constrained behaviour. Another main
difference between CDL and NDL is that the latter has a whole new way of
processing the files and parsing the language. Where CDL is implemented in a
handwritten parser, NDL uses a compiler compiler tool generated parser. Also
the way the files are processed differ between the two languages. When it comes
to the semantic of the language it is practically identical with one key difference;
the variable semantic is changed regarding the rules concerned with the variables
scope rules.

The main differences between the old and the new language are summarized in
table 4.2.

Hence the functionality provided by CDL is kept intact. The key difference is
the way the languages are defined and handled.

54 The New Description Language

CDL NDL

No formal grammar Formal grammar
Flat file structure File tree intact
Extensive Perl availability Constrained Perl availability
Hand written parser Generated parser
Global variables Constrained variable scope
File parsed multiple times File parsed one time

Table 4.2: Main differences between CDL and NDL

Chapter 5

The Analysis Tool

5.1 Introduction

One of the objectives of this master thesis project is to develop a analysis tool
capable of performing syntactic and semantic analysis on the new language in
addition to different analysis on individual description files or a file tree. This
chapter describes the detailed design and implementation of that tool.

One of the prerequisites when implementing the tool is that it should be partly
generated with the help of a compiler compiler tool as opposed to the hand-
written parser that exists today. A compiler compiler, as the name implies, is
a tool that support the development of a compiler. Such a tool typically takes
a formal grammar and generates the parser and possibly also the syntax tree.
This simplifies the development process significantly and reduces many risk that
having a handwritten parser produce. An overview of how the chosen compiler
compiler tool works is given in appendix D.

This chapter is structured as follows; section 5.2 describes the main objectives
of the analysis tool, section 5.3 gives an overview of the analysis tool design,
section 5.4 to section 5.6 describe the individual parts of the tool, which includes
a preprocessor, front end and back end.

5.2 Tool objectives

The main objectives of the analysis tool is to issue warnings and errors mes-
sages where the language is violated regarding its syntax and semantic. These
messages can be categorized into three different levels of errors:

1. Lexical errors, are thrown by the lexer whenever the JavaCC token

56 The Analysis Tool

manager detects a problem. See examples of errors in section 5.5.1.

2. Syntactical errors, are thrown by the parser whenever it detect a prob-
lem in the input token stream that violate the grammar of the language.
See error examples in section 5.5.2.

3. Semantic errors, are issued by the semantic analysis when constructs
that do not follow the language semantic are found. See error examples
in section 5.6.3.

Another objective of the tool is to implement different analysis of the description
files. The analysis incorporated into this version of the tool are:

• File analysis, analysis of the file names that reside in the file list sections.
A more detailed description is given in section 5.6.5.

• Variable analysis, analysis of the variables that reside in the description
files. A more detailed description is given in section 5.6.6.

All three parts of the tool issues errors and warnings when constructs that
violate the defined syntax or semantic is found. The lexer and parser in the
preprocessor and front are both capable of finding lexical error and syntactical
error whereas the semantic analysis pinpoints constructs that violate the defined
semantic. A lexical error is

5.3 Tool architecture

The analysis tool architecture resembles the design of a compiler to great extent.
The general notions behind the design of compiler is introduced in appendix C.2.
and figure C.1 shows the typical phases. The analysis tool is however not a
complete compiler. It is not of interest to translate the source text into machine
code and therefore the back end part of a compiler will not be further elaborated
here. The part of interest when implementing the analysis tool is mainly the
front end part, with the exception of the intermediate code generation phase.
Revising figure C.1 to fit the purposes of the analysis tool, figure 5.1 depicts the
phases applicable.

An elaborative and detailed architecture sketch is illustrated in figure 5.2. The
phases needed to implement the analysis tool is mainly the typical front end
part of a compiler. However this notion have been revised when defining the
design of the analysis tool. Here the front end part have been split into one
front end and one back end extended with a preprocessing step. The front end
part takes care of parsing and tree building while the back end is responsible

5.4 Preprocessor 57

description

file

lexical

analysis

syntactic

analysis

semantic

analysis

errors and

analysis output

front end

Figure 5.1: Phases in the analysis tool mapping to a typical compiler

for the semantic analysis. Hence the notions from section C.2 is slightly revised
but not the overall meaning.

The analysis tool is made up of three separate parts. The input description file
is first passed to a preprocessor responsible for performing some initial parsing
of the file to resolve some constructs available in the language. The preprocessed
file is then send to the front end which implements the actual lexer and parser.
The front end builds an AST representation of the file which is passed on to
the back end. The back end implements the semantic analyser but also different
analysis of the file.

All three parts of the tool issues errors and warnings when constructs that
violate the defined syntax or semantic is found as described in section 5.2. The
lexer and parser in the preprocessor and front are both capable of finding lexical
error and syntactical error whereas the semantic analysis pinpoints constructs
that violate the defined semantic but also a file and variable analysis.

5.4 Preprocessor

As described in chapter 3 and further revised in chapter 4 the language offers
a macro directive identified with the keyword ”!define” which makes it possible
to assign multi line values to a macro which can then be referred later in the
file. The value can theoretically consist of any type of expression adhering to
the description language. However having the actual parser taking care of this
type of construct would be messy. It would be more sufficient if the parser
only handles the expanded macro value and don’t have to bother about the
macro syntax, generally because the parser not knowing what actually resides

58 The Analysis Tool

Description

file

Lexer
 Parser

Preprocessor

Lexer
 Parser

Front end

Preprocessed

file

Semantic

analysis

Back end

AST

errors and

analysis output

description file

Analysis tool

lexical and

syntactical errors

Figure 5.2: Analysis tool architecture

in the macro causes an insufficient ambiguity in the AST. Therefore it is feasible
to introduce a pre parsing step or a preprocessor that can handle the macro
constructs and expand them before the main parser continues processing the
file. Figure 5.4 shows the functionality provided by the preprocessor step.

Preprocessor
Descr. file

Preprocessed

descr. file

Parser

Finds all macros definition

and expands their

references

Figure 5.3: The preprocessor step

The preprocessor takes a description file as input and produces a preprocessed
file which is passed on to the front end. The preprocessor searches the file for
macro definitions and macro references. The macro values are put in a list and
on the encountering of a macro reference the macro value is extracted from the
list and replaces the macro references. Hence in the preprocessed file all macro
occurrences are removed and replaced with blank lines and all references with
their corresponding value. An example is depicted in figure 5.4.

5.4 Preprocessor 59

!define file_list = << END_OF_DEF

.\dir\file1.c

.\dir\file2.c

.\dir\file3.c

END_OF_DEF

[SourceFiles]

%file_list

[SourceFiles]

.\dir\file1.c

.\dir\file2.c

.\dir\file3.c

Orginal file
 Preprocessed file

Figure 5.4: A preprocessed file and corresponding non preprocessed file

Since the references might be expanded with multi line values the line numbering
of the original file might be corrupted in the preprocessed file and would result
in an possible error pointing to the wrong line in the original file. This has been
solved by the preprocessor instrumenting the code with a line offset construct
representing the number of lines in the macro, which is then handled by the front
end. The line offset integer is simply subtracted from the actual line number
in the front end resulting in the correct line being referred to when finding an
error. An example is illustrated in figure 5.5.

1 !define file_list = << END_OF_DEF

2 .\dir\file1.c

3 .\dir\file2.c

4 erronous construct!

5 END_OF_DEF

6

7 [SourceFiles]

8 %file_list

9

10

1

2

3

4

5

6

7 [SourceFiles]

8 !line_offset 3

9 .\dir\file1.c

10 .\dir\file2.c

11errornous construct!

Orginal file
 Preprocessed file

Error, on line (11 - line_offset = 8)

Figure 5.5: The solution to corrupted line number

The language also offers the possibility of dividing long lines into several using
a special continuation mark denoted by ”!\” which is placed last on the line
resulting in the following line being concatenated with the preceding one. This
language construct is also handled by the preprocessor, simply concatenating
all occurrences of continuing lines and replacing them with blank lines.

60 The Analysis Tool

5.5 Front End

The front end part of the analysis tool contains the actual parser of the language
together with a lexer. The front end parses the file following the rules dictated
by the grammar and generates an AST representation of the file contents.

The lexer and parser are generated with the help of a compiler compiler. The
compiler compiler chosen to generate the core of the analysis tool is the Java
Compiler Compiler (JavaCC) [2]. JavaCC is an open source project and the
components it generates are pure java code. The motivation behind the choice
of this particular compiler compiler is that it is open source but the fact that it
is Java based is also a factor, because EMP is planning to move their software
development environment to the Eclipse platform which also is Java based and
therefore making the analysis tool integration with the software environment
easier. It is recommended to read appendix D which gives an overview of JavaCC
before continuing.

The grammar described in chapter 4 resides in a perfect theoretical world. The
real world is however not quite that utopian and applying the grammar straight
on to the compiler compiler would not suffice. The grammar has to be modified
to some extent to fit the real world. The subsequent sections will elaborate on
the implementation of the front end and the different problems arising when
trying to apply the grammar into the tool.

5.5.1 Lexical analysis

The big issue when defining the tokens for the lexer has been to match a string
value to a variable correctly since it can basically be any sequence of characters
and there are no defined delimiters denoting the start and end of the string.

A first approach was simply to define a regular expression matching anything
until a new line is encountered:

TOKEN:

{

< VALUE: (~["\r","\n"])* >

}

The ”˜” character tells the lexer to match anything but the characters enclosed
in parenthesis. This solution however proved to be very dangerous because it
is very likely that the lexer will match every line in the file as a VALUE token.
To solve this the JavaCC notion of lexical states can be used. Every time
an assignment operator is found corresponding to a set statement the lexer is
forced to switch to another lexical state (e.g. IN VALUE) where only the token
VALUE is applicable:

5.5 Front End 61

<IN_VALUE>

TOKEN:

{

< VALUE: (~["\r","\n"])* > : DEFAULT

}

This solution however implies that further lexical states have to be introduced
because moving to the IN VALUE state should only be performed when the
assignment operator is found in a set statement. Also the value is not always
simply a string. It can also be a variable reference or a function which the above
given token definition would match but leaving no trace in the resulting AST of
such occurrences, resulting in a unwanted complexity when resolving the actual
value. Having many lexical states also makes the reading of the grammar file
significantly more difficult and debugging harder. Another setback using an
extensive amount of lexical states is the rapid growth of the generated parser in
terms of its size, which at least for some of the intermediate solutions elaborated
on in this thesis gave a unrecoverable memory overflow error in the compiler. It
is therefore feasible that the final solution uses as few lexical states as possible
and avoids the ”match everything” token defined above.

Therefore, instead of defining one single token for the matching of a value, many
tokens are used that each define a single character. Each character matched by
the lexer is then concatenated together by the parser to form the original string.
When implementing such iteration over tokens, the JavaCC feature of writing
pure Java code productions is very sufficient. When the parser encounters an
assignment the suitable Java method is invoked taking care of the value parsing,
described by the following somewhat simplified code:

void matchValue() {

Token t;

String s;

while(true) {

t = getToken(1);

if(t = NL) {

stringLiteral(s);

break;

}

else if(t == VARIABLE_REF) {

stringLiteral(s);

s = "";

variableReference();

}

else if(t == FUNCTION_IDENTIFIER) {

stringLiteral(s);

62 The Analysis Tool

s = "";

function();

}

else {

s = s + t;

}

getNextToken();

}

}

The lexer defines an API that enables access to to the token sequence directly.
Examples of such API routines are getToken(int index) and getNextToken()

used in the code sample above. getNextToken() consumes a token from the
input stream while getToken() merely peeks at index-th token from the current
token ahead in the token stream. The keywords denoted by capital letters in
the matchValue() method are the identifying names for defined tokens. The
method iterates over the token stream until a new line is found (NL). If a variable
reference or function is found the suitable BNF production rule is invoked,
otherwise the token is considered a part of a string and concatenated with the
previous token.

This solution avoids using lexical states as well as tokens matching everything.
The matchValue method is also invoked when making comparisons in a boolean
expression to a conditional statement.

However it should not be regarded as an disadvantage to use lexical states since
they provide a very powerful feature to the lexer. The recommendation is not
to use to many of them. The lexers final solution also has lexical states, more
precisely two, not counting the DEFAULT state. When finding a section that
has no defined grammar it is desired to match a whole line as one token and
thereby using ”match everything” token. To disable the possibility of the parser
matching other expressions in the file as such a token it is sufficient to divide the
matching of section syntax into two states. The DEFAULT states matches the
section syntax where a grammar is defined and IN MISCSECTION matching
the rest of the sections. However the directives should still be parsed in these
”miscellaneous” sections. Therefore the tokens needed in the directives are also
applicable in the IN MISCSECTION state. Whenever a miscellaneous section
is found the lexer forces a switch to IN MISCSECTION. In IN MISCSECTION,
besides the tokens needed by the directives, the following token is applicable:

<IN_MISCSECTION>

TOKEN :

{

< MISC_STMT : ~["[","!","%"] (~["\r","\n","%"])* >

}

5.5 Front End 63

This token matches everything until new line except those tokens beginning with
”!” denoting the beginning of a directive, ”[” denoting the beginning of a section
or ”%” marking the beginning of variable reference. Once a new section is found,
depending on the type of section, the lexer either moves to the DEFAULT state
or stays in the IN MISCSECTION state.

The second lexical state implemented in the lexer is called COMMENT NA,
which is short for comment not applicable. Comments in the description lan-
guage are normally denoted with the ”#” character which marks the start of the
comment. However the comments are not entirely context free. Actually SDE
only considers a comment to be a comment if it is stated in the beginning of a
line. Comments in the new description language are defined as a SKIP token,
which means that comments will simply be skipped by the lexer wherever they
are stated and will not be passed to the parser. This is however not feasible
considering that the ”#” character should not always be matched as the start
of the comment. This is considered particularly important when matching a
value or the arguments to a file option. Therefore when parsing these rules
the parser forces the lexer to switch to new state, COMMENT NA, where the
comment token is not applicable and thereby not matching the ”#” character
as a beginning of comment. However anywhere else in the grammar comments
are applicable. Being able to force a switch in the lexer from the parser implies
that the lexer and parser are not two sequential steps but rather execute in
parallel. The lexer is however always ahead of the parser. Forcing a switch of
lexical state from the parser should therefore be considered with care because
the lexer might be well ahead of the parser owing to lookahead and the switch
to the new lexical state might not be applied to the token one had in mind.

The implementation of the rest of the lexer is pretty straightforward. Since
the regular expressions for the tokens are matched in their order of occurrence
in the grammar file it is important that tokens are defined in specific order to
ensure the correctness of the lexer. The order in which the tokens are defined
are described below:

1 Keywords

2 Skip tokens

3 Identifiers

4 New line

5 Single characters

6 ”Match anything” token

Hence all keywords in the language, such as ”!if” or ”[SourceFiles]” are put in
the beginning since it is imperative that the language keywords are not matched
as anything else.

64 The Analysis Tool

Error reporting

Whenever the token manager in JavaCC detects a problem it throws an excep-
tion of type TokenMgrError. This occurs if a token does not obey any of the
rules dictated by the lexer, for example if the token contains a character that
distort the meaning of the token. For example:

!s&et A

will cause the lexer to print the following error message:

Lexical error at line 6, column 7. Encountered: "e" (105), after : "&"

5.5.2 Syntactical analysis

The syntactical analysis or the parser is concerned with transferring the gram-
mar rules defined in section 4.3 to the JavaCC grammar file.

Avoiding left recursion

Although the grammar was considered not have any left recursion and no rewrit-
ing of the production rules are necessary it could still be interesting in elaborat-
ing on a grammar that would. Consider the revised and more compact writing
of the BNF production for a boolean expression:

b → v = s | v 6= s | b&& b | b ‖ b

This BNF would result in JavaCC throwing an error that the grammar contains
left recursion because the non-terminal b contains a recursive reference to itself
that is not preceded by something that will consume tokens. The parser pro-
duced by JavaCC works by recursive descent. Left-recursion is banned to pre-
vent the generated subroutines from calling themselves recursively ad-infinitum.
The left recursion is prevented by using the rules defined in section 4.3. These
rules have no recursive calls to themselves and thus no left recursion.

Alternative approaches

Before defining the final solution of the description language parser, a couple of
other approaches where tried out but finally rejected. A first approach was to
use two separate parsers, one for the directives and one for the sections. The di-
rective parser simply left the section syntax intact only analysing the directives.
The section code where then extracted from the generated AST and fed back
to the section parser. The section parser was initialized with different lexical
states depending on the type of section to be parsed. The section AST was
then added to the original AST build by the directive parser. This approach is
illustrated in figure 5.6.

5.5 Front End 65

Directive

parser

Section

extracting

AST

Section

parser

AST

Section text

Merged AST

Description

file

Figure 5.6: The approach of having two parsers

This approach however is a bit redundant since the section parser still have to
parse the directives residing in the sections. So both parsers had to implement
the same grammar to some extent, namely the directive grammar.

Also a more general grammar was elaborated that simply allowed the section
specific syntax to be context free, meaning that all special syntax residing in
the sections could be written anywhere and the analysis whether or not an ex-
pression belonged to the right section was left to back end to resolve. Having
a general grammar gives a fairly easy parser and but does imply that a lot of
work should be done by the semantic analysis in the back end.

Final solution

Although having a general grammar for the parser would provide an easily
implemented parser, it’s disadvantages was still considered to overshadow it’s
advantages. Having a grammar that constrains the parser to only consider the
section specific syntax in it’s right context is the final and chosen solution since
it can resolve a lot of errors on a early stage, releasing the back end from the
burden of having to check every single expression with respect to to its context.

The solution is however not as trivial as the more general one. If the possible
statements in the grammar were free from recursive calls it would be fairly
simple. Then each section could invoke a BNF production that only allowed the
desired syntax, illustrated in the sample code below for a file list section:

void Section() :

{}

{

...

<INCLUDEFILES> <NL> FileListStmt()

...

}

66 The Analysis Tool

void FileListStmt() :

{}

{

(FileList() | Directive())*

}

void FileList() :

{}

{

FilePath() <NL>

}

However problem arises when Directive() is a conditional. The branch to the
conditional could basically be any statement in the grammar, which is not suit-
able. The available BNF productions that can be invoked from the conditional
somehow have to be forced to be only the ones allowed for the section that is
being parsed. To solve this a state for each section class is introduced, which
are not to be confused with the notion of lexical states. The state, which is
just an integer constant, is passed on to every directive that is invoked from
the applicable section class production. If the directive is a conditional and a
branch is found the state is used to force the parser to only parse the produc-
tions available for the given section. Below the example from above is extended
with the notion of section states:

void Section() :

{}

{

...

<INCLUDEFILES> <NL> FileListStmt()

...

}

void FileListStmt() :

{}

{

(FileList() | Directive(FILELIST))*

}

void FileList() :

{}

{

FilePath() <NL>

}

5.5 Front End 67

Here an integer, FILELIST, denoting that the section is a file list section is
passed on to the directive production:

void Directive(int sectionState) :

{}

{

IfStmt(sectionState)

| IfdefStmt(sectionState)

| IfndefStmt(sectionState)

| SetStmt()

| UnsetStmt()

| IncludeStmt()

| OptionsStmt()

| LineOffset()

| <NL>

}

Each conditional statement (if, ifdef and ifndef) calls a Java code production
with the section state integer, which acts as a switch invoking the appropriate
BNF production depending on the given state:

JAVACODE

void sectionStmt(int sectionState) {

switch(sectionState) {

case FILELIST: FileListStmt(); break;

...

}

}

This way the parser is forced to only allow the section specific syntax for the
given section. The implementation is not entirely straightforward since the
used Java code productions (like sectionStmt), are considered a black box
by JavaCC which somehow does its task and the normal regular expression
constructs can’t be invoked on them, for example constructs like repetition and
optional expansion. These implementation work arounds will however not be
further elaborated here.

The rest of the parser implementation is pretty straightforward mapping almost
without exception to the grammar defined in chapter 4.

Error reporting

Whenever the parser detects a problem it throws an exception of type ParseException.
This occurs if the token stream provided from the lexer to the parser does not
obey the rules dictated by the grammar. An example is if the the boolean
expression to an if directive is corrupt:

68 The Analysis Tool

!set = A

Here the variable identifier is clearly forgotten and the parser will print the
following error message in the case of the above construction:

Encountered "=" at line 4, column 6.

Was expecting one of:

<OPT> ...

<IDENTIFIER> ...

The error message is informing us that the parser is expecting either an option
(¡OPT¿) or an identifier to proceed the assign character (”=”). Another example
is if for example the section name is misspelled:

[SorseFiles]

This will produce the following error output from the lexer:

Encountered "[" at line 2, column 1.

Was expecting one of:

<EOF>

"!if" ...

"!set" ...

"!unset" ...

"!ifdef" ...

"!ifndef" ...

"!include" ...

"!options" ...

"!line_offset" ...

"[SourceFiles]" ...

"[IncludeFiles]" ...

"[BuildFiles]" ...

"[LinkFiles]" ...

...

where the parser is telling us that another token has to be used, namely the
ones dictated by the grammar production rule.

5.5.3 Building the AST

With the use of JJTree it is possible to, besides the generated parser, to produce
an AST representation of the parsed file as explained in section D.4. Since it is

5.6 Back End 69

not desired to produce a parse tree node for each nonterminal in the grammar
the default behaviour of JJTree has been overridden and only nonterminals
where it is explicitly stated generates a node.

As explained in section D.4, JJTree provides a very simple way of generating
AST representations by simply invoking the ”#” character followed by the name
of the node with a possible argument. Implementing the AST has been straight-
forward. Given below is an example of description file implementation and the
AST it produces following the rules implemented in the grammar file.

!set A = 1

!set B = 2

!include .\file.cfg

!if A == 1 && B != 2

!set C = 1

!elseif A == 1 || B == 2

!set C = 2

!else

!set C = 3

!endif

[SourceFiles]

.\dir\file1.c

.\dir\file2.c AVR=(-z9)

[MakeRules]

copy #path $(INC)#name#ext >nul

results in the AST depicted in appendix F. Every children is denoted by the
node being indented relative to its parent. As can be seen every section is a child
directly to the start symbol and all syntax residing in the section is regarded
as children to that section. The ”[MakeRules]” section, which is such a section
where no formal grammar has been defined, is simply left untouched.

5.6 Back End

The back-end is the part that traverses the AST and outputs error messages for
syntactically and semantically incorrect constructions in the description file as
described in section 5.2. The back-end is also responsible for producing analysis
result when applicable. Figure 5.7 depicts a general notion of the back end.

Input to the analysis tool back-end is the generated AST, which is traversed a

70 The Analysis Tool

Semantic analysis

Variable Analysis

File Analysis

Back End

semantic errors

analysis output

analysis output

Figure 5.7: Block diagram depicting the back end

number of times to produce the analysis tool output. For this purpose a design
pattern called the visitor pattern technique is suitable. The back end is easily
extendable with new back end applications, which handle the AST differently.
The different back ends each produce different output, i.e. their task is to check
different semantic aspects of the language.

Besides the visitors classes the back end also contains a number of help classes.
A class diagram of the back end is depicted in figure 5.8.

5.6.1 The Visitor Pattern Technique

In the context of JavaCC and JJTree, the parser parses the description file and
returns a handle to a node that is the root of an AST; that AST represents
the input parsed. After the parser and tree building are done, the AST then
typically needs to be traversed and processed in one or more ways. Each of
these operations involves walking the AST, starting at the root and executing
suitable code for each type of AST node encountered. It is here the visitor
design pattern [7] comes in handy. A visitor is an object that ”visits” the AST
and does something useful with the information in the AST. The visitor design
is an elegant and flexible way to implement such operations on the AST. The
different back end applications in the analysis tool are implemented according
to the visitor pattern technique. The visitor pattern technique is suitable when
it is desirable to perform some operation on every object in a structure or
a collection of objects (the AST) and JJTree provides support for this. By
invoking the proper option in the grammar file JJTree will generate the visitor
design support:

5.6 Back End 71

+reInit()

DescrLangParser

+runVisitors()

+runSemanticVisitor()

+runFileVisitor()

BackEndManager

1

1

+visit()

InitVariantMatrixVisitor

+visit()

SemanticAnalysisVisitor

+visit()

FileAnalysisVisitor

+error()

+warning()

+information()

+dumpMessages()

BackEndError

1

1

+addAST()

+getAST()

+astExists()

ASTTable

1

1

1

1

1

0..*

1

0..*

+visit()

VariableAnalysisVisitor

1

0..*

Figure 5.8: Class diagram depicting the back end design

Options {

VISITOR = true;

}

When this option is set to true, JJTree will automatically do two things:

1 Insert a jjtAccept method into each of the AST node class definitions
that it generates.

2 Generate a Visitor interface (a standard kind of Java interface) with an
empty method for each type of AST node used in the grammar.

When implementing a back end application (i.e. visitor) it must implement the
automatically generated visitor interface and the visitor implemented must also
contain a handwritten visit() method to deal with each type of AST node
that the grammar generates. This is illustrated in the figure 5.9.

72 The Analysis Tool

DescrLangParserVisitor.java

…

One abstract “visit”

metod for each concrete

AST class

…

AST classes

Delegate

computation

An “accept”

method is added

to each AST

class

Visitor1.java
 Visitor2.java

…

Impl. of the visit

methods

…

…

Impl. of the visit

methods

…

Figure 5.9: Vistor pattern overview

Figure 5.9 illustrates that it is possible to define an arbitrary number of visitors
that operate on the elements of an object structure without modifying the classes
of the elements on which it operates.

Once the parser has parsed the file provided to it, it passes back a handle to the
root node of the created AST, which can be stored using the construct:

ASTStart ast = parser.Start();

ast now holds an instance of the root node of the newly created AST. It is now
possible to instantiate the suitable visitor:

DescrLangParserVisitor fv = new FooVisitor();

ast.jjtAccept(fv,null);

The visitor object is passed to the jjtAccept method of the AST root node. The
second argument, null, is not used. The call to jjtAccept is telling the node to
”accept” the indicated visitor. The automatically generated jjtAccept method
looks like this:

/** Accept the visitor. **/

public Object jjtAccept(DescrLangParserVisitor visitor, Object data) {

return visitor.visit(this, data);

}

As can be seen the method just does a call back to the DescrLangParserVisitor
itself:

5.6 Back End 73

visitor.visit(this, data);

The method passes to the visitor’s visit method a handle to the AST node itself
(this), and a handle to the Object data, which in the case of the analysis tool
always will be null. What the jjtAccept() method in ASTStart() effectively
does is send a message to the indicated Visitor, saying ”here is a handle to me
(which will be of type ASTStart), do whatever you are supposed to do with an
AST node of my type”. The visitor is a whole collection of overloaded visit()
methods, one for each AST node type. The particular visit() method in the
Visitor that will be invoked is the one whose first argument matches the type of
calling node. The way the visitor is instantiated and how it traverses the AST
is depicted in the sequence diagram in figure 5.10.

Parser
 ASTStart

FooVisitor()

FooVisitor

jjtAccept(fv:Object, null:Object)

visit(ASTStart:Object,data:Object)

ASTChild

jjtAccept(fv:Object,null:Object)

visit(ASTChild:Object,data:Object)

jjtAccept(fv:Object,null:Object)

visit(ASTChild:Object,data:Object)

Figure 5.10: Traversing the AST with a visitor

The root node of the AST, ASTStart, which is the obvious starting point in-
vokes its visit() method in the visitor by passing a reference to itself. This
visit method will iterate over all its children and accept them (depicted in the
figure 5.10 as the object ASTChild), forcing their respective visit() methods
to be invoked. Each node in the AST will recursively traverse its possible chil-
dren the same way until all nodes have been visited. Here follows an example
of a visit method:

public Object visit(ASTInclude node, Object data) {

74 The Analysis Tool

Node n;

String file = "";

for(int i = 0; i < node.jjtGetNumChildren(); i++) {

n = node.jjtGetChild(i);

if(n instanceof ASTFilePath) {

file = (String)n.jjtAccept(this,null);

}

else {

n.jjtAccept(this,null);

}

}

return data;

}

This is the visit method for the node built when an include directive is parsed.
The method iterates over its children and when finding a children of type AST-
FilePath the node is accepted and its visit method is invoked, implementing
logic to resolve the file path to be included and returning it to ASTInclude.

5.6.2 Recursive analysis

It is desired that the analysis tool is able to perform checks on the entire file
hierarchy of description files. In order to obtain this functionality all files have
to recursively be searched for constructions that include other files (i.e. either
via the Sub-module concept or the include directive).

The AST is therefore traversed (with a suitable visitor), starting with the AST
build from input file to the parser, in search for include clauses. If a module or
target include is found the parser will be re instantiated from inside the visitor
with the file to be included in the file tree. The parsers parses the file, builds
the AST, and then a new visitor will be instantiated traversing the new AST in
the same fashion for inclusions. This procedure will repeat itself until all files
have recursively been searched and an AST have been build for all the files in
the file hierarchy, identified by the input file.

The behavior is slightly different when it comes to files included via the include
directive. These files are considered a logical part of the files from which they are
included. Therefore, they are parsed they same way as above (by re instantiating
the parser) but their AST is not passed to a new instance of the visitor. Instead
the AST is added to the AST being traversed as a child to the node where the
include is found.

A visitor resumes traversing its AST once all its leaf files have been traversed
and searched for include statements. An example of how the module and target

5.6 Back End 75

includes are handled is illustrated in the sequence diagram figure 5.11.

Parser
 Visitor1
 Visitor2
 Visitor3

AST

AST

AST

File

File

Visitor4

File

AST

Figure 5.11: Building the file tree

In figure 5.11 File is an arbitrary module or target description found in the AST
being traversed by the visitor.

It should be mentioned that this version does not constitute any checks regarding
circularities in the file tree, meaning checks to find if file includes another file that
recursively includes the initial file which will cause an infinite loop of inclusions
as illustrated in figure 5.12.

76 The Analysis Tool

!include file2.cfg

!include file1.cfg

file1.cfg

file2.cfg

Figure 5.12: Infinite loop of inclusions

5.6.3 Semantic analysis

The semantic analyser is implemented in a visitor named SemanticAnalysisVisi-
tor (SemanticAnalysisVisitor.java). This visitor besides implementing checks
to find errors violating the language semantic, also implements the recursive
analysis to identify the file tree as described in section 5.6.2. Whenever an in-
clude file is found the parser is invoked ending with a AST being build which is
either added to the existing or left separate.

To be able to ensure that the semantic rules are followed as well as being able to
spot other errornous constructions in the files the SemanticAnalysisVisitor have
to able to resolve and evaluate the nodes of the AST. This includes evaluat-
ing conditionals, resolving file paths, executing predefined functions and storing
variables and resolving them when referenced. It is feasible that all visitors in-
corporated in the analysis tool also can implement this functionality. Therefore
all additional visitors can extend SemanticAnalysisVisitor and thereby access-
ing the functionality without having to implement it themselves. Wherever it
is feasible to override the implementation of the SemanticAnalysisVisitor the
visitor can simply implement it’s own version of the suitable visit method for
the AST node.

Handling variables

As explained in section 4.2.5 the variable scope is considered to be from the
point of definition and further down the file tree. In the file the variable is being
defined it is considered over ridable while in a leaf file it is constant. Semanti-
cAnalysisVisitor therefore implements two tables inhabited by the variables, to
ensure the variable scope and semantic. One being the localVariables, obvi-
ously taking care of the local and over ridable variables. On the first encounter of

5.6 Back End 77

the variable it is put in this table. The other table is called constantVariables

and all variables in this table are considered constant and may not be overrid-
den. When a module or target include is found the contents of localVariables
are merged into constantVariables and send as an argument to the included
module or target ensuring that the variables are visible in the leaf files.

The chosen data structure for the variable tables is hash table with the variable
name as the key and the variable value as the value. If the variable is defined
without a value it is set to an empty string. Using a hash table ensures easy
lookup once the a variable is referenced.

SemanticAnalysisVisitor also implements a third table; illegalVariables, map-
ping to the variables having been blocked by the unset directive. If a variables
is unset it is removed from the tables containing legal variables and put in
illegalVariables.

Whenever a variable is referenced or used, the visitor checks according to the
variable semantic if the construction is correct, otherwise an error is issued.
Figure 5.13 gives an example on how the variables are handled.

!set A = 3

!set B = 4

[Modules]

module1.cfg

module2.cfg

localVariables

constantVariables

!if A == 1

...

!endif

...

!if E == 5

!set B = 5

!set E = 5

constantVariables

ERROR!

localVariables

module1.cfg
 module2.cfg

A
 "1"

B
 "2"

C
 "3"

D
 "4"

A
 "1"

B
 "2"

C
 "3"

D
 "4"

E
 "5"

ERROR!

Figure 5.13: Example on how the variables are handled

Figure 5.13 shows how the two variables tables are merged together before they
are propagated down the file tree. The figure also shows constructions that
produces an error.

Evaluation of conditionals

78 The Analysis Tool

The evaluation of an if statement is pretty straightforward mapping completely
to the semantic. The boolean expression is made up of either comparisons
between variables or a predefined function which can be grouped together with
the logical operators ”&&” or ”||” denoting logical AND and OR. The evaluation
evaluates the individual comparisons and functions before possibly ”ANDing”
or ”ORing” them together. When eventually all individual comparisons and
functions have been logically evaluated the result is returned back to the parent,
being either an if or an elseif node. If the conditional evaluates to true the branch
will be taken otherwise a possible proceeding conditional will be considered and
evaluated.

The evaluation an ifdef or ifndef statement is even simpler. The variable that
should be examined with respect to its existence or non existence is looked up
in the variable table. If the variable is defined the ifdef statement will evaluate
to true and its branch will be taken, and correspondingly vice versa for ifndef.
If the variable is not defined the scenario is the opposite.

Predefined function library

The SemanticAnalysisVisitor implements the library of predefined functions
available in the language. The functions available as of today are described
in table 5.1.

IsDefined(var) Returns true if var is defined,
otherwise false.

FindSubString(string, substring) If the given string contains substring the
function evaluates to true.

GetVariableList(expr, separator, prefix) The functions returns the list of all
variables matching the given expr separated
by the given separator

ThisFileInfo(fileinfo) Returns file info for the file being
parsed (drive and/or directory and/or
filename and/or suffix)

TrimBS(string) Removes trailing backslash from
the given string

SwitchStringVal(var, matchlist) Returns a new value to var according to the
old value and the match in matchlist

Table 5.1: Predefined function library

By extending the SemanticAnalysisVisitor, the predefined variables become
available for additional visitors. It should be mentioned that these functions
are only a subset of the functions possible to use in the description files. How-
ever they are the most commonly used and its easy to implement additional
functions when suitable and desired.

Error reporting

5.6 Back End 79

The semantic analysis differentiates between three different types of messages,
namely errors warnings and information messages, which are also described in
section 5.6.9. The errors are typically such where the variable handling seman-
tic is violated. For example if a variable is referenced before it is defined the
semantic analysis will produce the following error message:

ERROR: Variable A cannot be resolved, at line 7 in file

C:\dir\test.cfg

As can be seen from the above example the error type, description and location is
clearly stated. Another example where an error is issued regards the consistency
between file list sections and packaging sections. A file listed in a packaging
section should always be listed in file list section as well. If any inconsistency is
found between these two kinds of sections an error is issued:

ERROR: File file1.c is exposed to packer but not listed in any

filelist section, at line 15 in file C:\dir\test.cfg

The warning messages are those that identifies constructs that are regarded
harmless but should be kept in mind. For example if an option is used in
connection with the set directive (remember that the NDL does not apply any
variable options but they are still allowed by the grammar) the following warning
message will be issued:

WARNING: Option to !set directive is obsolete and will be ignored,

at line 3 in file C:\dir\test.cfg

The intention of the information messages are to inform the user of constructs
that the tool can’t handle. The only information message implemented in this
version of the tool is when a special make macro ($(AUTO DIR)) is used in
a file path. This macro is not known by the analysis tool and therefore an
information message is issued:

INFORMATION: The macro $(AUTO_DIR) is set by make and can’t be

resolved by this tool, at line 15 in file C:\dir\test.cfg

5.6.4 InitVariantMatrix

A variant variable is normally always provided to SDE when parsing the file
tree. The variant variable constrains SDE to only consider certain parts of the
file tree, that is the parts applicable for the given variant. Together with a target
variable, which pinpoints which target that is to be included, the variant forces

80 The Analysis Tool

SDE to extract information that is needed for the explicitly given variant and
target. However not all targets can be build with all variants. Figure 5.14 (this
figure does not apply a real case from EMP but is strictly hypothetical) shows
how the variant and targets form a matrix, where the gaps illustrates that this
variant target combination is not applicable.

Variant/Target
 Target1
 Target2
 Target3
 Target4
 Target5

Variant1
 x
 x
 x

Variant2
 x
 x
 x
 x
 x

Variant3
 x
 x
 x
 x

Variant4
 x
 x
 x
 x
 x

Variant5
 x
 x

Variant6
 x
 x
 x
 x

Variant7
 x
 x
 x
 x
 x

Variant8
 x
 x
 x
 x

Variant9
 x
 x
 x
 x

Variant10
 x
 x
 x
 x
 x

Figure 5.14: Variant target matrix

The analysis tool offers the user to state the variant and target, via a command
line option, which is to be analysed. The tool will set the variables variant
and target (which are to be considered as constant) to the values entered on the
command line. The variant or target on the command line can be one ore many.
Optionally the keyword all can be stated for the variant and/or target indicat-
ing for the tool that all variants and/or targets should be analysed. However
as seen in figure 5.14 not all targets are applicable for all variants. Therefore
the analysis tool first (if the all keyword is stated for either the variant or tar-
get) extracts the correct variant target matrix by first extracting all variants
from the variants section and then for each variant resolve the applicable tar-
gets (the target inclusion is always dependent on the variant). This is done
by the InitVariantMatrixVisitor (InitVariantMatrixVisitor.java) which is
executed before any other visitors are executed.

Further visitors iterates over the matrix examining one variant target combina-
tion for each iteration until eventually all variant target combinations have been
examined.

5.6.5 FileAnalysisVisitor

FileAnalysisVisitor, residing in the file FileAnalysisVisitor.java, takes care
of analysing the description files with respect to to the files listed in the sec-
tions listing files (i.e. file list sections and packaging sections and their respec-
tive modification section). The visitor inherits from SemanticAnalysisVisitor
and thereby accessing all the functionality provided by that visitor. FileAnaly-
sisVisitor overrides SemanticAnalysisVisitor’s visit method for ASTFilePath, to

5.6 Back End 81

implement its own version. Every time the visit method for ASTFilepath is
visited, FileAnalysisVisitor checks if the current section is any of the ones men-
tioned above. If so the file path is saved together with the information regarding
the section it resides in. When all description files AST representation have been
traversed, possibly several times if more than one variant target combination is
to be examined, the file analysis result (the file analysis is preformed by the class
FileAnalysis) is written to a file. The file is a simple text file and the information
it contains is organized with respect to the file name. For each file name every
section it has been found in is listed and for each section every variant target
combination it adheres to is stated. Here follows a portion of how a example
analysis result file looks like:

...

fileA.c c:\dir\

[SourceFiles] Variant1:Target1,Target2

Variant2:Target2,Target3

[Packaging_ExposedSorceFiles] Variant1:Target1

Variant2:Target3

fileA.h c:\dir\

[IncludeFiles] Variant3:Target1,Target2

...

The result file lists every file found in the description files. For each file its
full path is stated to the right. Then for each section the file is found in, the
variant target combinations are presented on the right. The file analysis can be
performed independently of the semantics of the language and hence possible
to perform on current implementations of the description files.

5.6.6 VariableAnalysisVisitor

VariableAnalysisVisitor, residing in the file VariableAnalysisVisitor.java,
takes care of analysing the files with respect to variables defined in them. Every
variable is saved with information regarding its variable name and value and
the location in the file tree. Whenever the variable is overridden or referenced
information regarding its possible new value and the location is saved. The data
structures that holds the saved variable information are then analysed (by the
class VariableAnalysis) and the result is written to a text file:

Here follows a portion of how a example analysis result file looks like:

...

--

82 The Analysis Tool

VARIABLE: A

module.cfg, line: 52 Value: 1

module.cfg, line: 102 Value: 2

REFERENCED

module.cfg, line: 66 Value: 1

module.cfg, line: 152 Value: 2

--

...

The result file lists the variable identifier (A) followed by the file and line number
where it is defined and possibly overridden, together with the value (1 and 2).
After that follows a list of every location the variable is referenced together with
the value it is expanded to. The variable analysis is performed with the new
semantics for variables and hence can not be performed with expected result on
current implementations of the language.

5.6.7 BackEndManager

The visitors are not instantiated directly from the parser. Instead they are
invoked from a class named BackEndManager (BackEndManager.java) which
acts as an interface between the parser and the visitors. When the parser is
done parsing the input file provided to it, it instantiates the BackEndManager
and passes the build AST to it together with information regarding how the file
is to be analysed (provided as command line options when running the analy-
sis tool executable). BackEndManager then instantiates the suitable visitors.
Whenever a new file needs to be parsed the parser is invoked from this class
and then subsequently a new visitor instance is created and the newly created
AST is passed to it. Hence BackEndManager works as a hub in the back end,
instantiating new vistors and invoking the parser when needed.

5.6.8 ASTTable

As the files sometimes are analysed several times and it would be highly unnec-
essary to parse the file again every time, their AST representation is saved the
first time they are parsed. ASTTable (ASTTable.java) implements a hash table
where the ASTs are put together with the file as key depicted in figure 5.15.

Every time a file is to be analysed and hence possibly parsed, ASTTable is first
checked if the AST already have been build for the given file. If so the AST
can be invoked directly preventing the file to be parsed a second time. The
individual ASTs in the table can have possible references to another element in
the table, containing the AST for the referenced file as illustrated in figure 5.15.

5.7 Summary 83

product.cfg

target.cfg

module1.cfg

module2.cfg

module3.cfg

module4.cfg

target.cfg
module1.cfg

module2.cfg

module3.cfg
 module4.cfg

Figure 5.15: ASTTable

5.6.9 BackEndError

This class is responsible for gathering and reporting the errors the visitors find
and output them to the user. The analysis tool differentiates between three
types of error output; errors, warnings and information.

• Errors are faults that it is imperative to fix to guarantee a correct result
once the file is used.

• Warnings are such that are not vital to fix to ensure correct behavior but
still considered recommendable to correct.

• Information’s aims to inform the user of constructions that the analysis
tool can’t handle. Examples of such are when ”$(AUTO DIR)” is used in
file paths. This macro is set by make and can’t be handled by the analysis
tool.

5.7 Summary

The analysis tool introduces a whole new way of parsing and processing the
description files. The files are parsed with compiler compiler tool generated

84 The Analysis Tool

parser as opposed to the handwritten parser that exists today for parsing the
current implementation of the description language. The analysis tool consists
of three major parts, namely:

• Preprocessor

• Front End

• Back End

The preprocessor is responsible for parsing and evaluating the macro directive
(!define). The front end implements the actual lexer, parser and tree building
(generating the AST). The back end implements the semantic analysis but also a
file analysis as well as a variable analysis. The back end takes the AST generated
by the front end and traverses it using the visitor design pattern.

Chapter 6

Conclusion

The objective of this master thesis has been to, based on the current imple-
mentation of a language (CDL) propose a ”new” language (NDL) that is to as
much extent as possible compatible with the existing one. The requirement of
backwards compatibility implies that developing the new description language
is not concerned with specifying a new and better concept for the application
of the language. Instead the focus of this thesis has been to analyse the current
syntax and to transfer and fit that syntax into a formal definition using a for-
mal notation such as BNF. Hence the the language is not ”new” in the sence
that it provides a whole new concept for the description language and how it is
applied. The language is only new in the sence that the syntax of the language
is constrained into a formal definition. In addition to having a formal grammar,
NDL utilizes a completely different way of parsing and processing the language.

Setion 6.1 highlights the accomplishments of the thesis. The main differences
between the languages, if its feasible to talk about to different languages, are
presented in section 6.2 as well as a discussion conserning these. Section 6.3
lists a number of matters that should be considered if the work this thesis has
provided shall prevail. This includes a list of further work and the integration
of NDL into the environment.

6.1 Status

To sum up, this master thesis has fulfilled the major objectives imposed on the
project, namely;

1. Briefly understand and describe CDL in terms of its syntax, semantic and
application. This however does not constitute a complete description of
the language.

86 Conclusion

2. CDL is constrained as a result of defining a formal grammar resulting in a
new language (NDL). Where it has been considered feasible the language
semantic have been slightly revised.

3. An analysis tool is developed capable of performing syntactical and se-
mantical checks of NDL as well as analysis of the description files.

Hopefully the design of the analysis tool is such that it is easily extendable with
new functionality, such as new syntactic and semantic checks or functionality
that as of today is done by SDE such as generating the makefile or extracting
information needed by CME.

6.2 CDL vs. NDL

This sections elaborates on the main differences between CDL and NDL which
regard three different aspects; 1) syntax, 2) semantic and 3) how the language is
processed and parsed. The differences are highlighted together with a discussion
regarding the right and wrong of the two languages.

6.2.1 Syntax

The syntaxes of the current and new language are practically identical, although
some minor differences exist, mainly because the current language offers higher
degrees of freedom concerning the possible ways of writing the different state-
ments and expressions of the language whereas NDL does not. When specifying
the grammar for NDL the current description files have been examined and
formed a base when defining the formal grammar. Therefore NDL is to great
extent identical to the syntax of CDL.

An important property of CDL is that it is easily extandable with new sections
without having to intrude to much on the tools using the language. This is be-
cause CDL offers great flexibility when writing the descriptions in the language
mainly because there is no formal definition of language. This implies that it
is easy to write descriptions ”correct” meaning that the CDL parser does not
complain on errornous constructs.

The parser of NDL will however pinpoint slightest error in the description file as
a result of having a formal grammar constraining the language to well-defined
rules.

There is point of having the language very general, as in CDL, and allowing a
high degree of freedom when writing descriptions. But it also makes the arise
of errors very easy. It is therefore considered feasible that using a more con-
strained language, as in NDL, is the recommended choice, although extending
the language with new constructs might be messier.

6.2 CDL vs. NDL 87

If given more free hands when defining the syntax a more constrained way of
defining the beginning and end of an expressions is feasible. For example all
strings in the language that should be considered literally can be encapsulated
in quotes. For example the variable values:

!set A = "this is literal string"

This would greatly simplify the parsing of the language since it is easier to know
when the string actually begins and ends. Also the end of a section could be
stated with a sufficient delimiter denoting a clear end of the section syntax.

6.2.2 Semantic

The only semantic difference between CDL and NDL is the variable handling.
Whereas CDL uses global variables, NDL utilizes a confined variable scope. The
current usage of global variables must be considered a unsatisfying implemen-
tation. One of the initial ideas was to make the modules independent with
well-defined interfaces between those. This is not entirely the case today as a
result of the extensive use of global variables. The variable handling used by
NDL does not solve the problem with dependent modules but imposes a more
constrained and more intuitive variable handling.

6.2.3 Language processing

Whereas the syntax and semantic of the languages does not differ that much,
the way the language is parsed and processed does. Whereas the CDL parser is
handwritten the NDL one is generated from a compiler compiler. Whereas CDL
description files are parsed multiple times to extract the vital information, the
NDL parser parses the files a single time generating an AST that instead can be
traversed a number of times. Whereas CDL parser hardly implements any error
checks, the NDL parser implements both lexical and syntactical checks as well
semantical. This very useful because it implies an earlier discovery of errornous
constructions in the development process which might for example include such
constructs that produce errors when delivery packing the software such as in-
consitency between file list sections and packaging sections (see section 5.5.2).

Having a handwritten parser imposes a bunch of implications (such as main-
tenance and consistency issues). A generated parses from a formal grammar
removes these implications and provides a safer way of parsing the files. An
AST representation is also considered more feasible for extracting information
and is a more common way when processing and analysing a language.

88 Conclusion

6.3 Further work

The outcome of this thesis is a prototype analysis tool and its important to
stress that it is far from complete. The grammar the tool incorporates has to
be carefully examined and the tool has to be extensively tested. This section
highlights the status of the tool as of today and also a discussion regarding the
integration and migration aspects if the tool is to be used in the environment.

There is number of items that as of today has not been resolved, both in the
grammar and in the analysis tool, motivated by lack of time. These unresolved
items are listed below.

• Incomplete grammar: The grammar of NDL is incomplete meaning
that a definition has not been found for the full language. Some aspects
of the language have been left out on purpose, for example make specific
parts, but some parts simply haven’t been formally defined because of
their sheer complexity. An example of such a part is a section where it is
possible to use patterns using regular expressions to define file paths.

• Indented sections: The CDL parser does not allow sections to be in-
dented. If so they are simply disregarded. The analysis tool does not
incorporate such a check because the handling of white spaces and tabu-
lar are ignored by the lexer and thus the parser has no knowledge of them
ever existing. There are workarounds but then the whole parser has to be
redesigned.

• Circular dependencies: The analysis tool does not implement checks
that can find circular dependencies, meaning that files should not be able
to include each other in such a way that an infinite loop of recursive
inclusions occur.

• Negation of boolean expressions: In CDL it is possible to negate the
boolean expressions by using perl syntax. This is not implemented in NDL
yet.

• Additional boolean comparisons: By using perl syntax in conditional
statements it is possible to make additional comparisons between variables
beyond the equal and not equal clauses, such as greater or less than. This
is however not commonly used since the variables are strings and one can
argue whether or not this feature should be inherited into NDL given that
the language does not allow typed variables.

• Predefined functions not complete: The predefined functions library
does not implement all possible functions available in CDL. Also since the
perl availability is abandoned some functionality provided by using perl is
lost. It is however easy to invoke new functions into the language to fill
the gaps.

6.3 Further work 89

• Environment variables: In CDL it is possible to access environment
variables. As of today this feature is not applicable in NDL.

• Predefined variables: SDE implement a number of predefined variables
that accessible in the language. Most of these predefined variables are not
incorporated into NDL.

• More sophisticated analysis: The variable and file analysis done by the
analysis tool are very simple. It is therefore feasible to provide them with
more sophisticated behaviour both in terms of how the result is presented
as well the result it self. This could include for example to generate the
result into HTML-format with hyper links to increase the readability of
the result and to provide a deeper variable analysis that could analyse the
many variable dependencies.

• Narrow-minded view of the language: This thesis has only focused
on the in-house applications of the language, meaning how the language
is applied by EMP in the development process. No focus at all have been
taken to the customer application of the language (see the customer por-
tion of figure 2.3) which might impose other requirements on the language.

The majority of these matters can be solved fairly easy while other has to
carefully be considered before implementing a solution.

6.3.1 Migration and integration

Since CDL and NDL are not entirely identical in there syntax and semantic
the analysis tool can not be invoked directly to the existing description files.
In other words; NDL is not backwards compatible with CDL. Before the tool
can be integrated with the environment the files has to be run through the
tool and thereby migrating the current implementations to the new language
by correcting the errors pinpointed by the lexer, parser and semantic analysis.
After all errors pinpointed by the tool have been corrected, of course carefully
considering whether or not the error detected by the tool is to be considered as
an actual error, it is important to ensure that the files adhering to NDL provide
the same functionality as the old ones.

90 Conclusion

Appendix A

Terminology and

Abbreviations

AOL

Application Oriented Languages
API

Application Programming Interface
AST

Abstract Syntax Tree
BE

Back End
BNF

Bachus Naur Form
CC

Compiler Compiler
CDL

Current Description Language
CM

Configuration Management
CME

Configuration Management Environment, a plug in to the CM tool ClearCase
used at Ericsson
CFG

Context Free Grammar
Description language

The language this thesis investigates
Description file

Text file implementing the description language

92 Terminology and Abbreviations

EBNF

Extended Bachus Naur Form
EMP

Ericsson Mobile Platforms
NDL

New Description Language
FE

Front End
GUI

Graphical User Interface
GPL

General Purpose Languages
NFA

Nondeterministic Finite Automaton
PPZ

Script responsible for packing software
SDE

Software Development Environment
SDK

Software Development Kit
Target

A compiler for a specific processor
Variant

A well-defined portion of the platform software

Appendix B

Domain Specific Languages

As mentioned in the introduction the description language can be considered
as a DSL [5] [6], given that has a small vocabulary and is highly dedicated to
a particular domain, namely the EMP software development environment. The
term Application Oriented Languages or Little Languages can also be used.

The major benefits of using a DSL are the following:

• Easier to learn and program, Because of appropriate abstractions and
declarative formulations, a DSL program is concise and readable than its
GPL counterpart. Hence it also easier to learn and easier to program and
development time is shortened and maintenance is improved.

• Protected interfaces, DSLs provide focused, protected interfaces to-
ward a systems functionality. This allows security and integrity to be
maintained during system configuration and reconfiguration. Only the
parts a given user should have access to need to be made available.

• Programming in terms of the application, There is always a gap
between the formulation of a problem to be solved and the formulation of
the solution. The larger the difference is between these two, the harder it
is to do what you want. The DSL concept lets languages be adapted more
to the user than the computer.

The characteristics of a DSL are:

• specialized notation

• narrow domain of application

• implementation efficiency is usually secondary

94 Domain Specific Languages

• easier to optimize than a GPL

• enables the user to describe the problem in terms of the application

Appendix C

Compiler Theory

C.1 Introduction

This chapter gives a brief overview of the fundamentals behind the construction
of a compiler and the formalism and notation used when defining the language
grammar, preparing the reader for the chapters that describe the actual gram-
mar and semantics of the language (see chapter 4) as well as the design of
the analysis tool (see chapter 5). Also the compiler compiler tool of choice is
introduced, briefly describing how it works.

C.2 Compiler theory

The typical phases of a compiler are depicted in figure C.1.

The lexical analysis (lexer) reads in a sequence of characters (the input de-
scription file) and produces a sequence of tokens. The rules used to break the
sequence of characters into a sequence of tokens are supplied as the set of reg-
ular expressions defined by the grammar. These tokens are then passed to the
syntactic analysis (parser) for further processing. The syntactic analyzer or the
parser uses a set of grammar productions to decide whether or not the sequences
of characters follow the rules described by the grammar. The parser produces
a tree representation (AST) of the file being parsed, which is provided to the
semantic analysis. The semantic analysis contains functionality for traversing
the AST and to produce error output and/or analysis results.

96 Compiler Theory

source

text

lexical

analysis

syntactic

analysis

semantic

analysis

intermediate

code generation

optimization

machine-

code generation

machine

code

front end
 back end

Figure C.1: Typical phases in a compiler

C.3 Formalism and notation

When defining the NDL the notion of context free grammar (CFG) is used, from
which it is possible to produce an abstract syntax tree (AST) representing the
defined grammar. The construction of the AST involves the steps depicted in
figure C.2.

The construction involves two isolated steps, one being the lexical analyser
(lexer) and the other being the syntactical analyser (parser). The lexer takes
a stream of characters, representing the input description file, and produces a
stream of symbol or tokens, discarding white space and comments between the
tokens.

The parser is responsible for parsing the produced tokens, following the rules
dictated by the context free grammar. The context free grammar describes how
the nodes may combined to form a syntax tree. A syntax tree consists of two
kind of nodes, namely

- terminal nodes - instance of a token, always leaf in the tree.

- nonterminal nodes - other nodes in the tree, usually inner nodes.

A context free grammar G can be defined as the tuple G = (N, T, P, S) where

N - a finite set of nonterminal symbols.

T - a finite set terminal symbols (tokens).

P - a finite set of productions that describes a legal sequence of childs to
nonterminal.

C.3 Formalism and notation 97

lexer

AST builder

parser

tokens

concrete

syntax tree

AST

source

text

regular expression

lexical analysis

context-free grammar

(implicit)

(explicit)

syntactic analysis

Figure C.2: The steps involved in constructing the AST

S - the start symbol (one of the nonterminals in N).

The terminal symbols or tokens can be defined as regular expressions. A CFG
could be used but it would be overkill. CFG’s have the expressive power to de-
scribe recursive structures but tokens do not have any internal recursive struc-
ture and iterations is sufficient. Regular expressions is therefore sufficient for
describing tokens.

Figure C.2 depicts an intermediate step producing a concrete syntax tree before
finally building the AST. The concrete syntax tree has all tokens present in the
tree, whereas in the AST redundant information is removed and only nodes and
tokens that are important are kept.

The notation used for the description language CFG is Extended Backus Naur
Form (EBNF). EBNF is, as the name implies, an extension of Backus Naur
Form (BNF). A BNF is a shorthand for writing several productions for the
same nonterminal in the same rule. EBNF is BNF extended with the notation
of regular expressions that can be written in the right hand side of the rule.
Using EBNF gives a very compact grammar and is the standard notation for
describing the syntax of programming languages. The BNF notation can be
expressed as follows:

X → γ | δ

where X is a nonterminal and γ and δ are arbitrary sequences of terminal and

98 Compiler Theory

nonterminal symbols. The terminals and nonterminals on the right hand side
of the rule can be written using regular expressions. The notation described in
table C.1 is used for the regular expressions.

a An ordinary character stands for itself.
ǫ The empty string.
M | N Alternation choosing from M or N.
M · N Concatenation, an M followed by an N.
MN Another way to writ concatenation.
M∗ Repetition, zero or more times.
M+ Repetition, one or more times.
M? Optional, zero or one occurrence of M
[a − zA − Z] Character set alternation.
. A period stands for any single chapter except new line.
”a. + ∗” Quotation, a string in quotes stands for itself literally.

Table C.1: Regular expression notation

Now we have a tool for describing the description language formally as a CFG
using the EBNF notation. The grammar is defined in section 4.3.

Appendix D

JavaCC

D.1 Introduction

A compiler compiler, as the name implies, is a tool that support the development
of a compiler. Such a tool typically takes a formal grammar and generates the
parser and possibly also the syntax tree. This simplifies the development process
significantly and reduces many risk that having a handwritten parser produce.

JavaCC [2] is a compiler generator that accepts language specifications in BNF-
like format as input. The generated parser contains the core components of
corresponding compiler of the specified language, which includes a lexical ana-
lyzer and a syntactical analyzer. JavaCC also provides other standard capabil-
ities related to parser generation such as tree building (via a tool called JJTree
included in the distribution of JavaCC), actions, debugging, etc. JJTree act
as tree building preprocessor to JavaCC and has been used when building the
AST. Figure D.1 shows the overall structure of a parser generated by JavaCC
and JJTree.

JavaCC

Compiler

Lexical

Analyzer

Syntactical

Analyzer

JJTree

Preprocessor

JJTree Source

e.g. descrlang.jjt

JavaCC Source

descrlang.jj

DescrLangTokenManager.java

DescrLangParser.java

AST Source

Figure D.1: Generation of JavaCC parser

100 JavaCC

The JJTree preprocessor takes the language specification (*.jjt) extended with
tree building constructs and generates the AST and a JavaCC grammar file
(*.jj). JavaCC compiles the generated grammar file and generates the syntacti-
cal analyzer (parser) and lexical analyzer (lexer). Note that JavaCC could also
be used without JJTree. In that case the handwritten grammar specification is
provided directly to JavaCC.

The JavaCC source file includes both the lexer as well as the grammar specifi-
cation in the same file. The grammar file has the following outline:

options
”PARSER BEGIN” ”(” ¡IDENTIFIER¿ ”)”
java compilation unit
”PARSER END” ”(” ¡IDENTIFIER¿ ”)”
(java code production | regexp production | bnf production | token manager decls)*
¡EOF¿

The grammar file starts with a list of options (which is optional). They are fol-
lowed by a Java compilation unit enclosed between ”PARSER BEGIN(name)”
and ”PARSER END(name)”, where name is the name given to the generated
parser. The contents between the PARSER BEGIN and PARSER END key-
words is a regular Java compilation unit (a compilation unit in Java lingo is the
entire contents of a Java file). This may be any arbitrary Java compilation unit
so long as it contains a class declaration whose name is the same as the name
of the generated parser. Hence, in general, this part of the grammar file looks
like this:

PARSER_BEGIN(parser_name)

. . .

class parser_name . . . {

. . .

}

. . .

PARSER_END(parser_name)

Typically the compilation unit is responsible for instantiating the parser and
lexer with the file to be parsed. After this follows a list of productions that
can either be a regexp production defining the lexer, a bnf production defining
the parser, a java code production or a token manager decls. The java code
production is way to write Java code for some productions instead of the usual
EBNF expansion. This is useful when there is a need to recognize something that
is not context-free or for whatever reason is very difficult to write a grammar
for. The token manager declarations are declarations and statements accessible
from within lexer.

D.2 Lexical Analysis 101

D.2 Lexical Analysis

The lexical analyzer in JavaCC is called TokenManager. The TokenManager is
used to group characters from an input stream into tokens or symbols according
to specific rules, which in the case of the analysis tool is according to the regular
expressions defined for the nonterminals in chapter 4. Each specified rule in
TokenManager is associated with an expression kind:

SKIP: Throws away the matched expression. Suitable to
use with white space and comments.

MORE: Continue taking the next matched expression to
build up a longer expression.

TOKEN: Creates a token using the matched expression and
sends it to the parser.

SPECIAL TOKEN: Creates a token with the matched expression and
optionally sends it to the parser, which is different
from TOKEN.

Table D.1: Expression kinds of JavaCC tokens

A token, associated with one of the given expression kinds, is expressed with an
identifier followed by a regular expression describing how the token should be
matched. The notation for the regular expressions is basically the same as the
one defined in table C.1. A token to match an identifier, which should start with
a letter followed by an arbitrary number of letters and digits can be expressed
as follows:

TOKEN :

{

< IDENTIFIER: <LETTER> (<LETTER> | <DIGIT>)* >

| < #LETTER: ["A"-"Z"] >

| < #DIGIT: ["0"-"9"] >

}

The TokenManager is a state machine that moves between different lexical states
to classify tokens. Each lexical state contains an ordered list of regular expres-
sions corresponding to one of the types described in table D.1; the order is
derived from the order of occurrence in the input file. All regular expressions
that occur in the grammar are considered to be in the DEFAULT lexical state,
if not explicitly stated differently. The DEFAULT state is the standard state
and the one the TokenManager per default starts off in when initialized. It’s
the optional to force the TokenManager to move to another state depending on
the token being matched. The feature of having lexical state has proved to be
very sufficient when constructing the analysis tool lexer.

102 JavaCC

A token is matched as follows: all regular expressions in the current lexical state
are considered as potential match candidates. The TokenManager consumes the
maximum number of characters from the input stream possible that match one of
the regular expressions. That is, the TokenManager prefers the longest possible
match. If there are multiple longest matches (of the same length), the regular
expression that is matched is the one with the earliest order of occurrence in
the grammar file. Hence regular expression in the beginning of the grammar
file has higher precedence than a regular expression stated further down. For
the purpose of matching tokens, the TokenManager applies a nondeterministic
finite automaton (NFA).

The TokenManager is in exactly on state at any moment. At this moment, the
TokenManager only considers the regular expressions defined in this state for
matching purposes. After a match, one can specify an action to be executed as
well a new lexical state to move to. If a new lexical state is not specified, the
TokenManager remains in the same state.

To illustrate the the way the TokenManager handles lexical states the following
example is provided [3]. Figure D.2 depicts a state machine of the example
lexical analyzer.

DEFAULT
 State B

State A

State C

"A"

"A"

"B"

"C"

"C"

"D"

"B"

Figure D.2: State machine features in lexical analyzer.

When the analyzer starts it is in the DEFAULT state which waits for input.
If the input is a character ”A”, it moves to state A. Then from state A, if the
input is the character ”A”, it remains in the same state. However, when the

D.2 Lexical Analysis 103

input is character ”B” or ”C”, the system moves to the corresponding states. If
the machine is facing an unspecified situation, such as hitting a character ”E”
in state C, it generates a lexical error. The following code segment implements
a portion of the TokenManager for the example lexical analyzer in JavaCC:

TOKEN :

{

< A: "A" > : State_A //Switch to State A if input character is "A"

}

<State_A>

TOKEN :

{

< A_Again: "A" > //Stay in State A if input character is "A"

< B: "B" > : State_B //Switch to State B if input character is "B"

}

<State_B>

TOKEN :

{

< B_Again: "B" > //Stay in State B if input character is "B"

< C: "C" > : State_C //Switch to State C if input character is "C"

}

<State_C>

TOKEN :

{

< C_Again: "C" > //Stay in State C if input character is "C"

< D: "D" > : DEFAULT //Switch to DEFAULT if input character is "D"

}

Besides the generated TokenManager, JavaCC generates a couple of other files
that act as help classes to the lexical analyzer:

104 JavaCC

Token.java is a class representing tokens. Each token object has an
integer field kind that represents the kind of token and
a String field image, which represents the sequence of
characters from the input file that the token represents.

SimpleCharStream.java is an adapter class that delivers characters to the lexical
analyser.

TokenMgrError.java is a simple error class. It is used for errors detected by
the lexical analyser and is a subclass of Throwable.

D.3 Syntactical Analysis

The syntactic analyzer is a top-down (recursive-descent) LL(k) parser as op-
posed to bottom-up parsers generated by YACC-like tools [4]. This type of
parser uses k number of lookahead tokens to generate a set of mutually exclu-
sive productions, which recognize the language being parsed by the parser. By
default, JavaCC syntactical analyzer sets k to 1, but it is possible to override
the number of lookahead tokens to any arbitrary number to match productions
correctly. A recursive descent parser allows the use of more general grammars
and have a bunch of other advantages such as being easier to debug, having the
ability to parse to any non-terminal in the grammar, and also having the ability
to pass values (attributes) both up and down the parse tree during parsing.

LL(k) parsers allow only right recursion in the BNF production rule. Consider
the trivial example of adding an arbitrary number or integers together. This
can be expressed with the following BNF:

E → E + I
E → I

where I denotes an integer value 0-9. The recursive call to E as the first right-
hand-side symbol in an E -production is called left recursion and grammars with
left recursion can not be LL(1). The syntax must be reconstructed so that the
parser can recognize the production correctly with limited amount of lookahead
tokens. Therefore, sequences of tokens that generate mutually exclusive situa-
tions in the production should be placed in the beginning of each possible case,
and thereby providing right recursive productions to the parser:

E → I (E’)+
E’ → + I

Fortunately the description language grammar defined in chapter 3 has been
defined so that it is entirely free from left recursion from the start and no
rewriting of the production rules have been necessary. The approach of right

D.3 Syntactical Analysis 105

recursion is however not always trivial to implement and the conversion should
be considered with care.

Using the JavaCC notation for the example expressed above would result in the
following grammar code:

void E() :

{}

{

<I> (E’())+

}

void E’() :

{}

{

"+" <I>

}

Each non-terminal mapping to the left hand side (corresponding to E and E’ in
the example) of a BNF production rule is written exactly like a declared Java
method. Since each non-terminal is translated into a method in the generated
parser, this style of writing the non-terminal makes this association obvious.
The name of the non-terminal is the name of the method, and the parameters
and return value declared are the means to pass values up and down the parse
tree. The non-terminals on the right hand side (E’() in the example) are written
as method calls, so the passing of values up and down the tree are done using
exactly the same paradigm as method call and return. The right hand side of a
BNF production can also be a terminal corresponding to a regular expression.
This is denoted in JavaCC as either a quoted string (”+” in the example) or a
reference to token defined in the lexical analyzer (¡I¿ in the example). Basically
JavaCC uses the same notation for regular expressions as described in table C.1.

Overriding the default lookahead of 1 can be expressed by explicitly telling
the parser to lookahead for more tokens with the use of the LOOKAHEAD(k)
keyword:

void A() :

{}

{

(LOOKAHEAD(2) A() | B())

}

Besides the generated parser, JavaCC generates a couple of other files that act
as help classes to the syntactical analyzer:

106 JavaCC

*Constants.java is an interface that defines a number of classes used
in both the lexical analyser and the parser. ”*” denotes
name given to the generated parser.

ParseException.java is simple error class. It is used for errors detected by the
parser and is a subclass of exception and hence of Throwable

D.4 AST

The tool JJTree, which is a part of the JavaCC distribution, provides tree
building capabilities to the generated parser. JJTree is basically a preprocessor
for JavaCC that inserts parse tree building actions at various places in the
JavaCC source code. The output of JJTree is run through JavaCC to create the
parser.

By default JJTree generates code to construct parse tree nodes for each nonter-
minal in the language. This behaviour can bee modified so that only nontermi-
nals of specific interest generate AST nodes. The AST nodes are organized in a
tree structure to form the AST. JJTree will generate a Java class for every node
defined in the grammar. The nodes are stored in files named AST*.java, where
the ”*” is the name of the node specified in the grammar. Once these files are
generated, JJTree will not regenerate them. Hence these files these files can
implement handwritten, besides the code generated by JJTree, methods that
enables storing and retrieving data from the node.

JJTree defines a Java interface Node that all AST nodes must implement (via
SimpleNode). The interface provides methods for operations such as setting
the parent of a node, and for adding children and retrieving them depicted in
figure D.3.

The methods implemented by Node provides the following functionality:

public interface Node {

/** This method is called after the node has been made the current

node. It indicates that child nodes can now be added to it. */

public void jjtOpen();

/** This method is called after all the child nodes have been

added. */

public void jjtClose();

/** This pair of methods are used to inform the node of its

parent. */

public void jjtSetParent(Node n);

D.4 AST 107

+jjtOpen()()

+jjtClose()()

+jjtSetParent()()

+jjtGetParent()()

+jjtAddChild()()

+jjtGetChild()()

+jjtGetNumChildren()()

«interface»

Node

SimpleNode

AST*.java

Figure D.3: The Node interface

public Node jjtGetParent();

/** This method tells the node to add its argument to the node’s

list of children. */

public void jjtAddChild(Node n, int i);

/** This method returns a child node. The children are numbered

from zero, left to right. */

public Node jjtGetChild(int i);

/** Return the number of children the node has. */

int jjtGetNumChildren();

}

The class SimpleNode implements the Node interface, and is automatically gen-
erated by JJTree if it does not already exist. This class can be used as a template
or superclass for the node implementations, or can be modified to suit.

Although JavaCC is a top-down parser, JJTree constructs the parse tree from
the bottom up. To do this it uses a stack where it pushes nodes after they
have been created. When it finds a parent for them, it pops the children from
the stack and adds them to the parent, and finally pushes the new parent node
itself.

JJTree provides decorations for two basic varieties of nodes, and some syntactic

108 JavaCC

shorthand to make their use convenient:

1. A definite node is constructed with a specific number of children. That
may many nodes are popped from the stack and made the children of the
new node, which is then pushed on to the stack itself. A definite node is
notated like this:

#ADefiniteNode(INTEGER EXPRESSION)

A definite node descriptor expression can be any integer expression.

2. A conditional node is constructed with all of the children that were pushed
on the stack within its node scope if and only if its condition evaluates to
true. If it evaluates to false, the node is not constructed, and all of the
children remain on the node stack. A conditional node is notated like this:

#ConditionalNode(BOOLEAN EXPRESSION)

A conditional node descriptor expression can be any boolean expression.
There are two common shorthands for conditional nodes:

a. Indefinite nodes

#IndefiniteNode is short for #IndefiniteNode(true))

b. Greater-than nodes

#GTNode(>1) is short for #GTNode(jjtree.arity() > 1)

D.5 Summary

This chapter has introduced the typical ideas behind a compiler. The same ideas
has been used to great extent when designing the analysis tool in chapter 5. Also
a notation for formally defining a language grammar, EBNF, has been provided.
The compiler compiler of choice when implementing the analysis tool is JavaCC.
JavaCC is a java based recursive descent compiler compiler available as open
source. JavaCC is capable of generating the lexer as well as the parser and
optionally also a AST representation of the file being parsed.

Appendix E

New Description Language

BNF

This appendix contains the formal definition of NDL using BNF notation.

Stmt → Directive | section | NL

Directive → If | Ifdef | Ifndef | Set | Unset | Include | Options

If → ”!if” BExp NL Directive (”!elseif” BExp NL Directive)* (”!else” NL Direc-
tive)? ”!endif” NL

Ifdef → ”!ifdef” ID NL Directive (”!else NL Directive)? ”!endif” NL

Ifndef → ”!ifndef” ID NL Directive (”!else NL Directive)? ”!endif” NL

BExp → OrExp

OrExp → AndExp (”——” AndExp)*

AndExp → (EqExp | Func) (”&&” (EqExp | Func))*

EqExp → (ID (”==” | ”!=”) Val) | (”(” BExp ”)”)

Set → ”!set” Opt ID [”=” (Val | Func)+] NL

Unset → ”!unset” ID NL

IncludeStmt → ”!include” (”-b”)? FP NL

110 New Description Language BNF

Options → ”!options” [”-l”] ((”CheckDescrConditionals” (”error” | ”fatal”)?)
| ”MultipleSections” | ”Silent”) NL

ID → [A-Za-z0-9-]+

Val → (Str | QStr | Ref)+

Str → [.]+

QStr → ””̈[.]+””̈

Ref → ”%”ID”%”

Opt → ”-”[iflea]+

Func → ID ”(” Param (”,” Param)* ”)”

Param → QStr | Ref | ID | Func

FP → (Ref | Drive | RelPath) (Ref | ID)* (File)?

Drive → [A-Za-z]”:\”

RelPath → ”.\”

File → ID ”.” ID

NL → ”\r\n” | ”\r” | ”\n”

section → FileListSec | SourceFileSec | BuildFileSec | BuildDirectoriesSec |
SourceFileOptSec | VariantSec | RelatedVariantSec | VariantSetsSec | Official-
BuildSec |
ModuleSec | OutputNameSec | SystemNameSec | MiscSec

FileListSec → (”[LinkFiles]” | ”[IncludeFiles]” | ”[DocumentFiles]”
| ”[DependantFiles]” | ”[DataFiles]” | ”[ArchiveFiles]” | ”[BuildDirectories]”
| ”[-LinkFiles]” | ”[-IncludeFiles]” | ”[-SourceFiles]” | ”[-DocumentFiles]”
| ”[-DependantFiles]” | ”[-DataFiles]” | ”[-ArchiveFiles]” | ”[-BuildFiles]”
| ”[-SourceFiles]” | ”[Packaging ExposedDocumentFiles]” | ”[Packaging ExposedDataFiles]”
| ”[Packaging ExposedSourceFiles]” | ”[Packaging ForbiddenFiles]”
| ”[Packaging ExposedBuildFiles]” | ”[Packaging ExposedLinkFiles]”
| ”[Packaging ExposedIncludeFiles]” | ”[-Packaging ExposedDocumentFiles]”
| ”[-Packaging ExposedDataFiles]” | ”[-Packaging ExposedSourceFiles]”

111

| ”[-Packaging ExposedBuildFiles]” | ”[-Packaging ExposedLinkFiles]”
| ”[-Packaging ExposedIncludeFiles]”) (FileList)*

FileList → (FP NL) | Directive

SourceFilesSec → ”[SourceFiles]” (SourceFile | Directive)*

SourceFile → FP (SourceFileOpt)*

SourceFileOpt → ID ”=” ”(” Val ”)”

BuildFilesSec → ”[BuildFile]” (BuildFile | Directive)*

BuildFile → FP (BuildFileOpt)*

BuildFileOpt → (”DO” | ”DEP” | ”OUT”) ”=” ”(” Val ”)”

BuildDirectoriesSec → ”[BuildDirectories]” (BuildDirectory | Directive)*

BuildDirectory → FP (”CLEAN” | ”CLEAN TREE”) NL

SourceFileOptSec → ”[SourceFiles Options]” (SourceFileOpt | Directive)*

SourceFileOpt → Pattern (SourceFileOptOpt)+

Pattern → ?

SourceFileOptOpt → (”+”)? SourceFileOpt

VariantSec → ”[Variants]” (Directive | Variant)*

variant → ID

RelatedVariantSec → ”[RelatedVariants]” (Directive | RelatedVariant)*

RelatedVariant → (ID ”;” | (ID ”;”)* (ID | ”*”)) NL

VariantSetsSec → ”[VariantSets]”(Directive | VariantSet)

VariantSet → ID ”:” (”@”)? ID (”:” ID)? ((”@”)? ID (”:” ID)?)*) NL

OfficialBuildSec → ”[OfficialBuild]” (OfficialBuild | Directive)*

OfficialBuild → ID ”:” ID (”:” ”KEEP”)?(”:” ”REBUILD”)? (”;” ID (”:”

112 New Description Language BNF

”KEEP”)?(”:” ”REBUILD”)?)* NL

ModuleSec → ”[Modules]” (Module | Directive)*

Module → FP ID NL

OutputNameSec → ”[OutputName]” (OutputName | Directive)*

OutputName → (ID | Ref) NL

SystemNameSec → ”[SystemName]” (SystemName | Directive)*

SystemName → (ID | Ref) NL

MiscSec → (”[MakeDefines]” | ”[MakeInit]” | ”[MakeRules]”
| ”[MakeActions]” | ”[IncludePatterns]” | ”[MakeIncludeFiles]”
| ”[MakeSourceFiles]” | ”[MakeDependencies]” | ”[MessageFilter]”
| ”[ExplicitMakeRules]” | ”[ArchiveFiles]” | ”[DefaultOptions]”
| ”[Name]” | ”[IAR-AVR NO AUTOSEG]” | ”[ToolCommands]”
| ”[IAR-ARM LINK PAR]” | ”[OfficialBuild Options]”
| ”[Packaging Translate]”)
(MiscSecStmt)*

MiscSecStmt → ([.]+ NL | Directive)

Appendix F

Example of generated AST

This appendix contains a sample AST generated from the source code in sec-
tion 5.5.

Start

Set

Identifier: A

Value

String: 1

Set

Identifier: B

Value

String: 2

Include

FilePath

RelativePath

String: file.cfg

If

EQNode

Identifier: A

Value

String: 1

AndNode

NENode

Identifier: B

Value

String: 2

Set

Identifier: C

114 Example of generated AST

Value

String: 1

Elseif

EQNode

Identifier: A

Value

String: 1

OrNode

EQNode

Identifier: B

Value

String: 2

Set

Identifier: C

Value

String: 2

Else

Set

Identifier: C

Value

String: 3

Endif

Section: [SourceFiles]

FileList

FilePath

RelativePath

String: dir\file1.c

FileList

FilePath

RelativePath

String: dir\file2.c

SourceFileOption

Identifier: AVR

String: -z9

Section: [MakeRules]

Text: copy #path $(INC)#name#ext >nul

Bibliography

[1] Appel A. W. Modern Compiler Implementation in Java Second Edition,
pp 42–44, UK 2002.

[2] Java Compiler CompilerTM(JavaCCTM) - The Java Parser
Generator.
https://javacc.dev.java.net/

[3] Succi G., Wong R. W., The Application of JavaCC to Develop a C/C++
Preprocessor University of Calgary

[4] The Lex and Yacc Page
http://dinosaur.compilertools.net/

[5] Johansson B., Storlind R. Generic Environment for Application Oriented
Languages ABB Corparate Research

[6] Domain-Specific Languages
http://compose.labri.fr/documentation/dsl/

[7] Visitor Support in JavaCC/JJTree
http://www.xrce.xerox.com/people/beesley/VisitorJJTree.html

[8] Kompilatorteknik, 5 p, Lund Institute of Technology
http://www.cs.lth.se/EDA180/2005/

	1 Introduction
	1.1 Background
	1.2 Problem Description
	1.3 Objectives
	1.4 A description language application example
	1.5 Report Structure

	2 The EMP Software Development Environment
	2.1 Introduction
	2.2 Environment architecture
	2.3 Tools
	2.3.1 SDE
	2.3.2 CME
	2.3.3 PPZ

	2.4 Summary

	3 The Current Description Language
	3.1 Introduction
	3.2 Description file types
	3.2.1 Product description
	3.2.2 Module description
	3.2.3 Private description
	3.2.4 Target description
	3.2.5 Include description
	3.2.6 Priority between file types
	3.2.7 Description file tree

	3.3 The language
	3.3.1 Variables
	3.3.2 Conditional statements
	3.3.3 Include directive
	3.3.4 Options directive
	3.3.5 Sections
	3.3.6 Perl

	3.4 Processing of description files
	3.4.1 Multiple file processing
	3.4.2 Single file processing

	3.5 Fallacies and pitfalls
	3.5.1 Absence of formal grammar
	3.5.2 Handwritten parser
	3.5.3 File processing
	3.5.4 Variable handling
	3.5.5 The extensive Perl availability

	3.6 Summary

	4 The New Description Language
	4.1 Introduction
	4.2 Design decisions
	4.2.1 Formal grammar
	4.2.2 Handwritten parser
	4.2.3 File processing
	4.2.4 Perl dependencies
	4.2.5 Variable handling

	4.3 Grammar
	4.3.1 Directive grammar
	4.3.2 Adding a grammar for the sections

	4.4 Semantics
	4.4.1 Directive semantic
	4.4.2 Section semantic

	4.5 Summary

	5 The Analysis Tool
	5.1 Introduction
	5.2 Tool objectives
	5.3 Tool architecture
	5.4 Preprocessor
	5.5 Front End
	5.5.1 Lexical analysis
	5.5.2 Syntactical analysis
	5.5.3 Building the AST

	5.6 Back End
	5.6.1 The Visitor Pattern Technique
	5.6.2 Recursive analysis
	5.6.3 Semantic analysis
	5.6.4 InitVariantMatrix
	5.6.5 FileAnalysisVisitor
	5.6.6 VariableAnalysisVisitor
	5.6.7 BackEndManager
	5.6.8 ASTTable
	5.6.9 BackEndError

	5.7 Summary

	6 Conclusion
	6.1 Status
	6.2 CDL vs. NDL
	6.2.1 Syntax
	6.2.2 Semantic
	6.2.3 Language processing

	6.3 Further work
	6.3.1 Migration and integration

	A Terminology and Abbreviations
	B Domain Specific Languages
	C Compiler Theory
	C.1 Introduction
	C.2 Compiler theory
	C.3 Formalism and notation

	D JavaCC
	D.1 Introduction
	D.2 Lexical Analysis
	D.3 Syntactical Analysis
	D.4 AST
	D.5 Summary

	E New Description Language BNF
	F Example of generated AST

