
A Description of the Particle Horizon

Micah Andrew Thornton

Southern Methodist University Physics

April 25, 2016

Outline

Mathematical Description

- Physical Relevance
- 2 Hubble Sphere
 - Mathematical Description
 - Relation to Redshift Parameter (z)

3 Backup Slides

4 The Horizon Problem

- Cosmic Background Radiation
- The Resolution (Cosmic Inflation)

Particle Horizon Event Horizon

Types of Horizon

There are three main types of horizons that will be discussed in this talk:

- O The Particle Horizon
- O The Event Horizon
- **③** The Hubble Sphere * Although not Technically a horizon

Particle Horizon Event Horizon

Horizon Background

"The range of perception or experience"

- Comoving distance
 - A measure of distance in astronomy, based on proper distance
 - This measure 'factors out' the expansion of the universe

$$X = \int_{t_e}^t c \cdot \frac{dt'}{a(t')}$$

Conformal time

- A measure of time based on the comoving distance
- This is the measure that will allow us to formally define the particle horizon.

$$\tau = \int_0^t \frac{dt'}{a(t')}$$

Particle Horizon Event Horizon

The Particle Horizon

"The present distance of an object emitting light at [a specific point in time]"

- The particle horizon at a specific time t
- $\bullet\,$ Relative to an arbitrary observer ω
- is given by a sphere of radius equivalent to the comoving distance.

$$\eta = \int_{t_e}^t c \cdot \frac{dt'}{a(t')}$$

Particle Horizon Event Horizon

Mathematical Description

• Beginning with the simple fomula:

$$d = v \cdot t$$

• Measuring the distance of photons emmited towards a source we have:

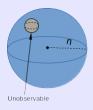
$$v = c$$

• Hence photons emitted towards observer from every direction yields a sphere of radius d,

$$d = c \cdot \int_{t_e}^t \frac{dt'}{a(t')}$$

 where a(t') is a scaling factor derived beyond the confines of this course.

Particle Horizon Event Horizon


Physical Relevance

- The particle horizon represents a horizon of sorts.
- It is the 'range of perception or experience' of photons upon the observer ω .
- It is the sphere of our knowledge about the nature of the universe in this regard.
- We cannot see beyond the present particle Horizon, however it is expanding continuously in time.

Particle Horizon Event Horizon

The Event Horizon

"Where we can never see, as opposed to where we one day may see"

- More so related to general relativity than to special relativity as the particle horizon was
- Imagine light emitted from the center of a black hole.

Particle Horizon Event Horizon

Mathematical Description

- A general form is difficult if not impossible to obtain
- We can prove existence of event horizons simply, examine the following limit

$$\exists \text{EH} \implies \lim_{t \to \infty} \int_0^t \frac{c}{a(t')} dt' = K$$

$$\overline{\exists \text{EH}} \implies \lim_{t \to \infty} \int_0^t \frac{c}{a(t')} dt' = \infty$$

Particle Horizon Event Horizon

Physical Relevance

- There exist many event horizons in our universe (Every black hole has one)
- We can never see beyond an event horizon, at any point in the future
- The event horizon of the universe is a true obstacle, we can never see beyond it.
- We may be able to hear beyond it... (Gravity Waves)

Mathematical Description Relation to Redshift Parameter (z)

The Hubble Sphere

- Blue Represents Hubble Sphere, the universe where as $t \to \infty$ all contained within is visible
- Grey Represents beyond the Hubble Sphere, where objects receed faster than the speed of light, and will hence never be visible (E.G Black Holes)
- Some such objects which move faster than light speed are known as Tachyons.
- An Isomorphic view of the universe, which seperates Particle and Event Horizons.

Mathematical Description Relation to Redshift Parameter (z)

Mathematic Description

 The proper length of the radius of the Hubble Sphere of our universe is given as:

$$\mathrm{H}_L = \frac{c}{H_0} \approx 1.31 \cdot 10^{26} \mathrm{metres} = 1.38 \cdot 10^{10} \mathrm{light \ years}$$

- where H_0 is known as the hubble constant
- The surface Area of the hubble sphere is then given by:

$$H_A = 4 \cdot \pi \cdot (\frac{c}{H_0})^2 \approx 2.16 \cdot 10^{53} metres^2 = 2.41 \cdot 10^{21} LY^2$$

• The volume of the sphere is given by:

$$H_V = \frac{4\pi}{3} \cdot (\frac{c}{H_0})^3 \approx 9.42 \cdot 10^{78} metres^3 = 1.11 \cdot 10^{31} LY^3$$

Mathematical Description Relation to Redshift Parameter (z)

Relation to Redshift Parameter

- As we would expect the edge of the hubble sphere can be represented in terms of frequencies.
- As we measure relative velocities of objects using red shifts, velocities higher than c cannot be seen.
- Recall the formula of the redshift parameter:

$$z = \sqrt{rac{1+rac{v}{c}}{1-rac{v}{c}}} - 1$$

- Considering v > c yields an imaginary result for z.
- Hence the sphere can be described by $\{v | \{z(v)\} \in \mathbb{R}\}$

Backup Slides

Back-Up Slides

Micah Andrew Thornton A Description of the Particle Horizon

Cosmic Background Radiation The Resolution (Cosmic Inflation)

The Horizon Problem

- In 1960 Charles Misner discovered that distant regions of the universe shared temperature
- This should not be possible as information (and hence similar energies) cannot travel faster than the speed of light
- There are two proposed solutions:
 - Variable Speed of Light
 - Cosmic Inflation
- Only Cosmic Inflation will be discussed in this presentation.

Cosmic Background Radiation The Resolution (Cosmic Inflation)

Cosmic Background Radiation

- Cosmic Background Radiation (discussed in HW 3) is radiation present throughout the cosmos of which the origin is unseen.
- It is presented as evidence for the horizon problem.
- The problem arises in examining its homogeneity throughout the universe.
- It appears that at all measured locations the background radiation is nearly equivalent.
- Hence, two areas of space which were never near close enough still radiate the same amount of energy.

Cosmic Background Radiation The Resolution (Cosmic Inflation)

Cosmic Inflation as a Possible Resolution

- Imagine a balloon being inflated
- At first the balloon inflates very rapidly, its surface are grows very quickly with little volume change.
- after a little while, the surface area changes slowly with much volume change.
- When considering the expansion of the universe, applying this same ideology assists in understanding phenomena such as the cosmic background radiation.

Cosmic Background Radiation The Resolution (Cosmic Inflation)

Resources

- Cosmological Inflation and Large-Scale Structure. Liddle and Lyth. Cambridge University Press. 2000.
- Evolution of the Cosmological Horizons in a Concordance Universe. MargalefBentabol et al. arXiv. 17, Jun 2013.
- Expanding Confusion: common misconceptions of cosmological horizons and the superluminal expansion of the universe. Davis and Lineweaver. arXiv 13 Nov 2003.

Cosmic Background Radiation The Resolution (Cosmic Inflation)

Thank-You

Questions?

Micah Andrew Thornton A Description of the Particle Horizon