# การออกแบบแผนการสุ่มตรวจสอบชิ้นส่วนอลูมีเนียมก่อนนำเข้ากระบวนการ A Design of Inspection Sampling Plans for Incoming Aluminum Parts

บรรหาญ ลิลา<sup>1\*</sup>, จักรวาล คุณะดิลก<sup>2</sup> <sup>1.2</sup> ภาควิชาวิศวกรรมอุตสาหการ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยบูรพา จ.ชลบุรี 20130,

E-mail: Blila@buu.ac.th\*

Banhan Lila<sup>1\*</sup> Jakrawarn Kunadilok<sup>2</sup>

<sup>1.2</sup>Department of Industrial Engineering, Faculty of Engineering, Burapha University, Chonburi E-mail: Blila@buu.ac.th<sup>\*</sup>

#### บทคัดย่อ

คุณภาพของชิ้นส่วนเป็นปัจจัยสำคัญที่ส่งผลต่อการดำเนินการผลิต การตรวจสอบคุณภาพชิ้นส่วนก่อนนำเข้าสู่ กระบวนการต้องมีสมรรถนะในระดับที่ยอมรับได้ทั้งต่อผู้จัดส่งและผู้รับด้วยต้นทุนการตรวจสอบที่เหมาะสม งานวิจัยนี้นำเสนอการออกแบบและประยุกต์แผนการสุ่มตรวจสอบคุณภาพชิ้นส่วนอลูมีเนียมก่อนนำเข้าสู่ กระบวนการผลิตเข็มขัดนิรภัยรถยนต์ ด้วยการสร้างระบบสนับสนุนการตัดสินใจเลือกแผนจาก MIL STD 105E ประมวลผลด้วย Visual C++ สำหรับการตรวจสอบคุณลักษณะทางคุณภาพแบบไม่ต่อเนื่อง ผลจากการประยุกต์ พบว่า สามารถตรวจจับชิ้นงานเสีย ณ จุดตรวจรับได้เพิ่มจาก 32.53% เป็น 82.08% ของชิ้นส่วนที่เสียทั้งหมด ส่งผลให้ปัญหาชิ้นงานไม่มีคุณภาพหลุดเข้าไปสู่กระบวนการลดลงจาก 7.20% เป็น 0.99% ต้นทุนจากปัญหา คุณภาพชิ้นส่วนนำเข้าลดลงเฉลี่ย 682,000 บาทต่อเดือน จึงเห็นได้ว่าการออกแบบและประยุกต์เครื่องมือที่ เหมาะสมในการตรวจสอบชิ้นส่วนก่อนนำเข้าสู่กระบวนการสามารถลดปัญหาและต้นทุนได้อย่างมีประสิทธิภาพ และสามารถใช้เป็นแนวทางในการประยุกด์กับกระบวนการอื่นต่อไป

**คำหลัก** แผนการสุ่มตรวจสอบ ชิ้นส่วนอลูมีเนียม ระบบสนับสนุนการตัดสินใจ

#### Abstract

Quality of parts is a significant factor affecting the subsequence operations. The acceptable performance of an incoming inspection with reasonable cost is required. This paper presents a design and an implementation of the inspection plans for incoming aluminum parts of a safety belt production process. The decision support system written in C++ were designed and used for inspecting of attribute quality characteristics. The application in the screening process indicated that 82.08% of defectives were found at the incoming inspection station compared to only 32.53% previously. This improvement resulted in the reduction of the leakages of defective parts into the production process from 7.20% to 0.99%. Consequently, cost related to the quality problem was decreased by the average of 682,000 baht per month which could be viewed as a solid evidence and a guideline for implementation such techniques in the similar situations.

Keywords: Inspection Plan, Aluminum Parts, Decision Support System

การประชุมวิชาการข่ายงานวิศวกรรมอุตสาหการ ประจำปี พ.ศ. 2556 16-18 ดุลาคม 2556 พัทยา ชลบุรี

#### 1. บทนำ

ความเข้มแข็งขององค์กรเป็นผลโดยตรงจาก ความสามารถในการตอบสนองต่อความต้องการของ ลูกค้าซึ่งต้องการทั้งประสิทธิภาพการจัดการและคุณภาพ ของกระบวนการอันจะนำไปสู่การผลิตสินค้าและบริการที่ มีสร้างความพึงพอใจให้กับลูกค้าได้ต่อไป การจัดการด้าน คุณภาพจึงถูกกำหนดเป็นนโยบายตั้งแต่ยุคเริ่มต้นของ การพัฒนาอุตสาหกรรมดังหลักฐานที่ปรากฏใน [5] ซึ่ง เป็นการกำหนดนโยบายการจัดการของ William Cooper Proctor หลานของผู้ก่อตั้งบริษัท Procter & Gamble ตั้งแต่ปี ค.ศ. 1887 ว่า "งานแรกของพวกเราคือการผลิต สินค้าคุณภาพที่ลูกค้าจะต้องซื้อแล้วซื้ออีก ด้วย กระบวนการที่มีประสิทธิภาพและประหยัด อันจะทำให้ พวกเรามีกำไรมาแบ่งปันกัน" การจัดการด้านคุณภาพมี การดำเนินการต่อเนื่องตลอดมาดังพบได้จากการสำรวจ งานวิจัยที่ลงพิมพ์ในวารสาร Production and Operations Management ของ Roger, Kevin, and Dongli [6] ซึ่งบ่งชี้ว่ามีการวิจัยที่เกี่ยวข้องกับคุณภาพตั้งแต่การ กำหนดนโยบายด้าน TQM การวิเคราะห์ผลการประยุกต์ เครื่องมือกับกรณีศึกษาด้านการผลิต การบริการ กรอบ รางวัลคุณภาพ ตลอดจนการประเมินสมรรถนะด้าน คุณภาพอย่างต่อเนื่อง ซึ่ง [6] และ [7] พบว่าการควบคุม คุณภาพตั้งแต่การนำเข้าวัตถุดิบ ระหว่างกระบวนการ และ ก่อนการนำส่งสินค้า จะช่วยลดดันทุนการดำเนินการ และปัญหาที่อาจกระทบต่อลูกค้าได้อย่างมีนัยสำคัญ [1], [2] และ [3] กล่าวถึงเครื่องมือที่นิยมประยุกต์ในทาง ปฏิบัติคือการสุ่มตรวจสอบ (Inspection) ด้วยการวิธีการ Mistake-Proofing, การตรวจสอบ 100% และการสุ่มตรวจ (Sampling Inspection) และ การควบคุมกระบวนการ เชิงสถิติ (SPC) ทั้งการตรวจสอบคุณลักษณะทางคุณภาพ แบบต่อเนื่องด้วยแผนการสุ่มเพื่อการยอมรับและ Mistake-Proofing ในรูปแบบของ Poka-Yoke หรือ Go-NoGo gages ต่าง ๆ และการตรวจสอบคุณลักษณะทาง ้คุณภาพแบบไม่ต่อเนื่องด้วยการประยุกด์แผนการสุ่ม เพื่อการยอมรับ (Acceptance Sampling Plan) อย่าง แพร่หลาย การออกแบบของแผนการสุ่มนิยมใช้แนวทาง ของ MIL-STD 105D, MIL-STD 105E ซึ่งปัจจุบันได้มี การดัดแปลงโดย American Society of Quality Control (ASQC) เป็น ANSI/ASQC Z1.4 [8] และ [9] หรือเป็น

การออกแบบตามมาตรฐานของบริษัทแม่ซึ่งผ่าน การทดสอบว่าใช้ได้ผลมาแล้วระยะเวลาหนึ่ง [1], [2] และ [3]

งานวิจัยนี้ศึกษาในส่วนของการประยุกด์แผนการสุ่ม เพื่อการยอมรับ ตามมาตรฐานของ MIL-STD 105E กับ การตรวจสอบคุณภาพชิ้นส่วนก่อนนำเข้าสู่กระบวนการ ผลิตซึ่งพบว่ามีการใช้โดย [1], [2], [3] และ [4] แต่ยังไม่ ประสบความสำเร็จเท่าที่ควรเนื่องจากระดับคุณภาพขา เข้าของชิ้นส่วนมีความผันแปรทำให้สมรรถนะของ แผนการสุ่มอาจไม่เหมาะสมในบางช่วงเวลาของการใช้ งาน แผนการสุ่มตรวจสอบจึงต้องมีสมรรถนะด้านความ เสี่ยงของการใช้งานด่ำทั้งของผู้นำส่งชิ้นส่วน (Producer's Risk,  $\alpha$ ) และ ของผู้รับชิ้นส่วน(Consumer's Risk,  $\beta$ ) ทั้งนี้ในการสร้างแผนและประเมินสมรรถนะมีขั้นตอน การวิเคราะห์ที่ยุ่งยากและเกิดความผิดพลาดได้ง่ายหาก ผู้สร้างแผนขาดความชำนาญ เพื่อแก้ปัญหานี้ผู้วิจัย จึงออกแบบและสร้างระบบสนับสนุนการตัดสินใจเลือก แผนจาก MIL STD 105E ประมวลผลด้วย Visual C++ แสดงผลบน MS สำหรับการตรวจสอบ Excel คุณลักษณะทางคุณภาพแบบไม่ต่อเนื่อง การเลือกแผน พิจารณาจากสมรรถนะด้านความเสี่ยง lpha และ eta,ค่าเฉลี่ยคุณภาพหลังการสุ่มตรวจสอบ (Average Outgoing Quality, AOQ) และ ค่าเฉลี่ยจำนวนตัวอย่าง สุ่มรวม (Average Total Inspection, ATI)

### 2. คุณภาพและแผนการสุ่มตัวอย่างเพื่อการยอมรับ

แผนการสุ่มตัวอย่างเป็นวิธีการที่ใช้ตรวจสอบและ ดัดสินใจเกี่ยวกับผลิตภัณฑ์ในการประกันคุณภาพมาเป็น เวลานาน ซึ่งรวมถึงผลิตภัณฑ์ที่เป็นชิ้นส่วนที่นำเข้ามาสู่ กระบวนการ (Incoming Materials) ผลิตภัณฑ์ระหว่าง กระบวนการ (Work in Process) และ ผลิตภัณฑ์ สำเร็จรูป (Outgoing Products) [9] การประยุกต์การสุ่ม ด้วอย่างที่พบบ่อยได้แก่การสุ่มตรวจสอบคุณภาพของ วัดถุดิบที่ได้รับก่อนที่จะนำเข้าสู่กระบวนการผลิต วัดถุดิบ เหล่านี้มักจะถูกส่งมาครั้งละจำนวนมากมีหน่วยนับเป็นลือต (Lot) การสุ่มทำโดยการชักตัวอย่างวัตถุดิบจำนวนหนึ่ง จากล๊อตเพื่อตรวจสอบคุณลักษณะทางคุณภาพตามที่ กำหนด และข้อมูลที่ได้จากการตรวจสอบจะถูกใช้ใน การพิจารณาว่าวัตถุดิบทั้งล๊อตมีคุณภาพเป็นที่ยอมรับได้ การประชุมวิชาการข่ายงานวิศวกรรมอุตสาหการ ประจำปี พ.ศ. 2556 16-18 ดุลาคม 2556 พัทยา ชลบุรี

หรือไม่ ซึ่งจะเห็นได้ว่าผลการตัดสินจะมีเพียงสองอย่าง เท่านั้นคือ ยอมรับ (Accept) หรือไม่ยอมรับ (Reject) ล๊อตที่ยอมรับจะถูกส่งเข้าสู่กระบวนการผลิตต่อไป ในขณะที่ล็อตที่ไม่ได้รับการยอมรับอาจถูกนำไปทำอย่าง ใดอย่างหนึ่งตามวิธีการของการกำจัดล๊อต (Lot-Disposition Action)

แผนการสุ่มตรวจสอบแบ่งตามเกณฑ์คุณลักษณะ ทางคุณภาพแบ่งตามลักษณะของกระบวนการของ แผนการสุ่มตัวอย่างได้แก่แผนการสุ่มตัวอย่างแบบชั้น เดียว (Single Sampling Plan, SSP) แบบสองชั้น (Double-Sampling Plan, DSP) แบบหลายชั้น (Multiple-Sampling Plan, MSP) และแบบลำดับขั้น (Sequential-Sampling Plan)

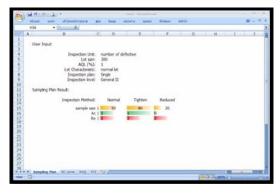
จากการสำรวจงานวิจัยเบื้องดันพบว่ามีการประยุกด์ แผนการสุ่มในงานอุตสาหกรรม เช่น สาธิตา เผื่อนเอี่ยม, 2550 [1] ได้ปรับปรุงแผนการสุ่มตรวจสอบความถูกด้อง ของการบรรจุสินค้า CKD ลงลังก่อนส่งไปให้ลูกค้าใน ด่างประเทศ เพื่อเพิ่มสมรรถนะของแผนการสุ่มและลด ภาระงานของพนักงาน ชัยทัต เวียงหฤทัย, 2550 [2] ออกแบบแผนการสุ่มจากมาตรฐานของ MIL-STD-105E ในการตรวจสอบคุณภาพแบบไม่ด่อเนื่องของชิ้นส่วนโช่ ราวลิ้นรถยนด์ สุกิจ วัตรศรีวานิช และ บรรหาญ ลิลา, เพื่อตรวจสอบ ออกแบบ Poka-Yoke 2552 [3] คุณลักษณะแบบต่อเนื่องและแผนการสุ่มตามมาตรฐาน เพื่อตรวจสอบคุณลักษณะทาง ของ MIL-STD-105E คุณภาพแบบไม่ต่อเนื่องของชิ้นส่วนอลูมีเนียมก่อนนำเข้า สู่กระบวนการผลิต แต่ก็พบว่าแผนการสุ่มจำเป็นต้องมี การสับเปลี่ยนอยู่เสมอเนื่องจากความสามารถด้าน คุณภาพของผู้จัดส่งชิ้นส่วนมีความผันแปร ดังนั้น โปรแกรมคอมพิวเตอร์ในลักษณะเดียวกันกับที่พัฒนา โดย ภัทรพล นวลสมศรี, วนิดา ประสมทรัพย์ และ สุจิตรา ที่ปกร. 2552, [4] น่าจะช่วยให้การเลือกแผน การสุ่มมีเหมาะสมต่อการใช้งานทำได้สะดวกมากยิ่งขึ้น นอกจากนี้ยังพบว่ามีตัวอย่างงานวิจัยจำนวนมากที่ พยายามนำเสนอการพัฒนาของแผนการสุ่มตรวจสอบใน การจัดการคุณภาพ เช่น Marvin, Kim, and Park, 2009 [7] ได้นำเสนองานวิจัยซึ่งเน้นการเลือกนโยบายการสุ่ม ด้วอย่างมาตรวจสอบเพื่อลดดันทุนด้านคุณภาพและ ด้นทุนการตรวจสอบไปพร้อมกันด้วยการบูรณาการข้อมูล

ด้านคุณภาพระหว่างฝ่ายขายและผู้ผลิตชิ้นส่วนของ บริษัทกรณีศึกษา Belmiro and Pedro, 2008 [8] ออกแบบ แผนการสุ่มเพื่อการยอมรับแบบ SSP และแบบ DSP ที่มุ่งเน้นให้ความคลาดเคลื่อนหรือความเสี่ยงจาก การตัดสินใจด้วยแผนการสุ่มมีค่าน้อยที่สุด Andreas et al, 2011 [10] นำเสนอการออกแบบและประยุกด์แผนการสุ่ม เพื่อการยอมรับในการควบคุมความเข้มข้นของ Escherchia coli O157 ในเนื้อสัตว์เพื่อให้เป็นไปตาม มาตรฐานของการควบคุมคุณภาพในออสเตรเลีย Vellaisamy, Sankar and Taniguchi, 2003 [11] และ Aminzadeh, 2008 [14] เสนอแผนการสุ่มตรวจสอบ สำหรับการตรวจติดตามกระบวนการที่ไม่อิสระ โดยการ ประยุกต์ค่าเฉลี่ยเคลื่อนที่ของความเสี่ยงในการตัดสินใจที่ เป็นผลมาจากกระบวนการก่อนหน้า (Autoregressive Moving Average, ARMA) โดย [11] ใช้แผนการสุ่ม ตรวจสอบแบบ DSP ในขณะที่ [14] ใช้แผนการสุ่มแบบ ลำดับขั้น Muhammad, 2011 [12] และ Pearn and Chien-Wei, 2006 [13] น้ำเสนอการออกแบบแผนการสุ่ม ที่บูรณาการการวิเคราะห์ทางด้านเศรษฐศาสตร์เพื่อให้ได้ แผนการสุ่มที่มีประสิทธิภาพและประหยัดในเวลาเดียวกัน โดย [12] พิจารณาการตรวจสอบชิ้นส่วนที่สั่งเข้ามาแบบ EOQ การตรวจสอบเป็นแบบทำลายทิ้ง ในขณะที่ [13] ประยุกด์กับการตรวจสอบคุณลักษณะทางคุณภาพ แบบต่อเนื่อง

งานวิจัยที่ได้กล่าวถึงโดยสังเขปนี้ทุกงานได้กล่าวถึง ความสำเร็จในการช่วยลดปัญหาด้านคุณภาพ ลดต้นทุน และเพิ่มศักยภาพในการจัดการด้านคุณภาพทั้งสิ้น จึงเห็นได้ว่าความต้องการใช้งานของแผนการสุ่มยังคงมี อยู่อย่างต่อเนื่อง อย่างไรก็ตามการออกแบบและสร้าง แผนการสุ่มก็ยังคงมีความยุ่งยากโดยเฉพาะกับพนักงาน ผู้ปฏิบัติงานซึ่งโดยปกติจะมีทักษะทางด้านการวิเคราะห์ ทางสถิติที่จำกัด

ดังนั้นงานวิจัยนี้จึงนำเสนอแนวทางการสร้าง วิเคราะห์และเลือกแผนการสุ่มเพื่อการยอมรับ เพื่อแก้ปัญหาประสิทธิภาพการตรวจจับชิ้นส่วนอลูมีเนียม เสีย ก่อนนำเข้าสู่กระบวนการผลิตและได้สร้างระบบ สนับสนุนการดัดสินใจเพื่อช่วยประเมินแผนการสุ่ม ดรวจสอบ ซึ่งจะช่วยให้การสร้างแผนการสุ่มตรวจสอบมี ความสะดวกและถูกด้องมากยิ่งขึ้น การประชุมวิชาการข่ายงานวิศวกรรมอุตสาหการ ประจำปี พ.ศ. 2556 16-18 ตุลาคม 2556 พัทยา ชลบุรี

# การออกแบบและการสร้างระบบสนับสนุนการ เลือกแผนการสุ่มตรวจสอบจาก MIL-STD-105E


#### 3.1 ความสามารถของระบบ

ทึ่มวิจัยออกแบบระบบสนับสนุนการดัดสินใจเลือก แผนจาก MIL STD 105E เขียนด้วย Visual C++ แสดงผลบน MS Excel สำหรับการตรวจสอบคุณลักษณะ ทางคุณภาพแบบไม่ต่อเนื่อง โดยเน้นให้ผู้ใช้สร้างแผนได้ สะดวกเพียงป้อนข้อมูล Acceptable Quality Level (AOQ) ระหว่าง 0.1% ถึง 10%, Lot Size (N), ประเภท ล๊อต (Continuous หรือ Isolated), รูปแบบแผนการสุ่ม (ระหว่าง SSP, DSM หรือ MSP) และ ประเภทของ การตรวจสอบ (General จากระดับ I - III หรือ Special จากระดับ I - IV) ฝ่านหน้าต่าง C++ ซึ่งรันบน MS DOS ดังรูปที่ 1

| 🐼 c:\Documents and Settings\~oOPuiOo~ My Documents\Visual Studio 2008\Projects\105E\Debug\105E.exe                                             | _ D × |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Sampling Plan ::::: Military Standard 105E                                                                                                     | -     |
| Enter lot size:<br>198                                                                                                                         |       |
| Inspection unit is the number of nonconforning (defective): Enter [ 0 ] inspection unit is the number of nonconfornity (defect): Enter [ 1 ] 0 |       |
| Enter AQL in %: 1                                                                                                                              |       |
| Normal lot (Continuous lot): Enter [ 0 ]<br>Inusual lot (Isolated lot): Enter [ 1 ]<br>0                                                       |       |
| Single sanpling plan: Enter ( 1 ):<br>Double sampling plan: Enter ( 2 ):<br>Wultiple sampling plan: Enter ( 7 ):<br>I                          |       |
| Inspection level = general: Enter [ 0 ]:<br>Inspection level = special: Enter [ 1 ]:                                                           |       |

รูปที่ 1 ตัวอย่างหน้าต่างสำหรับป้อนข้อมูลของ C++

จากนั้นระบบจะกำหนดแผนการสุ่มจากฐานข้อมูล ซึ่งสร้างบน Notepad และแสดงผลลัพธ์ซึ่งได้แก่ขนาด ตัวอย่างสุ่ม (n) และเกณฑ์การยอมรับล๊อต (c หรือ Ac) บน MS Excel 2007 ดังรูปที่ 2



รูปที่ 2 ตัวอย่างหน้าต่างผลลัพธ์บน MS Excel 2007

นอกจากนี้ระบบยังสามารถแสดงกราฟสมรรถน<sup>่</sup>ะ ของแผนการสุ่มประกอบด้วย OC Curve, AOQ, AOQL, ATI และ ASN เพื่อประกอบการตัดสินใจของผู้เลือกแผน 3.2 ฐานข้อมูล

ฐานข้อมูลตารางของ MIL-STD-105E สร้างและ บันทึกบน Notepad ถูกเรียกใช้งานด้วยรหัสของ C++

### 3.3 การตรวจสอบและทดสอบระบบ

การตรวจสอบความถูกต้องของระบบทำโดยการ เปรียบเทียบระหว่างผลลัพธ์จากระบบและผลลัพธ์ การสร้างแผนด้วยมือ และทดสอบใช้งานกับปัญหา ตัวอย่างจำนวน 30 กรณี

# 4. ปัญหากรณีศึกษา

โรงงานกรณีศึกษานำชิ้นส่วน 4 ประเภท ได้แก่ ชิ้นส่วนที่ทำจากพลาสติก โลหะ อลูมีเนียม และชิ้นส่วน จ้างประกอบ เข้าสู่กระบวนการเพื่อทำการผลิตเป็นเข็ม ขัดนิรภัยรถยนต์ [3] โดยก่อนนำเข้าสู่กระบวนการทาง โรงงานจะมีการตรวจสอบชิ้นงานทั้งลักษณะภายนอก และขนาดต่าง ๆ ซึ่งจากข้อมูลย้อนหลังดังแสดงในตาราง ที่ 1 พบว่ายังมีชิ้นส่วนเสียที่ถูกตรวจพบที่จุดตรวจสอบ จำนวน 669 ชิ้น และ มีตรวจพบในกระบวนการผลิต จำนวน 731 ชิ้น รวม 1400 ชิ้น หรือ คิดเป็นสัดส่วน การตรวจพบ (งานวิจัยนี้จะใช้เป็นประสิทธิภาพการตรวจจับ ของเสีย) เพียงร้อยละ 47.8 ของชิ้นส่วนเสียทั้งหมด สัดส่วนการตรวจพบชิ้นส่วนเสียดังแสดงในรูปที่ 3

ตารางที่ 1 ข้อมูลการตรวจสอบชิ้นส่วน

| ชิ้นส่ว<br>น | จำนวน<br>ที่ตรวจ | การตรวจพร<br>จุดตรวจรับ |        | วจพบชิ้นส่วนเสีย<br>กระบวนการผลิต |        |
|--------------|------------------|-------------------------|--------|-----------------------------------|--------|
| 10           | rivid d U        | จำนวน                   | ร้อยละ | จำนวน                             | ร้อยละ |
| Р            | 5800             | 158                     | 0.699  | 68                                | 0.301  |
| М            | 2500             | 144                     | 0.735  | 52                                | 0.265  |
| А            | 7500             | 259                     | 0.325  | 537                               | 0.675  |
| AY           | 3950             | 108                     | 0.593  | 74                                | 0.407  |

หมายเหตุ : A = พลาสติก M = โลหะ A = อลูมีเนียม AY = ชิ้นส่วนจ้างประกอบ

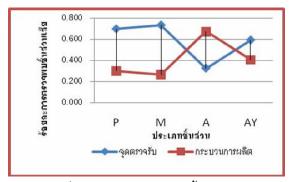
นอกจากนี้ยังพบว่าชิ้นส่วนอลูมีเนียมมีจำนวนมาก ที่สุด รับจากผู้จัดส่งเป็นลือตขนาดเฉลี่ย 300 ชิ้น จำนวน การประชุมวิชาการข่ายงานวิศวกรรมอุตสาหการ ประจำปี พ.ศ. 2556 16-18 ดุลาคม 2556 พัทยา ชลบุรี

จากข้อมูลในตารางที่ 1 ประเมินได้ว่าสัดส่วนของเสีย (*p*) ของชิ้นส่วนอลูมีเนียมมีค่าเท่ากับ 0.106 สมรรถนะ ของแผนการสุ่มปัจจุบันเมื่อประเมินจากความน่าจะเป็น ในการยอมรับล๊อต *P<sub>a</sub>* ของแผนการสุ่มจากสมการที่ (1) AOQ จากสมการที่ (2) และ ATI จากสมการที่ (3) จะได้ *P<sub>a</sub>* = 0.57, *AOQ* = 0.06 และ *ATI* = 132 ชิ้น ดัชนีทั้ง 3 อธิบายปัญหาประสิทธิภาพการตรวจจับชิ้นส่วนเสีย ณ จุดตรวจสอบ โดยเฉพาะโอกาสในการยอมรับล๊อตจาก การสุ่มตรวจสอบร้อยละ 57 ซึ่งเมื่อเปรียบเทียบกับข้อมูล ในตารางที่ 1 พบว่าโอกาสนี้เท่ากับ 67.5 มีค่าไม่ต่างจาก ทางทฤษฎีมากนัก

$$P_{g} = P\{d \le c\} = \sum_{d=0}^{c} \frac{n!}{d! (n-d)!} p^{d} (1-p)^{n-d}$$
(1)

$$4QQ = \frac{P_a p (N-n)}{N}$$
(2)

$$ATI = n + (1 - P_0)(N - n)$$
(3)


เมื่อ d คือจำนวนชิ้นส่วนเสีย c คือเกณฑ์ในการยอมรับ n คือขนาดดัวอย่างสุ่ม N คือขนาดล๊อต p สัดส่วนของเสีย ในล๊อด

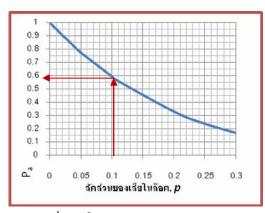
ค่า AOQ = 0.06 ปงซี้ว่าโดยเฉลี่ยหลังการตรวจสอบ จะยังคงมีของเสียปนในลือตเข้าสู่กระบวนการผลิตร้อยละ 6 หรือจากข้อมูลชิ้นส่วนอลูมีเนียมที่ได้รับจำนวน 7500 ชิ้น ประมาณได้ว่าจะมีของเสียปน 446 ชิ้น (ตารางที่ 1 เป็น ข้อมูลจริงมีของเสีย 537 ชิ้น) แผนการสุ่มนี้จะส่งผลให้มี จำนวนชิ้นส่วนทั้งหมดที่ต้องตรวจสอบเฉลี่ย 132 ชิ้น ซึ่งจะส่งผลต่อต้นทุนและเวลาในการตรวจสอบโดยตรง จากสมการที่ (1) สามารถสร้างเส้นโค้งคุณลักษณะ ดำเนินการ (OC Curve) กราฟแสดง AOQ และ ATI ของ แผนการสุ่มนี้ได้ดังรูปที่ 5, 6 และ 7 ตามลำดับ

จึงเห็นได้ว่าแผนการสุ่มที่ใช้สำหรับตรวจสอบ ลักษณะภายนอก n=5 และ c=0 นั้นไม่เหมาะสมกับ การตรวจสอบล๊อตชิ้นส่วนอลูมีเนียม

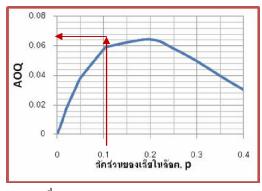
งานวิจัยนี้จึงได้นำเสนอทางเลือกแผนการสุ่ม ดรวจสอบจาก MIL-STD-105E พร้อมทั้งวิเคราะห์สมรรถ ของแต่ละแผนด้วยระบบสนับสนุนการตัดสินใจที่สร้างขึ้น เพื่อความสะดวกในการประเมินดัชนี *P*<sub>a</sub>, AOQ, ATI ของแต่ละแผน

7500 ชิ้น ประสิทธิภาพการตรวจจับชิ้นส่วนเสียด่ำที่สุด คือตรวจจับได้เพียง 259 ชิ้น จากทั้งหมด 796 ชิ้น หรือ คิดเป็นร้อยละ 32.53 เท่านั้น จากตารางที่ 1 ประเมินได้ ว่าสัดส่วนของเสียแยกตามประเภทชิ้นส่วนได้ ร้อยละ 3.9, 7.8, 10.6 และ 4.6 สำหรับประเภท พลาสติก โลหะ อลูมีเนียม และชิ้นส่วนจ้างประกอบ ตามลำดับ รูปที่ 3 ปงชี้ว่าประสิทธิภาพการตรวจจับ ณ จุดตรวจสอบของ ชิ้นส่วนอลูมีเนียมด่ำที่สุด ทำให้พบชิ้นส่วนเสียใน กระบวนการประกอบสูงถึง 537 ชิ้น หรือคิดเป็นร้อยละ 67.5 ส่วนใหญ่เป็นชิ้นส่วนที่เสียเพราะลักษณะภายนอก

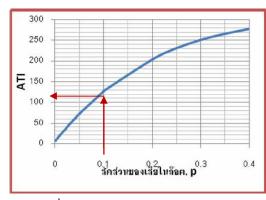



รูปที่ 3 ประสิทธิภาพการตรวจจับชิ้นส่วนเสีย

ดังนั้นแนวทางการลดของเสียในล็อตและการเพิ่ม ประสิทธิภาพการตรวจสอบของชิ้นส่วนอลูมีเนียมจึงเป็น ประเด็นเร่งด่วน งานวิจัยนี้นำเสนอเฉพาะแนวทาง การเพิ่มประสิทธิภาพการตรวจจับชิ้นส่วนเสียเท่านั้น โดยเริ่มจากการศึกษาลักษณะของชิ้นส่วนซึ่งพบว่าเป็น ชิ้นส่วนแกนหมุนและตัวล๊อคเข็มขัดนิรภัยถยนต์ ดังรูปที่ 4




รูปที่ 4 ชิ้นส่วนแกนหมุน (ขาว) และตัวล็อค (ซ้าย)


วิธีการตรวจสอบ ณ จุดตรวจสอบปัจจุบันมี การตรวจสอบ 2 วิธี คือการใช้เครื่องมือ POKA-YOKE ในการตรวจสอบขนาด และ การสุ่มชิ้นงาน 1 ชิ้นมา ตรวจสอบด้วยเครื่อง Coordination Measuring (CMM) และใช้การสุ่มตรวจสอบแบบชั้นเดียว กำหนด n=5 ชิ้น ต่อล๊อต ยอมรับล๊อตเมื่อไม่พบของเสีย (c=0)







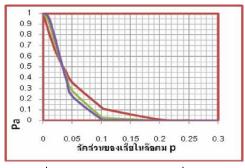




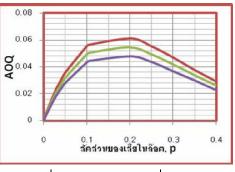
รูปที่ 7 ATI ของแผนการสุ่ม N=300, n=5, c=0

#### 5. การแก้ปัญหากรณีศึกษา

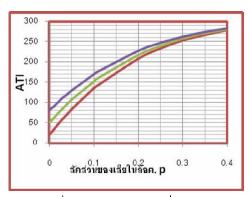
การแก้ปัญหาของกรณีศึกษานี้มีการสำเสนอเป็น 2 แนวทางคือ แนวทางที่ 1 การแก้ปัญหาเชิงป้องกัน ระยะยาวโดยการกำหนดนโยบายคุณภาพและ การควบคุมที่เกี่ยวข้องกับกระบวนการของผู้ผลิตชิ้นส่วน ซึ่งรายละเอียดจะไม่กล่าวในงานวิจัยนี้ แนวทางที่ 2 การแก้ปัญหาระยะสั้นโดยเสนอแผนการสุ่มตรวจสอบ


การประชุมวิชาการข่ายงานวิศวกรรมอุตสาหการ ประจำปี พ.ศ. 2556 16-18 ตุลาคม 2556 พัทยา ชลบุรี

ประเภท General Level I, II ้และ III สำหรับแผ<sup>่</sup>น Nornal, Tightened และ Reduced กำหนด AQL= 1% ได้แผนดังแสดงในตารางที่ 2


|           | 9    | ข           |       |
|-----------|------|-------------|-------|
| แผน       | 53   | ดับการตรวจส | ้อบ   |
|           | I    | Ш           | Ш     |
|           | F    | Н           | J     |
| Normal    | 20/0 | 50/1        | 80/2  |
| Tightened | 20/0 | 80/1        | 125/2 |
| Reduced   | 5/0  | 20/1        | 50/1  |

ตารางที่ 2 แผนการสุ่มตรวจสอบชิ้นส่วนอลูมีเนียมที่นำเสนอ


ตัวเลขในตารางที่ 2 เช่น 20/0 ของแผนการสุ่มแบบ
Normal ระดับ I หมายถึง n=20, c=0 ซึ่งจะเห็นได้ว่า
การใช้แผน n=5 และ c=0 ในการตรวจสอบแบบเดิมนั้น
เทียบเท่าได้กับแผนแบบ Reduced ที่นำเสนอนี้ ซึ่งจะ
ใช้ได้ก็ต่อเมื่อผู้จัดส่งชิ้นส่วนมีประวัติอุณภาพดีและมีผล
การตรวจสอบเป็นไปตามเกณฑ์การสับเปลี่ยนแผน
(Switching Rule) [8] ซึ่งในกรณีศึกษานี้ไม่เป็นจริง
สมรรถนะของแผนการสุ่มแบบ Normal ทั้ง 3 ระดับ
ดังแสดงในรูปที่ 8, 9 และ 10



รูปที่ 8 เส้นโค้ง OC ของแผนการสุ่มที่นำเสนอ



รูปที่ 9 AOQ ของแผนการสุ่มที่นำเสนอ



รูปที่ 10 ATI ของแผนการสุ่มที่นำเสนอ

จากรูปที่ 8, 9 และ 10 เป็นสมรรถนะสำหรับ การตรวจสอบแบบ Normal เมื่อขนาดล๊อต *N*= 300 และ n/c เท่ากับ 20/0, 50/1 และ 80/2 จากเส้นบนลงล่าง สำหรับรูปที่ 8 และ 9 ส่วนรูปที่ 10 เป็นเส้นจากล่างขึ้น บน ซึ่งจะพบว่ามีค่าสมรรถนะดังแสดงในดารางที่ 3

ตารางที่ 3 แผนการลุ่มตรวจสอบชิ้นส่วนอลูมีเนียมที่นำเสนอ

| e. d  | ระดับการตรวจสอบ |       |       |  |
|-------|-----------------|-------|-------|--|
| ดัชนี | I               | П     |       |  |
| β     | 0.106           | 0.026 | 0.007 |  |
| AOQ   | 0.056           | 0.050 | 0.044 |  |
| ATI   | 140             | 157   | 174   |  |

เมื่อผ่านการพิจารณาแล้วทีมงานผู้รับผิดชอบจาก โรงงานกรณีศึกษาเลือกแผนการสุ่มตรวจสอบระดับ I คือ n=20 และ c=0 เนื่องจากไม่ต้องการเพิ่มภาระงานของ พนักงานมากนัก ในขณะที่มี β ประมาณ 0.106 ซึ่งยอมรับได้ และ AOQ ของทั้ง 3 แผนไม่ต่างกันมากนัก จากนั้นประยุกต์แผนที่เลือกกับการตรวจสอบชิ้นส่วน อลูมีเนียมและติดตามเก็บข้อมูลจำนวน 10 ล๊อต

### 6. อภิปรายผล

จากชิ้นส่วนที่ดรวจสอบตามแผน n=20, c=0 จำนวน 10 ล็อตติดต่อกัน รวม 3126 ชิ้น พบว่ามีล็อตที่ถูก Reject 7 ลือต พบชิ้นส่วนเสียที่จุดตรวจสอบรวม 142 ชิ้น ทุกล๊อต ที่ถูกปฏิเสธผู้จัดส่งด้องทำการคัดเลือก 100% และ ทดแทนหรือซ่อมชิ้นส่วนเสีย พบชิ้นส่วนเสียหลุดเข้าสู่ กระบวนการจำนวน 31 ชิ้น ดังนั้นชิ้นส่วนเสียทั้งหมดใน 10 ล๊อตที่ตรวจสอบนี้เท่ากับ 173 ชิ้น คิดเป็นสัดส่วน

การประชุมวิชาการข่ายงานวิศวกรรมอุตสาหการ ประจำปี พ.ศ. 2556 16-18 ตุลาคม 2556 พัทยา ชลบุรี

ของเสีย (p) เท่ากับ 0.055 ซึ่งลดลง<sup>์</sup>จากก่อนหน้า (0.106<sup>́</sup>) ประสิทธิภาพการตรวจจับชิ้นส่วนเสียที่จุดตรวจสอบได้ ร้อยละ 82.08 และ มีชิ้นส่วนเสียหลุดเข้าสู่กระบวนการ ร้อยละ 0.99

จากผลลัพธ์ของการประยุกต์แผนนี้จะเห็นได้ว่า ประสิทธิภาพการตรวจจับชิ้นส่วนเสีย ณ จุดตรวจสอบ เพิ่มขึ้นจากร้อยละ 32.53 เป็นร้อยละ 82.08 และสามารถ ลดชิ้นส่วนอลูมีเนียมเสียที่หลุดเข้าสู่กระบวนการจากร้อยละ 7.2 เป็นร้อยละ 0.99 โดยผลลัพธ์นี้มีค่าดีกว่าผลที่คาดว่า จะได้รับทางทฤษฏีเมื่อ แผน n=20, c=0 ถูกใช้ใน การตรวจสอบ ทั้งนี้อาจมีสาเหตุมาจากการกำหนด นโยบายคุณภาพและการควบคุมเพื่อป้องกันระยะยาว ส่งผลให้ผู้จัดส่งชิ้นส่วนมีการควบคุมคุณภาพชิ้นส่วนก่อน ส่งดีขึ้นซึ่งส่งผลให้สัดส่วนของเสีย (p) ในล๊อตลดลงจาก 0.106 เป็น 0.055 ประกอบกับการเพิ่มความระมัดระวัง ในการทำงานของพนักงานส่งผลให้การตรวจสอบมี ประสิทธิภาพมากยิ่งขึ้น

ข้อมูลก่อนการปรับปรุงบ่งซี้ค่า *p* = 0.106 และหลัง การปรับปรุง *p* = 0.055 ของล๊อตของชิ้นส่วนอลูมีเนียมที่ ส่งมา บ่งชี้ว่าการกำหนด AQL=1% ของโรงงาน กรณีศึกษานั้นยังไม่ได้รับการตอบสนองจากผู้ผลิต ชิ้นส่วน ดังนั้นการสร้างแผนการสุ่มจึงด้องพิจารณาจาก β เป็นหลัก และยังคาดเดาได้ว่าการสับเปลี่ยนแผน การสุ่มระหว่างแบบ Normal และ Reduced จะยังไม่ เกิดขึ้นจนกว่าคุณภาพของผู้ผลิตจะดีขึ้นถึงระดับ AQL ที่กำหนด

# 7. สรุปผลการวิจัย

จากการดำเนินการวิจัยนี้สรุปได้ว่าการสุ่มตรวจสอบ เพื่อการยอมรับยังคงเป็นเครื่องมือที่มีความจำเป็นต่อ การจัดการด้านคุณภาพ โดยงานวิจัยนี้ได้นำเสนอ แผนการสุ่มจาก MIL-STD-105E พร้อมทั้งสร้างระบบ สนับสนุนการตัดสินใจเลือกแผนการสุ่มเพื่อลดความ ยุ่งยากด้านเอกสารและการประเมินสมรรถนะของแต่ละ แผน จากการประยุกต์กับการแก้ปัญหากรณีศึกษาพบว่า สามารถปรับปรุงประสิทธิภาพการตรวจจับชิ้นส่วนเสีย ณ จุดตรวจสอบได้อย่างมีนัยสำคัญทำให้มีของเสียหลุด เข้ากระบวนการผลิตน้อยลง ส่งผลให้ดันทุนด้านคุณภาพ ลดลงได้เฉลี่ย 682,000 บาทต่อเดือน [3] อย่างไรก็ตาม การประชุมวิชาการข่ายงานวิศวกรรมอุตสาหการ ประจำปี พ.ศ. 2556 16-18 ตุลาคม 2556 พัทยา ชลบุรี

การปรับปรุงคุณภาพของผู้ผลิตชิ้นส่วนเป็นสิ่งที่ต้อง ดำเนินการต่อไป

#### กิตติกรรมประกาศ

งานวิจัยนี้ได้รับการสนับสนุนจากคณะวิศวกรรมศาสตร์ มหาวิทยาบูรพา ด้วยทุนอุดหนุนการวิจัยและพัฒนา ประจำปีงบประมาณ 2552 สัญญาทุนเลขที่ 57/2552

#### เอกสารอ้างอิง

- [1] สาธิตา เผื่อนเอียม. 2550. การประเมินและปรับปรุง แผนการสุ่มตัวอย่างสำหรับตรวจสอบในอุตสาหกรรม บรรจุชิ้นส่วนรถยนด์แยกประกอบเพื่อส่งออก ต่างประเทศ (CKD). วิทยานิพนธ์ปริญญาวิทยา ศาสตรมหาบัณฑิต, สาขาการจัดการการขนส่งและ จิสติกส์, บัณฑิตวิทยาลัย, มหาวิทยาลัยบูรพา.
- [2] ชัยทัด เวียงหฤทัย. 2550. การปรับปรุงแผนการสุ่ม ตรวจรับเข้าวัดถุดิบ โดยดัดแปลงจาก MIL-STD-100E. วิทยานิพนธ์บริญญาวิศวกรรมศาสตร มหาบัณฑิต, สาขาวิศวกรรมอุตสาหการ, บัณฑิต วิทยาลัย, มหาวิทยาลัยบูรพา.
- [3] สุกิจ วัตรศรีวานิช และ บรรหาญ ลิลา. 2552. การ ปรับปรุงแผนการตรวจสอบชิ้นงานก่อนเข้าสู่ กระบวนการผลิตชิ้นส่วนเข็มขัดนิรภัยรถยนด์. การ ประชุมวิชาการข่ายงานวิศวกรรมอุตสาหการ, ขอนแก่น, 21-22 ดุลาคม 2552: หน้า.
- [4] ภัทรพล นวลสมศรี, วนิดา ประสมทรัพย์ และ สุจิตรา ทีปกร. 2552. โปรแกรมคอมพิวเตอร์สำหรับแผนการ สุ่มตัวอย่างเพื่อการยอมรับตามมาตรฐาน MIL-STD-105E. ปริญญานิพนธ์วิศวกรรมศาสตรบัณฑิต, สาขา วิศวกรรมอุตสาหการ, คณะวิศวกรรมศาสตร์, มหาวิทยาลัยบูรพา, หน้า 40-55.
- [5] James R.E. and William M.L. 2005. The Management and Control of Quality, Thomson South-Western, Singapore; 3-4.
- [6] Roger S., Kevin L., and Dongli Z. 2005. Evolution of Quality: First Fifty Issues of Production and Operations Management. Production and Operations Management, Vol. 14, No.4 : 468-481.

- [7] Marvin R., Kim D., and Park E. 2009. A Sampling Policy for the Reduction of Quality Cost and Improvement of Accepted Percentage in Company L. The Asian Journal on Quality, Vol. 10, No. 3 : 99-113.
- [8] Belmiro P. and Pedro M. 2008. An Optimization-Based Approach for Designing Attribute Acceptance Sampling Plans. International Journal of Quality & Reliability Management, Vol. 25, No. 8 : 824-841.
- [9] Douglas C. M. 2005. Introduction to Statistical Quality Control (5<sup>th</sup> ed.). John Wiley International, U.S.A : 646-709.
- [10] Andreas K., Glen M., Robert B. and IAN J.
  2011. Assumptions of Acceptance Sampling and the Implications for Lot Contamination:
  Escherichia coli O157 in Lots of Australian
  Manufacturing Beef. Journal of Food Protection, Vol. 74, No. 4 : 539-544.
- [11] Vellaisamy P., Sankar S. and Taniguchi M.
   2003. Estimation and Design of Sampling Plans for Monitoring Dependent Production Processes.
   Methodology and Computing in Applied
   Probability, Vol. 5, No.1 : 85-108.
- [12] Muhammad A.. 2011. Economic Order Quantity with Imperfect Quality, Destructive Testing Acceptance Sampling, and Inspection Errors. Advances in Management & Applied Economics, Vol.1, no.2 : 59-75.
- [13] Pearn WL. and Chien-Wei W. 2006. Variables Sampling Plans with PPM Fraction of Defectives and Process Loss Consideration. Journal of the Operational Research Society, Vol.57: 450-459.
- [14] Aminzadeh M. S. 2008. Sequential and Non-Sequential Acceptance Sampling Plans for Autocorrelated Processes using ARMA(p,q) Models. Comput Stat, Vol.24 : 95-111.