

A Digital Stopwatch

Designed in VIVADO & Implemented on NEXYS 4 DDR FPGA Board

Matthew Guirguis, Andy Lalaj, Jean-Pierre Ortiz, Derek Ramos

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

 mgguirguis@oakland.edu, anduellalaj@oakland.edu, jortiz@oakland.edu, dkramos@oakland.edu

Abstract: A digital stopwatch was built in

Vivado using VHDL and implemented on a

Nexys 4 DDR board. The stopwatch had a

pause, go, lap, and reset function. The primary

goal of the project was to develop a better

understanding of digital systems. The choice of

designing a simple stopwatch system was made

so that each member of the group could

participate as a stopwatch contains the most

fundamental digital logic components.

I. INTRODUCTION

 The goal of this project is to construct a

digital stopwatch using a combination of VHDL

and the Nexys 4 DDR board. This stopwatch in

particular will be able to count up based on the

time elapsed; in addition, it is being designed

such that it can save four of those times or ‘laps’

for future use. This allows the stopwatch mimic

the functions of a mechanical watch, with the

time being displayed on the seven segment

display of the board. The time will range from

hours to hundredths of a second as displayed on

the seven-segment display. The code itself will

use a combination of registers, state machines,

buffers and logic gates to control the circuit. The

timing of the individual seven-segment displays

required learning how to have them cascade

such that the next nomination of time would

only appear once the previous ones have

elapsed. This project can then be adapted for use

in an actual digital stopwatch.

METHODOLOGY

The two major components of this

digital system design were the finite state

machine (FSM) and the datapath circuit. A

finite state machine is a mathematical model of

computation that can be in exactly one of a finite

number of states at any given time.[1]

The datapath circuit is the collection of

functional units that performed the data

processing. Seven AND, four NOT, and one OR

gate was used in conjunction with three busses.

The first bus was designed to hold the 32- bit

output of the counters. The second and third bus

were connected to the output of the FSM

controlled the buffer enable and the register

enable respectively.

Switches are the main control of the

stopwatch. The first four switches on the board (

SW[0] - SW[3]), going to signal lapEn, control

the lap function of the stopwatch, this function

allows a user to record up to four different times

while the stopwatch is running, allowing a user

to write and rewrite as he/she chooses, to be

displayed after the stopwatch has been paused.

The last switch (SW[15]), going to signal

stop_go, controls the stop and go function of the

stopwatch. The cpu_reset button, going to signal

resetn, is coded to reset the value of the

stopwatch to zero. The seven segment display

displays the time elapsed down to a hundredth of

a second. The maximum time possible is slightly

over 100 hours. The major components of the

system are as follows:

A. Counting

Every counter used in this project has a

total of three inputs and two outputs. The first

input, resetn, is an active-low reset which sets

the count to zero when resetn is low. The next

input, clock, is the clock signal from the board,

where the counter will only function on a rising

edge of the clock. The last input, E, is an enable

that either allows the counter to function and

continue counting if it is driven high, or pauses

the counter when it is driven low. The two

outputs are Q and z, where Q is the current count

of the counter, and z is only high when the

counter has reached its maximum count.

mailto:mgguirguis@oakland.edu
mailto:anduellalaj@oakland.edu
mailto:jortiz@oakland.edu
mailto:dkramos@oakland.edu

This stopwatch uses eleven counters to

function, nine of them are shown in Figure 1.

The other two counters will be discussed later in

the report. The stopwatch increments every .01

s, or every 10 ms, however the Nexys 4 DDR

board has a native clock speed of 100 MHz,

which translates to 10 ns per cycle. In order to

get a clock pulse for 10 ms, the first counter was

used to produce an output high every 106clock

ticks. Now, the clock has been translated from a

speed of 10 ns to 10 ms, which is what is

required for the stopwatch to function. The

enable for this counter is the stop_go signal,

which means that if the signal is low, the count

will stop, only counting if the signal is high. The

other eight counters in Figure 1 each correspond

to a digit of the counter, with six 0-9 and two 0-

5 BCD counters. The z output of the 10 ms

counter then gets routed to two locations; the

enable of the hundredths of seconds counter and

an and gate linking the z output from the

hundredths counter and its enable. The output of

the and gate is then sent to the enable of the next

counter, and this process is continued for the

other seven counters. Thus, the counters will all

be in sync, each only counting once the one

before has reached its maximum count.

A BCD (binary coded decimal) Counter

is a serial digital counter that counts ten digits

and then resets for every new clock input.[2]

This was done using a four bit counter that skips

the values from ten to 15. This is known as a

modulo 9 counter, as it retains the modulo

function by resetting the value after the counter

reaches nine. A modulo 5 BCD counter is also

used to display the maximum value for seconds

and minutes, as the largest unit for minutes and

seconds are 59.

The 4-bit Q outputs of all eight BCD

counters then get placed into a 32-bit bus which

will transport the count to the next portion of the

system.

Figure 1:Counters

B. Lap Function

 The lap function is made up of four 32-

bit registers, 5 buffers and an or gate. A 32 bit

register has four inputs. A data input, where the

signal to be stored is sent, in this case a 32-bit

signal. An active-low resetn input sets the output

of the register to 0 if it is driven low. A clock

signal dictating when the register outputs the

data input, on every rising edge. Finally, the

enable input only allows the register to output

the data input when it is driven high, otherwise,

the register maintains its previous value. The

output ,Q, of the register is a 32-bit signal that is

taken from the data input. A buffer either passes

a signal through it or outputs a 0, depending on

high or low of an enable input.

 For the lap function to work properly,

the 32-bit count bus from the eight counters is

fed into the data input of all four registers. The

enables for the registers come from a 4-bit bus,

lapEn. When an enable is high, the register will

be recording the current count. Once the enable

is switched low, the register will hold the count

value from that moment, effectively holding the

lap time. The Q outputs of the registers, along

with the count bus, get sent into 5 buffers. The

buffers are controlled by the 5-bit bus, buffEn,

which enables one buffer at a time. This means

that at the or-gate, only one output will contain

any ones, as the other four outputs will be all

zeros, thus outputting the signal from the

enabled buffer. While the stopwatch is counting,

the buffer for the count is enabled, which sends

the count output to the display portion of the

system.

Figure 2: Lap Function

C. Finite State Machine

The FSM controls the output to be

displayed. There are three different states in this

design: an initial state, a count state, and a pause

state.

The first state is triggered only when the

resetn signal is low. Within this state, the buffer

enables are set so that only the buffer for the

count is enabled, so as to only display the count.

The register enables are also set to the not of

lapEn, which makes lapEn an active-low enable

for the registers, recording the lap when a switch

is toggled up. This state then immediately moves

on the next clock cycle to either one of the two

remaining states, where the main operations take

place. The count state is activated when the go

input (connected to stop_go) is 1, in which the

stopwatch counts up with increments of

hundredths of seconds. This state also holds the

same values as the initial state did. The third

state, pause, is activated when the go input is 0.

In this state, all the register enables are set to 0,

and the buffer enables are determined by lapEn.

The FSM checks the laps from 4 down to 1,

enabling the data in priority, only showing the

latest count when all the lap switches are at 0.

D. Display Function

 The stopwatch display is made up of

two banks of four 7-Segment Displays. These

displays are driven by a combination of two

counters, a 32-to-4 MUX, a 7-Segment Decoder,

a 3-to-8 Decoder and a 3-to-1 Decoder.

 Since the display is made up of eight

displays who’s data lines are all connected, it is

necessary to multiplex through all of the inputs.

In order to accomplish this, the 32-bit bus,

containing eight 4-bit inputs, is put through the

MUX in order to select a particular digit to

display at a time. This MUX will have a 3-bit

select line, going from 0-7. At the same time,

only the anode for the display that applies to the

particular input may be enabled. Therefore, it is

necessary to also tie the select line into a 3-to-8

Decoder that will enable the necessary digit. The

decoder will send a 1 only to the digit whose

position is indicated by the select line. In order

to enable the decimal points to separate the

hours from minutes and seconds from

hundredths of seconds, it is necessary to also

send the select line into a 3-to-1 Decoder. This

decoder will only send a 1 on the DP input when

position 2 or 6 is selected, to enable the decimal

point.

 However, to run all these components, it

is necessary to drive the select lines. Xilinx

recommends driving the 7-Segment displays so

that they are refreshed every 1 to 16 ms [3]. This

means that each digit should refresh at this rate,

implying that all 8 digits need to be looped

through once during this timeframe. Therefore,

activating each digit for a time frame of 1 ms

will mean a refresh speed of 8 ms, which is still

less than the slowest clock speed. This ensures

that each tick of the stopwatch will have at least

one refresh for each digit. Therefore, hooking

the z output of a counter, counting 105clock

cycles (.001s) with an activated enable, to a

modulo-8 counter will drive the select lines at

this speed. The Q output of the mod-8 counter is

then the select line and will cause the display to

work.

Figure 4: Display Function

Figure 5: Circuit Design

II. EXPERIMENTAL SETUP

The hardware used in this project was an

FPGA board, the Nexys 4 DDR, along with a

computer in order to write to the FPGA board.

The software used on this computer was Vivado

2017.2. This program allows a user to write

VHDL code that can then be implemented onto

an FPGA board. Also, Vivado allows for

simulation, by the writing of a testbench, in

which a user is able to write a script/process for

stimulating the inputs of the digital system.

Simulating what would happen on the actual

FPGA board.

The testbench was designed in order to

test the distinct functions of the digital system.

This includes the multiplexing through the

display by the select line, the 7-segment

decoder, the cascaded counters, the registers and

buffers. Although there is a plethora of things to

test, it isn’t entirely necessary to test all cases,

just that the system functions properly.

The issue that was encountered in

testing the project was simply the time required

to implement the simulations. Therefore the

testbench mostly revolves around the lap

function, only counting up to .05 s, and

recording 4 laps within that time. Then pausing

and going through and displaying the recorded

laps and count. At the same time that this

happens, the anode enable output should be seen

to multiplex through all 8 digits. The 7-segment

decoder, along with the DP should also be seen

to correspond to the specific outputs. The

testbench used to accomplish this is seen in

Figure 6 below.

Figure 6: Count and Lap Function Test

 The rest of the more rigorous and

thorough testing was able to be accomplished by

implementing the program onto the Nexys 4

DDR board. In this fashion it would be able to

ascertain that the circuit works as it should.

III. RESULTS

The stopwatch functioned according to the

design. The results were exactly what was

expected. The only problem was the use of the

decimal point instead of the colon. The code was

designed to include a colon in the display but the

proper leds in the seven segment display would

not power. This was strange considering the fact

that they are on the same power rail when the

schematic was inspected.

IV. v

The project was done to develop a greater

understanding of digital systems. Everyone that

participated has a better understanding of digital

systems now. To further this design a number of

things can be done. Considering this is a basic

counter with stop and go function the can be

implemented in a considerable amount of

projects a a form of time keeper.

REFERENCES

[1] Wright, David R. (2005). "Finite State

Machines" (PDF). CSC215 Class Notes. David

R. Wright website, N. Carolina State Univ.

Retrieved July 14, 2012.

[2]https://www.electronicshub.org/decade-

counterbcd-counter/

[3]

https://reference.digilentinc.com/reference/progr

ammable-logic/nexys-4-ddr/reference-manual

[4]http://www.secs.oakland.edu/~llamocca/VHD

LforPGAs.html

http://www4.ncsu.edu/~drwrigh3/docs/courses/csc216/fsm-notes.pdf
http://www4.ncsu.edu/~drwrigh3/docs/courses/csc216/fsm-notes.pdf

