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A DISCRETE-TIME DIFFERENTIAL DYNAMIC PROGRAMMING

ALGORITEM WITH APPLICATION TO OPTIMAL ORBIT TRANSFER

By

‘Stanley B. Gershwin and David H. Jacobson

Division of Engineering and Applied Physics

Harvard University Cambridge, Massachusetts

ABSTRACT

Recently, the notion of Differential Dynamic Programming has
been used to obtain new second-order algorithms for solving non-linear
optimal control problems. (Unlike conventional Dynamic Programming,
the Principle of Optimality is applied in the neighborhood of a nominal,
non-optimal, trajectory.) A novel feature of these algorithms is that
they permit strong Variatibns in the system trajectory.

In this paper, Differential Dynamic Programming is used to
develop a second-order algorithm for solving discrete-time dynamic
optimization problems with terminal constraints. This algorithm also
utilizes strong variations and, as a result, has certain advantages
over existing discrete-time methods.

A non-linear computed example is presented, and comparisons
are made with the results of other researchers who have solved this
problem.

The experience gained during the computation has suggested
some extensions to an earlier, previously published Differential Dynamic
Programming algorithm for continuous time problems. These extensions,

and their implications are discussed.
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Notation

Vectors are columns; the scalar product of a and b, where
2 3!
a b
n ’ n

n
is aTb or bTa. and is equal to Zaibi . The derivative of a scalar by a
i=1

vector is a row, and is written:

_ 9V _ \'A ov
Vx———x—[a—ﬁ ""’_—8x ]
1 n -

The second derivative of a scalar by vectors is a matrix:

[ %V _o%v ]
axl akl axlakm
N : :
xk oxok 2 2
oV 9V
ox 0ok et ox_ ok
n 1 n m

where x is an n-vector and k is an m-vector.

Thus a second-order Taylor expansion will be written:

Vix + Ox,k + Ok) = V(x,k) + V_Ox + V, Ok + Z0xTV__ox

T 15 T
+ Ox vxkék + -2—5k vkkék

-—y-




I, Introduction

Jacobson [1], [2] has derived av second-order algorithm for solving
continuous time optima‘,lnc_:ent‘rol problems using Differential Dynamic
.'Prograrr;ming. This algorifhrh differs from other second-order or. ;
second-variation algorithms, [4], [5], [6],:_ [7], [9], [10], [11], [14] in
that it is derived usmg global variations in control (strong vanatmns
in the traJectory) | | | -

In this paper a similar algorlthm is developed for ‘solving d1screte-
time dynamic optimization problems with termmal constraints, The
new algorithm uses the notion of strong variations and hence,.as in = -
the case of the continuous time algorithm, has advantages over existing
discrete~time algorithms [4], [5], [9], [14]. The algorithm can be used
to solve continuous time problems that are approximated by difference
equations.

A non-linear numerical example is. presented and comparisons -;

' :are drawn with McReynolds [4], [5] and others [7], [8], who have solved
thi,s’probltem previously, using -other methods. The experience gained
in the numerical computation has suggested extensions.to the continuous
algorithms in[1]and [2]. In particular, the 'step-size adjustment' :
technique is generalized by the introduction of additional criteria for
ensuring that the 'trial new trajectory', at each iteration, is sufficiently
close to the current nominal trajectory to guarantee an improvement in

cost and/or terminal error.




II. Derivation of the Discrete Algorithm
II.1. Statement of the General Problem

The problem to be solved is the followiﬁg: if Xy vy X ATE vector
quantities which satisfy

(1) Xipl T f(xi,ui,ti)

and x  is given, find the vectors u_,...,uy . to minimize the scalar
-1

N-
(2) V= Z Lix,,0,,t) + Flxy)
&

fare

where the solution must satisfy the (vector) equality constraint
(3) 8(xy). = 0 |
N and Eos oo aty are known quantities, and a nominal control Uy ey UN-]
is given. |
Defining
5 T
(4) V(Xo’ k, to) =V+k™8 |,

)T

‘the equivalent problem of finding Uy to minimize V(Xo; ko" 1:o

©5UN -1 .
and k to satisfy (3) is solved in succeeding sections. A nominal value
of k, E, is assumed given.

II. 2. Outline of thé' Solution

The optimal return function V satisfies Bellman's "Principle of

Optimality" [3], which in this case is:

(5) Vix,, k,t,) = min [Lix,u, ;) + Vixg, 1,5t

fori=0,...,N-1.
Regarded in terms of displacements 6Xi’ ,Gxi+1, and Ok from the

nominal trajectory,

+ It is ‘assumed that a minimum exists.

-2



x, = x, + Ox,
1T L1

%41 = %41 0%y
and (5) becomes )
(6) Vi + O, ko Ok, ty) = “{fin[l‘(.xi +0xyy 5 t;)
tV(x, gt 5xi+1,k + Ok, ti_‘+1)]‘

The.algorithm is:derived from equation (6) in.the following sequence
of steps:

1.  Expand Eoth_sides in Taylor series about ;i, k and ;Zi'+1 in 6Xi’

: :.1.551;~;a{1d;5?;i R

2. Relate 6Xi+l tov5xi.

3. Perform the indicated minimization with respect to u, in two

' sta.g‘é”s S

e

A. Find u1 which minimizes the right side of (6) with
Ox, = 0 and 0k = 0.
B. Expand about u: in 5u.1 with 5xi and .0k non-zero, and
min@rpize w_ith respegt to 5ui. This will give 5ui as
‘a fyl\lnC'ti-.Olil of Gxi and Ok.
4. E‘qq.ate“c_ogffi??ents of like powers of 5xi and Ok to obtain
L oL :

:dilfferenqe‘ e'_qfuati‘ovns in V; » Vi, etc.

It is assumed that 5xi, 5xi and Ok will be sufficiently small

+1
that all Taylor expansions can be terminated at second-order terms.
II. 3. Solution

Following the prescription of the previous section, the left side

of (6), when expanded in a Taylor series, is,

..3_




= X CVE,E ) + & VEE 2 vz, E ¢t )0k
(7) V(xi,+ 5xi,k + 0k, t,) = V(xi,k, t) + 52 V(xi,k,,t;i)bxi 9% Vixg, k, t,)0k

2
1T 9 —_
+ Eﬁxi — V(xi,k, ti)‘sxi
ox :
T az |
+ 6;{1 e V(x ) K, ti)5k
1+ T az - =
+§6k — Vix.,k,t.)0k + ...
ok t 1

The reader should note that V(;c-i,—l;,,ti) is the minimal value of the
return function obtainable with initial conditions at ;i’ £ and with
k = k. It is not the same as V(;i’-l:’ ti)’ the value of the return

function calculated along the nominal trajectory, starting from t,.

Symbolically,
N-1
(8) Vix, K t,) = . Z Lisej, upy t) + Flxy) + T 0(xy)
j=i
‘where x, TTERRRPESN satisfy (1), and X, = ;i'
However,
(9) Vix, Z L, 0y, +F(x)+k 0(xy)

where Uiy e Uy is the nominal control sequence and thus,

;{-i" Ceny ;N is the nominal trajectory (which satisfies (1) with

uj :uJ, j= .,N-l).
-Acknowledging the difference between'V(§i,E, ti) and'V(;i, k"ti)’ ‘
define $

(10) a(x;, kit,) = Vix;, k,t,) - V(x, K t,)




To simplify notation, let

i
0 - | ‘
™ V(xi,k, tl) = Vx , etc

Then
(10" at = vl - ¥
-and applying (10) to (7), obtain .
(11) V(x + 0x,F + 0k, t.) =a + ¥+ v ok + VoK +Loxivi Ox

i =i 7 x i k 2 71 Txx Ui

T, i l s Ti 5
+ 6},‘,1 V_ Ok + Zﬁk Vi Ok + .
Similarly, expanding the quantity to be minimized in equ.é,tion (6)

about x, » k x,

i+l? , o L o
(12) L +-Li bx, + %ax, Lt ox, + a1+1 : 71+1 . Vi+1 5x.+1 L vitl
T Litl T 1+1 T i+l
+ 5 6 +1V 6 +6 +1 6k+6k V 6k+
where, as above, ai+1 ¥ Vl"'1 V1+1.
.Expression (12) is -an infinite ser‘iesvinﬁxi, '6x1+1 and Ok.  But

it is clear that there is a relationship between'ﬁxi and 5xi+1 through

equation (1). This relationship may be used to eliminate either ~5xi

or ~5xi+1. from (12), but to conform with equation (11), 5Xi+1 will be
removed.

%41 7 Hxp 0 1)

x4y = Hgpmp 1)

+ L and its derivatives are evaluated.at x.,u.,t.. The control u, is
‘ ¥ : A S ¥ i
yet to be determined.



Thus,‘éxi_l_1 = f(xi,u ) f(x.,u.,t.) o

i? T2 1

(13). ‘6X1+1 = f(xi + 6Xi’u:i’ti) - -f(xi,ui,ti)

In equation (13), u; is perfectly general. It will later be fixed
by the minimization operation of equation (6).

Expanding (13) about ;i’ and defining

i_
= f(x1 u1’t1)

= f(x,u.,t,)

i’ it ?

obtain

o 1ls Ti
(14) Gx. (f ) + f Ox x, + 25xi fxxaxi + ...

where the derivatives of f are evaluated at (;Ei,ui,ti).

Substituting (14) into (12), obtain
(15) T AT LR ST L i (o

i+l i

T .
+[L FVL V1 (£ - T]0x,

il A Tyl
+[vk + (f f)VXk]Gk

+ 0x T vitley,
i x xk
15 T. i+l
+3 Ok Vi Ok

. . T
" %6X.T[L1 +vitLd £ V1+1
1 XX X XX

£+ (@ - TV J6e 4.
XX XX 1
Recall that equation (5) has now been transformed to

(16) "r.h.s. of equation (11) = min{expression (15} "
Ui

-6~




As suggested earlier, the minimization in (16) may be performed

in two stages.
£
First u, is found, which minimizes (15) with 5xi = 0 and Ok = 0,

i.e., u minimizes

(17) Lol g it gy el

1 T
% : 2

¢ - 1h (- + ..

Vi+1
XX

(The terms not printed in (17) are of third and higher order in
(£ - Tl), and thus are assumed negligibie. )
For convenience, define

(18) H' = H(;;'i,u’j"g’ by = Lhgyithd

i 1 X

In (18), and for the rest of this paper, all functions of u, are

3

evaluated at ui' .

Note that{t” i L
o= Lo+ vitle
X X
st vt et
XX XX X XX

sk
Since (17) is at a minimum when evaluated at u., its first

derivative with respect to u, must be zero;

i i = T itli
(19) Ho+ (£ -F) v, £ =0

CIp add‘iti’on; the second derivative of (17) (to be defined as A) must

be positive definite at u, =

itld o - hHTvitld 5o

4 . R . . 5 T
(20) A=H +£ V
uu u XX u ST xx Tuu .

(Thel'thira"'terrf; in (20) does not appear in the 'weak variation'algorithms

of [4], [5], [9], [14].



b *
Expanding (15). about u, with,u.i =u, + Gui, the following is

‘obtained, using (19) and (20).

(21) Ly aitl ity vl“( T+ (e - )Tv‘“( -7
T
+ [H + £ v1+1 - T4))0x,
+ [Vi:’l F (£ - 1+1]61<
+ Ox T 1+16k
x. xk
T . |
+ 5uirf1 V1+1;6k
iu " xk
T iT 5414 i Toitl d
+5xi[ u +£ v, f +(f ) Vxxfxu]‘su‘i
15 Tyod 1T e14 i+
+—2--5x.[H +f v, f+(f f)V ]Jox,
1 XX XX xx 1

15 T, i+l
+ Eﬁk Viek Ok

+ %Gu’.I‘Aﬁu.
1 1

Terms of order (5xi)3_, (Gui)3, (5]:()3 or greater have Bee_n ignored
in (21).+

The second stage of the minimization is accomplished when (21)
is minimized with respect to ‘Gui. B |

Taking the first derivative of (21) with respect to ‘Gu'i and setting

it to zero, obtain

+ It is assumed that Gx 511 and Ok are small enough to justify this
truncation.

-8-




(22) 5ui = pléxi + [325k

where
(23) - B —-A—l[HI » + ;iTVi+1fi + ( i f1)TV1+1f ]
1~ ux u XX X XX “ux
T
_ -1 47 it]
(24) ﬁz = =A f V K

Equation (22) is a linear feedback perturbatmn control law. It
is sufficient to consider- 511 to be 11near in: le and Ok because on |
substituting an expression of hlgher. order than (22) into (21), terms of
higher order than quadratic would appear.

On substituting (22) into (21), the result is

i i+l | =i+l i+l i, T i+l

.c 1 . —_ . —
(25) L' +a' + VT4V (£ f1)+—2—(f1-f)VXX(f1-f1)

A4+l 4
- [H + (f ) VXX fx]é !

i+l

gt - T ok

+ [V <k

Tri i+l ;T
REs "ank h Aﬁz]ék

1 T i+l i i+l i T
t3 5xi [H + f v f + (f )VXx £ P Apl]éxi-

15 T 1
+—2'6k [ 1+ pz Aﬁz]ak

Expression (25) is the minimum of (15) with respect to u,.
Thus, expression (25) is equal to the r.h.s. of equation (11), by
(16). Therefore, coefficients of like powers of 521 and Ok must be

equal.



Noting that

(26) V=it i

b

equating (11) and (25) produces the following difference equations, valid

fori=0,...,N-1,

(27) . a1+1 +H - 'I:I".L + %(fl -_?i)TVH-l(fl -.P‘)
XX
(28) vi ot 4 (d -7 Tyitld
X X XX X
i Atl 4 =i, Toitl
(29) Vie sV (- )TV
. T
i _ AT ivl T
(30) Vi = 5 Vi " P 2B;
i itl T
(31) Vi T Vi T P2 4P
(32) vi oo s fiTVini i -FYyvitld L pTap
xx  Txx X XXX U xx Txx 1771

The boundary conditions are applied at i = N, and are the same

as in [1]. They are found by expanding

— — _ _ T - ;
Vi + Oxpp k + Ok, tyg) = Flxy +,5xN) + (k + Ok) 0y + GXN)

N’
to second-order in a Taylor series in GXN and 0k. Because this. is the
last time step, vV = v, Thus,

(33) aN = 0

and, from the expansion,

(34) VS =F (%) + ETeX(EN)
(35) vllj = 07 ()
(36) v}ljk - eg(ZN)
N _
(7 Vi = O

-10-




Vi FX (xp) +k°0 X(xN)

Thus, if we "1ntegrate" equatlons (27) (32) from i = N-ﬂl to 0 with

equat1ons (33 (38) as boundary cond1t1ons then equatlons (19) and (22) show
how _’j;o ‘Cal.cu,lat;e,' 5 _ui = u: + §ui t\o get» opt1ma.1 1mprovement on per-
formance 1(ndewa(x k-t ') | | -
| These results are only meémngful 1fv thé second- or‘der truﬁca£1ons
of the Taylor series above are good approximations of the full expansions.
Thus Gxi, 6Xi+1’ 0k, and Gui must be small. There is no restriction
sk

on Au‘i :-‘.'u,{‘ - Ei“eXcept that f - £* f(x ul ) f(x u , t. ) must be

sufficiently small to guarantee the smallness of 6xi+l'

III. Comparison with and Extensions of Ja'éobson?'s Results
III.1. Comparison and Discussion
The case in which the discrete problem is an Euler discretization

of a continuous p‘i‘obi"em is of interest. In that casé,

(39) f(xi,ui,ti) =%, + At f(xi,ui,ti)
and
~
(40) L(Xi’ ui’ti) = L(xi’ui’ti)At
Clearly,
. x(t, + At) - x(t.) X. - X,
(41) %(t.) = lim —= " L = lim L:f{x.,u.,t.)
At-0 at>0 At R
and
N-1 N-1~ ' tN’;
(42) lim | L(Xi’ui’ti) = lim ZL(xi,ui,ti)At= 5 L(x(t), u(t), t)dt
At=0 20 A0 iZo : to o
N-o0 N-co

if the discretization is done with care.

-11-



It is reasonable to expect that if the transfqrmations (39) and
(40) are applied to the results of the previous. section and the limit
is taken aé At —0, equa’tions should be obtained which solve the ané.lo-
gous continuous proBlem. | |

Jacobson [1] has solved that problem, and the statement of the
problem, as well as the solution are reproduced beiow, vin ‘A\pper‘ldix'A.

Note that |

H = Tlat + Vi:l(;i + atth

where the same abbreviated notation as in the last section is used.

Thus

i+l~i 1+l 1+l

(45) —(L +V f)At+V -HAt+V

Then, according to (20)

' i+17 i+l4
(44) A= H LAt + (at) [f v f1 + (f )vxx £
Define
(45) A= /At

which will be written

(46) A=H +A'at
uu

for clarity.

From (23) and (45),

T . T
e ¥t w2 S £ o3 DR, £ % S £ 3 £, 10 ) SRR, < NI A A ) I
(47) By = (H + fu Vs ) - A () Vs £t (£ -17) Vs fux
Similarly, from (24),
L S|

) by =T VY

In the same manner, applying (39), (40), (43), (45), (47), and (48)

to (27)-(32), the following are simply obtained.

-12-
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ot - Fhyyltty @ - Ty A

— - T~
- Bz Aﬁz
i | "'iT i+l it+17
=H _+L V4V, f’.‘+plApl
mT ie1m BTl
+At[fV f+(f 9TV ]
XX XX

Jacobson's [1] equations for B, B,, a, V_, V,, V_,, V.., and
Vxx are reproduced below in Appendix A. Inspection will reveal
agreement between tholsle and (47)-(54) as At—0.

It should be noted that although the discrete f, L, and H are
‘related to their respective continuous counterparts through (39),
7(40), and (43), the discrete a, V, derivatives of V, By, and B, directly
approxu'nate the cont1nuous quantities. As At—0, the discrete and
continuous versions of the latter quantities approach one another.

Equations (39) and (40) and the transformations that resulted
from them were ﬁsed to éhow the connection between the present
discrete equations and the earlier [1] continuous equations. However,

cas,e:'s ‘may exist where:(39) and (40) are useful numerical methods

with which to solve a continuous(problem’.-l- Then, (47)-(54) contain

+ Continuous-time problems which are particularly sensitive to u may
require a large number of small time steps when the algorithms of [1],
[2] are used. Then, since Atis small, sufficient integration accuracy
may be obtained from an Euler scheme. -See [2, page 17].

-13-



the full dependence on At, which involves terms of order At and higher.
It may be worth while to retain high order terms -[14].,

Also, (47)-(54) indicate that some of the arguments of the
right sides are to be evaluated at time i+l, and others must be
evaluated at time i. A simple Euler discretization of the continuous
time algorithm [1], [2] would evaluate all arguments at time i+l.

It may be possible to obtain more useful versions of (47)-(54) |
by replacing (39) and (40), the Euler discretizations of f and L, by
a more sophisticated, accurate scheme. |
III. 2. Description of the Algorith.nd

The discrete algorithm is very similar to the continuous
‘algorithm [1, section 4.8], and is outlined in Flow Chart II.

The algorithm is a successive approximation process, and
each app;'oximation has two st‘ages. In the first stage, k is kept
constant, and optimization takes place with respect to u., without .
regard to the value of 6. .In the second, Qk_is calculated to reduce
6 in absolute value.

The first stage proceeds as follows. Equation (1) is "integrated"
using initial conditions X and nominal control -IIO, .ae "EN-I . - Then
equations (27), (28), and (32) are integrated back from i = N, with
boundary conditions (33), (34), and (38)..

If a® is not close to zero, then, by definition (10), the nominal
control is not close to optimal for the current value of k. To improve
the trajectory (i.e., to get closer to the optimal and reduce *a.-o), (19)
is solved for u;:: and (22) is used to calculate u, = u? +‘5ui, .which is
used as the new optimal control in (1). The cycle repeats. If

necessary (see below for the descriptions of the tests to explain this

14~




Obtain, from main algorithm, the time Neff
when | a (X; t)| becomes greater than 7,. 7,
a small positive quantity.

+ Denotes integer '
eno Yes HALT;
division s Neff <1 =% opT|MAL FOUND.
| No o
Set C=0.5
v /
Set r=0
¥

: "N N art* .
Ny = (FEE0T) 4 Nor =Ny g where Noo = 2- Neff

Apply u=T on the interval [I, N]] and u=u* + B88x on

,/'rhe?in’rervcl [N., N]. Calculate the cost V(xq;!) and

| hence the improvement AV=V (xg; 1)-V(xg;1)

Is criterion ANV A—

AV o satisfied ? YeS, Ny satisfactory
? 1V

-

No Proceed fo next

No Z N - - iteration of main

-< IS N, =Neff-1 or is Neff=1? algorithm
o Yes ’

- Increment r by | Is =007 | e, HALT; NO IMPROVEMENT
IN TRAJECTORY
f ATTAINABLE.
Set ¢=0.0
. ]

FLOWCHART I: "STEP SIZE ADJUSTMENT METHOD"



Using a nominal control T (tj); te [to, tf] run a
nominal % (t)) trajectory. Calculate the nominal
cost V (Xo; to). Store the X and U trajectories

and V.
"~

Using boundary conditions 33,34,38 integrate equa- : ‘

tions 27, 28, 32 backwards from t to tg, all the while If Neff=I, integrate

minimizing H wr.t.u fo obtain u¥ and storing (20), (31) backwards

uX(), Bilt;), Bokti). Note also the time Neff from (36),(37). Cak-

when |a (% t)| becomes greater than .7 culate - Sk from (59).

chosen from numerical stability considerations. InfengTe:state
equations (1),

4 Apply the "step size adjustment method" (s.a.m.)
to obtain a new improved trajectory. |f the cur-
rent nominal control is optimal or if an improved
control cannot be found, then s.am. halts the
computation.

if an improved trajectory is obtained, replace
the old nominal Xj,ujand V by these new values.

FLOW CHART II:. THE OVERALL COMPUTATIONAL PROCEDURE




necessity) the step-size adjustment routine is called. (This routine
will not be discussed here, but, for completeness, it appears,
schematically in Flow Chart I. It is described in the references, [1],
and [2, section 4]. )

If a° is close to zero, and © is also close to zero, the problem
is solved. |

If 2© is close to zero but 6 is not, the algorithm enters its
second stage: k is modified (according to the formula of the next
section) to reduce each comp.onent of 0 in absolute value.
IIi; 3. Determination of Ok

0k is found in the following manner. Jacobson has shown
[1, section 4. 6] that, to second-order, the proper value of Ok is

that which maximizes V(;:-O,E + Ok, to).+ But
T

o

k

- - o — 1 T.,0 s
(55) V(x_,k+ 0kt ) = a +V° + v, Ok + 30k Vi, Ok

Therefore the proper value of 0k satisfies

(56) Vi ot ka5k =0
or
v T o'-l oT
(57) Ok~ = -Vp Vp
o =F o—l , .
(Jacobson shows that ka is negative definite,' so that ka exists.)
Since, in the present algorithm, Ok is only evaluated when
fi - ?1 = 0 (because a® = 0), Vlci = OT(EN) from equations (29) and (35).
Then, (57)‘becomes
o"1 _
(58) Ok = “Vige 80xy)

+ McReynolds [4] and Bryson and Ho [13] have obtained similar
conditions.

+ Provided that the linearised system is controllable, and 9: has
full rank.

-17-




Following [1], k is modified according to (58); (1) is then
integrated forward with u, = u? + Gui chosen according to (19) and
(22). If the resultant value of e(xN) is not smaller in absolute value

(component-wise) than B(EN), choose
-1
Ok = -e V2 %)
(59) k erk O(XN)

where 0 < ¢ <1, and reduce € until e(xN) is reduced and a° is neaf
zero. |
III. 4. New Criteria

It is essential that 5xi and Ok be kept small. ‘This ensures that
Gui will be small, and thus the second-order expansions of (6) will
remain valid. If 5xi and 0k are found to be too large, i.e., if they
invalidate the truncations of the Taylor series in section II, means
for reducing them are presented in Jacobson's algofithms [1, section
4.2.1], [1, section 4.8], [2, section 4]. These techniques apply to
the discrete problem as well as to the continuous.

There are criteria in [1] and [2] for deciding Whether to reduce
axi and Ok or not. However, an addition criterion, required for fixed

end point problems is described below (Test 1).,'

A criterion, alternative to that in [1], [2] is also given. This
criterion (Test 2) is useful in cases where i‘t is desirabie to keep
the 'new trajectory' in the immediate neighborhood of the nomina1.+ g
Although 0k ‘isf chosen according to (59) (where € is such that
S(XN) is reduced), it may lie outside the ra’ngev of validity of the expan-

sion (11) (when truncated at second-order terms).

+ Such may be the case when the trajectory must be prevented from
"jumping" to another near by local minimum. In the following section,
an example is discussed in detail where this was found to be necessary.

-18-



Ati= 0, (11) coincides with (55). Since both sides of (55) may be

independently measured (i.e., choose Ok and evaluate the left-hand side.
Then integrate (1) as described above and evaluate the right-hand side,
V(_}EO,E + -5k, to)‘)’ (55) may be considered to be a test of Ok.

If 0k is given by (59), then (55) predicts that

-1
o

- = - 1 2 T,— —
(60) V(x_,k+ 0kt ) - V7 =a® - (e -5€0" (x)Vy, 8(x)

2
If (60) does not predict the change in V to within a given tolerance,
then € should be reduced until it does.
Test 2

From (4) and (9),

N
o . . -
(61) Vo= Z L’ + Fxy) + k™ 0(xy)
j=i '
A N
=i _ N\ =j —_ —T -
(62) V' = Z D)+ Fxy) + k- 6(xy)
j=i |
Thus
N
63y . ovi=vi-Fi- Z L) + (Flxy) - Fly) + (kTG(xN) - ETe(EN))
j=i
But, from (11),
i i, o i 1T i & T i 1s T i
(64) OV' =a" + V_0x. + Vk5k +50x V. Ox; + 5xi vxkék + 50k’ kaék

Since (63) and (64) must be equal, their proximity is a test on the
size of 5xi and O0k. This is because (63) is an exact expression, and
(64) is an approximation dependent on 6Xi and Ok.

In order to use (63) and (64) as a step-by-step test of 5xi, their

form should be modified. This is because (63) involves x.., which is

N’

not yet available at step i of the forward integration. The modification
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is a simple one: from (63),

N
N F - T —
(65) - ov°= Z LI + (Flxy) - F(y) + (kT 0(xy) = K1 0(xy))
j=0
Thus,
i-1
(66) ov - 6vO = 'ZﬁLJ
j=0 ,
Similarly, 6V’ - 6V° may be calculated from (64).
(67) ovE - 6v° = [al + viox, + vioKk + S0x vV Ox, + OxlVE Ok
x 1 k 2 71 Txx i i xk

1s T _ 1.0 05 5. Tv0 5
+ 50k Vv, Ok] - [a” + V, Ok + 50k™ V., Ok]
The last equation may be simplified somewhat by noticing that
: .

V, = Vo whenever 0k is evaluated. Thus

k k

(68) 6vi - 6VO = al - 2% + Viox, + ~0x vl 6x. + 0x LV Ok
x 1 271 "kx i Tixk

r2o vl ok - LoV ok
Then, test 2 is performed by determining whether (66) ‘agrees
with (68) within a given tolerance. If the test is failed’+ then 0k should
be reduced, or, if 0k is not present, 5xi should be reduced by the
step-size adjustment method.

This test is particularly simple to apply in cases where

L(X"ui"ti) = 0.

+ Failure of the test at ti (0 < ti <t..) allows one to discontinue

N
integration of this 'trial trajectory!' at t instead of integrating all.

the way to t . ; this can save considerable computer time.

N)
-20-




IV. Numerical Example - Comparison with McReynolds' Successive
Sweep Method
IV.1l. Statement of the Orbit Transfer Problem
An orbit transfer problem [4], [5], [7], [8], [12] has been solved.
In this problem, a control sequence must be found to maximize the
fé,aial distance of a rocket from the sun, with the terminal covn.dition
that the rocket be in a solar orbit.
%, is a 3-vector, whose components répresent radial
distance (fi‘orn the sun), radial velocity, and anguiar ‘
velocity, ‘respectively, normalized so that the initial

condition (in earth's orbit) is

N) = . ; (8 = 0is the condition for a

*3,N "'_le,—l\;

state to be in a stable orbit.)

~i

L =0,

F(xN) = xl,N . Thus,

V = xl,N + k161 + kzez
Xz,l
XZ
= 3.1 1 + A'sinu,
X155 i
2 1’1
Xq. X, . .
-——2—;1——3’-1 + Alcosu,
1,i
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where

. 1405
1.0 -. 07487!;i

Al =

The time interval [0,t ] is given.

Note that F(x,,u.) = F(x.) + G'(w.). Thus i = V:TH (F(x.) + Gi(u,))
_ . i’ i i i X i SRR
and H1 and 'fl vanish.
This statement of the problern was inserted 1nto (46) (54) w1th terms

of order higher than At dropped. The equations becorne:

(69) X = ﬁlim = V;HGim

(70) B, = —Z'l’ffvi:

(71) B, = -A 'E Vit

(72) a' =™ v Gl ) - GIE)at

(73) V=V G+ (@) - GV as

(74) vi=virh (6l - Gl 1))}V:1-<1At

(75) V;k = V:;l:l +(F ( )VIJ;{1 ;fs;rZﬁz)At

(76) VLk - V;;l - By ARyt

(77) vi = v L (VIRE G+ F oDV s v:{li«:x(;i) + B KB, } At

sk

s
where u.i was found by maximizing H which was equivalent to maximizing

+1 . . ' . e .
V1 G (u i)’ which, in turn, was equivalent to finding the maximum of

VH_I2 sinu. + V1+1 cos U‘i

X, i X, 3




Thus

; : * . sk
VI-H2 cosu, - V1+1 sinu, = 0
X, i %, 3 i
or,
(78) u: = arctan(V 1+1 /VI-H3

Terms of higher order in At were dropped on the assumption
that such terms were negligible in comparison with those of order At.
ok

In the forward integration phases, u, = u, + 5ui was computed

directly by maximizing

(79) 1"—'11(x + O, u, V1+1 4 Bx L ViJrl £ ok Tyvitl

i’ i+l kx

_ i+l T i+l T 1+l i

= (V4 0x V. "+ 0kV )(F( + Ox, )+ G(u))
with respect to u,. Note that 5Xi+1 should be replaced by (14), which
becomes

- - Ao = 15 T =

(80) 6Xi+1 = 5xi + At[(G(ui) G(ui)) + Fx(xi)axi t5 5xi Fxx(xi)éxi]

However, this is of higher order than the degree of approximation,
and it is satisfactory to replace Ox, ; in (79) by 0x.

The new criteria described in the previous section were experi-
mentally applied. Test 1 appeared to be essential for the algorithm
to converge. Without it, 0k was often chosen too large. Test 2 was
found to be helpful and time saving. A more detailed discussion will
be found in section V.
IV.2. Comparison with Successive Sweep Method

This algorithm converges somewhat faster than McReynolds'
Successive Sweep Method [4], [5], [6] on this problem, starting from

the same initial nominal. This may be because the two techniques
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differ primarily in the minimization:":and fi - F and I--Ii - -I-_Il téfrns which
are present here and absent from the successive sweep method. But,
close to the optimal, those terms are small, and the minimization
yields results which are close to McReynolds' method for choosing
5ui. Thus, close to the optimal, the algorithms are ‘very nearly the
same. Karlier in the computation, the terms are large, and the
minimization permits the present routine to take larger steps. Th'us',.
this routine is able to get to the vicinity of the nominal in fewer itera-
tions than the Successive Sweep Method, and once there, to take j'ust.
as many additional iterations to converge. |

In addition, this routine does not evaluate Huu (or A) until after
a minimization has been performed. Thus Huu is always negative
(definite). McReynolds evaluates Huu on the nominal tra;jeétoi‘y, and
so, he must either choose his initial nominal so that Huu is negative,

or he must invoke a device to partially overcome the difﬁculty.+

. V. Numerical Results
V.I. Discussion of the Trajectories in Tables 1-4
Tables 1-3 contain optimal trajectories calculated for the problem

of the previous section by means of the algorithm described above.-

(The computer program is presented in detail in Appendix B. See

the section on the BETA subroutine for an explanation of Bl, ﬁé, !33. )
The value of 3. 32 was used for tN in order to compare results

with [4] and [5]. The ofher value, 3.3194 was determined in [12],

where the authors solved a minimum time problem. Their problem

+ -,IHLu +vB1l is used in place of Hlllu where B! is chosen to go to zero

as the nominal is approached. $ee [5, ‘page 596].

+ Which becomes a maximization in this problem.
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was identical with the present problem, except that they specified-
xl(tN) : 1. 525 (corresponding to the orbit of Mars) as a constraint
and left tN free. Our results agree most closely with those of [12].
(The normalized values of VZ agree with Mto) given in [12], to 3
figufes. )

The rather large differences between the results of 100 time
steps and of 400 steps indicate that 100 "Euler integration" steps are
not really sufficient to model the continuous time dynamic system.

It should be noted that the greatest discrepancies occur in the second-
order quantities. But from (69)-(78), those quantities are the only
ones whose exact equations have high order At terms near the
nominal. (Near the nominal, -l small or zero.) This may
account for‘ the difference in values between our [31’ [3.2, and [33

and those given by McReynolds [5].

It is interesting to note that many different attempts have been
made to solve this problem [4], [5], [7], [8], [12]. Our results
agree most closely with those quoted in [12] and are more detailed
than those previously published.

Table 4 contains a trajectory which maximizes V without regard
to terminal constraints for nearly optimal values of k1 and kZ’ It is
interesting to note that the maximum obtained for V is far from the
maximum V obtained in Tables 1-3, and the 8's are not zero. Thus
the free end point problem, with k1 and k2 set to their optimal

values has at least two local maxima; ‘the one maximum coincides

with the point 8 = 0, while the other does not. (We have found that
if, starting with this other maximum solution, and the optimal k's,

the k's are changed successively to reduce IGI, using the algorithm,
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then the optimal solution to the problem is obtained. I.e. the k's-are
adjusted away from their ‘optimal' values, but again return to these
optimal values, at which stage the 'correct! minimum of V is
-attained and 6 = 0.)

On the average, the program took approximately 3 seconds per
iteration for the 100 step program and 12 seconds per iteration for
the 400 step program. For this purpose, 'the "number of iterations® -
is defined as the number of times the program went into BAKINT
(see Appendix B) i.e., the number of times (27), (28), and (32) were
integrated. Thus, an iteration includes at least one but possibly as
many as 9 times through FORINT, the.subprogram that inte-
grates the state equations (1) forward. Also, an iteration may
include DKCALC, the program to integrate (30} and (31) and calcu-
late Ok by (59). |

| In the e-arlier versions of the program, where Test 2 was
absent, iteration times averaged as much as 6 seconds for 100 step
trajectories. More details on this follow.

The nominal used to compute the trajectory in Table 1 was the
= , = 1; uit) = 1. 57078 for
0 St < 1.66; ult)=5.7124 for 1.66 <t < 3,32. Convergence to

|6, (x| < 1070 (i = 1,2) required 15 iterations.

nominal McReynolds used: k -1; k

The control history of the nominal used for Tables 2 and 3
was the optimal trajectory computed in {5]. (It was linearly inter-
polated to 100 points, and then expanded to 400 points by repeating
1 5 = 1.264609,

and convergence required 10 iterations. For Table 3, El = -1,399631,

each value four times). For Table 2, k, = -1.41936541, k

—122 = 1.260031 (optimal values from [4:]), and 11 iterations were required.

-26-



Tableﬂ 4 was started from a nominal consisting of the control
history of Table 1's nominal and Kl and '1-<-2 the same ‘asb~those of
Table 3. It took 6 iterations to "converge."

V.2, Uses of Testsv 1 and 2

With neither Test 1 ﬁor Test 2 present the algorithm did not
converge. Constraining each new trajectory by the ‘requirernent that
Test 1 be satisfied was sufficient to ensure convergence. Because
this constraint was usually effective - i.e., many values of 0k were
rejected - this problem appears to be very sensitive to changés‘tin
the multipliers k. |

Pairs of runs were compared: of each, one had only Test 1;
the other had both tests. ‘The comp;rison indicated a certain
redundancy between the two tests. A large number of trial 0k's were
rejected by both Test 1 (where that was the only test) and Tevst 2
(where both tests existeci.) In fact, the same values of 0k were ulti-
rha,tely accepted by the two programs, and the prqgramsi generally
converged tcs the same optimal trajectory in the same number of
steps.

However, the redundancy was not complete. There were Ok's
that were accepted by Test 2 and rejected by Test 1.

But the redundancy is helpful. Test 2 can be invoked often in
the forward integration phase, while Test 1 can only be invoked after
the forward integration phase is complete. Thus Test 2 can save
execution time. This time appears to be quite significant: with both
tests present, a 100 step iteration took about 3 seconds. With only
Test 1, a 100 step iteration took - on the average - more than six
seconds. (As pointed out in the footnote on page 20, the forward

integration of the system equations can be terminated as soon as
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Test 2 fails. Howe\}er; Test 1 r‘equir‘es that the integré,tio‘n be performed
up until ty. - This accounts for the 'time saving' when Test 2 is in-
cluded.) |

A 'difficulty was encountered in using the tests. As the ‘algorifhm
apprdached the optimal, steps and changes in parameters tended to
grow rather small. Then all tests which involve differences of large
quantities become less reliable - in fact, excessivelyvconservativ‘-e.
Thus there should be some means of .disabling the tests when 5xi'or
0k are sufficiently small. |

Once the difficulty was recognized, Test 1 was disabled when

6—o0

0v® = v° - V° was less, in absolute value, than 10 "V~-. Test 2

Was disabled when the absolute value of
a®+ V20k + %'6 kTvlszk

was less than 10'6V°.
V.3. Behavior of the Algorithm

The existence of the maximum in Table 4 may be illustrated by
analogy with a static maximization of a function llof a single variable.
See figure 1.

In order to maximize V(u), one may approximate V with a

second-order Taylor expansion in the neighborhood of TJ.-, a nominal

value.
| oy = N e -2
(81) V(u) & V(u) + V' (u)(u - u) + = V™u){a - )
The value of u that maximizes this is given by
0 = V(@) + $V(@)(u - W)

or
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t

V]

;

(82) u=u-

G

.

Equation (81) may be used to predict the improvement in v using

(82).
o ‘ ~2
(83) Viw) - V(@) = -3 e

which is positive for V"(u) < 0. Then (83) may be used as a criterion
for optimality: whenv(8.3) 1s zZero, U is'a maximum. |

If u is at point A, and the local maximum at point B is the ‘ohe .
desired (rather than the one at point F) some means must be employea
to guaraﬁtee that (82) will producé a value of u in the neighborhood of
B. A value near E w‘ill eventually converge to F. Thus (82) Shduld '

be replaced by

V'(u)

(84) “za'évwm

Then, (83) becomes

-2

2 V'Yu
V()

(85) vm)-wa=(%e

Thus, an improvement may be guaranteed at everj stage 1f
(84) is used with proper choice of €, if the initial nominal lies ’some-.-
where to the left of point D. |
If the nominal is to fhe right of point E, the algorithm will
tend to point F. |
Points between C and E are problematical because V'"(u) is |
not negative-definite+. In neighborhoods of C and E, (84) and (85) are

not useable.

+ In the case of vector u, an increased cost may be -obtainéd éven if
V"(u) is non-negative-definite. In the scalar case this is not possible.

-29-



This is not perfectly analogous to the algorithm for discrete-
time dynamic optimization algorithms, but some comparisons may
‘be drawn. In the discrete .dyn‘amic é-as:e, u may be thought of as an
N-vector (Nv.= 100 or 400). Then V! is a vector, V" is a matrix, and
€ repres-eﬁts ‘the step-size \adjustmerit ,met.hod. Figure 1 may be
fhdught of as a graph of V as a .function of u for:constant,‘ near optimal
k. Point B is the local maximum where 61 = 92 = 0, and is shown in
tables 1-3. Point F is the maximum of table 4.

Behavior due to a pé,int:analogous to E has been observed.
Iteration begén at ppint A, for near optimal k. The next value o‘f.

u was to the right of point D (because V calculated at tha.f point was

greater than that of Table 1. In this case, N = 100, t . = 3.32). In suc-

N
cessive iterations, V continued to increase, as did‘ ‘91 | and IOZI
because u was chosen to maximize H. Howeve»vr,A it was impossible
to drive a° (analogous to (85)) below a certain value. After a few
iterations, éo began to indrease._‘ Finally, a? Jjumped from a typical
value of less than 10“.3 to more fhan 300 in one iteration. At that
iteratioﬁ, élements of V;{X wére of the.qrde’r of 5000. ThlS situation
corresponds to a point near‘ CorE vwhere Vuu is -Jrilearcsin.gular (the

"

singularity manifests itself in the large values of VXX and 2°).

Thus, in order to gué,rantee pro.per convergen;:e itérations
must be restricted to the neighborhood of the relative -minimﬁrﬁ
desired., In the present algb_ﬁthm, the re strictions“are accomplished
by: |

1) The choice of a 'sufficiently good' nominal.

2) Minimization. of H(u) (rather than the use of Ou = _H;I];LHu
as in [5], [6], [9] and [14]).

3) Test 2.
' -30-




FIGURE 1




V.4. Numerical Values of Tolerances

ETA, the criterion of optimality of ao, was set to 10_‘2 and good
results were obtained. Late in the iteration process, a® was always
less and generally considerably less than this value, so that this
constraint is rather ineffective. Earlier in the process, little is
gained by requiring a® to be extremely small, since that would
require precise calcglation of quantities which must change when
k is changed by 0Ok, aﬁd which are non-critical.

Satisfactory results were obtained with CK and TOL, the tolerances
of Test 1 and Test 2, resp;éctively, set to 20% and 30%. At less than
10%, it became impossible to take- steps sufficiently small in 5xi to

satisfy Test 2. (This was found with N = 100..)
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Time Steps
u 3}
.4430 1
. 5188 1.0008
., 6073 11,0044
L7097 11,0121
.8269 11,0252
. 9592 1, 0446
1,107 1, 0711
1,271 1, 1047
1,460 1, 1455
1,730 1,1929
: 2,886 11,2459
1. 4,493 1,3008
1, 4,765 1,3508
2, 4,913 1. 3945
2, 5,023 1,4315
2, 5,116 1, 4619
2, 5,196 1. 4860
2, 5.269 1.5039
2, 5,335 . 1,5162
3. 5,398 11,5233
3 -  1,5257
Optimal V =]1,52572699
k, = -1,40339248
k, = 1,26501024
5 1n-6
61 = ,75%x 10
6, = .l].x,.,10-"6

Table 1

. 0134
. 0353
. 0649
.1ol1

. 1419

. 1853
. 2288
L2701
. 3071
. 3347
. 3157
. 2786
. 2390
. 1991

. 1600
. 1225
. 0872
. 0546
. 0254
. 0000

Final

i
~1, 0201
11,0366
1, 0478
1, 0520
1, 0479
1, 0349
1, 0129
. 9823
. 9433
. 8924
. 8370
. 8032
. 7811
L7675
L7611
. 7609
. 7661
L7762
. 7908
. 8096
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Time =
v, v

1 2
. 8890 . 94316
?3777 . 94982
. 2963 ,.85152
. 0857 .64554
. 96818 . 36222
. 93356 . 045050
.95639 -, 27469
. 0117 -.58597
. 1031 ~. 88384
.2105°  -1,1608
.3356  -1,4034

v

2, 0604
1, 4229
. 82311
. 34816

. 055367

-. 048480

. 0036793
. 17505

. 44689

. 81108

1,2647



. 332
. 664
. 996
1. 328
1. 660
1,992
2,324
2,656
2,988
3.320

.332
. 664
. 996
1. 328
1. 660
1,992
2,324
2,656
2,988
3. 320

. 332
. 664
. 996
1, 325
1. 660
1,992
2, 324
2,656
2,988
. 3.320

107

v

'l

17. 382
4, 024
10,142
"6, 5844
3. 8740
1, 6309
1, 0014
1, 62113
. 30776
x, 20185
-.33000

xiky

11, 763
10, 134
7.9954
5,7024
3.5734
1, 2686
. 68877.
. 40892
. 23166
. 10279
0

kk)

6.2739
5,6858
4.9673
4, 0578
2,8729
. 73108
. 29045
. 13863
. 061401
. 020738

.erx
2

5, 0412
5,9021
5.6729
4, 3821
2,6629

. 93085 -

.43781

.20735 |
. 095264
. 037090

0

v
XZkl

1. 8948
3,2408

©3,8989

3.7125
2,8099
1, 3089
1. 0293
. 95075
. 95901
. 98678
1

.
k)k,

1, 1584
1. 0802
. 97793
. 83754
. 63669
. 28510
. 19060
. 10495
. 053471
. 020602
0

Table 1

v

25, 681

19,323

12, 489
6. 8543
3,2567
1. 2301
. 83305
. 68267
. 51340
.29087

0

v
',X3k1
16, 457
13, 460
9. 8678
6, 3684
3,5868
1, 5331
1. 0404
. 84940
. 61959
. 33387
0

.
- kyky

. 34241
. 33200
. 31744
. 29576
. 26168
. 20310
. 13001
. 081612
. 047200
. 020546
0
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2,7053
2,5363
2,6660
2,3731

1, 5047

. 40562
17979
- 14331
. 10731

-, 040093

0

X1k2

2. 0921

1. 8111
1. 4737

- 1,1258
. 80242 -

. 45836
. 36011

.30271
. 27821
. 26806
. 26537

. 47188
, 60603
, 62691
. 51215
. 28264
. 023940
-, 16333
-, 19132
-, 18414
-, 084390
"0




Table 2

400 Time Steps =—— - Final Time = 3,32
t u x X X v A\ A\
1 2 .73 x, X5 X
0 L4332 1 0 1. 1, 8803 . 93239 2, 0340
. 166 . 5072 11,0010 . 0139 1, 0200 1, 7254 . 94700 1. 7201
. 332 . 5937 1, 0049 . 0361 ‘_1.0362 1,5729 . 93843 1, 4045
. 498 .6936 11,0132 . 0659 1, 0470 1,4273 . 90323 1. 0982
. 664 .8080 11,0269 . 1020 1, 0507 1, 2942 . 83985 . 81261
. 830 .9371 1, 0469 . 1425 1, 0464 1. 1790 . 74911 . 55832
. 996 1, 081 1. 0740 . 1855 1. 0332 1, 0857 , 63410 . 34405
. 1,162 1, 241 1. 1082 . 2285 1. 0114 1. 0160 . 49963 . 17548
1, 328 1. 426 1,1493 .2693 . 9811 . 96936 . 35134 . 054908
1. 494 1, 683 1. 1970 . 3059 . 9428 . 94344 . 19473 -, 018536
1. 660 2, 645 1, 2502 . 3335 . 8927 . 93488 . 034410 -, 048200
1, 826 4,437 1. 3048 . 3149 . 8375 .'94036 -, 12632 -, 039267
1. 992 4,732 1. 3542 2780 .8039 - ,95720 -, 28580 . 0028600
2,158 4, 885 1. 3972 . 2386 .. 7818 . 98321 -, 44323 . 074425
2,324 4,999 . 1,4337 1988 . 7682 1. 0168 -. 59804 . 17286
2. 490 5.093 1, 4636 . 1598 L7617 1, 0569 -, 74962 . 29642
2, 656 5,176 1, 4872 .1224 -, 7613 1, 1029 -. 89717 , 44398
2,882 5.250 1, 5047 . 0871 . 7664 1, 1541 -1, 0396 . 61486
2,988 5. 318 1, 5165 , 0546 , 1765 1. 2102 -1, 1755 . 80871
3,154 5, 382 1, 5232 . 0254 . 7910 1.2709 -1, 3029 1, 0253
3,320 —_— 1, 5254 . 0000 . 8097 1, 3356 -1, 4194 1. 2646
Optimal V = 1,52537493
k1 = -1, 41936325
k2 = 1,26460750
-6
91 == ,33x 10
6, = .37x 107
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*1*1
0 25, 668
L1660 23,004
.332 20,020
. 498 16, 875
. 664 13,767
.830 10,887
. 996 T 8,3712
1. 162 6.2725
1. 328 4,5578
1. 494 3,1074
1. 660 1. 6814
1,826 1.2733
1,992 1. 0094
2,158 80110
2,324 . 62423
2,490 ., 46343
2,656 .30967
2,822 . . ,15707
2.988 . 0014626
3,154 ., 16020
3,320 -. 33005

.V

X\ X2
6.4714

7.3407
7.8261
7.8472

17,4030

6. 5734
5, 4944
4, 3143

3,1493
2, 0442

'-96700

. 66432
. 44680

730614

121096

. 14436

. 096961

.062838
. 037691

. 017914
g OHrek

Ta;blel 2

A

X1Xq xzx.z XyXq
36,811 2,9982 6,1215 -

- 32,083 3,0133 7.5962
26,940 - 3,1994 ' 8.4188
2L 73,4165 0 08,5199

16,748 - 3,5261 ' 7.9529
12,357 34270 6,.8843
.8,7324 - '3,0840 5,5498
15,9299 . 2.5329 4,1859

.'3,8821  1.8550  2,9672

2,431 11295 1, 9686

11,2982 . 42449 ' 1,1349

“L.95119° - 26681 - .91097"
. 85425 17135 ‘.75975
L77199 14147 . 58102
. 69358 ;“6131592; o 39144
oo, 6l1088 12113 20821
'751862' ~',10202“1‘. 050278 -
L 41337, 073672 -, 063771
.29278 = ,040783 ., 11762
.15530  ©, 012180 -, 098794

Vx
*X3%3

51, 271
43,827

35,869
27.975
.20, 696

14, 457
-9, 4885
5.8081

E 3,2561

1, 6713
. 39922
=,31000
. 68761

~.95063 .
21,0988
-1.1304

;1‘0504‘;

-.87208 E

2. 61715
- 31479
_0




0

. 166
. 332
. 498
, 664
. 830
. 996
1,162
L. 328
1, 494
1,660
1..826
1,992
2,158
2,324
2,490
2,656
2,822
2,988
3,154
3,320

v v

16, 324 2,7072
15, 077 - 3,6576
13, 635 4, 3937
12, 044 4, 8705
10, 369 5, 0587
8.6893 4, 9548
7.0750 4,5854
5,5754 4,0023
4,1963 - 3,2638
2.8623 2, 3949
1. 3086 1, 3438
. 90514 1, 1591.
, 69021 1, 0388
. 53029 . 97807
.40854 . 95379
., 31148 . 95055
. 23115 . 95886
. 16260 .97224
. 10257 . 98591
, 048862 1. 99615
0 1

22,568
20, 360
17, 898
15, 288
12, 652
10, 119
7.8073
5,8054
4,.1519
2, 8156
1. 5850
1. 1539
1. 0480
. 94985
. 84945
. 74012
. 61829
. 48265
. 33340
. 17185
"0
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xzk1

2,9965
2,7752
2,5261

2,2562
1, 9757

1, 6962

1, 4283

1,1785

. 94615
. 71731
. 47315
.42623
. 36451
. 32738
. 30386
. 28843
. 27827
. 27178
. 26792
. 26598
. 26540

%252

. 62088.
. 74548
. 83261
. 87461

.. 86650

. 80765
. 70248
. 55971
. 38932
. 19653

~.. 0064651
-. 084704

. 15287

-, 18133
-. 18620

. 17506
. 156239

-. 12132
-. 084297
-, 043302

0
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x3k,

3, 8397
3, 4393
3, 0041

2, 5524
2, 1047

1. 6828

1. 3065

. 99064
. 74192
. 55547
. 41096
, 48855
. 57766
. 66436
. 74675
. 82111

. 88454
. 93504
. 97138
. 99302
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. 166
. 332
. 498
. 664
. 830
. 996
1, 162
1. 328
1. 494
1. 660
1. 826
1,992
2,158
2,324
2,490
2,656
2,822
2,988
3.154
3,320

Y
kiky

8. 8160
8. 3022
7.7593.
7.1776

6. 5494
5. 8690
5,1333
4,3363
3, 4536
2, 3868

. 77092
, 41196
.29083
. 20165

. 13913

. 094332
. 061797
, 038102
, 020935
. 0086435

0

v
kkz

1, 6610
1, 5836
1..5002
1. 4088
1. 3075
1,1947
1, 0687
. 92737
. 76489
., 56341
.. 29390
, 26081
19216
. 14280
. 10584
, 076993
., 054015
. 035595
, 020859
, 0091655
0

Tablé: 2

v

kyky

. 43881

© 42715

| 41432

. 39995

. 38363

- 36492

34336

-31828

- 28837

© 25032

| 20465

- 17086

T 13187

- 10454

" 082684

. 064096

- 047855

" 033524

. 020865

. 0097293
0
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1, 6117
1, 6380
1. 6858
1, 7499
1. 8270
1. 9211
2, 0551
2,3043
2.9216
5, 2092
35,639
~9, 1970
~i4,.033.
-9, 4342
=4,7097
1, 6346

112,727

37,541
114, 52
593, 49
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L)

. 92861
© ., 92017
., 94436
1, 0069
L 1T72
11,2932
1. 5759
2,0820
3,2442
7.7912
1100, Q4
~21, 079
-86, 862
-98, 806
-118. 50
-153,98
-221,03
~366,.27
~781.63

'=3112, 0
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1,2998
1, 3739
1, 4882
1, 6473
1. 8637
C2,1662
2,6231
-3, 4117
- 5,0950
10, 505
71, 209
=23, 071
=25, 854
14, 020
-2, 13581
- 21, 075
60, 962
B3, 11
442, 30
2247.1
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Table 3

400 Time Steps ——  Final Time = 3, 3194
u x x X Vv v A\
1 2 3 % X5 X
, 4333 1 0 1 1, 8800 -, 93244 2.0334

. 166 .5074 1..0010 . 0139 1, 0199 1, 7252 . 94699 1.7196

. 332 . 5938 1. 0049 . 0361 1, 0362 1, 5727 .93838 . 1,4041

. 498 . 6937 . 1,0131 . 0658 1, 0470 1, 4272 . 90314 1, 0979

, 664 . 8080 1, 0268 . 1019 1, 0507 1, 2941 . 83974 , 81232

. 830 . 9372 1, 0469 . 1425 1. 0464 1, 1790 . 74899 . 55811

. 996 1. 081 1. 0739 . 1854 1, 0332 1, 0856 . 63399 | 3439]
1. 162 1,242 1,1081 L2284 1, 0114 1, 0160 , 49953 =, 17540
1. 328 1. 426 1, 1493 . 2692 . 9812 ., 96934 . 35127 , 054860
1, 494 1, 683 1. 1969 . 3059 . 9429 . 94343 , 19468 -, 018561
1, 660 2, 645 1. 2501 . 3334 .. 8927 . 93487 . 034386 -, 048213
1. 826 4, 437 1, 3046 . 3148 . 8375 . 94035 -, 12631 -, 039278
1,992 4,732 1. 3540 L2779 . 8040 . 95720 -, 28576 , 0028443
2,158 4, 885 1. 3971 . 2386 . 7819 . 98321 =, 44317 . 074400
2.324 4,999 1, 4335 . 1988 . 7682 1, 0168 =. 59796 . 17282
2.490 - 5,093 1, 4634 . 1598 , 7617 1, 0569 =, 74951 - , 29636
2,656 5,176 1, 4870 L1223 . 7614 1, 1029 .=, 89703 . 44390
2.821 5,250 1, 5045 . 0871 , 7665 -1, 1541 44,0394 . 61476
2,987 5,318 1, 5163 . 0546 L7765 1, 2103 =1;:1753 , 80858
3,153 5, 382 1. 5230 , 0254 L7911 1, 2709 -1, 3026 1, 0252
3,319 e 1, 5252 . 0000 . 8097 1, 3357 -1, 4191 1, 2644

Optimal V =1, 52516085
=-1, 41910912

= L 26441935

q &

An

B

1
27
17
0, =
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X

1

, 654
. 991
. 009
. 866
. 760
. 882
. 3684
., 2708
. 5568

1069
6813

. 2735
. 0096

. 80125

. 62436
. 46354
. 30975

. 15712

. 0014710

. 16023
. 33013

VX
%2

6. 4705
7.3385
7.8231
7, 8437
7. 3995
6.5703
5.4918
4, 3124
3.1480
2, 0433
. 96672
, 66426
. 44678
. 30613
. 21096
. 14436

. 096968
. 062844
. 037694
. 017915

0

Table 3

v
x1%3

36. 789
32,064

126,924

21, 698
16,739
12, 351
8. 7288
5,9278
3, 8811
2,4306
-1, 2981
. 95129
. 85434
. 77206
. 69364
. 61091

. 51865

. 41338
. 29279
. 15530

40~

e N WWWWWWN

X%

. 9974
. 0124
. 1981

. 4148

. 5240
. 4247
. 0819

. 5311

. 8536
. 1286

. 42418
. 26668
. 17128
. 14142
. 13156
12111

. 10201
. 073662

. 040778

. 012178

— = DR 010N~ 00 00 = O

*2%3

. 1205

. 5935

. 4148

. 5154

. 9484

. 8805

. 5469

. 1839

. 9660 -

. 9680

. 1346

. 91091

© .75970
- . 58099

. 39141

. 20820 -

. 050286 .

. 063752

. 11760 -

-. 098777

. O .

3%3

51. 239
43,799
35, 846
27,958
20, 684
14, 449
9. 4838
5,8055
3, 2549
1. 5708
. 39905
~. 30994
-. 68749
T -,95047
-1, 0986
-1,1302
-1, 0502

-, 87192

-, 61704 -
-, 31473




Table 3

v \4 v v A A

Xlkl kal X3kl Xlkz xzk2 | x3k2

16, 317 2,7075 22, 557 2,9951 .. 62084 3,.8376

15, 071 '3,6572 20, 351 2,7740 . 74530 3,4374

13, 630 4, 3926 17, 890 2,5250 . 83230 3. 0025

12, 039 4, 8689 15, 281 2,2552 . 87420 2,5510

10..366 5, 0568 12, 647 1. 9749 . 86604  2,1036

8. 6864 4,9528 10, 115 1. 6956 . 80718 1, 6819

. 7.0729 4, 5835 7.8046 1, 4279 .70203 -1, 3059
1,162 5,5739 4, 0006 5.8036 1,1782 . 55932 . 99027
1,328 4,1953 3. 2625 4,1508 . 94593 . 38900 - . 74171
1,494 2, 8616 2, 3940 2, 8151 71717 . 19629 . 55536
1. 660 1, 3084 1, 3435 1,5848 . 47314 -, 0065624 41096
1,826 . 90522 1, 1590 1, 1540 . 42626 -, 084763 . 48859
1. 992 . 69030 1, 0388 1, 0481 . 36455 -, 15291 . 57770
2,158 . 53037 . 97804 . 94994 . 32743 -. 18136 . 66440
2,324 . 40861 . 95377 . 84953 . 30391 -. 18622 . 74678
2,490 . 31154 . 95054 . 74018 . 28848 -. 17508 . 82113
2,656 . 24120 . 95886 . 61834 . 27832 -. 15240 . 88456
2,821 . 16264 . 97224 . 48268 . 27183 -. 12133 . 93505
2,987 . 10259 . 98590 33342 . 26798 -. 084302 . 97139
3,153 . 048875 . 99615 . 17186 . 26604 -. 043304 . 99303
3. 319 0 1 0 . 26546 0 1 ~

..41 -




Table 3

t Vv A" Vv ’ 3 . 3
kK, Kk, k,k, B | By by
0 8. 8130 1. 6604 . 43870 1, 6118 . 92857 1, 3000
. 166 8. 2995 1. 5831 . 42704 1. 6381 . 92017 1. 3742
. 332 7.7568 1, 4997 , 41422 1. 6860 . 94440 1, 4886
. 498 7.1754 1, 4083 . 39986 1, 7501 1, 0070 1. 6478
. 664 6.5474 1. 3071 . 38354 1.8273 11174 1. 8643
.830.  5,8673 1.1943 . 36485 1. 9215 1.2934 2.1669
. 996 5.1318 1. 0684 . 34330 2.0557 1. 5762 2, 6241
1. 162 4,3350 - ,92709 . 31823 2. 3051 2.0825 3, 4131
1. 328 3.4525 . 16466 , 28833 2.9229 3, 2455 5,0974
1. 494 2. 3859 . 56322 . 25029 5, 2124 7.7957 10, 511
1, 660 . 77050 .29385 . 20465 35, 663 100, 10 71. 248
1, 826 . 41195 . 26081 . 17086 -9,1921 = =21, 042 -23, 063
1. 992 . 29084 .19217 13187 414, 038 -86, 876 -25, 861
2,158 . 20165 . 14280 , 10454 -9, 4381 -98, 827 -14, 025
2,324 . 13913 . 10584 082681 -4,7120  -118,53 - 13744
2.490 . 094332 . 076991 , 064092 1, 6350 =154, 02 21,.079
2, 656 , 061797 , 054013 , 047852 12, 732 =221, 08 60, 976
2,821 . 03810l .035593 , 033521 37.558 -366, 35 153,15
2,987 . 020934 . 020858 , 020863 114, 57 -781, 82 442,42
3. 153 , 0086431 . 0091649 . 0097283 593, 80 -3112.9 2247, 8
3,319 0 0 0 o ® o
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. 166
. 332
. 498
. 664

. 830

. 996

WWNDNNDNDNDN e e

. 162

. 328
. 494
. 660
. 826
. 992
. 158

. 324
. 490
. 656
.822
. 988
. 154

. 320

1, 147
1, 458

- 1,802

2,172

2.423

2,674
2. 819
2,917
2,990
3, 048
3. 098
3,143
3,186
3,229
3,275
3.33]
3, 406
3,528
3,778
4,473

Table 4

Time Steps e Final

%y X5 x
L, 0 r
1. 0015 . 0233 11,0055
1. 0071 . 0489 .9993
1, 0167 . 0706 ,98l12
1, 0294 . 0826 .9529
1, 0433 , 0833 .9200
1, 0565 . 0722 8850
1, 0672 . 0508 .8525
1. 0738 . 0203 8221
1, 0747 -, 0184 . 7956
1, 0686 -. 0650 .7737
1, 0543 -. 1194 . 7572
1, 0305 -, 1818 . 7472
. 9957 -. 2532 7452
. 9484 -. 3349 ,7536
. 8867 -, 4294 7765
. 8083 -. 5404 . 8211
. 7100 -. 6738 .9021
. 5878 -, 8374 11,0534
. 4361 -1,0316 I, 3731
. 2559 -1, 0621 2,2275

A% 2. 05800182

kl = -1, 3996310

k2=:]“2600310

61 = -1, 0620840

62= 0.25048833

-43_

Time = 3,32
v v,
1 2
1.5399 3, 8503
L 065221 3,4865
-1, 2528  2,6667
-2, 0365 1, 7928
-2,4128  'L.0467
-2,6385 .39794
-2,7998 -, 14885
-2,9268 -. 59906
-2,9898 -, 97790
-2,6070 -1,3288
5,8682 -1, 3996

: .

1.

. 5607
. 1789
. 5848
. 1481

. 9689
. 2592
. 0700
. 3983

. 1832

2274

2600



v

XIX

1

-24, 414

-36,
-53,
-61,
- =61,
-51,
-33,
-8. 6663
18,
39.

-28,

687
131

956
104
538

480

256
504

541

-17,
~-41,
-58
-65,
-62,
-48,
=27,

-9.

. 0022

856

090

.592

932
151
075
949
1917

-1,1026

0

-37,
-47,
54,
-47,

=217,

24,
40,

39.

216

037

533

827

929

. 0216

962
562

034

21, 040

-13.
-35,
-49.
-52,
-41,

-24,

v
2 %2
959 -7
6941  -30
587 -51
420 -58
859 -48
137 -27
927 -3,
679 12,

L0632 13,

. 90940 4,

. 9807
. 388
. 207
. 469
. 845

. 091

0412
112
118

8651

0

v

%3

-43

-45

-37,
-12,
-21,
48,
55,

41,

%3

. 107

. 222

624
146
572
156
434

086

16, 361

-. 70196

0




Table 4

t ka v k ka ka ka v k

151 %25 *371 1°2 2%2 *3%2
0 -.63978 -1.8778  -,73634 28581 1, 6463 . 11388
-. 058647  -1,8077 , 47180 ~.55295 13166 -1, 2612
22644 - -1, 6848 1. 3543 -1, 4659 . 65052  -2,5802
.20785 -1, 6316 L. 9042 -2.2572 .. 18701 -3.5000
L 055229  -1,6358 2, 3214 -2.9432  -1,0756  -3,9021
-. 11039 _1, 6351  2,7404 -3,4968  -1,8585 -3, 6752
-. 14652 -1.5086  3,2172 23,7835  .2,321l  -2,7753
. 10870 21,1360 3, 6343 -3, 6113 -2.2884  -1,3815

77093 _.50338 3, 6627 -2, 8160 -1, 7731 . 081057,

1 8439 2,9461  2,8218 -1, 1017 -,96980  1.1273

0 1 0 3, 8635 0 1
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. 996
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. 328
. 660
. 992
. 324
. 656
. 988
. 320

.
kyky

17173
. 17168
. 17005
. 16428
. 15402
. 13853
11778
. 093937
. 070021
. 043426
0

Table 4

v
kika

. 22694
. 22658
. 22270

. 21388
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. 19916

. 17695

. 14737

. 11390

. 081529

. 048409
0 .

kyk,

. 30997
.'30454
, 29477
. 28121

. 26008
, 22827
. 18608

. 13910

. 095279
. 053988

0




VI. Conclusion

A new discrete algorithm has been derived which is analogous
to the continuous algorithm of [1] and [2]. Extensions to the latter
(Test 1 and Test 2) have been developed to ensure that the new
iterate is in the neighborhood of the current nominal.

The algorithm has been used to solve a non-linear, optimal
orbit transfer problem. This problem has been attempted, and
solved, in various forms, by a number of investigators using dif-
ferent computational methods. :

The results obtained in this paper agree most closely with

those of [12].
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Appendix A

Continuous Results from Jacobson

The following is a statement and solution of the céntinuous-time
optimal control problem solved in [1]. ‘The notation has been
modified to conform to that of this paper. Thus some exPressi‘on
involving derivatives have been transposed, and ™ has been placed
over certain symbols to coincide with section III, I, above.

Problem: given that '

A«l x = f(g, u,t). 3 X(té?) =x

Find uft), t € [to,_ tf] to minimize

t
A f ~
A=2 V(xor, to) = S‘ Lix,u, t)dj: + F(x(tf))
o}
while satisfying

A-3 8(x(t,)) = 0
The constraints (A-3) are adjoined to the cdst functional (A-2);

A4 Vix yt,) = V + K 6(xty)

The solution is:

A5 p1 = uu(_Hux U XX
‘ A0 148
A=6 B = Houly Vae
. "~ ~
A=7 “a=H=H
A*S -VX = HX + .{_f “ f)‘V'Xx
A=9 ‘Vk:“f‘fka




‘ ST o THT
A-10 -V, = | -
\4 (e + BTV

" xk -
T % m-1oT
A-ll ka B kaquuufu ka
A-12 V=8 +fTv v -\ +Sv ) Ta Y E £V

~ ~ ~
where H= L + fo, and derivatives of H are taken with V_ constant, i.e.

~ ~ ~
H =L +V I
X e X X
The boundary conditions of (A-7) through (A-12) are the same as

e~quatioris (33)-(38) above.
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Appendix B
The Cdmpute'r ..lé"rdgrafn

Implementation of the ~a1g6rithm on the problem described in
section three required the use of)a computer. A program’ .h4as ‘been
written for the IBM 7094 in FORTRAN IV., which consists of séveral
subprograms. | o | |
1. MAIN

This p‘rogram is described in Flow Chart II in general outline.
This program coordinates the algorithm. It starts by setting initial
quantities, and quantities which do not change throughout thé compu-
tation. -Inc luded are input numbe»rs,‘, constant elements of 'f‘x é.nd ’fxx"
and constant boundary conditions. | .

| The routine FORINT is called, which integrates the state
equations (1). On the first iteration, the initial nominal control history
is used. Subsequently, u, is calculated in FORINT. The performance
index and terminal constraints are evaluated. |

The calling of FORINT is part of the "step-size adjustment", as
described in [1] and [2] and Flow Chart I. |

Once a suitable tra,jectory is calcuiated, it is printed out-and
BAKINT is called to integrate the equations for ai, Vi{,‘ and Vi{x. If.
thé é.bsolute values of a° and the terminal constraints are less than
ETA, ETAl, and ETA2, respectively (which are input quantities),
iteration éeases. Thé routine BETA ié called, which calculates the
optiﬁ:nal feedback vector B such that .on a path slightly perturbed from
the optimal, Ou = BT ox. |

If 2° is not sﬁéller than ETA in absolute value, the program

transfers to the forward integrator to improve the nominal trajectory.
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When the trajectory has been optimized for a given value of k,
i.e., when a® is driven to less than ETA, the routine DKCALC is
called, which integrates the Vi{k and Vi{k e-qua.tioﬁs, anc;l.calcu]..a‘tes
0k according to (59). ‘Tne value of € is originally 1., but if each
c;omponent of @ is not decreased (by the ihtroduétion of 0k) in
absoluté vélue, and if fhe change in performance ivndéx i.s 1‘1‘ot within
a tolerance (an input quantit’y) of the value predicted by (60) (i.e. , if
Test 1 is failed), then € is reduced by half and the forward integrator is
called again fo calculate @ and V Wheh the ér;lteria are .s'atis fied, k
is replaced by _1; + Gk.and the pro’gram transfers to BAKINT.
2. FORINT - | o o

Thisvroﬁtine integrates (1) forward. It calculates u, by maxiinizing

+1 —

% - vi + OK)€(%, + 0 -
H&i+®%ufk+§h%) Yx(ﬁﬂrk&ﬁpk+”Mﬂﬁ+-xV%J9,
-which is equivalent to maximizing .
E=C sinui + Dcos u, .where
_ yitl = = '
C= sz (Xi+1 + §Xi+1"k + Ok)
il — _ =
D= Vx3 (Xi-l-l + §Xi+1,k + Ok)
C and D are calculated by expanding V;:l in 6Xi+1 and 0k. However,

See section TV. 1.

%, is used in place of §Xi+1'

At the maximum of E,

4

u, = ta,n-1 (C/D)

but this also determines a minimum. The maximum is chosen simply

by requiring that E be positive.
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Test 2 is ’applied by determining whether (11) is constant (within
a tolerance TOL) over t1me.+ (It should be ‘constant because L is
zero.) Because th1s test is time consuming, it is’ ‘done at rare in-
tervals.
3. BAKINT

Th1s routine calculates u;k according to (19), (m a similar
fashion to that of calculating u, in FORINT) and integrates. (27), (28),
and (32) with (33), (34), ar;d (38) as bouridéry cdnditions. ' If prints
out if;s ’resuvlts‘. | | | |
4. DKCALC |

| .T.his integrates (31) and (32) with (36) and (37) as boundary

conditions, and prints -;falues of Vik., Vi{k At t = 0, it calculates
Ok according to (58). |
é. START |

This short routine accepts input information. The input must
include the maximum number of iterations, the number of time steps,
the tolerances ETA, ETAl, ETAZ2, CK, and TOL, the initial value
of k and the initial nomma.l control h1story
6. BETA

.The optimal perturbation feedback law for small deviations
from an optimal trajectory is given by (22), which, in the present

problem, may be approximated by,

b, = it vitlay +v“15k]
i Hauty XX
From (58), and since Vk =8l = 0onan optimal trajectory,
i+1"lvi+1(5

?k = Vik Vix %41

+ or from {68), 5Vi =0V _=o.
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~ To first-order in At (in a problem which originates from a .
continuous problem), this may be written
bk = _Vi+1-lvi+15
ST T ke Vkx

See section IV.1.

Thus,

=1, . S S
i fl[V1+l-‘V1+1V1+1 V;;’llaxi

§ui = -Hliu ut xx xk " kk

The coefficient of 5xi is calculated in BETA, and printed as [31,

pz; ‘33'
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