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Notation 

Vectors are columns; the scalar product of a and b, where 

T T n 
is a b or b a and is equal to La,b., The derivative of a scalar by a 

i= 1 l l 

vector is a row, and is written: 

= ay = [ ay ay ] 
y x ax ax

l
' ... , aX

n 

The second derivative of a scalar by vectors is a matrix: 

a 2y a2y 
axlakl ax! akm 

y = a2y 
= 

xk axak 
. 

22y a 2y 
axnak l 

ax ak 
n m 

where x is an n-vector and k is an m-vector. 

Thus a second-order Taylor expansion will be written: 

Y(x + Ox,k + Ok) = Y(x,k) + Y Ox + YkOk + _2
l

0xTy Ox x xx 
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I. Introduction 

Jacobson [1], [2] has derived a second-orderalgo;-ithm for s~lving 

continuous time optimal control problems using Differential Dynamic 
, ' ',' , \ . 

Programming. This algorithm differs from other second-orde,rQr 

second-variation algorithms, [4], [5], [6], [7], [9], [10], [11], [14] in 
. ) . 

that it is derived using global variations in control (strong variations 
f ~ "" ,". , , 

in the trajectory). 

In this paper a similar algorithm is developed for solving discrete-

time dynamic optimization problems with terminal constraints. The 

new algorithmusesthe:p.otionof strong,variations and hence" as in· 

the case of the continuous time algorithm, has advantages over existing 

discrete-:-timealgo.rithms [4], [5], [9], [14]. The alg~rithm can be used 

to solve continuous time problems that are approximated by difference 

equations. 

A non-linear numerical example is. presen~ed and comparisons· 

'ar~ drawnwit~ ¥~Reynplds [4], [5]and others [7J, [8], who have solved 

this probl~rn, previo;usly, using other methods. The experience gained 

in the numerical computation has suggested extensions to the continuous 

algorithms' inTI] and [2]. In particular, the 'step-sizeadjustmertt' 

technique is g;enera~ized .by th~ introduction of additional criteria .for 

ensuring that the 'trial new trajectory', at each iteration, is sufficiently 

close to the c'\lrrent nominal trajectory to guarantee an improvement in 

cost and/or terminal error. 
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II. Derivation of the Discrete Algorithm 

II. 1. Statement of the General Problem 

The problem to be solved is the following: if x o ' ... , x N are vector 

quantities which satisfy 

(l) 

and Xo is given, find the vectors u
o

' .•. , uN-l to minimize the scalar 

(2) 

N-l 

V = \' L(x. , u. , t.) + F(x
N

) 6 1 1 1 

i=O 

, 

where the solution must satisfy the (vector) equality constraint 

(3) 

N and to' ... ,tN are known quantities, and a nominal control u o ' ... ,uN - l 

is given. 

Defining 

(4) V(x ,k, t ) = V + k? e 
o 0 

the equivalent problem of finding u
o

' ... , u
N

- 1 to minimize V(xo; ko' to) + 
and k to satisfy (3) is solved in succeeding sections. A nominal value 

of k, k, is assumed given. 

II. 2. Outline of the Solution 

The optimal return function V satisfies Bellman's "Principle of 

Optimality" [3], which in this case is: 

( 5) V(x., k, t.) = min [L(x., u., t.) + V(x.+ l , k, t.+ l )] 
1 1 U. 1 1 1 1 1 

1 . 

fa r i = 0,.. . ,N -1 . 

Regarded in terms of displacements Ox
i
, OXi+l' and Ok from the 

nominal trajectory, 

+ It is assumed that a minimum exists. 
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x. = ~. + Ox. 
1 1 1 

k = k + Ok 

and (5) becomes 

(6) V(~; +Ox./k + Ok, to) = min [L(;. + Ox., u., t.) 
1 1 1 Ui 1 1 1 1 

';,,' T.he,a1.go.r,ithrp i,s, d~ri,ved from equation (6) ~n the following sequence 

of steps: 

1.1Expand both s.l,d,es in Taylor serie.s abo~t :X:i' k and ~i+l in Oxi , 

;OkaIld: O?'i +1 . 

2. RelateOxi+l toOxi . 

3. Perform the indicated minimization with respect to u. in two 
1 

4. 

stag'es. ' 
iI:.!; 

A. Find u. which minimizes the right side of (6) with 
1 

Ox. = 0 and Ok=O. 
1 

B. Expand about u':< in Ou. with Ox. and Ok non-zero, and 
1 1 1 

mint.~ize with respect to Oui . 

. a functio~ of Ox. and Ok. 
1 

This will give Ou. as 
1 

Equate coefficients of like powers of Ox. and Ok to obtain 1 . 
. ::" 

difference equations in V ~, V ~, etc. 
• , 1 I 

It is assumed that Ox
i
, OXi+l and Ok will be sufficiently small 

thq.taJ,lTaYlo.r, expansions can be terminated at second-order terms. 

II. 3. Solution 

Following the prescription of the previous section, the left side 

of (6), when expanded in a Taylor series, is, 
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( 7) - 0 - 0 - - a· - - 0 a - - o· V(x .. + x., k + k, t.) = V(x., k, t.) + -a V(x., k, t.) x. + -ak V(x., k. t.) ,t, 
1 1 1 1 1· X 1 ·1 1 . 1 '1 

2 
1 T a - - 0 + -2 Ox. --2 V(x., k, t.) X. 

1 ox 1 1 1 

2 
T a - - 0 + Ox. 0 Ok V(x., k, t.) k 

. 1 uXu 1 1 

2 IoTa -- 0 + -2 k --2 V(x., k, t.) k + ... 
ok 1 1 

The reader should note that V(~., k, t.) is the minimal value of the 
1 . 1 

return function obtainable with initial conditions at 'X., t., and with 
1 1 

k = k. It is not the same as V ('X. , k, t.), the value of the return 
1 1 

function calculated along the nominal trajectory, starting from t i • 

Symbolically, 

(8) V(;~., k, t.) = min 
1 1 Up ••• , u N- I 

where xi+l".' ,xN satisfy (1), and xi = xi' 

However, 

N-I 

(9) V(~.,k,t.) = '\ L('X.,u.,t.) +F('X
N

) + kTs('X
N

) 
1 1 D J J J 

j=i 

where ui ' ... ,uN - I is the nominal control sequence and thus, 

xi" ~ .'" x N is the nominal trajectory (which satisfies (l) with 

u. = '11., j = i, ... ,N-I). 
J J 

. Acknowledging the difference between V('X., k, t.) andV('X., k,t.), 
1 1 1 1 

define 

(lO) a(~., k~ t.) = V(~., k, t.) - V(~., k, t.) 
1 1 1 1 1 1 

..,4-
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To simplify notation, let 

V(;:., k, t.) = Vi 
1 1 

V(~., k, t.) = vi 
1 1 

- - i .. 'a(x.,k,t.)=a 
1 . 1 

a ---;- V(x., k, t.} = 
vX 1 1 

etc. 

Then 

(10 ') 

and applying (10) to (7), obtain 

(11 ) 
- - i -i i '. i 0 loT i 

V(x. + Ox. ,k + Ok, t.) = a + V + V Ox. + V k k + -2 x. V Ox. 
1 .- 1 1 X 1 1 xx 1 

Similarly, expanding the quantity to be minimized in equation (6) 

( 12) 

Expression (12) is an infinite series.in Oxi '. OXitl and Ok. But 

it is clear that there is a relationship between OXi and OXi +1 through 

equation (I). This relationship may be used to eliminate either Ox. 
1 

or .Ox
ifI 

from (12), but to conform with equation (11), OXitl will be 

removed. 

Xitl = f(xi , u i ' t i } 

xitl = f(~i' ui ' \) 

+ L and its derivatives. are evaluated at ~., u., t.. The control u. is 
1 1 1 . 1 

yet to be determined. 
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( 13) 

Thus,.Ox'+ l = f(x., u., t.) - f(~., ~., t.) or, 
1 111 111 

OX'+ l = f(x. + Ox.,u.,t.) - f(~.,u.,t.) 
1 1 11 1 1 1 1 

In equation (13), u. is perfectly general. It will later be .fixed 
1 

by the minimization operation of equation (6). 

obtain 

. ( 14) 

Expanding(13) about x., and defining 
1 

i -f = f(x.,u.,t.) 
1 1 1 

7i --f = f(x., u., t. ) 
1 1 1 

i 7i i 1 Ti 
Ox

1
. +·1 = (f - f ) + fOx. + -2 Ox. fOx. + ... 

X 1 1 xx 1 

where the deri vati ves of i are evaluated at (x., u., t.). 
1 1 1 

( 15) 

( 16) 

Substituting (14) into (12), obtain 

Recall that equation (5) has now been transformed to 

"r. h. s. of equation (11) = min {expre s sion (I5)} " 
ui 
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As suggested earlier, the minimization in (16) may be performed 

in two stages. 
>!< 

First u. is found, which minimizes (15) with Ox. = 0 and Ok = 0, 
1 1 

i. e., u. minimizes 
1 

(1 7) 

(The terms not printed in (17) are of third and higher order in 

(fi - Ii), and thus are assumed negligible. ) 

For convenience, define 

(18 ) 

In (18), and for the rest of this paper, all functions of u. are 
1 

,'c 
evaluated at u: . 

1 

Note that, 
. n4! ~ 

. 
i 1 • Li >t·Vi+l f i H '=, etc. xx xx x xx 

:* 
Since (17) is at a minimum when evaluated at u., its first 

1 

derivative with respect to u. must be zero; 
1 

( 19) 

"In addition; the second derivative of (17) (to be defined as .6) must 
>:c 

be positive definite at u. = u. ; 
1 1 

: '," 

(20) 

(The' third'terIll in (20) does not appear in the 'weak variation' algorithms 

of [4], [5], [9], [14]). 
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>:< * Expanding (15). about U
1
" with\;l. = u. + Ou., the following is 

obtained, using (19) and (20). 

(21) 

1 T + -2 ou. ~OU. 
1 1 

1 1 1 

Terms of order (Ox
i
)3, (ou

i
)3, (Ok)3 or greater have been ignored 

in (21). + 
The second stage of the minimization is accomplished when (21) 

is minimized with respect toOu .. 
1 

Taking the .first derivative of (21) with respect toOui and. settin~ 

it to zero, obtain 

+ It is assumed that Ox., Ou. and Ok are small enough to justify this 
truncation. 1 1 
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(22) 

where 

(23) 

(24) 
-1 i~ itl 

j3 =' '-fA £,' V , ' 
2u, xk 

Equation (22) is a linear feedback perturbation controllaw. It 

is sufficient to consider Ou. to be linear in Ox. and Ok because on 
1 1 

substituting an expression of higher. order than (22) into (21), terms of 

higher order than quadratic would appear. 

(25) 

On substituting (22) into (21), the result is 

. + [Hi + ·(i.p) TVi+li ]Ox. 
x xx X 1 

'.j 

Expression (25) is the minimum of (15) with rElspect to U .• 
1 

Thus, expression (25) is equal to the r. h. s. of equation (11), by 

(16) . 

equal. 

Therefore, coefficients of like powers of Ox. and Ok must be 
1 
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Noting that 

(26) yi = yi+l + 17 
equating (11) and (25) produces the following difference equations, valid 

fo r i = 0, . . . , N - 1 . 

(27) 

(28) 

(29) Vi = VitI + (i _ Ii) T vitI 
k k xk 

(30) Vi = iT VitI _ (3T 6(3 
xk x xk 1 2 

(31) i itl T 
Vkk = Vkk - (32 6 (32 

(32) Vi =Hi +iTVitli+(i_p}Vitli _(3T 6 (3 
xx xx x xx x xx . xx 1 1 

The boundary conditions are applied at i = N, and are the same 

as in [1]. They are found by expanding 

to second-order in a Taylor series inOxN and Ok. Because this is the 

-N N 
last time step, V = V . Thus, 

(33) N 
a = 0 

and, from the expansion, 

(34) 

(35) 

(36) 

(37) 

N - -T-
V· = F (x

N
) + k a (x

N
) 

x x x 

N T­V
k 

= a (x
N

) , 

N T-
V xk = ax (xN ) 
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(38) Y
N = F (;:) + -kT e (-) 
xx xx N xx x N 

Thus, if we "integrate" equations (27)-(32) from i = N-l to 0 with 

equations (33)-(38) as boundary conditions, then equations (19) and (22) show 

how to calculate' 
>l&: 

U. = u. + Ou. to get optimal improvement on per-
l .1 ,1, ' , ' 

formance index Y(x , k, t ). 
". ' 'C '. • ,0 0, 

These results are only meaningful if the second -order truncations 

of the Taylor series above are good approximations of the full expansions. 

Thus Ox., Ox,+ l , Ok, and Ou. must be small. There is no restriction 
1 1 1 

>'< -., i· -i - >:r: - -
on AU. ::: u;' - u; 'except that f - f = f(x. ,u., t.) - f(x., u., t.) must be 

111 111 111 

sufficiently small to guarantee the smallness of OXi+l . 

III. Comparison With and Extensioris of Jacobson's Results 

III. 1. Comparison and Discussion 

The case in wpich the ,discrete problem is an Euler discretization 

of a continuous problem is of interest. In that case, 

(39) 

and 

(40) 

(41 ) 

,and 

(42) 

f(x.,u.,t.) = x. + Atf(x.,u.,t.) 
111 1 111 

,..... 
L(x., u., t.) = L(x., u., t.)At 

1 1 1 1 1 1 

Clearly, 

~(t.) = 
1 

x(t. + At) - x(t.) 
1 1 

At 

x'+ l - x. 
= lim lAt l=f(x.,u.,t.) 

A.t~O 1 1 1 

N-l 

lim '\ L(x., u., t.) 
At~O? 1 1 1 

1=0 
N~ro 

= lim 
At-+O 
N-KD 

N-l 

\' L(x., u., t.)At = L 1 1 1 

i=O 

tN S. L(x(t),u(t),t)dt 
t 

o 

if the discretiz'a'tion is' done with care. 
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It is reasonable to expect that if the transformations (39) and 

(40) are applied to the results of the previous section and the limit 

is taken as At-')oO, equations should be obtained which solve the analo-

gous continuous problem. 

Jacobson [1] has solved that problem, and the statement of the 

problem, as well as the solution are reproduced below, in Appendix A. 

Note that 

where the same abbreviated notation as in the last section is used. 

Thus 

(45) 

Then, according to (20) 

(44) 

Define 

(45) X=A/At, 

which will be written 

(46) 

for clarity. 

From (23) and (45), 

(47) _~-l(Hi + 'fiT yi+l) _ 6- 1 (,£i
T 

yi+ I 'fi+ I + (Ii _ii)T y i+1i )At 
/3 1 = ux u xx u xx x xx ux 

(48) 

Similarly, from (24), 

""_IN. T i+l 
/3 2 = -A ~ Y xk 

In the same manner, applying (39), (40), (43), (45), (47), and (48) 

to (27)-(32), the following are simply obtained. 
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('49) 

(50) 

(51 ) 

(52) 

(53)' 

(54) 

i+I i 
,Vkk - Vkk 

~t 

VitI _ Vi 
xx xx 

~t 

/a<;:oqson's [1] equations for 131'132 , a, V x' Vk ' V xk' Vkk' and 

V al1e r,eproduced below in Appendix A. Inspection will reveal xx ,.' , 

agreement.betVv'een those and (47)-(54) as ~t~O. 

, It ,should be noted that although the discrete f, L, and Hare 

related to their respectivecontinuous'counterparts through (39), 

': (40), and (43), the discrete a, V, derivatives of V, 131' and 13 2 directly 

approximate the continuous quantities. As ~t~O, the discrete and 

continuous versions of the latter quantities approach one another . 

Equations (39) and (40) and the transformations that resulted 

from: them vvereused to show the connection between the present 

q.i'screte equations and the earlier [1] continuous equations. However, 

case's may exist where (39) and (40) are useful numerical methods 

with whic)1 to solve a continuous, problem.+ Then, (47)-(54) contain 

+ Continuous-time problems which are particularly sensitive to u may 
require a large number of small time steps when the algorithms of [1], 
[2] are used. Then, since At is small, sufficient integration accuracy 
may be obtained from an Euler scheme .. See [2, page 17]. 
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the full dependence on At, which involves terms of order At and. higher. 

It may be worth while to retain high order terms [14]. 

Also, (47)-(54) indicate that some of the arguments of the 

right sides are to be evaluated at time i+l,' and others must be 

evaluated at time i. A simple Euler discretization of the continuous 

time algorithm [1], [2] would evaluate all arguments at time i+I. 

It may be possible to obtain more useful versions of (47)-(54) 

by replacing (39) and (40), the Euler discretizations of f and L, by 

a more sophisticated, accurate scheme. 

III. 2. Description of the Algorithm 

The discrete algorithm is very similar to the continuous 

algorithm [1, section 4.8], and is outlined in Flow Chart II. 

The algorithm isasuccessiveapproximationprocess, and 

each approximation has two stages. In the first stage, k is kept 

constant, and optimization takes place with respeot to u., without 
1 

regard to the value of e. In the second, Ok is calculated to reduce 

e in absolute value. 

The first stage proceeds as follows. Equation (1) is "integrated" 

using initial conditions xo and nominal control 'tio ' ... ,'tiN-I' Then 

equations (27), (28), and (32) are integrated back from i = N, with 

boundary conditions (33), (34), and (38). 

If a 
0 

is not close to zero, then, by definition (10), the nominal 

control is not close to optimal for the current value of k. To improve 

the trajectory (i. e., to get closer to the optimal and reduce 'ao), (19) 

* * is solved for u: and (22) is used to caIculateu. = u: . + Qu., which is 
- 1 1 1 1 

used as the new optimal control in (1). The cycle repeats. If 

neces sary (see below for the descriptions of the tests to explain this 
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Obtain, from main algorithm, the time Neff 
when / a (x; t)/ becomes greater than 7],. 7], 
a small positive quantity. 

+ Denotes integer ! 
lYes HALT; 

division I I s Neff < 1 I OPTIMAL FOUND. 
~No 

I Set C=O.5 I 

" 1 
I Set r=O 1 

t ~ 
(Neff -Norf 

Nl =. 2 + Nor = Nor +1 where Noo = 2- Neff 

Apply u = U on the interval [I, N1] and u =u* + {3Sx on 

the interval [N" N]. Calculate the cost V (xo; 1) and 

hence the improvement l::.V= V (xo; 1) - V (xo; 1) 

1 
I 't' 6V >c satisfied1 

Yes, Nl satisfactory 
s c n enon I a (x; N,) I 1 

1No Proceed to next 
No ~ Is N, = Neff -lor is Neff = 1? I iteration of main 

algorithm 
-!Yes 

Y I ncremen t r by lJ I 1 Yes - HALT; NO IMPROVEMEN Is c =O.O? I 

1 IN TRAJECTORY 
ATTAINABLE. 

T 

I Set c=O.OI 
~ 
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necessity) the step-size adjustment routine is called. (This routine 
?' I, ii',' " 

will not be discussed here, but, for completeness, it app~ars 

schematically in Flow Chart 1. It is described in the.l:"eferences, [1], 

and [2, section 4]. ) 

If a 0 is close to zero, and eis also close to zero, the problem 

is solved. 

If a 0 is close to zero but e is not, the algorithm enters its 

second stage: k is modified (according to the formula of the next 

section) to reduce each component of e in absolute value. 

III. 3. Determination of Ok 

Ok is found in the following manner. Jacobson has shown 

[1, section 4.6] that, to second-order, the proper value of Ok is 

that which maximizes V(~ ,k + Ok, t.). + But o 0 

- - 0 -0 oT 1 T 0 
(55) V(xo ' k + Ok, to) = a + V + Vk Ok + ZOk VkkOk 

(56) 

or 

(57) 

Therefore the proper value of Ok satisfies 

T 
00 0 Vk + Vkk k = 0 

± -1 
(Jacobson shows that V~k is negative definite; so that V~k exists:) 

Since, in the present algorithm, Ok is only evaluated when 

fi '''::''If' (b 0 0) VO _- T(- ) f (29) d ( 5 - = 0 ecause a = , k e x N rom equations an 3). 

Then, (57) becomes 

-1 
(58) 

1':. 0-vk = -V
kk 

e(x
N

) 

+ McReynolds [4] and Bryson and Ho [13] have obtained similar 
conditions. 

t Provided that the linearised system is controllable, and e T has 
full rank. x 
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Following [1], k is modified according to (58); (1) is then 
,,-

integrated forward with u. = u:" + Ou. chosen according to (19) and 
1 1 1 

(22). If the resultant value of 8(x
N

) is 

(component-wise) than 8(~N)' choose 

-1 

not smaller in absolute value 

(59) ~ 0-
vk = - E' V kk 8(xN ) 

where 0 < € < 1, and reduce € until 8(x
N

) is reduced and a 0 is near 

zero. 

III. 4. New Criteria 

It is essential that Ox. and Ok be kept small. This ensures that 
1 

OUi will be small, and thus the second-order expansions of (6) will 

remain valid. If Ox. and Ok are found to be too large, i. e., if they 
1 

invalidate the truncations of the Taylor series in section II, means 

for reducing them are presented in Jacobson's algorithms [1, section 

4.2.1], [1, section 4. 8], [2, section 4]. These techniques apply to 

the discrete problem as well as to the continuous. 

There are criteria in [1] and [2] for deciding whether to reduce 

Ox. and Ok or not. However, an addition criterion, required for fixed 
1 

end point problems is described below (Test 1). 

A criterion, alternative to that in [1], [2] is also given. This 

criterion (Test 2) is useful in cases where it is desirable to keep 

the 'new trajectory' in the i~mediate neighborhood of the nominal. + 
Test .1 

Although Ok is' chosen according to (59) (where E is such that 

8(x
N

) is reduced), it may lie outside the range of validity of the expan­

sion (11) (When truncated at second-order terms), 

+ Such may be the case when the trajectory must be prevented from 
"jumping" to another nearby local minimum. In the following section, 
an example is discussed in detail where this was found to be necessary. 
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At i = 0, (11) coincides with (55). Since both sides of (55) may be 

independently measured (i. e., choose Ok and evaluate the left-hand side. 

Then integrate (1) as described above and evaluate the right-hand side, 

V(~ ,'k + Ok, t )), (55) may be considered to bea test of Ok. o 0 

If Ok is given by (59), then (55) predicts that 

(60) 
- - 0 -0 0 1 2 T - 0-

1 _ 
V(xo ' k + k, to) - V = a - (~ - ZE )8 (xN)Vkk 8(xN ) 

If (60) does not predict the change in V to within a given tolerance, 

then E should be r educ ed until it doe s. 

Test 2 

From (4) and (9), 

N 

(61) Vi = I L j + F(x
N

) + k T 8(x
N

) 

j=i 

N 

(62) Vi = I Lj + F(~N) + 'kT 8(x
N

) 

(63) 

(64) 

Thus 

j=i 

N 

OVi = Vi - Vi = I OL j + (F(x
N

) 

j=i 

But, from (11), 

OV
i 

= a i + V~ OXi + V~ Ok + i oIiv~x Oxi + Ox; V~k Ok + iOk T V~k Ok 

Since (63) and (64) must be equal, their proximity is a test on the 

size of Ox. and Ok. This is because (63) is an exact expression, and 
1 

(64) is an approximation dependent on Ox. and Ok. 
1 

In order to use (63) and (64) asa step-by-step test of Ox., their 
1 

form should be modified. This is because (63) involves x
N

' which is 

not yet available at step i of the forward integration. The modification 
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is a simple one: from (63), 

( 65) 

Thus, 

N 

ovo = I OLj + (F(x
N

) - F(X
N

)) + (k T e(x
N

) - k:Te(x
N

)) 

j=O 

i-I 

(66) ovi - ovo = 2: OLj 

j=O 

Similarly, OVi - OVo may be calculated from (64). 

( 67) 

The last equation may be simplified somewhat by noticing that 

Thus v~ = V~ whenever Ok is evaluated. 
/ 

(68) ovi _ ovo = a i _ 0 + Vi 0 + .!. 0 Tvi 0 + 0 TVi Ok a x. 2 x. k x. x. k 
Xl 1 Xl lX 

Then, test 2 is performed by determining whether (66) agrees 

with (68) within a given tolerance. If the test is failed+ then Ok should 

be reduced, or, if Ok is not present, Ox. should be reduced by the 
1 

step-size adjustment method. 

This test is particularly simple to apply in cases where 

+ Failure of the test at t. (0 < t. < t
N

) allows one to discontinue 
1 1 

integration of this 'trial trajectory' at ti instead of integrating all. 

the way to t
N

; this can save considerable computer time. 
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IV. Numerical Example - Comparison with McReynolds' Succes sive 

Sweep Method 

IV.l. Statement of the Orbit Transfer Problem 

An orbit transfer problem [4], [5], [7], [8], [12] has been solved. 

In this problem, a control sequence must be found to maximize the 

radial distance of a rocket from the sun, with the terminal condition 

that the rocket be in a solar orbit. 

x. is a 3-vector, whose components represent radial 
1 

distance (from the sun), radial velocity, and angular. 

velocity, respectively, normalized so that the initial 

condition (in earth's orbit) is 

Xo =0) 

(

X2 N J 9(xN ) = x' _ 1 ; (9 = 0 is the condition for a 

3,N ~ , 

state to be in a stable orbit. ) 

Thus, 

x 2 . 
, 1 

2 
x3 iii 

-=:..s...:. - -- + A sin u. 
xl' 2 1 

,1 Xl' 
, 1 

x 2 ···x3 · i 
,1 ,1 + A cos u. 
xl . 1 

, 1 
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where 

Ai = .1405 
1. 0 - . 0748 7 t. 

1 

The time interval [0, tNJ is given. 

"'i Note that f (x., u.) = 
1 1 

""' i F(x.) + G (u.). 
1 1 

""'i "'i and Hand f vanish. 
ux ux 

This statement of the problem was inserted into (46)-(54) with terms 

of order higher than llt dropped. The equations become: 

(69) 

( 70) 

(71 ) 

(72) 

( 73) 

(74) 

( 75) 

( 76) 

(77) 

,..., ...... i __ VHl Gi ll=H 
uu· x uu 

* ~~ 
where u. was found by maximizing Hl which was equivalent to maximizing 

1 

V HlGi(u.), h' h . f d h .' f w lC , ln turn, was equivalent to in ing t e maXlmum 0 
x 1 

HI. i+1 
V 2 sm u. + V 3 co s u. x, 1 x, 1 

-22-

where 

Ai = .1405 
1. 0 - . 0748 7 t. 

1 

The time interval [0, tNJ is given. 

"'i Note that f (x., u.) = 
1 1 

""' i F(x.) + G (u.). 
1 1 

""'i "'i and Hand f vanish. 
ux ux 

This statement of the problem was inserted into (46)-(54) with terms 

of order higher than llt dropped. The equations become: 

(69) 

( 70) 

(71 ) 

(72) 

( 73) 

(74) 

( 75) 

( 76) 

(77) 

,..., ...... i __ VHl Gi ll=H 
uu· x uu 

* ~~ 
where u. was found by maximizing Hl which was equivalent to maximizing 

1 

V HlGi(u.), h' h . f d h .' f w lC , ln turn, was equivalent to in ing t e maXlmum 0 
x 1 

HI. i+1 
V 2 sm u. + V 3 co s u. x, 1 x, 1 

-22-



Thus 

Yi+l * yi+l . ':' 0 
x, 2 cos ui - x, 3 Sln u i = 

or, 

(78) 
':' i+l i+l 

u. = arctan(Y 2/y 3) 
1 x, x, 

Terms of higher order in ~t were dropped on the assurn.ption 

that such terms were negligible in comparison with those of order ~t. 

* In the forward integration phases, u. = u. + Ou. was computed 
1. 1 1 

directly by maximizing 

(79) ""i - 0 i+l + OX T. yi+l + OkTyi+l) 
H (Xi + xi,ui ' Yx 1+1 xx kx 

with respect to ui . Note that OXi+l should be replaced by (14), which 

becomes 

(80) o 0 - - 0 l~ T -x'+ l = x. + ~t[(G(u.) - G(u.)) + F (x.) x. + -2 vx. F (x.)Ox.] 
1 1 1 1 X 1 1 1 xx 1 1 

However, this is of higher order than the degree of approximation, 

and it is satisfactory to replace OXi+l in (79) by Oxi . 

The new criteria described in the previous section were experi-

mentally applied. Test 1 appeared to be essential for the algorithm 

to converge. Without it, Ok was often chosen too large. Test 2 was 

found to be helpful and time saving. A more detailed discussion will 

be found in section y. 

IY.2. Comparison with Successive Sweep Method 

This algorithm converges somewhat faster than McReynolds r 

Successive Sweep Method [4], [5], [6] on this problem, starting from 

the same initial nominal. This may be because the two techniques 

-23-

Thus 

Yi+l * yi+l . ':' 0 
x, 2 cos ui - x, 3 Sln u i = 

or, 

(78) 
':' i+l i+l 

u. = arctan(Y 2/y 3) 
1 x, x, 

Terms of higher order in ~t were dropped on the assurn.ption 

that such terms were negligible in comparison with those of order ~t. 

* In the forward integration phases, u. = u. + Ou. was computed 
1. 1 1 

directly by maximizing 

(79) ""i - 0 i+l + OX T. yi+l + OkTyi+l) 
H (Xi + xi,ui ' Yx 1+1 xx kx 

with respect to ui . Note that OXi+l should be replaced by (14), which 

becomes 

(80) o 0 - - 0 l~ T -x'+ l = x. + ~t[(G(u.) - G(u.)) + F (x.) x. + -2 vx. F (x.)Ox.] 
1 1 1 1 X 1 1 1 xx 1 1 

However, this is of higher order than the degree of approximation, 

and it is satisfactory to replace OXi+l in (79) by Oxi . 

The new criteria described in the previous section were experi-

mentally applied. Test 1 appeared to be essential for the algorithm 

to converge. Without it, Ok was often chosen too large. Test 2 was 

found to be helpful and time saving. A more detailed discussion will 

be found in section y. 

IY.2. Comparison with Successive Sweep Method 

This algorithm converges somewhat faster than McReynolds r 

Successive Sweep Method [4], [5], [6] on this problem, starting from 

the same initial nominal. This may be because the two techniques 

-23-



differ primarily in the minimizationt and i - P and Hi - i? terms which 

are present here and absent from the successive sweep method. But, 

close to the optimal, those terms are small, and the minimization 

yields results which are close to McReynolds' method ~or choosing 

Ou.. Thus, close to the optimal, the algorithms are very nearly the 
1 

same. Earlier in the computation, the terms are large, and the 

minimization permits the present routine to take larger steps. Thus, 

this routine is able to get to the vicinity of the nominal in fewer itera-

tions than the Successive Sweep Method, and once there, to take just 

as many additional iterations to converge. 

In addition, this routine does not evaluate H (or A) until after uu 

a minimization has been performed. Thus H is always negative 
uu 

(definite). McReynolds evaluate s H on the nominal trajectory, and 
uu 

so, he must either choose his initial nominal so that H is negative, 
uu 

or he must invoke a device to partially overcome the difficulty. + 
V. Numerical Results 

V. I. Discussion of the Trajectories in Tc:l.bles 1-4 

Table s 1- 3 contain optimal trajectories calculated for the problem 
.'. 

of the previous section by means of the algorithm described above., 

(The computer program is presented in detail in Appendix B. See 

the section on the BETA subroutine for an e,xplanation of "1' "2' "3') 

The value of 3. 32 was used for tN in order to compare re,sults 

with [4] and [5]. The other value, 3.3194 was determined in [12], 

where the authors solved a minimum time problem. Their problem 

+ -I Hi + B i 1 is used in place of Hi where B i is chosen to go to .zero uu . uu 
as the nominal is approached. ~ee [5, page 59b]. 

+ Which becomes a maximization in this problem. 
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,------------------ --------------------------- ---

was identical with the present problem, except that they specified 

xl (t
N

) = 1.525 (corresponding to the orbit of Mars) as a constraint 

and left tN free. Our results agree most closely with those of [12]. 

(The normalized values of V
O 

agree with >..(t ) given in [12], to3 x 0 

figures. ) 

The rather large differences between the re suIts of 100 time 

steps and of 400 steps indicate that 100 tlEuler integration" steps are 

not really sufficient to model the continuous time dynamic system. 

It should be noted that the greatest discrepancies occur in the second-

order quantities, But from (69)-(78), those quantities are the only 

ones whose exact equations have high order At terms near the 

nominal. (Near the nominal, i - ii is small or zero.) This may 

account for the difference in values between our /3 1 ' /3'2' and /3 3 

and those given by McReynolds [5]. 

It is interesting to note that many different attempts have been 

made to solve this problem [4], [5], [7], [8], [12]. Our results 

agree most closely with those quoted in [12] and are more detailed 

than those previously published. 

Table 4 contains a trajectory which maximizes V without regard 

to terminal constraints for nearly optimal values of kl and k Z' It is 

interesting to note that the maximum obtained for V is far from the 

maximum V obtained in Tables 1-3, and the a's are not zero. Thus 

the free end point problem, with kl and k2 set to their optimal 

values has at least two local maxima; ,the one maximum coincides 

with the point e = 0, while the other does not. (We have found that 

if, starting with this other maximum solution, and the optimal k's, 

the k's are changed successively to reduce I e I, using the algorithm, 
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then the optimal solution to the problem is obtained. 1. e. the k'sare 

adjusted away from their ioptimal i values, but again return to these 

optimal values, at which stage the 'correct U minim.um of V is 

attained and e = o. ) 

On the average, the program took approximately 3 seconds per 

iteration for the 100 step program and 12 seconds per iteration for 

the 400 step program. For this purpose, the iinumber of iterations" 

is defined as the number of times the program went into BAKINT 

(see Appendix B) 1. e., the number of times (27), (28)~ and (32) were 

integrated. Thus, an iteration includes at least one hut possibly as 

many as 9 times through FORINT, the subprogram that inte­

grates the state equations (1) forward. Also? an iteration may 

include DKCALC, the program to integrate (30) and (31) and calcu­

late Ok by (59). 

In the earlier versions of the program~ where Test Z was 

absent, iteration times averaged as much as 6 seconds for 100 step 

trajectories. More details on this follow. 

The nominal used to compute the trajectory in Table 1 was the· 

nominal McReynolds used: ki = -1; kZ = 1; ~(t) = 1. 57078 for 

o ~ t ~ 1. 66; u(t) = 5. 7124 for 1.66 < t < 3. 32. Convergence to 

I ei(xN ) I < 10-
6 

(i = 1~2) required 15 iterations. 

The control history of the nomil:?-al used for Tables 2 and 3 

was the optimal trajectory computed in [5]. (It WO.s linearly inter­

polated to 100 points, and then expanded to 400 points by repeating 

each value four times). For Table 2~ ki = -1. 4 1936541, k2 = 10 264609. 

and convergence required 10 iterations. For Table 3, ki = -1. 399631, 

k2 = 1. 260031 (optimal values from [4])~ and 11 iterations were required. 
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Table 4 was started from a nominal consisting of the control 

history of Table l's nominal and kl and k2 the same as those of 

Table 3. It took 6 iterations to "converge." 

V.2. Uses of Tests 1 and 2 

With neither Test 1 nor Test 2 pre sent the algorithm did not 

converge. Constraining each new trajectory by the requirement that 

Test 1 be satisfied was sufficient to ensure convergence. Because 

this constraint was usually effective - i. e., many values of Ok were 

rejected- this problem appears to be very sensitive to changes in 

the multipliers k. 

Pairs of runs wer.e compared: of each, one had only Test 1; 

the other had both tests. The comparison indicated a certain 

redundancy between the two tests. A large number of trial Ok's were 

rejected by both Test 1 (where that was the only test) and Test 2 

(where both tests existed.) In fact, the same values of Ok were ulti­

mately accepted by the two programs, and the programs generally 

converged to the same optimal trajectory in the same number of 

steps. 

However, the redundancy was not complete. There were Ok's 

that were accepted by Test 2 and rejected by Test 1. 

But the redundancy is helpful. Test 2 can be invoked often in 

the forward integration phase, while Test 1 can only be invoked after 

the forward integration phase is complete. Thus Test 2 can save 

execution time. This time appears to be quite significant: with both 

tests present, a 100 step iteration took about 3 seconds. With only 

Test 1, a 100 step iteration took - on theaverage- more than six 

seconds. {As pointed out in the footnote on page 20, the forward 

integration of the system equations can be terminated as soon as 
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redundancy between the two tests. A large number of trial Ok's were 

rejected by both Test 1 (where that was the only test) and Test 2 

(where both tests existed.) In fact, the same values of Ok were ulti­

mately accepted by the two programs, and the programs generally 

converged to the same optimal trajectory in the same number of 

steps. 

However, the redundancy was not complete. There were Ok's 

that were accepted by Test 2 and rejected by Test 1. 

But the redundancy is helpful. Test 2 can be invoked often in 

the forward integration phase, while Test 1 can only be invoked after 
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execution time. This time appears to be quite significant: with both 
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Test 1, a 100 step iteration took - on theaverage- more than six 

seconds. {As pointed out in the footnote on page 20, the forward 

integration of the system equations can be terminated as soon as 
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Test 2 fails. However, Test 1 requires that the integration be perform.ed 

up until tN' This accounts for the 'time' saving' when Test 2 is in­

cluded. ) 

A difficulty was encountered in using the tests. As the algorithm. 

approached the optimal, steps and changes in parameters tended to 

grow rather small. Then all tests which involve differences of large 

quantities become less reliable - in fact, excessively conservative. 

Thus there should be some means of disabling the tests when Ox. or 
1 

Ok are sufficiently small. 

Once the difficulty was recognized, Test 1 was disabled when 

~ 0 0 -0 -6-0 
uV = V - V was less, in absolute value, than 10 V. Test 2 

was disabled when the absolute value of 

-6-0 was less than 10 V. 

V. 3. Behavior of the Algorithm. 

The existence of the maximum in Table 4 m.ay be illustrated by 

analogy with a static maximization of a function of a single variable. 

See figure 1. 

In order to maximize V(u), one may approximate V with a 

second-order Taylor expansion in the neighborhood of u, a nom.inal 

value. 

(81 ) - - - 1 - -2 V(u) ~ V(u) + V'(u)(u - u) + "2 V n(u)(u - u) 

The value of u that maximizes this is given by 

.:.... 1 - -o = V'(u) + "2V"(u)(u - u) 

or 
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(82) 
VI(U) 

U = U - V II(U) 

Equation (81) may be used to predict the improvement in V using 

(82) . 

(83) 
_. ___ l VI(u)2 

V(u) V(u) - 2 V"(u) 

which is positive for V"(u) < O. Then (83) may be used asa criterion 

for optimality: when (83) is zero, u is 'a maximum. 

If u is at point A, and the local maximum at point B is the one 

desired (rather than the one at point F) some means must be employed 

to guarantee that (82) will produce a value of u in the neighborhood of 

B. A value nearE will eventually converge to F. Thus (82) should 

be replaced by 

(84) u = u _ V'(u) 
€ V "(u) 

Then, (83) becomes 

(85) 
-2 - 1 2 VI(U). 

V(u) - V(u) = (2" € -~) V II ('\I) 

ThUS, an improvement may be guaranteed at every stage if 

(84) is used with proper choice of €, if the initial nominal lies some-

whe re to the left of point D. 

If the nominal is to the right of point E,t4e algorithm will 

tend to point F. 

Points between C and E are problematical because V"(u) is 

not negative-definite+. In neighborhoods of C and E, (84) and (85) are 

not us ea ble . 

+ In the case of vector u, an increased cost may be obtained even if 
V"(u) is non-negative-definite. In the scalar case this is not possible. 
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This 'is not perfectly analogous to the algorithrn for discrete-

time dynamic optimization algorithms, but some comparisons may 

be drawn. In the discrete dynamic case, u may be thought of as an 

N-vector (N= 100 or 400). Then VI is a vector, V" isa matrix, and 

E represents the step-size 'adjustment method. Figure 1 may be 

thought of asa graph of V as a function of u for constant, near optimal 

k. Point B is the local maximum where 91 = 92 = 0, and is shown in 

tables 1-3. Point F is the maximum of table 4. 

Behavior due to a point analogous to E has been observed. 

Iteration began at point A, for near optimal k. The next value of 

u was to the right of point D (because V calculated at that point was 

greater than that of Table 1. In this case, N = 100, tN = 3.32). In suc­

cessive iterations, V continued to increase, as did 1911 and 1921 
because u was chosen to maximize H. However, it was impossible 

to driveao (analogous to (85)) below a certain value. After a few 

iterations, a 
0 

began to increase. Finally, a 
0 

jumped from a typical 

value of less than 10-3 to more than 300 in one iteration. At that 

iteration, elements of V were of the order of 5000. This situation 
x){ 

corresponds to a point near C orE where V is near singular (the 
uu 

'i 

singularity manifests itself in the large values of V and a 0). 
, i xx 

Thus, in order to guarantee proper convergence iterations 

must be restricted to the neighborhood of the relative minimum 

desired. In the present algorithm, the restrictions are accomplished 

by: 

1) The choice of a I sufficiently good I nominal. 

2) Miaitriizatib.n, of H(u) (rather than the use of Ou = -H~lH 
uu u 

as in [5], [6], [9] and [14]). 

3) Test 2. 
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V.4. Numerical Values of Tolerances 

o -2 
ETA, the criterion of optimality of a , was set to 1 o and good 

results were obtained. Late in the iteration process, a 0 was always 

les sand generally considerably less than this value, so that this 

constraint is rather ineffective. Earlier in the process ,little is 

gained by requiring a 
0 

to be extremely small, since that would 

require precise calculation of quantities which must change when 

k is changed by Ok, and which are non-critical. 

Satisfactory results were obtained with CK and TOL, the tolerances 

of Test 1 and Test 2, respectively, set to 20% and 30%. At less than 

10%, it became impos sible to take steps sufficiently small in Ox. to 
1 

satisfy Test 2. (This was found with N = 100.,) 
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100 Time Steps 

t u Xl 

0 ,4430 1 
, 166 • 5188 1. 0008 
, 332 ,6073 I, 0044 
,498 .7097 1. 0121 
,664 ,8269 1. 0252 
.830 .9592 1. 0446 
.996 1. 107 1. 0711 

1. 162 1.271 1. 1047 
~.3~8 1. 460 I, 1455 
1~$94 1. 730 1. 1929 
1··:'~:&0 2,886 1. 2459 
1:~2;t> ' 4,493 1. 3008 
L%~ 4.765 1. 3508 
2.1$'8 4.913 1. 3945 
2,3'24 5, 023 1. 4315 
2,490 5,116 1. 4619 
2.656 5,196 I, 4860 
2,822 5.269 1. 5039 
2,988 5, 335 1. 5162 
3,154 5, 398 1. 5233 
3,320 1. 5,257 

Optimal V =' J, 52572699 
k1 = -1.40339248 

K2 =- 1. 26501024 

e =- ,7 5 ~ 10-6 
,1 -6 ai

2 ~ • 11 x . .10' 

Table 1 

Final Time = 3, 32 

x 2 x3 V V V 
Xl x 2 x3 

0 1 1. 8890 .94316 2, 0604. 
,0134 I, 0201 
, 0353 1. 0366 1. 5777 .94982 1. 4229 
.0649 1. 0478 
• 1011 1. 0520 1. 2963 "' 85152 , 82311 
, 1419 1. 0479 
,1853 1. 0349 1. 0857 , 64554 , 34816 
.2288 1. 0129 
,2701 .9823 . 96818 , 36222 , 055367 
,3071 .9433 
.3347 ,8924 ,93356 ., 045050 -.048480 
• 3157 ,8370 
,2786 .8032 • 95639 -,27469 , 0036793 
,2390 ,7811 
~ 1991 .7675 1. 0117 -,58597 .17505 
.1600 ,7611 
,1225 ,7609 1. 1031 '-, ~8384 ,44689 
.0872 , 7661 
,0546 ,7762 1, 2105' -I, 1608 .81108 
.0254 , 7908 
,0000 ,8096 1. 3356 -I, 4034 1. 2647 
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Table 1 

t V V V V V V x
1
x

l 
x

l
x

2 x
l
x 3 x 2x 2 x 2x

3 x3x 3 

0 17 .. 382 5. 0412 25. 681 2.7053 4. 1297 36. 371 
, 332 .. 114. 024 5. 9021 ]9. 323 2,5363 5.9353 26.238 
,664 10 .. 142' 5,6729 12,489 2.6660 5,9028 15.733 
.996 '6,5844 4. 3821 6.8543 2. 3731 4.3792 70 • 5536 

1. 328 3,8740 2.6629 3.2567 I, 5047 2.5309 2. 7188 
1. 660 1. 6 }{)9 .93085 1. 2301 .40562 1. 0976 .34899 
1. 992 1. 0014 ,43781 o. 83305 .17979 · 74599 -, 72441 
2,324 '. 62113 · 20735 · 68267 .. 14331 .37114 -l1303 
2,656 -3 ' 30776 · 095264 · 51340 ,10731 • 028400 -1. 0641 
2,988 10 x. 20185 · 037090 .29081 '. 040093 - ,,13086 -. 61585 
3,320 - • 33000 0 0 0 0 0 

t V 
xlk1 

V 
x2kl 

V 
, x3 k1 

V 
x1k2 

V 
x2k2 

V 
x3 k2 

0 11.763 1. 8948 16.457 2,0921 .47188 2. 6138 
• 332 10. 134 3'.2408 13.4,60 1. 8111 , 606Q 3 2.0839 
.664 7.9954 ' 3. 8989 9.8678 1.4737 • 62691 1. 5026 
.996 5.7024 3, 7125 6.3684 1. 1258 · 51215 .97654 

1. 328 3.5734 2.8099 3,5868 .80242 .28264 .59946 
1. 660 1.2686 La, 3089 1. 5331 .45836 -.023940 , 38236 
1.992 • 68877 1. 0293 1. 0404 .36011 -,16333 . 56995 
2. 324 .40892 • 95075 .84940 .30271 -. 19132 , 74612 
2,656 , 23166 • 95901 , 61959 . 27821 -. 15414 • 88625 
2.988 , 10279 .98678 • 33387 .26806 -.084390 .97275 
3.320 0 1 0 • 26537 ' \,0 1 

t V 
klk1 

V 
k1k2 

V 
. k2k2 

0 6.2739 1. 1584 , 34241 
• 332 5. 6858 1. 0802 • 33,200 
.664 4.9673 · 97793 • 31744 
.996 4. 0578 · 83754 • 29576 

1. 325 2,8729 • 63669 • 26168 
1. 660 · 73108 • 28510 · 20310 
1. 992 • 29045 • 19060 .13''001 
2. 324 , 13863 • 10495 • 081612 
2,656 , 061401 · 053471 • 047200 
2.988 , 020738 • 020602 • 020546 
3,320 0 0 0 
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t 

0 
• 166 
.332 
.498 
.664 
,830 
.996 

1.162 
1. 328 
1. 494 
1. 660 
1. 826 
1. 992 
Z.158 
2. '324 
2.490 
2.656 
2.882 
2.988 
3.154 
3.320 

Optimal 

400 Time' Steps 

u xl 

.4332 1 
.. 5072 1. 0010 
.5937 1.0049 
.6936 1. 0132 
.8080 1. 0269 
.9371 1. 0469 

1. 081 1. 0740 
1.241 1. 1082 
1. 426 1. 1493 
1. 683 1. 1970 
2.645 1. 2502 
4.437 1. 3048 
4.732 1. 3542 
4.885 1. 3972 
4.999 1. 4337 
5.093 1.4636 
5.176 1.4872 
5.250 1.5047 
5. 318 1. 5165 
5.382 1. 5232 

1. 5254 

V = 1. 52537493 
kl = -1.41936325 

k2 
9

1 
92 

= 1.26460750 
-6 = - • 33 x 10 

= . 37 x 10 
-7 

Table 2 

- Final 

x 2 x3 

0 1 . 
.0139 1. 0200 
• 0361 1. 0362 
.0659 1. 0470 
,1020 1. 0507 
.1425 1. 0464 
.1855 1. 0332 
.2285 1. 0114 
.2693 .9811 
.3059 .9428 
.3335 .8927 
• 3149 .8375 
.2780 .8039 
.2386 .. 7818 
.1988 .7682 
.1598 .7617 
.1224 • 7613 
.0871 .7664 
.0546 .7765 
.0254 • 7910 
.0000 .8097 
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T irrte . = 3 .. 32 

V V V 
xl x 2 x3 

1. 8803 • 93239 2, 0340 
1. 7254· • 94700 1. 7201 
1. 5729 • 93843 1. 4045 . 
1. 4273 · 90323 1. 0982 
1. 2942 • 83985 · 81261 
1.1790 · 74911 • 55832 
1. 0857 • 63410 .34405. 
1. 0160 .49963 · 17548 
.96936 · 35134 • 054908 
.94344 .19473 -. 018536 
.93488 .034410 -. 048200 
.94036 ":'. 12632 -. 039267 
.95720 -.28580 .. 0028600 
.98321 -.44323 · 074425 

1. 0168 -.59804 .17286 
1. 0569 -.74962 .29642 
1. 1029 -.89717 .44398 
1. 1541 -.1. 0396 · 61486 
1.2102 -I, 1755 · 80871 
1. 2709 -1. 3029 1. 0253 
1. 3356 -1. 4194 1: 2646 
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.93488 .034410 -. 048200 
.94036 ":'. 12632 -. 039267 
.95720 -.28580 .. 0028600 
.98321 -.44323 · 074425 

1. 0168 -.59804 .17286 
1. 0569 -.74962 .29642 
1. 1029 -.89717 .44398 
1. 1541 -.1. 0396 · 61486 
1.2102 -I, 1755 · 80871 
1. 2709 -1. 3029 1. 0253 
1. 3356 -1. 4194 1: 2646 



Table 2 

t V V V V V V 
xlx l '.>:.". x 1x 2 x1x 3 

x 2x Z x 2x 3 x3x 3 

0 25.668 6.4714 36.811 2.9982 6. 1215 51. 271 
.166 23.004 7. 3407 32~083 3. 0133 7~5962 43.827 
.332 20.020 7;. 8261 26..940 3.1994 8.4188. 3~.8.69 
.498 16. 875 7.8472 21. 711 3.4165 . 8.5199 '1.7.975 
.664 13. 767 7.4030 16.748 . 3. 5261 . 1 •. 9529 .20.696 
.830 10.887 6.5734 12. 357 3~4270 6.8843 14.457 
.996 8.3712 5.4944 8.7324 3.0840 5.5498 9.4885 

1.162 6.2725 4.3143 5.9299 2.5329 4.1859 5.8081 
1.328 4.5578 3.1493 3.8821 1. 8550 2.9672 . 3. 2561 
1.494 3.1074 2.0442 2.4311 1.1295 1.9686 1. 5713 
1. 660 1. 6814 .. 96700 ,.'1. 2982 .42449 1.1349' . 39922 
1. 826. 1.2733 .66432 .95119 ~ 26681 .91097. .'-: .:'310'0'0 
1. 992 1. 0094 .44680 .85425 . ~ 17135 . .75975 "-:. 68761 
2.158 • 8.0110 : 30614 • 77199 • 14147 . · 58102 ·,-:.95063 
2.324 .62423 : 21096 .69358 .13159. • 39144 -1. Q988 . 
2.490 1/ 46343 .14436 .61088 .. ~ 12113 • Z08Zt: . -t 1304 .. 
2.656 .30967 .096961 '. 5186.2 .• 10~02 • 050278 ..:1. 0504 
2.822 .15707 .062838 .41337 .073672 . ..,.06377.1 .-.87208. 
2.988 .0014626 .037691 .29278 .O4()783 .... 11762 .. -.61715 
3.154 '''7.16020 • 017914 •. 15530 - • 012180 -.098794 -. 31479 
3.320 ... 33005 0 0 0 0 0 

Table 2 

t V V V V V V 
xlx l '.>:.". x 1x 2 x1x 3 

x 2x Z x 2x 3 x3x 3 

0 25.668 6.4714 36.811 2.9982 6. 1215 51. 271 
.166 23.004 7. 3407 32~083 3. 0133 7~5962 43.827 
.332 20.020 7;. 8261 26..940 3.1994 8.4188. 3~.8.69 
.498 16. 875 7.8472 21. 711 3.4165 . 8.5199 '1.7.975 
.664 13. 767 7.4030 16.748 . 3. 5261 . 1 •. 9529 .20.696 
.830 10.887 6.5734 12. 357 3~4270 6.8843 14.457 
.996 8.3712 5.4944 8.7324 3.0840 5.5498 9.4885 

1.162 6.2725 4.3143 5.9299 2.5329 4.1859 5.8081 
1.328 4.5578 3.1493 3.8821 1. 8550 2.9672 . 3. 2561 
1.494 3.1074 2.0442 2.4311 1.1295 1.9686 1. 5713 
1. 660 1. 6814 .. 96700 ,.'1. 2982 .42449 1.1349' . 39922 
1. 826. 1.2733 .66432 .95119 ~ 26681 .91097. .'-: .:'310'0'0 
1. 992 1. 0094 .44680 .85425 . ~ 17135 . .75975 "-:. 68761 
2.158 • 8.0110 : 30614 • 77199 • 14147 . · 58102 ·,-:.95063 
2.324 .62423 : 21096 .69358 .13159. • 39144 -1. Q988 . 
2.490 1/ 46343 .14436 .61088 .. ~ 12113 • Z08Zt: . -t 1304 .. 
2.656 .30967 .096961 '. 5186.2 .• 10~02 • 050278 ..:1. 0504 
2.822 .15707 .062838 .41337 .073672 . ..,.06377.1 .-.87208. 
2.988 .0014626 .037691 .29278 .O4()783 .... 11762 .. -.61715 
3.154 '''7.16020 • 017914 •. 15530 - • 012180 -.098794 -. 31479 
3.320 ... 33005 0 0 0 0 0 



Table 2 

t V 
xlkl 

V x 2k i 
V 

x3 kl 
V 

x2kl 
V 

x2k2 
V 

x3 k2 

0 16. 324 2. 7072 22.568 2.9965 · 62088 3.8397 
.166 15. 071 3. 6516 20. 360 2.7752 • 74548 3.439] 
.332 13.635 4. 3937 17. 898 2. 5261 , 83261 3, 0041 
.498 12. 044 4.8705 15.288 2,2562 • 87461 2.5524 
.664 10. 369 5.0587 12. 652 1. 9757 ,. 86650 2. 1047 
.830 8' .. 6893 4.9548 10. 119 1. 6962 · 80765 1. 6828 
.996 7.0750 4.5854 7.8073 1. 4283 · 70248 1. 3065 

1. 162 5.5754 4.0023 5.8054 1. 1785 • 55971 .99064 
1:-..328 4.1963 3.2638 4. 1519 • 94615 , 38932 , 74192 
1. 494 2.8623 2.3949 2.8156 .71731 • 19653 • 55547 
1. 660 1. 3086 1. 343"8 1.5850 .47315 -.0064651 ,41096 
1.826 · 90514 1.1591. 1. 1539 .42623 -. 084704 .48855 
1. 992 .69021 1. 0388 1. 0480 • 36451 -. 15287 , 57766 
2.158 • 53029 .97807 .94985 .32738 -. 18133 ,66436 
2.324 .40854 .95379 .• 84 945 · 30386 -. 18620 , 74675 
2.490 • 31148 • 95055 • 74012 .28843 -. 17506 · 82111 
2 .. 656 .23115 .95886 • 61829 • 27827 -. 15239 ,88454 
2.822 • 16260 .97224 .48265 .27178 -. 12132 · 93504 
2.988 .10257 .98591 • 33340 .26792 -.084297 , 97138 
3. 15.4 • 048862 ~ .• 99615 • 17185 • 26598 -.043302 .99302 
3.320 0 1 . 0 .26540 0 1 
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Table Z 

t V 
k1k1 

V 
k1k2 

V 
.kZk 2 

~1 13 2 
13 3 

., 

0 8, 8160 1. 6610 , 43881 l.6117 , 92861 1, 2998 
• 166 8.3022 1. 5836 .. 42715 1. 6380 , 92017 1. 3739 
• 332 7.7593 1.5002 , 41432 1. 6858 .94436 L 4882 
.498 7.1776 1. 4088 , 39995 1. 7499 1. 0069 L 6473 
.664 6,5494 L 3075 , 38363 1. 8270 1. 1172 1. 8637 
,830 5.8690 1. 1947 • :56492 1. 9211 1. 2932 2. 1662 
,996 5. 1333 1. 0687 .34336 2. 0551 1. 5759 2,6231 

1. 162 4.3363 .92737 , 31828 2.304.3 2,0820 3.4117 
1. 328 3.4536 ,76489 · 28837 2, 9216 3,2442 5.0950 
1. 494 2, 3868 , 56341 • 25032 5, 2'092 7, 7912 'fO" 5 05 
1. 660 .• 77092 .29390 , 20465 '35 .. 639 : 100, Q4 71. 209 
1. 826 .41196 .. 26081 · 17086 ~9~ 1970 ~21. 079 :-2"3~. 071 
1. 992 ,29083 , 19216- · 13187 ~·14 •. 033 ' -86,862 -25.854 
2.158 , 20165 . 14280 .10454 -9,4342 -98.806 -'l'4,. 020 
2. 324 , 13913 .10584 ,082684 -4,7097 =118,50 - ::," 13581 
2.490 , 094332 , 076993 , 064096 1,6346 -153,98 21. 075 
2.656 • 061797 , 054015 , 047855 'r2.,,727 - 221. 03 .PO.962 
2, 822 .. 038102 • 035595 · 033524 ?i7. .... 541 -.3:66,.27 115.3'. 11 
2.988 • 020935 , 020859 ,. 020865 11i. 52 -78L 63 442, 30 
3,154 , 0086435 .. 0091655 , 0097293 593,49 -3112. 0 2247.1 
3,320 0 0 0 0:> co 0:> 
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400 Time Steps -

t u xl 

0 .4333 1 
.166 ,5074 1..0010 
.332 .5938 1. 0049 
.498 .6937 1. 0131 
.664 .8080 1. 0268 
.830 .9372 1. 0469 
.996 1. 081 1. 0739 

1. 162 1. 242 L 1081 
1. 328 1. 426 1. 1493 
1. 494 L 683 1. 1969 
1. 660 2.645 1. 2501 
1. 826 4.437 1. 3046 
1. 992 4.732 1. 3540 
2. 158 4.885 1. 3971 
2. 324 4.999 1. 4335 
2.490 . 5. 093 1. 4634 
2.656 5,176 1. 4870 
2.821 5,250 1. 5045 
2.987 5.318 1. 5163 
3,153 5. 382 1. 5230 
3.319 1. 5252 

Optimal V= 1. 52516085 
kl =-1. 41910912 

k2 ~.1. 26441935 
-5 

81 = -'. 10 x 10 

82 ==-. 26 x 10- 6 

x 2 

0 
.0139 
.0361 
.0658 
.1019 
.1425 
.1854 
.2284 
.2692 
.3059 
.3334 
,3148 
.2779 
.2386 
. 1988 
.1598 
,1223 
• 0871 
.0546 
.0254 
.0000 

------ --

Table 3 

. Final Time = 3. 3194 

x3 V V 
xl x 2 

1 1. 8800 ,,·.93244 
1. 0199 1. 7252 .94699 
1. 0362 1. 5727 .93838 
1. 0470 1.4272 . 90314 
1. 0507 1. 2941 .83974 
1. 0464 1. 179·0 .74899 
1. 0332 1. 08:56 . 63399 
1. 0114 1. 01'60 .49953 
.9812 • 96934 , 35127 
.9429 • 94343 ,19468 

.• 8927 .93487 ,034386 
.8375 • 94035 -, 12631 
.8040 .95720 -.28576 
.7819 • 98321 ";.44317 
• 7682 1. 0168 . 7. 59796 
.7617 1. 0569 ";. 7.4951 
,7614 1. 1029 ";,89703 
.7665 . 1. 1541 ~loi . .o394 
.7765 1. 2103 -'tI753 
.7911 1. 2709 -1. 3026 
.8097 1. 3357 -1. 4191 

-39-

V 
x3 

2.0334 
1. 7196 
1. 4041 
1. 0979 
.81232 
· 55811 
· 34391 
, 17540 
.054860 

-. 0185,61 
-. 04821:3 
-, 039278 
,0028443 
· 074400 
· 17282 
· 29636 
.44390 
.61476 
· 80858 

1. 0252 
1. 2644 
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Table 3 

t v. V V V V V 
xlxl 

x
l
x 2 x

l
x 3 . x 2x 2 . x 2x

3 x3x 3 

0 25. 654 6.4705 36.789 2.9974 6. 1205 51. 239 
.166 22.991 7.3385 32.064 3. 0124 7.5935 43. 799 
.332 20.009 7. 8231 26.924 3. 1981 8. 4148 35.846 
.498 16. 866 7.8437 21. 698 3. 4148 8. 5154 27.958 
.664 13. 760 7, 3995 16., 7 39 3. 5240 7.9484 20. 684 
.830 10. 882 6.5703 12. 351 3.4247 6.8805 1'41,449 
.996 8, 3684 5.4918 8.7288 3. 0819 5,5469 9.4838 

1. 162 6.2708 4. 3124 5,9278 2, 5311 4. 1839 5,8055 
1. 328 4.5568 3. 1480 3,8811 1. 8536 .2,9660 3.2549 
1. 494 3, 1069 2, 0433 2.4306 1. 1286 1. 9680 "L. 5708 
1. 660 1. 6813 · 96672 l2981 ' .42418 1. 1346 . 39905 
1. 826 1. 2735 ,66426 ,95129 .26668 · 91091 -,30994 
1.992 1. 0096 ,44678 .85434 ,17128 · 75970 -, 68749 
2,158 . 80125 · 30613 , 77206 .14142 · 58099 -.95047 
2.324 .62436 ,21096 .69364 · 13156 · 39141 -1. 0986 
2.490 ,46354 ,14436 , 61091 · 12111 .20820 -1. 1302 
2.656 , 30975 ,096968 . 51865 .10201 · 050286 -1. 0502 
2,821 , 15712 ,062844 ,41338 · 073662 -. 063752 -.87192 
2.987 . 0014710 · 037694 ,29279 · 040778 -. 11760 -. 61704 
3,153 '-" 16023 · 017915 , 15530 · 012178 -. 098777 -, 31473 
3, 319 -, 33013 0 0 0 0 0 
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Table 3 

t V 
x1k1 

V 
x2k1 

V 
x3 k1 

V 
x1k2 

V 
x2k2 

V 
x3 k2 

0 16. 317 2.7075 22.557 2. 9951 .. 62084 3.8376 
• 166 15. 071 '3.6572 20. 351 2.7740 .74530· 3.4374 
• 332 13, 630 4.3926 17.890 2,5250 · 83230 3. 0025 
.498 12, 039 4,8689 15, 281 2.2552 .87420 2. 5510 
.664 10 H 366 5,0568 12. 647 1. 9749 .86604 2. 1036 
.830 8.6864 4.9528 10, 115 1. 6956 · 80718 1. 6819 
.996 7.0729 4.5835 7.8046 1.4279 .70203 1. 3059 

1. 162 5.5739 4, 0006 5.8036 1. 1782 · 55932 .99027 
1. 328 4. 1953 3.2625 4. 1508 . 94593 · 38900 . .74171 
1. 494 2. 8616 2.3940 2. 8151 · 71717 .19629 · 55536 
1. 660 I, 3084 1. 3435 1. 5848 .47314 -.0065624 .41096 
1. 826 • 90522 1. 1590 I, 1540 .42626 -, 084763 .48859 
1. 992 · 69030 1. 0388 1. 0481 · 36455 -. 15291 · 57770 
2, 158 · 53037 .97804 .94994 .32743 -. 18136 .66440 
2. 324 · 40861 · 95377 .84953 · 30391 -. 18622 .74678 
2.490 .31154 .95054 .74018 .28848 -. 17508 .82113 
2,656 · 24120 · 95886 . 61834 .27832 -. 15240 .88456 
2.821 · 16264 .97224 .48268 .27183 -. 12133 · 93505 
2, 987 · 10259 · 98590 .33342 .26798 -. 084302 .97139 
3, 153 · 048875 · 99615 .17186 .26604 -. 043304 · 99303 
3.319 0 1 0 .26546 0 1 
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2,656 · 24120 · 95886 . 61834 .27832 -. 15240 .88456 
2.821 · 16264 .97224 .48268 .27183 -. 12133 · 93505 
2, 987 · 10259 · 98590 .33342 .26798 -. 084302 .97139 
3, 153 · 048875 · 99615 .17186 .26604 -. 043304 · 99303 
3.319 0 1 0 .26546 0 1 
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Table 3 

t, V V V 13 1 13 2 P k1k1 k1k2 k2k2 3 

0. 8. 8130. 1. 660.4 .43870. 1. 6118 . 92857 1. 30.0.0. 
• 166 8.2995 1. 5831 .4270.4 1. 6381 . 92o.l7 L 3742 

'" 332 7.7568 1. 4997 · 41422 1. 6860. .94440. 1. 4886 
.498 7.1754 1. 40.83 · 39986 1. 750.1 1. 0.0.70. 1. 6478 
.664 6.5474 1. 30.71 · 38354 1. 8273 1. 1174 L 8643 
. 830. 5.8673 1. 1943 ,36485 1. 9215 1. 2934 2. 1669 
.996 5. 1318 1. 0.684 .34330 2.0.557 1. 5762 2. 6241 

1. 162 4. 3350. · 9270.9 · 31823 2. 30.51 2,0.825 3. 4131 
1. 328 3.4525 .76466 .28833 2.9229 3.2455 5.0.974 
1. 494 2.3859 · 56322 .250.29 5. 2124 7.7957 10.. 511 
1. 660. · 770.50. · 29385 · 20.465 3'1$. 663 100.. 10. 71. 248 
1. 826 .41195 • 260.81 · 170.86 .. 9. 1921 =21. 0.42 -23. 0.63 
1. 992 .290.84 • 19217 · 13187 . .\.I4.o.38 -86. 876 -25.861 
2.158 • 20.165 .14280. .10454 -9.4381 -98.827 -14. 0.25 
2. 324 • 13913 .10.584 · 0.82681 -4. 7120. -118.53 - '013744 
2.490. · 0.94332 • 0.76991 .0.640.92 1. 6350. ,~154." 0.2 2l" 0.79 
2.656 · 0.61797 • 0.540.13 · 0.47852 12.732 -221.0.8 60..976 
2.821 · 0.3810.1 · 0.35593 · 0.33521 37.558 -366.35 153. 15 
2.987 .0.20.934 · 0.20.858 · 0.20.863 114. 57 -781.82 442 .. 42 
3.153 • 0.086431 • 0091649 • 0.097283 593,80. -3ll2,9 2247,8 
3,319 0. 0. 0. 0:> 0:> 0:> 
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100 

t u 

0 1. 147 
• 166 1,458 
• 332 1. 802 
.498 2.172 
.664 2.423 
.830 2.674 
.996 2. 819 

1. 162 2.917 
1. 328 2.990 
1. 494 3, 048 
1. 660 3.098 
1. 826. 3.143 
1. 992 3.186 
2.158 3,229 
2, 324 3,275 
2.490 3~ 33l 
2.656 3.406 
2.822 3, 5,28 
2.988 3, 778 
3.154 4.473 
3. 320 

Table 4 

Time Steps Final 

. 

xl x 2 

1. 0 
1. 0015 . 0233 
1. 0071 .0489 
1. 0167 .0706 
1. 0294 .0826 
1. 0433 .0833 
1. 0565 .0722 
1. 0672 ,0508 
1. 0738 .0203 
1. 0747 -. 018~ 
1. 0686 -. 0650 
1. 0543 -. 1194 
1. 0305 -. 1818 
.9957 -.2532 
.9484 -. 3349 
.8867 -.4294 
.8083 -. 5404 
, 7100 -, 6738 
.5878 -.8374 
.4361 -1. 0316 
.2559 -1. 0621 

V 2. 05800182 

k1 = -1. 3996310 

k2 =: 1. 2600310 

8
1 

= -1. 0620840 

e 2 = 0.25048833 

x3 

r 
1. 0055 
.9993 
.9812 
· 9529 
.9200 
.8850 
.8525 
• 8221 
.7956 
,7737 
.7572 
• 7472 
.7452 
,7536 
.7765 
.8211 
,9021 

1. 0534 
r. 3731 
2.2275 
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Time = 3. 32 

V V V 
xl x 2 x3 

1.5399 3.8503 1. 5607 

. 065221 3.4865 -1. 1789 

-1. 2528 2.6667 -3.5848 

-2.0365 1. 7928 -5. 1481 

. -2.4128 IT .. 0467 -5.9689 

-2; 6385 .39794 -6. 2592 

-2.7998 -, 14885 -6. 0700 

-2.9268 -.59906 -5. 3983 

-2.9898 -. 97790 -4..1832 

-2.6070 -1. 3288 -2, 2274 

5.8682 -1. 3996 1. 2600 
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Table 4 

t V V V V V V x1x1 x
1
x 2 x1x 3 x2x 2 x 2x 3 x3x 3 

0 -24.414 -2. 0022 -37.216 20.959 -7.9807 -43. 107 

-36.687 -17.856 -47.037 7. 6941 -30. 388 -45.222 

-53. 131 -41. 090 -54.533 -13. 587 -51. 207 -37.624 

-61. 956 -.58 .. 592 -47.827 -35.420 -58.469 -12. 146 

-61. 104 -65.932 -27.929 -49.859 -48.845 -21. 572 

-51. 538 -62. 151 --I. 0216 -52. 137 . -27. 091 48. 156 

-33.480 -48. 075 24.962 -41. 927 -3 .. 0412 55.434 

-8.6663 -27.949 40.562 -24.679 12. 112 41. 086 

18. 256 -9. 1917 39. 034 -9",0632 13. 118 16., 361 

39.504 1. 1026 21. 040 -. 90940 4. 8651 -. 70196 .. 
-28. 541 0 0 0 0 0 
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Table 4 

t V 
x1k1 

V 
x2k1 

V 
x3 k1 

V 
x1k2 

V 
x2k2 

V 
x3 k 2 

0 -,63978 -1. 8778 -,73634 • 28581 1. 6463 ,11'38-8 

-,058647 -1. 8077 ,47180 -.,55295 1. 3166 -1. 2612 

,22644 -1. 6848 1. 3543 -1. 4659 ' 65052 -2,5802 

, 20785 -1. 6316 1. 9042 -2,2572 -:. 18701 -3, 5000 

, 055229 -1. 6358 2. 3214 -2,9432 -1.0756 -3.9021 

-. 11039 -1. 6351 2, 7404 -3.4968 -1. 8585 -3. 6752 

-.14652 -1. 5086 3,2172 -3,7835 .2, 3211 -2, 7753 

,10870 -1. 1360 3, 6343 -3. 6113 -2,2884 -1. 3815 

,·77093 -,50338 3, 6627 -2. 8160 -1. 7731 , 081057. 

1. 8439 2.9461 2,8218 -1. 1017 -.96980 1. 1273 

0 1 0 .3" 8635 0 1 
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Table 4, 

t V 
k1k1 

V 
k1k2 

V 
k2k2 

0 · 17173 .22694 · 30997 
.332 · 17168 · 22658 .30454 
.664 • 17005 · 22270 .29477 
.996 .16428 .21388 · 28121 

1. 328 · 15402 · 19916 · 26008 
1. 660 · 13853 · 17695 · 22827 
1. 992 .11778 · 14737 · 18608 
2. 324 · 093937 · 11390 · 13910 
2.656 .070021 • 081529 · 095279 
2.988 .043426 .048409 · 053988 
3.320 0 0 0 
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VI. Conclusion 

A new discrete algorithm has been derived which is analogous 

to the continuous algorithm of [1] and [2]. Extensions to the latter 

(Test I and Test 2) have been developed to ensure that the new 

iterate is in the neighborhood of the current nominal. 

The algorithm has beEm used to solve a non-linear, optimal 

orbit transfer problem. This problem has been attempted, and 

solved, in various forms, by a number of investigators using dif­

ferent computational methods. 

The results obtained in this paper agree most closely with 

those of [12]. 
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Appendix A, 

Continuous Results from Jacobson. 

The following isa statement and solution of the continuous-time 

optimal control problem solved in (1). The notation has been 

modified to conform to that of thispapei". Thus some expression 

involving derivatives have been transposed, and'" has been. placed 

over certain sytnbols to coincide with section. rII~ 1, above. 

Problem: given that . ,... 
x = f(x, u, t) ; x{t: ) = x o 0 

Find u(t), t € [to,tf ] to minimize 

t f 
A ... 2 V(xo ' to) = S L(x, u, t)dt + F(x(ti » 

't 
o 

while satisfying 

A-4 

A-5 

The constraints (A-3) are adjoined to the cost functional (A-2): 

" T V(x , t ) = V + k 8(x(tf» o 0 

The solution is: 

• ',..) '1::1 
... a = H'" H 

• ~ N-;:j 

-V = H + {f .. i)V x x xx 
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A-10 -Vxk = (iT + j3 TiT)V 
x 1 u xk 

A-ll 

A-12 

,.., N ,... 

where H = LtV f, and derivatives of H are taken with V constant, i. e. 
x x 

.....- N "" 
H =L tVf 

x x xx 

The boundary conditions of (A-7) through (A-12) are the same as 

e-quations (33) -( 38 ) above. 
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Appendix B 

The Computer .Program 

Implementation of the algorithm on the problem described in 

section three required the use of a computer. A program has been 

written for the IBM 7094 in FOR TRAN IV, which consists of several 

subprogram s. 

1. MAIN 

This program is described in Flow Chart II in general outline. 

This program coordinates the algorithm. It starts by setting initial 

quantities, and quantities which do not change throughout the compu-
/'oJ ,.J 

tation.Included are input numbers, constant elements of f and f, 
x xx 

and constant boundary conditions. 

The routine FORINT is called, which integrates the state 

equations (1). On the first iteration, the initial nominal control histo:ry 

is used. Subsequently, u. is calculated in FORINT. The performance 
1 

index and terminal constraints are evaluated. 

The calling of FORINT is part of the "step-size adjustment", as 

desc·ribed in [1] and [Z} and Flow Chart 1. 

Once a suitable trajectory is calculated, it is printed out and 

BAKINT is called to integrate the equations for a i, Vi, and Vi. If x· xx 

the absolute values of a 0 and the terminal constraints are less than 

ETA, ETAl, and ETAZ, respectively (which are input quantities), 

iteration ceases. The routine BETA is called, which calculates the 

optimal feedback vector j3 such that on a path slightly perturbed from 

the optimal, Ou = j3 T Ox. 

If a 0 is not smaller than ETA in absolute value, the program 

transfers to the forward integrator to improve the nominal trajectory. 
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1 

index and terminal constraints are evaluated. 

The calling of FORINT is part of the "step-size adjustment", as 

desc·ribed in [1] and [Z} and Flow Chart 1. 

Once a suitable trajectory is calculated, it is printed out and 

BAKINT is called to integrate the equations for a i, Vi, and Vi. If x· xx 

the absolute values of a 0 and the terminal constraints are less than 

ETA, ETAl, and ETAZ, respectively (which are input quantities), 

iteration ceases. The routine BETA is called, which calculates the 

optimal feedback vector j3 such that on a path slightly perturbed from 

the optimal, Ou = j3 T Ox. 

If a 0 is not smaller than ETA in absolute value, the program 

transfers to the forward integrator to improve the nominal trajectory. 
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When the trajectory has be~noptirnized for a given value of k, 

i. e., when a
O 

is driven to less than ETA, the routine DKCALC is 

called, which integrates the V~k and V~k equations, and calculates 

Ok according to (59). Tne value of € is originally 1., but if each 

component of 8 is not decreased (by the introduction of Ok) in 

absolute value, and if the change in performance index is not within 

a tolerance (an input quantity) of the value predicted by (60) (i. e., if 

Test 1 is failed), then € is reduced by half and the forward integrator is 

called again to calculate 8 and V. When the criteria are satisfied, k 

is replaced by k + Ok and the program tran~fers to BAKINT. 

2. FORINT 

This routine integrates (1) forward. 

which is equivalent to maximizing 

It calculate s u. by maximizing 
1 

. E = C sin u. + D cos U. .where 
1 1 

i+l- -
C = V x

2 
(xi+l + OXi+l ,k + Ok) 

i+l- -
D = V (x'+ l + OXi+l' k + Ok) 

X3 1 

C and D are calculated by expanding v~+l inOxi+l and Ok. However, 

OXi is used in place of OXi+l' See~section IV. 1. 

At the maximum of E, 

-1 . 
u. = tan (O/D) , 

1 

but this also determines a minimum. The maximum is chosen simply 

by requiring that E be positive. 
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Test 2 is applied by determining whether (11) is constant (within 

a tolerance! TOL)6ver' tirrie.+(It should be Jconstant because 'Li is 

zero.) Because this test is time' consuming,' it is done at rare in~ 

tervals. 

3. BAKINT 
>:< 

This routine calculates u. according to (19), (in a similar 
11 

fashion to that of calculating u i in FORINT) and integrates (27), (28), 
'. . " 

and (32) with (33), (34), and (38) as boundary conditions. It prints 

out its results. 

4. DKCALC 

This integrates (31) and (32) with (36) and (37) as boundary 

conditions, and prints values of V~k' V~. At t = 0, .it calculates 

Ok according to (58). 

5. START 

This short routine accepts input information. The input must 

include the maximum number of iterations, the number of time steps, 

the tolerances ETA, ETA1, ETA2, CK, and TOL, the initial value 

of k, and the initial nominal control history. 

6. BETA 

The optimal perturbation feedback law for small deviations 

from an optimal trajectory is given by (22), which, in the present 

problem, may be approximated by, 

Ou. = _Hi:-Jft [Vi+l Ox + Vi+10k] . 
1 UU U xx i xk 

From (58), and since v~ = 8 T = 0 on an optimal trajectory, 

Ok = _v i +1",1 Vi+l 0 
kk kx x!+l . . 

+ or from (68), OV
i 

... OV 0 ~ o. 
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To first-order~n At (in.a :problem which originates f;rom a 

continuous problem)~ this may he written 

See section IV. 1. 

Thus, 

The coefficient of c5xi is calculated in BETA, and printed as 13
1

, 
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