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1. Abstract 
Based on some examples calculated using the 99-line code made by Sigmund [1], the structural topology 
optimization model construction is discussed to propose a problem that whether the topology optimization model 
construction could be more reasonable. In order to solve this problem, a topology optimization model according 
to practical engineering is constructed to search for the minimization of structural weight with a displacement 
constraint. And a corresponding 120-line code written in Matlab is made by us. Calculation results of the 
examples show that the model of the 120-line topology optimization code is more reasonable. 
2. Keywords: structural topology optimization; optimization model; choosing an objective function and 
constraint conditions; 99-line topology optimization code; 120-line topology optimization code 

3. Introduction 
The purpose of structural topology optimization is to seek the optimum layout of structural components or 
sub-domains within a given design space under a given set of loads and boundary conditions such that the 
resulting layout meets a prescribed set of performance targets. As an important branch of structural optimization 
research, topology optimization has been enriched by lots of solution methods. An exhaustively detailed 
summary for the development of topology optimization was made by Bendsøe and Sigmund [2], and the 
application and development of numerical modeling methods used in structural topology optimization were also 
reviewed in details by Rozvany [3]. 

Looking back the research of truss structure topology optimization led by Michell [4], a great progress has 
been made since then. The Michell truss theory is not only developed by Rozvany et al. [5-6], but also the 
research objects of topology optimization have developed from skeleton structures such as truss and frame into 
continuum structures. Although the paper [7] superficially stated to be the homogenization method, Bendsøe and 
Kikuchi broaden the research objects of structural topology optimization, because they presented the concept of 
topological optimization for the continuum structures. The ground structure approach [8], which was only used 
in topological optimization of skeleton structures, has become the foundation of the homogenization method in 
topological optimization of continuum structures, and also the foundation of the methods seeking the optimum 
layout of sub-regions for a given domain, such as the variable thickness method [9], the artificial material 
method [1,10-12], the evolutionary structural optimization method [13], the independent continuous and 
mapping method [14-17], the level set method [18-20], etc. Due to limited length of the paper, we can’t list all of 
the research here and can only mention the methodologies above, which are a few of thousands. 

Among many studies, the 99-line topology optimization code written in Matlab by Sigmund has been a 
unique significant research [1]. The code has been published on web (http://www.topopt.dtu.dk/?q=node/2), 
which could be downloaded. We notice that Rozvany gave a good evaluation for this work. He said it “played an 
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important role in SIMP’s general acceptance” [3]. 
In our opinion, “an important role” has two senses: it is not only extracurricular materials for students to 

master the knowledge of structural topology optimization, but also an introductory tool for engineers to 
understand and use a method of structural topology optimization. The 99-line code is short and includes finite 
element analysis and optimizer subroutines, where the users can change the definition of structural sizes, set 
different loading and boundary conditions and solve problems. Beginners can get great inspiration and help from 
it. 

The 99-line topology optimization code is based on the SIMP (Solid Isotropic Material with Penalization) 
model of the artificial material method and its formulation shows as below: 

0)( EEE p
eee ρρ == ]1,0[∈eρ                                       (1) 

eρwhere Ee and E0 are the Young’s modulus of artificial and real material respectively,  is the elementary 

artificial relative density, and p is the penalty factor. 
On one hand, Eq. (1) involves the artificial relative density variables on a closed interval [0, 1], and in fact 

the discrete 0/1 topology variables are made to be continuous ones. On the other hand, the penalty function is 
used to establish the relationship between artificial relative densities and Young’s modulus, and the explicit 
relationship of element stiffness and continuous topology variables is formulated essentially. Actually, the 
artificial material method has overcome two difficulties of structural topology optimization through Eq. (1). The 
first difficulty is that the model can not be constructed and the optimization problem can not be solved owing to 
discrete 0/1 topology design variables. The second difficulty is that the structural performance couldn’t be 
expressed by topology design variables. 

The structural topology optimization model in paper [1] is to seek minimum compliance, or maximal 
stiffness, with a volume constraint. We call it the MCWC (minimum compliance with a weight constraint) 
formulation. It is presented as below: 
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where K, U and F are the structural global stiffness matrix, total displacement vector and total force vector, 

respectively, ue is the displacement vector of the e-th element,  is the element 

stiffness matrix of the e-th element,  is the element stiffness matrix for unit Young’s modulus, 

0)()( eeee E kkk ρρ ==

0
ek ρ is the 

artificial relative density vector. In order to avoid singularity of the stiffness matrix, the minimum relative density 

 is usually taken as 0.001. N is the total number of elements, and the penalty factor p is usually equal to 3. 

 and V* are the total volumes of the designed structure and the ground structure, respectively, f is the 

pre-setting volume ratio. Eq. (2) has been solved by an optimality criteria method.  

minρ

)(ρV

During trying to adopt the 99-line topology optimization code, a number of examples were computed. We 
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found that the pre-setting volume ratio had a decisive influence on the results of structural topology optimization: 
different volume ratios would produce different topological configurations. This awaken us to think further on 
the relationship between the pre-setting volume ratios and optimal topological configurations. Based on this, we 
consider a question: whether structural topology optimization has a more reasonable model? 

Following the train of thinking, this paper proposes a structural topology optimization model of minimizing 
structural weight with a displacement constraint, and develops a corresponding 120-line topology optimization 
code. Through the example calculations by the 120-line code and then they are compared with the calculation 
results by the 99-line code. Research results show that constructing a more reasonable structural topology 
optimization model is a significant mention.  

4. Expression of structural topology optimization with a more reasonable model construction 
The optimization problems discussed in this paper will be focused on structures that are able to bear external 
forces, rather than force inverter or compliant mechanisms. Therefore, 4 simple structures are used as examples 
in this paper, which are shown in Figure 1. 

Example 1, shown in Figure 1 (a), is the half of MBB-beam, with a ground structure of 60mm×20mm×1mm, 
unit force F=1, unit Young’s modulus E0=1.0 and the Poisson’s ratio . 3.0=v

Example 2, shown in Figure 1 (b), is the short cantilever beam, with a ground structure of 
32mm×20mm×1mm, unit force F=1, unit Young’s modulus E0=1.0 and the Poisson’s ratio . 3.0=v

Example 3, shown in Figure 1 (c), is the short cantilever beam with a fixed hole, with a ground structure of 
45mm×30mm×1mm, unit force F=1, unit Young’s modulus E0=1.0 and the Poisson’s ratio . The center of 
the hole is located at the intersection of 1/3 horizontal length and 1/2 vertical length from left to right, while the 
radius is equal to 1/3 vertical length. 

3.0=v

Example 4, shown in Figure 1 (d), is the cantilever beam, with a ground structure of 80mm×50mm×1mm, 
loading force F=9kN , Young’s modulus E0=1.0×106MPa and the Poisson’s ratio . 3.0=v

 

 
Figure 1: Ground structures and boundary conditions for the four test examples 

 
The first three examples are from paper [1]. There are 9 sub-examples for each example, where the 

pre-setting volume ratios are 9 equally distributing numbers between 0.1 and 0.9. 
A total of 36 sub-examples are all computed by the 99-line topology optimization code and the results are 

shown in Table 1. Meanwhile, the optimal results of four examples with the pre-setting volume ratio of 0.1 are 
examined in more detail and shown in Table 2, where in the “Number of elements” column, “Black” presents the 
number of black elements with a relative density of 1.0, “White” presents the number of white elements with a 
relative density of 0.001, and “Grey” presents the number of grey elements with various relative densities on the 
open interval (0.001, 1.0). 

 
 

(d) (c)(b)(a) 
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Table 1: Optimum topological configurations for different pre-setting volume ratios 
 

Volume ratio Example 1 Example 2 Example 3 Example 4 

Iterations 45 44 7 29 

0.9 
Opt. Config. 

 
   

Iterations 96 80 7 106 

0.8 
Opt. Config. 

 
   

Iterations 134 56 17 81 

0.7 
Opt. Config. 

 
   

Iterations 79 50 23 129 

0.6 
Opt. Config. 

 
   

Iterations 94 69 34 58 

0.5 
Opt. Config. 

 
   

Iterations 63 71 35 47 

0.4 
Opt. Config. 

 
   

Iterations 135 42 66 44 

0.3 
Opt. Config. 

 
   

Iterations 363 222 83 44 

0.2 
Opt. Config. 

 
   

Iterations 1132 756 740 1971 

0.1 
Opt. Config. 
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Table 2: Results of 4 examples with the pre-setting volume ratio of 0.1 
 

Number of 

structure 

analysis 

Number of elements 
Total volume of 

grey elements 

Average density of 

grey elements 
Compliance Example 

Black White Grey 

Example 1 1132 4785.2511 0 604 596 119.3960 0.2003 

Example 2 756 899.0410 0 382 258 63.6180 0.2466 

Example 3 740 787.8421 6 904 440 128.0961 0.2911 

Example 4 1971 33266.6946 6 2740 1254 391.2600 0.3120 

 
From the results of 36 sub-examples in Table 1, we observe “dependency of the structural optimal 

topological configurations on the pre-setting volume ratios”, and summarize the following three aspects: 
(1) 3 or 4 different kinds of typical structural configurations are obtained in all 4 examples. 
(2) When the pre-setting volume ratio is too small, the structure will be broken off or disconnected, and it 

degenerates into a mechanism. According to the data shown in Table 2, when the pre-setting volume ratio of each 
example is 0.1, the number of the black elements in the structural optimal topological configurations is very 
small or even zero. At the same time, the average densities of grey elements are 0.2003, 0.2466, 0.2911 and 
0.3120, respectively. These show that the structures have already degenerated into mechanisms. 

(3) Along with the reduction of pre-setting volume ratios, all 4 examples go through an evolution from 
“cumbersome” structures, Michell-truss-like structures, “light” structures into degenerating mechanisms at the 
end. 

Since the optimal topological configurations are really dependent on the pre-setting volume ratios, there is a 
question that how a reasonable pre-setting volume ratio can be selected in the stage of conceptual design, Could 
the most appropriate volume ratio be found logically? In other words, rather than using a presumed volume ratio, 
why don’t we determine an “optimal volume ratio” at the same time with searching for an optimal topological 
configuration?  

5. Presentation of a topology optimization model best fitting practical engineering problems 
Many examples in the last section inspire us to seek the “optimal volume ratio” at the same time with searching 
for an optimal topological configuration. This means that there will be a new volume ratio objective function 
besides the compliance objective function when we use the 99-line topology optimization code. If there are a 
compliance objective function and a volume ratio objective function at the same time, the optimization problem 
wouldn’t be the one with a single objective function and the optimum solutions wouldn’t be determined. 

Could the volume ratio only be considered as a single objective function? Since the compliance is not taken 
as the objective function, it should be transformed into a constraint condition. However, what should the 
compliance constraint value be selected? Therefore, there is a similar difficulty like that one in the 99-line 
topology optimization code, in which a constraint value of the most appropriate volume ratio is not determinate. 

How can the difficulty of selecting a compliance constraint value be overcome? In fact, if we move our 
focus from compliance into another one, there is a solution. Actually, rather than the compliance constraint, the 
strength or stiffness constraint is considered for practical engineering problems. That is, we can use the strength 
or stiffness constraint instead of the compliance constraint. 

In order to try to put this idea into practice, we present a topology optimization model of minimizing 
structural weight with satisfying a displacement constraint at a certain point of interest. Why is the volume ratio 
objective function changed into the structural weight objective function? This is because minimizing structural 
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weight is equivalent to minimizing structural volume with the same material, while the minimum structural 
volume is equivalent to the minimum structural volume ratio with the same ground structure. So minimizing 
structural weight should be equivalent to minimizing the volume ratio. The advantage of using the structural 
weight objective function is that the formulation of topology optimization is in line with formulations of the 
section optimization and the shape optimization.  

A minimum weight formulation for topology optimization with a displacement constraint can be presented 
as follows:  
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where  is the element weight when the density of the e-th element equals to 1,  and  are the 

structural total weight and the displacement at a point of interest respectively, 

0
ew )(ρW )(ρu

u  is the displacement allowable 

value. Similarly with the 99-line code, the minimum density is set as 001.0min =ρ  for an avoidance of 

singular stiffness matrix in seeking optimum solutions.  

5.1. Derivation for the explicit displacement function at the point of interest 
Using the unit virtual load method [21], the displacement at a point of interest can be expressed by calculating 
the virtual work as follows: 
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where  is the e-th element’s contribution to the displacement value at the point of interest,  and  

denote the element stress vectors associated to the real load and the element strain vectors associated to the 
virtual load, respectively.  

Rσ vεeu

According to the work energy theorem, the virtual work in Eq. (4) is equal to the virtual work obtained 
from nodal forces and nodal displacements: 
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virtual load in the e-th element, respectively. 
Substituting Eq. (6) into Eq. (5), we can get: 
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where  is the element stiffness matrix;  is the element stiffness matrix for unit Young’s modulus;  

is the element Young’s modulus for linear isotropic material (artificial material);  is the Young’s modulus of 

solid material (real material, 

eK eE0
ek

0E

1=eρ );  is the element stiffness matrix when 0
eK 1=eρ  with the Young’s 

modulus . 0E

Substituting Eq. (8) into Eq. (7), we obtain: 
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where  is the constant coefficient of the displacement contribution component of the e-th element to the 

point of interest. In Eq. (9), the reason of  rests with introducing an assumption of the 

statically determinate structure. Because the displacements of the statically determinate structure have no 
relationship with the nodal force vectors and our structure is regarded as a statically determinate one in each 

structural optimization iteration, is a constant which is not dependent on and  for each iteration. 
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5.2. Solutions of the optimization model 
Substituting Eq. (9) into Eq. (3), we obtain an explicit topology optimization model as follows: 
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According to Lagrangian multiplier method, we can get: 
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The first order derivatives of the Lagrangian function are found as: 
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The design variables can be obtained from Eq. (12) as follows: 
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Substituting Eq. (14) into Eq. (13), we can get 
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λThen, the Lagrangian multiplier  is eliminated by substituting Eq. (15) into Eq. (14), and the solutions 
are got as follows: 
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In order to think of contribution of element densities to the displacement at the point of interest, the partial 
derivative of Eq. (9) with respect to densities are obtained as follows:  
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When , we have 00 >− eD eρ. That’s to say, if the element density  is increased, the 

displacement  at the point of interest will be increased; if the element density u eρ  is decreased, the 

displacement at the point of interest will be decreased. So increasing element density eρ  is not economical in 

terms of design. In this case, the element density values have to be decreased to reach the minimum value, 
therefore the displacement contribution and stiffness contribution of the corresponding element can reach 
minimum and maximum values, respectively. We don’t need to design the density of this element in this case, so 
it is called as passive design variable. 
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When , we have 00 ≤− eD eρ. That’s to say, if the element density  is increased, the 

displacement at the point of interest will be decreased; if the element density u eρ  is decreased, the 

displacement at the point of interest will be increased. In other words, the element density  eρ  is increased, 
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displacement contribution and stiffness contribution of the corresponding element will be decreased and 

increased, respectively. This is a reasonable return on economic investment in increasing the element density eρ . 

In this case, the density should be designed, and it is called as the active design variable. 

The discussion above is summarized as following: the elements satisfied with  are designable 

elements, and the corresponding density variables are the active variables included in set 

00 ≥eD

{ }meDeI ea ,,1,00 L=≥= ; the elements satisfied with  are not designable and the corresponding 

density variables are in the passive design variable set.  

00 <eD

The values of the density variables in the passive design variable set are to remain constant during each 
iteration of seeking the optimum solutions. Therefore, the topology optimization model in Eq. (9) can be 
rewritten as follows: 
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nothing to do with seeking optimization, can be eliminated from the objective function. Similar to the previous 
deduction, we can obtain the following equation to replace Eq. (16) as: 
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The active design variables calculated from the equation above are not ensured to have a smaller value than 

1 or a larger value than the minimum density minρ . Then an adjustment should be made as below:  

⎪⎩

⎪
⎨
⎧

≤∉
<<∈

≥∉
=

)ˆ  (     here  
)1ˆ  (     here     ˆ

)1ˆ  (     here        1

minmin

min
*

ρρ
ρρρ

ea

eae

ea

e
ρifIew

ρifIew
ρifIew

                               (20) 

Now that the active/passive design variable set is adjusted, the calculation according to Eq. (19) has to be 
re-performed, which is called as a small optimization iteration. The active/passive design variable set classified 

by the sign of  is a global pre-judgment after one structural analysis before the topology optimization model 

construction for iterative solutions, but Eq. (20) is a local adjustment of reclassifying the active/passive design 
variable set after a small optimization iteration. This kind of small optimization iteration should be computed 
continuously according to Eq. (19) until the active/passive design variable sets are no longer changed，and the 
process of small optimization iterations stops. Thus, the optimal solutions of the model Eq. (18) for the 
corresponding structural analysis are obtained. Here, we say that a big optimization iteration is finished. Before a 

0
eD
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new big optimization iteration, a new structural analysis should be made. However, the whole optimization 
process needs sequential reconstructions of optimization models corresponding to sequential big optimization 
iterations. 

To ensuring mesh-independency, a filter function expressed in Eq. (21) [17] is used in this paper. The 
displacement contribution component of each element to the point of interest in Eq. (9) is filtered. Thus the new 
coefficients for the filtered displacement components are obtained in Eq. (22) as follows:  
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{ }minrjN eje ≤−= xxwhere  is the spatial location of geometric center for the j-th element; jx  denotes the 

neighborhood of the e-th element within a given filter radius rmin of the center of the e-th element; 

),0max()( min ejj rw xxx −−=  is a weight function, also a linearly decaying weighting function, which is 

linearly reduced along the distances of the neighbor elements to the center element.  
In order to keep the comparability of our topology optimization, the same convergence criterion as that in 

the 99-line topology optimization code is used in this paper. The optimal solutions for the (k+1)-th 

iteration and for the k-th iteration should satisfy a relationship as follows:  

)1( +kρ
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6. Results comparison of two models 
The solution process for the optimization model Eq. (3) is programmed into a 120-line topology optimization 
code, which can be downloaded from website https://sites.google.com/site/yiguilian/link. In order to compare 
with the 99-line code [1], 4 examples in Figure 1 are solved by the two codes. The point of interest is taken as the 
loading point. 

Since a small-volume structure has little material and small stiffness, it causes a large displacement at the 
point of interest. On the contrary, a large-volume structure has a large stiffness and a small displacement at the 
point of interest. Therefore, whole calculation for each example has two stages. In the first stage, the model in Eq. 
(2) under a pre-setting volume ratio constraint is solved using the 99-line topology optimization code to obtain 
the displacement value at the loading point and the optimum topological configuration. This displacement value 
is taken as a displacement constraint value in the second stage. Then, the model in Eq. (3) under the displacement 
constraint is solved using the 120-line topology optimization code. All the data and optimal topological 
configurations are shown in Table 3 and Figure 2, respectively. In the 120-line code, there is a “measure of 
discreteness” [22] which is used to distinguish whether an optimum solution converges to a discrete one. This 
measure of discreteness is defined as:  
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where  is the optimum relative density of the e-th element. Once the design is converged,  with a 

value of 0% denotes all element relative densities are equal to 0 or 1, and  with a value of 100% denotes 

all element relative densities are equal to 0.5. Therefore, a smaller value of  means less grey elements and 

is expected to give a better design. 

ndM*
eρ

ndM

ndM

In Table 3, the meanings of Black, White and Gray in the “Number of elements” column are the same as 
those in Table 2. “Total weight” denotes the structural weight without the white elements with a relative density 
of 0.001, including the weight of all black and grey elements. “Weight of grey elements” denotes the total weight 
of all grey elements, and “Ratio of grey elements” is the percentage ratio of the number of grey elements in the 
number of all elements.  

 
Table 3: Results for 4 examples 

 
Ratio of 

grey 

elements 

(%) 

Number of elements 
Displacement 

at the point of 

interest 

Weight of 

grey 

elements 

Number of 

structural 

analysis 

Mnd 

(%) 

Total 

weight 
Example 

Black White Grey 

99-line 

code 
94 599.67 203.2980 447 321 432 152.67 36.00 17.55 

Example 

1 120-line 

code 
121 599.15 203.2961 467 370 363 132.15 30.25 16.35 

99-line 

code 
71 255.74 57.3525 197 257 186 58.74 29.06 13.96 

Example 

2 120-line 

code 
70 255.81 57.3543 208 273 159 47.81 24.84 12.75 

99-line 

code 
34 674.60 52.0993 544 467 339 130.60 25.11 12.91 

Example 

3 120-line 

code 
26 673.29 52.0988 565 491 294 108.29 21.78 11.67 

99-line 

code 
58 1998.54 0.3488 1718 1458 824 280.54 20.60 9.56 

Example 

4 120-line 

code 
68 1990.17 0.3488 1764 1532 704 226.17 17.60 8.70 

 
In Figure 2, five parameters between parentheses in each of eight captions for configurations all have their 

own meaning on the left side and right side, respectively. For example on the left side, in Figure 2 a1) there is a 
caption “99-line code (60,20,0.5,3.0,1.5)”, which represents concrete computing data of an example for using the 
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99-line code, where 60 elements grids in x-direction, 20 elements grids in y-direction, volume ratio constraint 
value 0.5, penalty factor 3.0 and filter radius 1.5. For example on the right side, in Figure 2 a2), there is a caption 
“120-line code (60,20,203.2980,3.0,1.5)”, which represents concrete computing data of an example for using 
120-line code, where 60 elements grids in x-direction, 20 elements grids in y-direction, displacement constraint 
value 203.2980, penalty factor 3.0 and filter radius1.5. 
 

●Topology optimization model of Eq. (2) ●Topology optimization model of Eq. (3) 

  

a1) 99-line code (60,20,0.5,3.0,1.5) a2) 120-line code (60,20,203.2980,3.0,1.5) 

  
b1) 99-line code (32,20,0.4,3.0,1.2) b2) 120-line code (32,20,57.3525,3.0,1.2) 

  

c1) 99-line code (45,30,0.5,3.0,1.5) c2) 120-line code (45,30,52.0993,3.0,1.5) 

  

d1) 99-line code (80,50,0.5,3.0,1.5) d2) 120-line code (80,50,0.3488,3.0,1.5) 

  

Figure 2: Optimum topological configurations for 4 examples 
 

    The computational results show that, the topology optimization model proposed in this paper can basically 
satisfy the displacement constraint, which is given by the 99-line code at the loading point. And the 120-line 
code obtains smaller structural weight than the 99-line code. Most of all, the 120-line code can get smaller values 
of measure of discreteness and less grey elements than the 99-line code. The method of this paper improves the 
degree of discreteness of design variables in the topology optimization. In computing speed, the convergence 
rates of both codes are of about the same. They indicate the topology optimization model presented in this paper 
is more reasonable in the model construction and results.  
 
7. Conclusions 
In the introduction of this paper, we pointed out: the 99-line topology optimization code played “an important 
role” in helping students and engineers to learn topology optimization. Our work here indicates that the 99-line 
topology optimization code also plays “an important role” for researchers in structural topology optimization. 
The reason is that the 99-line code inspires us to put forward a more reasonable model construction for topology 
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optimization through the examples calculated by itself.  
In structural topology optimization, although there are many researches on optimization model with 

objective function of structural weight subjected to displacement constraints, we have not seen a detailed 
comparison on results about above model and a model with objective function of structural compliance under a 
structural volume ratio constraint. Admitting that the method of structural topology optimization can be used for 
references to design useful compliant mechanisms such as the force inverter, but we limited ourselves here to the 
study of topological changes of structures.  

(1) The essence of the structural weight or volume ratio is an economic indicator, and the compliance, 
displacement, stress, buckling, frequency, fatigue etc. are mechanical performance indicators.  

(2) The purpose of structural optimization is to find the optimum points representing a compromise in the 
mutual restraint and mutual game between economic indicators and mechanical performance indicators. Finally, 
a contradiction between construction cost and structural safety will be solved. 

(3) The practical engineering problems usually seek the minimum economic indicator, which is as the 
objective function, with guarantee of the constraints of mechanical performance indicators. Why can not we 
reverse them? Because it’s enough to guarantee structural safety represented by the mechanical performance 
indicators mechanical performance has no significance. Since the economic indicator belongs to fabricating cost 
in essence, its beforehand setting is impossible. Thereby it is a behavior of apriorism. Conversely, seeking the 
minimum economic indicator should be done along with satisfying the mechanical performance indicators, and 
the reasonable cost can be obtained in accordance with its natural tendency. 

(4) The mechanical performance indicators can be classified into “engineering” and “academic”. The 
engineering performance indicators include the allowable displacements, the allowable stresses and so on. But 
the compliance belongs to the academic performance indicators. The engineering performance indicators are the 
main points that should be satisfied directly in design and they have been refined into perfection day by day by 
the accumulated experience of engineers. But the academic performance indicators are sometimes the 
information concerned by researchers. If the academic performance is supplied to reference in design process, 
the reference is only indirect in consideration, but without direct interest. 

(5) The mechanical performance indicators are related to the loading cases. If a mechanical performance is 
taken as the objective function, in multi-loading cases, the optimization problem will become a multi-objective 
optimization problem, which is difficult to be solved. Since the economic indicators are not the function of 
loading cases, it is taken as the objective function to avoid producing the multi-objective optimization problem, 
and we always obtain an optimization problem with the single objective function. 
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