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1 Introduction and Background

Here, we will give an exposition discussing Thurston’s Geometrization Conjecture, no-
tably the background results as well as some of the methods that come up in Perelman’s
proof of this. We will tackle (1) Kneser’s Theorem on the existence and uniqueness of
a prime decomposition, (2) The geometric structures Thurston claims are sufficient to
look at, and (3) Hamilton’s Ricci flow equation. It it beyond our technical purview to
discuss the main technical aspect of exactly how Hamilton’s Ricci flow equation works in
the proof of the Geometrization Conjecture, but some full proofs of Perelman’s Theorem
7.4 (the Geometrization Conjecture) have now been published, such as [2].

Let us first state Thurston’s original Conjecture.

Theorem 1.1 (Thurston Geometrization Conjecture) Let M be a closed, orientable
prime 3-manifold. Then there exists an embedding of a disjoint union of 2-tori and Klein
mottles in M such that every component of their complement admits a locally homoge-
nous Riemannian metric of finite volume.

Ostensibly, this seems to only be a classification for so-called prime manifolds. How-
ever, in fact this is motivated by a 1929 Theorem of Kneser.

Theorem 1.2 (Kneser’s Theorem) Every closed, oriented 3-manifold admits a de-
composition as a connected sum of oriented prime 3-manifolds, called the prime factors,
and orientation-preserving diffeomorphisms thereof. This decomposition is unique.

By this result, we see that it suffices to simply examine prime manifolds instead of
general closed, oriented 3-manifolds. Much of our treatment and other results dealing
with general 3-manifolds comes from [4], [5] and similar sources.

The so-called locally homogenous Riemannian metrics of finite volume are also known
as geometric structures. In [9] a detailed discussion of the eight possble geometric struc-
tures are given. We give the list below. Later, we will tackle and describe the individual
geometric structures.
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It is a very nontrivial result to show that these eight geometric structures (listed in
section 4.2) are the only geometric structures worth considering. However, armed with
this knowledge, if M has a locally homogenous Riemannian metric of finite volume, then
we can classify its geometric structures by looking at the fundamental group. We will
not discuss this issue in depth.

In the proof of the Geometrization Conjecture, we rely on Hamilton’s Ricci Flow
equation. We will not be able to completely trace the proof here. Our basic treatment
of the Ricci flow equation is taken from [8].

Let us examine Riemannian metrics satisfying some given parabolic evolution equa-
tion

g′(t) = F (g(t))

. Its solution will be a one-parameter family of metrics whose derivative is F (g(t)). Now
Hamilton introduced his Ricci flow equation

d

dt
gij(t) = −2Rij

, and we see that it admits a scale invariance in the sense that for any λ, h(t) =
λ2g(λ−2(t)) satisfies the equation if and only if g(t) also satisfies the equation.

Hamilton then proved several important results about this evolution equation, the
most fundamental being the following result.

Theorem 1.3 (Short-Time Existence and Uniqueness) Let M be a Riemannian
three-manifold.

1. If g0 is smooth on M , then there exists some ε dependent on g0 such that there is
a unique solution g to the Ricci flow equation on [0, ε) with g(0) = g0.

2. There is a so-called ’curvature characterization ’ of singularity information, i.e. if
there is a unique solution to the Ricci flow equation on [0, T ) but not on any larger
interval, then exists x such that the Riemann curvature tensor R(x, t) of g(t) is
unbounded as t→ T .

The Ricci flow equations play an extremely important role in Perelman’s proof of
the Poincare Conjecture.

2 Discussion of Kneser’s Theorem

2.1 Definitions

Remark Call two manifoldsM andM ′ isomorphic if there is a piecewise linear orientation-
preserving homeomorphism between the two of them.

Definition We define the connected sum M#M ′ of two manifolds M and M ′ to be the
manifold obtained by removing the interior of a 3-cell from each of them and matching the
resulting boundaries with an orientation-reversing homeomorphism. These operations
are well-defined up to isomorphism; S3 serves as an identity for the operation #.
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Definition A prime manifold M is one such that if M = M1#M2, then either M1 or
M2 is S3.

Definition A manifold M is irreducible if each 2-sphere bounds a ball in M .

Here, we will only be working with PL-manifolds, rather than the smooth manifolds
that we are more interested in thinking about.

2.2 First Steps

We first give a basic theorem that will be pertinent to the discussion of irreducible and
prime manifolds, or rather in identifying the differences between them.

Theorem 2.1 (Alexander’s Theorem) Every embedded 2-sphere in R3 bounds an
embedded 3-ball.

Lemma 2.2 The only prime manifolds that are not irreducible are those isomorphic to
S3 or S1 × S2.

Proof Write M = M1#M2 with both nontrivial manifolds. The 2-sphere separating
the two summands in M cannot bound a cell.

Then let S ⊂M be a 2-sphere not bounding a cell, as if S separates M then M can
be expressed as a nontrivial sum. If it separates, M is not prime and there is little to
discuss. If it does not separate, then we can cut along S and paste in 3-cells to eliminate
the boundary obtained from cutting along S to obtain a new connected manifold, say
M ′.

Clearly, the original manifold M is obtained from M ′ by adding the handle, so
M = M ′#(S1×S2). Hence M is either not prime or isomorphic to S1×S2. This proves
the requisite assertion.

Lemma 2.3 S1 × S2 is prime.

Proof Every bounding 2-sphere in S1 × S2 bounds a cell.

2.3 Proving Kneser’s Theorem

The treatment of Kneser’s Theorem here is due to [4] and [7].

Theorem 2.4 (Kneser’s Theorem) Every 3-manifold M admits a unique decompo-
sition into primes, M = M1# · · ·#Mn.

Technically, the theorem should be credited to both Kneser (who proved the existence
in 1929) and John Milnor (who proved the uniqueness in a 1958 paper).
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2.3.1 Part 1: Existence of a Prime Decomposition

Existence Portion: For existence, if M has a non-separating S2, there exists a decom-
position M = N#(S1 × S2). This process must end after finitely many steps because
each S1 × S2 summand gives a summand of Z for the fundamental group of M . How-
ever, the fundamental group of a compact manifold is finitely generated, so this process
terminates after finitely many steps.

We therefore reduce to the case of proving a prime decomposition exists when all
2-spheres separate M . Each 2-sphere component of ∂M corresponds to a S3-summand
of M , so WLOG we assume that ∂M as no 2-spheres.

We prove the following assertion, which will therefore imply the exist of prime de-
compositions.

Claim : There exists a bound on the number of spheres in the system S of disjoint
spheres with no component of M-S a punctured 3-sphere.

Proof First observe that if the system S has that condition, we can perform surgery in
the following way. On a sphere Si of S with disk D ⊂ M , D ∩ S = ∂D ⊂ Si, then at
least 1 of S′ and S′′ obtained by replacing Si with S′i or S′′i from the surgery satisfies the
requirement. To see this, first perturb S′i and S′′i to be disjoint from Si and each other
so that the three together bound a 3-punctured sphere.

On the other side of Si from P we have a component A of M |S while sphere S′i and
S′′i split the component of M |S containing P into pieces B′, B′′, P . If both B′ and B′′

are punctured spheres, then B′ ∪ B′′ ∪ P , a component of M |S would be a punctured
sphere, contrary to hypothesis. WLOG B′ is not a punctured sphere. If A ∪ P ∪ B′′ is
a punctured sphere, this would force A also to be a punctured sphere, again contrary to
hypothesis.. Hence no component of M |S′ adjacent to S′i is a punctured sphere andthe
sphere system S′ satisfies the condition.

Now we prove that S can only have a finite number of spheres. Let T be a smooth
triangulation of M . Since M is compact this has finitely many simplices. The given sys-
tem S can be perturbed to be transverse to all the simplices of T. The perturbation can
be done inductively over dimensions (first make S disjoint from vertices, then transverse
to edges, then transverse to 2-simplices).

For a 3-simplex t of T, we make the components of S ∩ t all disks as follows. Such a
component must meet ∂t by Alexander’s Theorem and the condition. Consider a circle C
in S∩∂t which is innermost in ∂t. If C bounds a disk component of S∩t, we may isotope
this disk to lie near ∂t. If an innermost remaining C does not bound a disk component
of S ∩ t, surger S along C using a disk D lying near ∂t with D ∩ S = ∂D = C. This
replaces S by a new system S′ satisfies the condition, in which either C does bound a
disk component of S′ ∩ t or C is eliminated from S′ ∩ t. After finitely many such steps
we arrive at a system S with the S ∩ t consisting solely of disks for each t. In particular
this implies that no component of the intersection of S with a 2-simplex of T can be a
circle, since this would bound disks in adjacent 3-simplies and thus obtain a sphere S
bounding a ball in their union, a contradiction. �
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For each 2-simplex σ we eliminate arcs α of S∩σ having both endpoints on the same
edge of σ. Such an α cuts off from σ a disk D which meets only one edge of σ. We
choose α to be edgemost so that D contains no other arcs of S ∩ σ; hence D ∩S = α, as
circles of S∩σ have been eliminated in the previous step. By an isotopy of S, supported
near α, push the intersection α across D, thereby eliminating α and decreasing by two
the number of points of intersection of S with the 1-skeleton of T.

After such an isotopy, we repeat the first step of forcing S to intersect all 3-simplices
in disks. As this does not increase the number of intersections with the 1-skeleton, after
finitely many steps we arrive at the situation where S meets each 2-simplex only in arcs
connecting adjacent sides, and S meets 3-simplices only in disks.

Now consider the intersection of S with a 2-simplex σ. With at most four exceptions
the complementary regions of S ∩ σ in σ are rectangles with two opposite sides on ∂σ,
then all but at most 4t of the components of M |S meet all the 2-simplices of T only in
such rectangles.

If R is a component of M |S meeting all 2-simplices only in rectangles, for a 3-simplex
t, each component of R ∩ ∂t is an annulus A which is a union of rectangles. The two
circles of ∂A bound disks in t, and A together with these two disks is a sphere bounding
a ball in t, and A together with these two disks is a sphere bounding a ball in t, and
A together with these two disks is a sphere bounding a ball in t, a component of R ∩ t
which can be written as D2 × I with ∂D2 × I = A. The I-fiberings of all such products
D2 × I may be assumed to agree on their common intersections, the rectangles, to give
R the structure of an I-bundle. Since ∂R consists of sphere components of S, R is either
the product S2 × I or the twisted I-bundle over RP 2. This is just RP 3 minus a ball, so
each I-bundle R gives a connected summand RP 3 of M , hence a Z2-direct summand of
the fundamental group of M .

Thus the number of such components is bounded, and the number of other compo-
nents bounded by 4t, this shows the finiteness of the prime decomposition.

2.3.2 Part 2: Uniqueness of a Prime Decomposition

Uniqueness portion: First we prove the existence of the decomposition. If M is not
itself prime, then it admits a decomposition M ≈ M1#M2 with M1 and M2 not S3.
Repeat this process on M1 and M2 if they are nonprime. This indicates that a prime
decomposition exists, we are left with checking finiteness of the decomposition.

We prove the uniqueness of this decomposition. It suffices to show the following
result.

Lemma 2.5 If M = M1#M2 and M ≈ P1# · · ·#Pk, there exists a re-numbering of
P1, · · · , Pk such that M1 ≈ P1# · · ·#Pr and M2 ≈ Pr+1# · · ·#Pk.

Proof Let us consider only manifolds bounded by finitely many 2-spheres. We say that
two manifolds are equivalent if one can be obtained from the other by removing the
interiors of finitely many disjiont interior 3-cells, or by filling in the interiors of finitely
many disjoint 3-cells.
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For our decomposition, let us suppose that P1, · · · , Ps are irreducible while Ps+1, · · ·Pk ≈
S1 × S2. Let T separate M1 and M2. We consider the cases of s = 0 and s > 0.

1. Case 1: s > 0 Let us consider the collection of 2-spheres {Σ1, · · · ,Σk−1} with the
properties

(a) (S#T ) ∩ Σn are unions of closed curves.

(b) Cutting M along Σn, we obtain a manifold with boundary with components
B1 · · ·Bs with Bi equivalent to Pi.

We show that such systems exist. Consider M = P1# · · ·#Ps along with k − s
handles, where Σs, · · · ,Σk−1 cut out such handles. By a so-called general position
argument, the first condition is satisfied.

Suppose now that the union of Σn does intersect T . We construct a new system of
Σi that has fewer intersections. Among the curves T ∩ Σn, choose a curve C that
bounds a 2-cell E ⊂ T containing no other intersection curves. E is contained in
some manifold, say Bi and let Bj denote the manifold on the “other side” of Σh

from Bi.

Since Bi is equivalent to an irreducible Pi, E must cut Bi into two parts B′i and
B′′i , one of which equivalent to S3. Let E′ and E′′ denote the corresponding 2-cells
Σn bounded by C.

(a) i 6= j

Suppose B′′i ≈ S3. Consider the 2-sphere Σ′n formed by E ∩E′ by deforming
slightly into B′i.Then Σ′n has fewer intersection curves with T than Σn. If Σn

is replaced by Σ′n, then the effect is to subtract B′′i from Bi are add it to Bj ;
but B′′i ≈ S3, so this doesn’t change the equivalency classes.

(b) i = j WLOG B′i contains the “other side” of Σn. Again, let Σ′n be obtained
by deforming E ∪ E′ slightly into B′i. If Σn gets replaced by Σ′n, then the
effect on Bi is to subtract B′′i from one part of Bi and add it back on in the
other part, so the equivalency classes are not changed.

Thus the two conditions are satisfied and our new collection replacing Σn by Σ′n
satisfies the two conditions. This means that we can eliminate all intersection
curves and suppose WLOG that {Σ1, · · ·Σk−1} is totally disjiont with T .

Suppose that T lies within Bi and cuts it into B′i and B′′i where B′′i is equivalent to
S3, and furthermore that B1 · · ·Bi−1, B′i lie on M1-side while B′′i , Bi+1, · · ·Bs lie
on M2 side. Then clear M1 is isomorphic to P1# · · ·#Pi with a certain number of
handles attached while M2 is isomorphic to Pi+1# · · ·#Ps with a certain number
of handles attached. This completes the proof for case 1.

2. Case 2: s = 0
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Here, the proof is the same as case 1, we simply use k disjoint spheres rather than
k − 1 and the following condition that should we cut M along the k spheres, we
obtain a connected manifold with boundary equivalent to S3, in place of condition
2.

Otherwise the argument is the same. This completes the proof of the lemma.

This treatment was taken from [4], [5], and [7].

2.4 A Brief Discussion of the proof of Kneser’s Theorem

A ’general position argument’ simply consists of performing an isotopy on whatever
manifold we’re dealing with. This induces a slight local change that allows us to make
simplifying local assumptions regarding the manifold. An isotopy is just a small homo-
topy. So far as the author has been unable to find any precise justification for making
this type of argument.

The assertions about the fundamental group for various manifolds are left to the
reader. They follow by the Van Kampen’s Theorem for Fundamental Groups and
Grushko’s Theorem.

Theorem 2.6 (Van Kampen) Let X be a topological space which is the union of two
open, path-connected subspaces, U1 and U2. If U1 ∩U2 is path-connected and nonempty,
let x0 be a point in X to be used as the base of all fundamental groups. Then X is path-
connected, and its fundamental group is the free product of π1(U1) with π1(U2) modulo
the amalgamation of π1(U1 ∩ U2, x0).

That is to say, we know that there exists embedding f : π1(U1 ∩ U2) → π1(U1) and
g : π1(U1 ∩ U2) → π1(U2), so we start with the free product of π1(U1) and π1(U2), and
then take the quotient by N , where N is the relation f(u)g(u)−1 = 1. We then write
(π1(U1) ∗ π1(U2))/N = π1(U1) ∗π1(U1∩U2) π(U2), and this is the fundamental group of X.

We can use this to show multiple things, for example that S1×S2 is the only oriented
3-manifold that is prime but not irreducible.

Grushko’s Theorem, on the other hand, allows us to identify ranks of products, which
is used to prove the finiteness of decompositions.

Theorem 2.7 (Grushko) If A and B are finitely generated groups, A ∗ B their free
product. Then the rank is additive. In fact,

rank(A ∗B) = rank(A) + rank(B).

Though useful tools, these two theorems are only tengentially related to our topic.
As such, we will not go into further detail in discussing them. Their proofs are widely
available both online and in book form.
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3 Introducing Geometries

Let us first recall some basic definitions surrounding Riemannian manifolds.

Definition A Riemannian manifold is a pair (M, g) where M is a smooth manifold and
g consists of a series of inner products gp at each point p ∈M such that for any smooth
vector fields x, y on M , the map

p 7→ gp(x(p), y(p))

is smooth.

If a manifold M admits a Riemannian structure, then we can define geometric notions
such as angle, length of curves, volume, curvature, and gradient.

Next we define isometries.

Definition If (M, g) and (M ′, g′) are Riemannian manifolds, an isometry is a diffeo-
morphism f : M → M ′ such that g = f∗g′, where f∗g′ denote the pullback of g′ by f .
If f is a local diffeomorphism, then say f is a local isometry. The set of isometries from
M to itself form a group under composition and is denoted Isom(M).

3.1 Coverings and Deck Groups

Definition Let p : E → B be a continuous surjection between topological spaces E, B,
say that an open set U ⊂ B is evenly covered by p if

p−1(U) = ∪αVα,

where the Vα ⊂ E are disjoint open sets in E such that for each α, p|Vα is a homeomor-
phism onto U .

If every point b of B has a neighborhood that is evenly covered by p, we call p a
covering map and E a covering space of B. Given a covering map p : E → B, the space
of automorphisms of E is called the deck group or covering group and is denoted by
C(E, p,B), such that the following diagram commutes

E
ψ−−−−→ E

p

y p

y
B

id−−−−→ B

Typically we denote the deck group simply as C, dropping the E, p,B portion.

Definition If X, Y are topological spaces and h : X → Y with h(x0) = y0, let us define
the map h∗ : π1(X,x0) → π1(Y, y0) by h∗([f ]) = [h ◦ f ]. Let p : E → B be a covering
map with p(e0) = b0. Define the group H0 = p∗(π1(E, e0)). Note that H0 is a subgroup
of π1(B, b0). We say that p is a regular covering map if H0 ⊂ π1(B, b0) is a normal
subgroup.
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Now we move to define geometric structures.
First we will examine geometric structures in two dimensions. Thanks to the Uni-

formization Theorem, we have a complete understanding of two-dimensional geometric
structures. We will use this as our basis for understanding three-dimensional geometric
structures.

3.2 Geometric Structures

First we will define geometric structures for 2-manifolds. Here Isom(X) denotes the
isometry group.

Definition Let X be one of the spaces R2, S2, or H2 (hyperbolic 2-space), and Γ ⊂
Isom(X). If F is a 2-manifold with F ' X/Γ, and the projection X → X/Γ a covering
map, we say that F has a geometric structure modelled on X.

Definition A metric on a manifold M is locally homogenous if for all x, y ∈ M , there
exist neighborhoods x ∈ U and y ∈ V and an isometry f : U → V . We say the metric is
homogenous if for all x, y ∈ M there exists an isometry of M sending x to y. Say that
the metric is complete if M is complete as a metric space.

Generally, we say that a manifold M admits a geometric structure if it can be
equipped with a complete and locally homogenous metric. It can be shown that the
only possible 2-dimensional geometric structures are based off these three spaces.

Theorem 3.1 (Uniformization Theorem) Every simply connected Riemann Surface
is conformally equivalent to either the open unit disk, complex plane, or Riemann sphere.

Though this is phrased in the complex-analytic term of ’conformally equivalent,’ in
fact we have an equivalent statement for Riemannian manifolds.

Theorem 3.2 (Uniformization Theorem, Version 2) Every oriented, compact, con-
nected surface admits a geometric structure modelled on R2, S2, or H2; the plane, Rie-
mann sphere, and hyperbolic plane respectively.

This is shown essentially by giving a oriented Riemannian manifold a Riemann sur-
face structure as follows. On an oriented surface, a Riemannian metric induces an ‘almost
complex’ structure as follows. For a tangent vector v, we define J(v) as the vector of the
same length which is orthongonal to v, such that (v, J(v)) is positively oriented. This
turns the given surface into a Riemann surface.

This is a differential-geometric version of the Uniformization Theorem, and some-
times also called the Uniformization Theorem.

Lemma 3.3 If M is a Riemannian manifold and admits a geometric structure; X its
universal covering space, then there exists a subgroup Γ ⊂ Isom(X) such that M is
isometric to X/Γ. Specifically, Γ will be the deck group of X.

10



Proof Let M be such a manifold and M̃ its covering space. The covering space inherits
a pullback metric, such that the projection of M̃ onto M is a local isometry. Thus if
M admits a geometric structure, M has a complete, locally homogenous metric, so the
inherited metric is also complete and locally homogenous. The inherited metric is thus
complete and locally homogenous.

We use the fact that a locally homogenous metric on any simply connected manifold
is homogenous. A universal covering space is always simply connected, so the metric that
X inherits from M is homogenous (the universal covering space being just the simply
connected covering space).

Γ is the isometry group of X, by definition for any x, y ∈ X, there exists a γ ∈ Γ
such that γ(x) = y, so Γ acts transitively on X.

Now if ψ ∈ C, then ψ is a local isometry, and as it is a diffeomorphism, it is a global
isometry. Thus the deck group of X is a subgroup of Γ. If we have p : X →M and X is
a universal covering space, then H0 is trivial, hence normal, and p is a regular covering
map, so M ' X/C. Thus, given M admitting a geometric structure, we can write M as
a quotient of its universal cover.

Definition A geometry is a simply connected homogenous Riemannian manifold X with
isometry group Isom(X). M has a geometric structure modelled on X if there exists a
subgroup Γ ⊂ Isom(X) such that M is isometric to X/Γ.

Remark Call two geometries equivalent, (X,Γ) ' (X ′,Γ′) if there exists an isomor-
phism Γ → Γ′ and an equivariant map φ : X → X ′, i.e. φ(g · x) = g′ · φ(x), where g′ is
the isomorphic image of g in Γ′.

Call a geometry (X,G) maximal if there exists no geometry (X,G′) with G ( G′.

One of the key issues in understanding Thurston’s Geometrization Conjecture is
to study what subgroups of th eisometry group will actually generate a Riemannian
manifold modelled on X. The answer is that if a subgroup Γ ⊂ Isom(X) acts freely
and properly discontinuously on X, then X/Γ is Riemannian. We call these subgroups
discrete subgroups.

Definition A group G acts properly discontinuously on a space X if for any compact
subset C ⊂ X, the set

{g ∈ G : gC ∩ C 6= ∅}

is finite.

If G acts properly discontinuously on X and p ∈ X, then Stab(p) if finite.

Definition If G is a group acting on a space X and Stab(p) is trivial for all p ∈ X,
then we say that G acts freely on X.

We say a subgroup G ⊂ Isom(X) is discrete if it acts freely and properly discontin-
uously on X.

The following theorem ties these notions together.
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Theorem 3.4 Suppose X is a connected smooth manifold and Γ is a finite or countably
infinite group with the discrete topology acting smoothly, freely, and properly discontin-
uously on X. Then the quotient space X/Γ is a topological manifold and has a unique
smooth structure such that π : X → X/Γ is a smooth normal covering map.

Next we move to discuss orbifolds.

3.3 Orbifolds

We will define some basic notions relating to orbifolds and relate them to the present
discussion.

First come a collection of basic topological terms.

Definition If G is a discrete group of isometries for a Riemannian manifold M that
acts freely on M , taking the quotient M/G and deploying the natural metric generates
a Riemannian manifold. On the other hand, if G does not act freely, the quotient space
still has a natural metric but it is no longer a Riemannian manifold. One example of
this is that if we have Z2 acting on R3 where the nontrivial action takes x 7→ −x, then
R3/Z2 is homeomorphic to a cone on P2 but is not a manifold (because of the behavior
at the cone point).

An n-manifold without boundary is a Hausdorff, paracompact space, i.e. every open
cover has a locally finite refinement. Locally finite means that for every point in the
space, there is a neighborhood of it that intersects only finitely many elements in the
cover. Further, it is equipped with smooth atlas of charts with smooth intersection.

These allow us to define orbifolds.

Definition An n-orbifold to be a Hausdorff, paracompact space that is locally home-
omorphic to Rm/G, along with a covering {Ui} of open sets which are closed under
taking finite intersections. To each Ui we associate a Γi, an action of Γi on Ui ⊂ Rn,
and a homeomorphism φi : Ui/Γi → Ui such that if Ui ⊂ Uj , there exists an injection
fij : Γi → Γj and φ̄ij : Ui → Uj such that the following diagram commutes.

Ui
φij−−−−→ Ujy y

Ui/Γi
φij−−−−→ Uj/(fijΓj)y y

Ui
i−−−−→ Uj

While the collections {Ui} are not considered an intrinsic part of the ”orbifold”
structure, we typically take the {Ui} to be the maximal collection.

If G acts properly discontinuously on M , then M/G is a smooth orbifold. In dimen-
sion 2, orbifold and manifold are the same concept.
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3.4 Basic Facts about Fiber Bundles, Seifert Fiber Spaces

Many of our manifolds with geometric structures can be described as Fiber bundles or
Seifert fibered spaces. It is therefore important to get a handle on these.

We start with defining fiber bundles.

Definition Let E, B, and F be topological spaces and π : E → B a continuous sur-
jection. If π satisfies a triviality condition (we will touch on this later), we say that
the collection (E,B, π, F ) is a fiber bundle. The triviality condition is as follows; for all
x ∈ B, there exists a open neighborhood U of x and a homeomorphism

φ : π−1(U)→ U × F

such that projU · φ = ππ−1(U).
This captures the idea that E is locally homeomorphic to B × F . If E is globally

homeomorphic to B × F , we say that E is a trivial bundle over B.

We also have the following terminology.

Remark An I-bundle is a fiber bundle where the fiber (corresponding to B) is an
interval. If this interval is R, we call this a line bundle.

Now we define Seifert fibered spaces.

Definition Let i = [0, 1], D2 the unit disk, and D2 × I be the solid fibered cylinder
with fibers x× I (where x ∈ D2). Then a fibered solid torus is obtained by identifying
D2 × {1} with D2 × {0}, and by rotating D2 × {1} in the process.

Regardless of the rotation, the fiber corresponding to (0, 0) × I is unchanged. This
is called the middle fiber.

Definition A fiber-preserving map is a homeomorphism between two fiber bundles that
map fibers to fibers.

Given these definitions, we now define a Seifert fibered space.

Definition A Seifert fiber space is a 3-manifold M that is a disjoint union of fibers
such that each fiber H has a fiber neighborhood, that is, a subset of fibers containing H
that can be mapped under a fiber-preserving map onto the solid fibered torus, with H
mapped to the middle fiber.

Given these definitions, we can think of a Seifert space as a fiber bundle over a base
space where the fibers are circles.

One important example of a Seifert fiber space is S3 with the Hopf fibration. To
define this, consider S3 ⊂ R4 ∼= C2, i.e.

S3 = {(z1, z2) : |z1|2 + |z2|2 = 1}.

Then we can think of S3 as equivalent to CP 1. However, we can also think of S2 as CP 1

(we have a stereographic projection S2 → C∗).

13



Definition The Hopf map h : S3 → S2 is given by h(z1, z2) = [z1, z2] ∈ CP 1.

If we think of S3 as lying in C2 and S2 ∼= C∗, and define h̃(z1, z2) = z1
z2

, then h̃−1(λ)

is the circle in S3 given by z1 = λz2 (with λ ∈ C∗).

Theorem 3.5 (S3, S2, h, S1) is a fiber bundle.

Proof We first show that the map h is a surjection. If [z1, z2] ∈ S2 (considering S2 ∼=
CP 1), Normalize this by taking λ = (|z1|2 + |z2|2)

−1
2 and choose the representative

[λz1, λz2]. This lies in S3 and h(λz1, λz2) = [z1, z2]. Hence h is surjective.
To show the triviality condition, take a point x ∈ S2 and let x̄ be its antipodal point.

Take U = S2 − {x̄}; this is an open neighborhood of x in S2. Let us define the map

φ : h−1(U)→ U × S1

by

(z1, z2) 7→ ([1,
z2
z1

],
z2
z1

).

Then we have projU ◦ φ = h|h−1(U), giving the required triviality condition.
Now consider h−1([z1, z2]). This maps to all the points (λz1, λz2) in S3 with |λ| = 1,

precisely a great circle in S3. Thus the fiber associated with this fiber bundle is indeed
a copy of S1.

Here the definitions and results are taken from [3] and [9].

4 Geometric Structures in two and three dimensions

We will try to get a feel for working with geometric structures by first tackling the
two-dimensional geometries. We have a complete classification via the Uniformization
Theorem.

4.1 Two-Dimensional Geometries

There are three possible bases for a two-dimensional geometry; R2-Euclidean 2-space,
equipped with the usual Euclidean metric, S2-the 2-sphere, equipped with the Euclidean
metric as we think of S2 being embedded in R3, and H2-hyperbolic 2-space. We think
of H2 as the set {x+ iy : y > 0} ⊂ C, with the metric ds2 = 1

y2
(dx2 + dy2).

To prove that all two-dimensional geometric structures are based off these, we use
some facts relating to orbifolds, in particular that in dimension 2 there is no distinction
between manifolds and orbifolds.
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4.1.1 The case of R2

Here, the isometries of R2 consist of translations, reflections, rotations, and glide reflec-
tions, and we may express any isometry of R2 as x 7→ Ax+b, where A is orthogonal and b
is a vector in R2. One can verify that there is a group homomorphism Isom(R2)→ O(2)
given by (x 7→ Ax + b) 7→ A. This is surjective and the kernel of this map is the set of
all translations on R2.

As we are interested in the discrete subgroups of the isometry group, noting that
any rotations and reflections will have fixed points, the discrete subgroups are generated
possibly by (1) a single translation, (2) two translations, (3) one glide reflection, and (4)
one glide reflection and one translation.

Examining the respective quotients, we obtain respectively (1) cylinder, (2) torus,
(3) Mobius strip, and (4) Klein bottle (viewing as the connected sum of two projective
planes).

4.1.2 The case of S2

We have a natural embedding of S2 into R3. Note that any isometry of R3 fixing the
origin restricts to an isometry of S2, and that any isometry of S2 extends naturally to
an isometry of R3 which fixes the origin. Hence we have that Isom(S2) ≡ O(3).

Any orientation-preserving isometry fixes either a line or a great circle on S2, so the
only isometry with no fixed points is the antipodal map x 7→ −x. Hence the two possible
quotients are S2 or S2/{±1} ≡ RP 2.

4.1.3 The case of H2

This is possibly the most interesting case. One can verify that the geodesics in H2 are
lines and semi-circles with center on the real axis. The orientation-preserving isometries
are the LFTs on the upper half-plane, i.e. the group

G = {z 7→ az + b

cz + d
: ad− bc > 0}

where multiplication in G corresponds to composition. The orientation-reversing ones
are precisely the composition with the conjugation operation. Note of course that we
can think of G ≡ PGL2(R), and then in examining the group structure the relevant
results follow through.

We consider the two subgroups generated by z → λz and z → λz̄. These generate
the annulus and Mobius strip respectively.

These are the only three two-dimensional geometries. The above thus constitutes a
full characterization of two-dimensional geometric structures.

4.2 Three-Dimensional Geometries

Recall that the eight three-dimensional geometries are given as below
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1. R3, with the usual Euclidean metric ds2 = dx2 + dy2 + dz2.

2. S3, with the Euclidean metric on R4, ds2 = dx2 + dy2 + dz2 + dw2.

3. H3; consider H3 as a subset of R3,

{(x, y, z) : z > 0}

and being endowed with the metric ds2 = 1
z2

(dx2 + dy2 + dz2) rather than the
normal Euclidean metric.

4. S2×R; this admits the product metric of S2 with R (the Euclidean metric). In this
case, there are actually only 7 manifolds without boundary that have a structure
modelled on this. We explore this at a later point in time.

5. H2 × R; this admits the product metric of H2 with R. There are infinitely many
manifolds modelled on this.

6. SL2(R); this is the universal covering space of the Lie group of SL2(R). The metric
is given by taking the tangent bundle of H2, which is isomorphic to PSL2(R). Now
PSL2(R) is coverred by SL2(R), and the metric onH2 pulls back to induce a metric
on SL2(R).

7. (Nil): This is the three-dimensional Lie group of all real 3 by 3 upper-triangular
matrices 1 x y

0 1 z
0 0 1


The Lie group is nilpotent, can be identified with R3, and induces the metric
ds2 = dx2 + dy2 + (dz− ydx)2. We can think of this as R3 with the multiplication
(x, y, z)(x′, y′, z′) = (x+ x′, y′ + xz′ + y′, z + z′).

8. (Sol): This can be thought of R3 with the multiplication

(x, y, z) · (x′, y′, z′) = (x+ e−zx′, y + ezy′, z + z′),

which induces the metric

ds2 = e2xdx2 + e−2zdy2 + dz2.

This is called Sol because it is a solvable group.

We will not prove that these are the only three-dimensional geometries worth con-
sidering. This is a very deep result that was one of Thurston’s main motivations for
the Geometrization Conjecture. Recall that Thurston’s Geometrization Conjecture then
states the following
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Theorem 4.1 Every oriented, closed, prime 3-manifold can be cut along tori so that
the interior of the resulting manifolds admits one of the above 8 geometric structures.

We have seen that to find the various manifolds having geometric structure modelled
on one of those eight mentioned above, it suffices to examine their isometry groups and
find their discrete subgroups.

5 Classifying Geometric Structures

Generally speaking, there are three constant-curvature Riemannian structure.

Theorem 5.1 (Classification of Constant Curvature Metrics, [1], Introduction)
If M is a complete, simply connected Riemannian manifold with constant sectional cur-
vature, then M ≡ Sn,Rn,Hn.

These have curvature +1, 0,−1 respectively. This was a theorem proved by Hopf in
the 1920s.

Two other manifolds, S2 × R and H2 × R, are products of Riemannian manifolds,
which we see to be given a canonical Riemannian metric structure. We define the product
Riemannian metric as follows.

Definition If (M1, g
1) and (M2, g

2) are two Riemannian manifolds. We identify

T(p1,p2)(M1 ×M2) ≡ Tp1M1 ⊕ Tp2M2,

and there exists a canonical Riemannian metric

g = g1 ⊕ g2

given by
g(p1,p2)(u1, u2, v1, v2) = g1p1(u1, u2) + g2p2(v1, v2)

We then have to physically derive the cases of SL2(R), Nil, and Sol. This process is
too difficult to include here.

We begin with a classification of S2×R. This is the simplest manifold to work with
as it has only seven distinct quotients. Recall that we want to compute the discrete
subgroups of the isometry group Isom(S2 × R).

5.1 Geometric Structures on S2 × R

We consider the case of S2 × R.We make the natural identification of Isom(S2 × R) ≡
Isom(S2)× Isom(R) based on considerations of the product metric.

This result follows from noting that S2 has positive Ricci curvature and that R has
zero Ricci curvature. A variety of other results that look at the isometries of S2 and R
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will imply this result. We will not go into more detail regarding this issue as it is only
tangential.

Isom(S2) is just O(3) and Isom(R) is just O(1). The first is given by the iden-
tity/antipodal maps as well as rotations/reflections, while Isom(R) is just given by
translations/reflections. There are only a few ways to form a discrete subgroup of
Isom(S2)× Isom(R).

Consider an isometry (α, β) and let G be the group generated by this element. We
proceed by cases.

If α is the identity, then β acts freely if and only if β is a translation; then R/(β) = S1,
so (S2 × R)/G = S2 × S1.

If β is the identity, then α acts freely if and only if α is the antipodal map; hence
S2/(α) = RP 2, and the quotient (S2 × R)/G = RP 2 × R.

Thus if at least one of α, β is the identity, the possible quotients are S2×R, RP 2×R,
and S2 × S1.

In parallel with these cases, if G = 〈α, β〉 where α is the antipodal map and β a
translation, the quotient can still be described as “S2 × S1”. We attempt to describe
(S2 × R)/G. If x ∈ S1 and x ∈ U an open neighborhood of x, we have the map

πG : (S2 × R)/G→ U

by πG given by (a, b)G 7→ [b], the equivalence class of [b] in R (which is a point in S1).
So we have that

((S2 × R)/G, S1, πG, S
2)

satisfies the definition of a fiber bundle. This is not the trivial S2-bundle over S1,
however.

Let α be the antipodal map and β a reflection of R. Let H = 〈α, β〉. We can define
the map

πH : (S2 × R)/H → RP 2

by πH((a, b)H) = [a] ∈ RP 2. If x ∈ RP 2 and x ∈ U an open neighborhood of x. Define
the map φ : (S2 × R)/H → U × R by φ((a, b)H) = ([a], [b]). Then the composition of
the projection and φ is πH . So this is a nontrivial line bundle over RP 2.

This concludes the discussion of all subgroups generated by a single element.
Now consider subgroups of the isometry group generated by two elements.
Suppose α1 is the antipodal map, β1 the identity, α2 the identity, and β a translation

on their respective domains. Let G be the group generated by (α1, β1) and (α2, β2). Then
(S2 × R)/G ∼= RP 2 × S1.

If α1 and α2 are both antipodal maps, β1 and β2 are distinct reflections in R with H
generated by (α1, β1), (α2, β2). Then (S2×R)/H is the union of two nontrivial I-bundles
over RP 2.

This completes the classifications of geometric structures over S2 × R. There are
seven of them.

We have also described each quotient as something endowed with a fiber bundle
structure, which was part of our original goal.
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5.2 Geometric Structures on S3

Another class of geometric structures to consider are those modeled on S3. Working
in S3 has the advantage that it is compact, hence a discrete subgroup of the isometry
group is finite.

The main result that we obtain here is that every manifold with a geometric structure
modeled on S3 is a Seifert fiber space. Our analysis is aided by the fact that S3 is
compact, so any discrete subgroup will be finite. Here we will alternately consider our
groups both as groups and manifolds.

We will alternately take one of the possible embeddings for S3 at our convenience,
depending on the situation

1. S3 ⊂ R4

2. S3 ⊂ C2

3. Consider S3 as the unit quaternion group H×, by taking the isomorphism (z1, z2) 7→
z1 + z2j, where z1, z2,∈ C

We see that S3 inherits the Euclidean metric from R4, and its geodesics are the great
circles. Furthermore, we know that its isometry group is O(4). As usual, we want to
find the discrete subgroups of O(4).

Consider S3 as the unit quaternion group. Then we have the following result.

Lemma 5.2 For all x, q1, q2,∈ S3, x 7→ q1xq
−1
2 is an isometry of S3.

This induces a group homomorphism φ : S3 × S3 → SO(4) by mapping (q1, q2) 7→
(x 7→ q1xq

−1
2 ). This homomorphism is surjective and its kernel is {(1, 1), (−1,−1)},

hence every orientation-preserving isometry has the above form also.

Proof x 7→ q1xq
−1
2 is certainly an isometry. We look at φ. Clearly φ is an homomor-

phism whose image is in O(4).
Since S3 is connected, so is S3 × S3. Its image under φ is still connected in O(4)

and it contains the identity, so it lies in SO(4). Now S3 × S3 is six-dimensional, so its
image φ is also six-dimensional. But SO(4) is six-dimensional itself, so φ has image the
entirety of SO(4).

Now we examine the kernel. If x 7→ q1xq
−1
2 is the identity, take x = 1, then we must

have q1 = q2 thus q1x = xq1 for all x ∈ S3, which occurs only for q1 = ±1. Hence the
kernel is precisely {(1, 1), (−1,−1)}.

Thus S3 × S3 is a double cover of SO(4).

Lemma 5.3 (1) Any isometry α : S3 → S3 of the form α(x) = xq for q ∈ S3 preserves
the Hopf fibration.

(2) Any isometry α : S3 → S3 of the form α(x) = qx where q = (w1, 0) or (0, w2j)
for w1, w2 ∈ S1 preserves the Hopf fibration.
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Proof We simply verify that the fibers of the Hopf fibration are taken to other fibers.

Lemma 5.4 If α is an isometry of the form α(x) = q1xq
−1
2 , then α has a fixed point if

and only if q1, q2 are conjugate.

Proof This is clear.

Lemma 5.5 If G ⊂ SO(4) is a subgroup that acts freely on S3 of order 2, then G =
{±I}. Hence a finite subgroup of SO(4) acting freely on S3 can have at most one element
of order 2.

Proof If such a map α(x) = q1xq
−1
2 is of order 2, then xq22 = q21x for all x. At x = 1

this gives q21 = q22, or equivalently that both commute with all x ∈ S3, so q21 = q22 = ±1.
If they are equal to -1, the unit quaternions have fixed points, so q21 = q22 = 1.

We can now consider SO(3) as a quotient of S3. We have the following.

Lemma 5.6 For any q ∈ S3, we let ψ(q) = αq, where αq is the map αq(x) = qxq−1.
Then ψ is a map S3 → SO(3) with kernel ±1, and it gives a map p : SO(4)→ SO(3)×
SO(3) as φ and ψ × ψ has the same kernel.

We will investigate this map p.

Lemma 5.7 If G ⊂ SO(4) acts freely on S3, then p(G) is a subgroup of SO(3)×SO(3)
that acts freely on RP 3.

Proof First we want to show that p(G) ⊂ Isom(RP 3). It will suffice to show that
RP 3 ∼= S3/{±I}. Furthermore w eknow by the first isomorphism theorem, etc, that
S3/{±I} ∼= SO(3) also, hence SO(3) and RP 3 are diffeomorphic.

We may take α : RP 3 → RP 3 by x 7→ u1xu
−1
2 for u1, u2 ∈ RP 3; this is still an

isometry, for example by considering the quotient RP 3 ∼= S3/{±I}. Hence every element
of SO(3) × SO(3) is an isometry of RP 3. This gives that p(G) is also a subgroup of
Isom(S3).

From now on, we will examine Isom(RP 3) rather than Isom(S3). If G ⊂ SO(4) and
contains an element of order 2, then we obtain S3/G by first modding out by ±I, letting
p(G) operate freely on RP 3, and considering the behavior on RP 3. Either way, we can
pass the quotient of G down to Isom(RP 3) to work on this group. If G acts freely on S3

and Ḡ doesn’t, then there exists g ∈ G and x ∈ S3 such that g(x) = −x or g2(x) = x,
which is a contradiction as G is odd order.

This shows that if G acts freely on RP 3, then its preimage Ḡ acts freely on S3.

Corollary 5.8 If p(G) ⊂ SO(3)× SO(3) ∼= RP 3 × RP 3 acts freely on RP 3, then p(G)
does not containa nontrivial element (u1, u2) with u1, u2 conjugate in SO(3). In partic-
ular, this is not of order 2, as if they were then they would be conjugate.
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Lemma 5.9 If H ⊂ SO(3)× SO(3) is a finite subgroup and H1, H2 the projections of
H onto the first and second summands. If H acts freely on SO(3), then at least one of
H1 or H2 is cyclic.

Proof Finite subgroups of SO(3) are either cyclic, dihedral, or take the form of S4, A4

or A5. Each of these subgroups has even order apart from the odd cyclic groups.
Let H1 = {(x, I) : (x, y) ∈ H ⊂ SO(3) × SO(3)} and H2 = {(I, y) : (x, y) ∈ H ⊂

SO(3) × SO(3)}. Let H ′i = H ∩ Hi. I claim that H ′i ⊂ Hi is normal. This is clear
from doing computations with the definition of H1 and H2. Furthermore, we have that
H1/H

′
1
∼= H2/H

′
2.

We have H ⊃ H ′1 ×H ′2, hence one of H ′1 or H ′2 must have odd order and be cyclic.
WLOG suppose that group is H1 and that b ∈ H2 has an element of order 2. Then there
exists a ∈ H1 with (a, b) ∈ H or a2 ∈ H ′1. If a2 has order 2, then (ar)2 = 1, so ar = 1,
or has order 2. If the latter case occurs we generate the obvious contradiction. Hence
ar = 1 and H ′2 contains an element of order 2 in H2.

Now either H ′2 = H2, in which case H1 = H ′1 and H1 will be cyclic, or H2 is not
generated by an element of order 2, so it is either either cyclic or isomorphic to A4. If
H2 = A4, then H ′2 ≡ Z2 × Z2, and H2/H

′
2, H1/H

′
1 both have order 3. This implies H1

is cyclic.

This gives rise to the following theorem.

Theorem 5.10 Let Γ1 = φ(S1× S3), Γ2 = φ(S3× S1). If G ⊂ SO(4) a finite subgroup
that acts freely on S3, then G is conjugate in SO(4) to a subgroup of either Γ1 or Γ2.

Proof If G acts freely on S3, then recalling our definitions of H1, H2, we know that p(G)
is a subgroup of H1×H2. At least one of H1 or H2 is cyclic, WLOG H1. Then we have
G̃ = φ−1(p−1(H1 ×H2)) ⊂ S3 × S3, or G̃ = ψ−1(H1)× ψ−1(H2) where ψ : S3 → SO(3)
was defined previesouly. We want to show that G̃ is conjugate to a subgroup of S1×S3.
Here think of S1 ∼= ∂D ⊂ C.

Let q ∈ S3 be such that ψ(q) is a generator for H1. Consider ker(ψ) = {±1} as a
subgroup of S1 to consider ψ−1(H1) as a subgroup of S1 × S3.

Hence G̃ is conjugate to a subgroup of S1 × S3, as is p(G). So G is conjugate in
SO(4) to a subgroup of Γ1.

While we will be unable to compute the individual manifolds (there are infinitely
many of them corresponding to the finite subgroups of SO(4), of course), what we have
shown is that every manifold with an S3-geometric structure is a Seifert fiber space.

Similarly for the other possible geometric structures we will unable to give the explicit
constructions as for S2×R. Rather we will generally only be able to give a classification
of the discrete subgroups.
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5.3 Geometric Structures on R3

Any isometry in R3 is of the form

x 7→ Ax+ b,

where A ∈ O(3). This generates the short exact sequence

0→ R3 → Isom(R3)→ O(3)→ 1.

In [9], Scott notes the following theorem of Bieberbach: A subgroup G ⊂ Isom(R3)
is discrete if and only if (a) G is a finite Z-module or(b) the translation group of G
is of finite index in G (recall that the translation group is just the projection from
x 7→ Ax + b to b). We are interested in a discrete subgroup G ⊂ Isom(R3) which acts
freely, in particular, it must be torsion-free as a Z-module.

Lemma 5.11 Let G be a discrete group of orientation-prserving isometries of R3 with
translation group T isomorphic to Z×Z×Z, and with G/T isomorphic to A4. Then G
contains an element of order 3.

We consider the first case that G/Z is finite; in this case, G is infinite cyclic, and
R3/G is the interior of a solid torus or Klein bottle, hence admits a natural structure of
a Seifert fiber space.

Otherwise, let us consider the translation subgroup T ⊂ G. If T ∼= Z × Z, then
G ∼= Z× Z or is isomorphic to the Klein bottle group.

We have the following theorem

Theorem 5.12 (Theorem 4.3, [9]) Let G be a non-cyclic discrete subgroup of isome-
tries of R3 that acts freely. Then G leaves invariant some family of parallel straight lines
in R3 and R3/G is Seifert fibered by circles that are the images of these lines.

We can describe the structure of R3/G in some more detail. This implies that R3

has a product structure R3 ≡ R2 × R1 which is preserved by G. If we consider the
natural projection R3 → R2, the action of G on R3 descends to an orthogonal R2-action,
whereby we obtain the base orbifold X or R3/G.

5.4 Geometric Structures on H3

We make the following identification of

H3 = {(x, y, z) : z > 0, ds2 =
1

z2
(dx2 + dy2 + dz2)}.

Then ds2 defines the metric. The geodesics are vertical straight lines and great circles
of spheres which intersect the xy-plane orthogonally. The isometries are defined by
inversions of R3 by a sphere with center on the xy-plane.
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Let us make the identification (x, y, z) 7→ (x + yi + zj) where i, j are quaternions.
Then we have an identification os PSL2(C) with the isometry group of H3, by taking(
a b
c d

)
={w 7→ aw+b

cw+d}.
Now we discuss when isometries in H3 commute. Let α be some isometry of H3. Let

us examine the elements fixed by α.
Call α a hyperbolic isometry if it fixes x, y and ∞.
If α fixes only a single point, call it hyperbolic. We can conjugate it to make the

fixed point ∞.

Lemma 5.13 If α,β are nontrivial isometries, then they commute if and only if they
fix the same points.

If α is nontrivial, let C(α) denote the set of all isometries that commute with α.
Then this group is abelian and isomorphic to either R2 or S1 × R.

An immediate consequence that we get is

Corollary 5.14 Let M be some 3-manifold with a hyperbolic structure. Then π1(M)
cannot contain a subgroup isomorphic to Z× Z.

5.5 Geometric Structures on H2 × R

By examining the product metric, we can make a natural idenfitication of Isom(H2×R)
with Isom(H2)× Isom(R) by using the characteristic of the product Riemannian metric.

We have a natural foliation of H2×R by {x}×R, which is then left invariant. Taking
a quotient means that said foliation descends to a foliation of lines or circles. In most
cases, these are circles, so we get a Seifert fibration.

This gives rise to the following theorem.

Theorem 5.15 Let G be a discrete subgroup of Isom(H2 × R) with quotient M , then
one of these three conditions holds.

1. The natural foliation of H2 × R by lines descends to be a Seifert bundle structure
on M .

2. The natural foliation of H2 × R by lines gives M the structure of a line bundle
over some hyperbolic surface.

3. The natural foliation of H2 × R by lines descends to a foliation of M by lines in
which each line has non-closed image in M . In this case, G must be isomorphic to
one of Z, Z× Z, or the Klein bottle group.

In the second case, G is isomorphic to the fundamental group of some hyperbolic
surface. This includes all countable free groups and the trivial groups.

In the first case that M is closed, M then admits a natural Seifert fibration. In the
second and third cases, M cannot be closed.
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5.6 Geometric Structures on S̃L2

SL2 is just SL2(R), i.e. all two by two matrices with real entries and determinant 1.

S̃L2 denotes the universal covering. It also has a Lie group structure. We have the
following theorem.

Theorem 5.16 ([9], Theorem 4.15) Let G be a discrete group of symmetries for S̃L2,

acting freely with quotient M . The foliation of S̃L2 by vertical lines descends to a
foliation of M wtih one of the following cases occurring.

1. The foliation gives M the structure of a line bundle over a non-closed surface.

2. The foliation is a Seifert fibration.

3. The foliation of M is by lines whose image in M is not closed. In this case, G is
isomorphic to Z, Z× Z, or the Klein bottle group.

5.7 Geometric Structures on Nil

Nil is the 3-dimensional Lie group consisting of all 3 by 3 real upper triangular matrices
with diagonal entries 1, under multiplication, i.e. matrices of the form1 x y

0 1 z
0 0 1


with x, y, z ∈ R. Then Nil admits a natural homeomorphism with R3 by taking such a
matrix to (x, y, z), and admits the natural multiplication

(x, y, z) · (x′, y′, z′) = (x+ x′, y + y′, z + z′ + xy′),

which is induced from the multiplication on the matrices. The formula for ds2 is then

ds2 = dx2 + dy2 + (dz − xdy)2.

This is known as the Heisenberg group and it is nilpotent, with a short exact sequence

0→ R→ Nil→ R2 → 0.

As Nil is a Lie group, it has a metric, which is invariant under left multiplication,
Then it is also a line bundle over R2, something we see as being induced from the
multiplication/metric structure on Nil. We call the fibers vertical. We now obtain an
exact sequence

0→ R→ Isom(Nil)→ Isom(R2)→ 1.

This means that Isom(Nil) can be decomposed as the direct sum R⊕ Isom(R2).
We have the following structure Theorem.
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Theorem 5.17 ([9],Theorem 4.16) Let G be a discrete group of isometries of Nil
acting freely and with quotient M . The foliation of Nil by vertical lines descends to a
foliation of M and exactly one of the following occurs.

1. The foliation gives M the structure of a line bundle over a non-closed surface.

2. The foliation of M is a Seifert fibration.

3. The foliation of M is by lines whose image in M is not closed. In this case, G
must be isomorphic to one of Z, Z× Z, or the Klein bottle group.

This means that a closed 3-manifold with a geometric structure modeled on Nil
must inherit the structure of a Seifert bundle from the foliation of Nil by vertical lines.
Furthermore, the base orbifold X is a quotient of R2.

5.8 Geometric Structures on Sol

We may identify Sol as a split extension of R2 by R, i.e. we have an exact sequence

0→ R2 → Sol→ R→ 0,

t ∈ R acts on R2 by sending (x, y) to (etx, e−ty). For fixed t, this is a linear map on R2

with the determinant of the corresponding matrix being 1, as well as positive eigenvalues.
Such maps are called hyperbolic isomorphisms on R2.

If we identify Sol with R3, then multiplication in Sol is given by

(x, y, z) · (x′, y′, z′) = (x+ e−zx′, y + ezy′, z + z′).

Then (0, 0, 0) is the identity and the xy-plane is a normal subgroup isomorphic to R2

with associated conjugation action from Sol. The associated metric is given as

ds2 = e2zdx2 + e−2zdy2 + dz2.

With this information, we have the following theorem.

Theorem 5.18 ([9], Theorem 4.17) Let G be a discrete subgroup of Isom(Sol) acting
freely on Sol with quotient M . Then the natural 2-dimensional foliation of M gives M
the strcture of a bundle over a one-dimensional manifold.

We have collected some structure theorems about the discrete isometry groups of the
eight manifolds, and this allows us to classify the classes of quotients, which function as
the ’building blocks’ of our individual prime manifolds, per the conclusion of Thurston’s
Geometrization Conjecture.
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6 Ricci Flow

6.1 Definitions and Terminology

Let us recall the following definitions about vector fields on manifolds. Throughout we
assume that the manifold M is smooth and admits a Riemannian structure.

Definition Let C∞(M,TM) denote the space of vector fields on M . An affine connec-
tion of M is a bilinear map

C∞(M,TM)× C∞(M,TM)→ C∞(M,TM)

taking (X,Y ) 7→ ∇XY , such that for all smooth f ∈ C∞(M,R), we have the following
two conditions

1. ∇f(X)(Y ) = f(∇XY ), i.e. ∇ is C∞(M,R)-linear in the first variable

2. ∇X(f(Y )) = df(X)Y + f∇XY , i.e. ∇ satisfies the Lebesgue rule in the second
variable.

An affine connection then has the following properties.

1. The value of ∇XY at x ∈M depends only on the value of X at x.

2. The value of ∇XY depends on the value of y in a neighborhood of x.

3. If ∇1, ∇2 are affine connections at x, we can write

Γx(Xx, Yx) = ∇1
xY −∇2

xY,

where Γx : TxM × TxM → TxM is bilinear and smooth with respect to x.

4. If M ⊂ Rn, the tangent bundle of M is the trivial bundle M × Rn. There is
a ’canonical’ definition d on M , any vector field Y is given by a smooth function
V : M → Rn, and dxY is the vector corresponding to dV (x) = ∂xY : M → Rn.Any
other affine connection ∇ can be written as d + Γ where Γ is a smooth bilinear
bundle homomorphism.

Recall that a bundle homomorphism f : E → F is given as follows.

Definition If E and F are fiber bundles over a space M with projections πE , πF , then
a bundle homomorphism f : E → F is given by a map such that πF ◦ f = πE , i.e. the
induced and original bundle structures coincide.

In lieu of this, we will also say that f : E → F is a bundle isomorphism if its inverse
f−1 : F → E is a bundle homomorphism. If f is also a diffeomorphism, it is called a
smooth bundle isomorphism. In this case E and F are said to be smoothly isomorphic.
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Definition If (M.g) is a Riemannian manifold, the unique torsion-free connection ∇ on
the tangent bundle TM compatible with the metric is known as the Levi-Civita metric.
The existence of such a connection is known as the Fundamental Theorem of Riemannian
geometry.

It has the property that if X,Y, Z are vector fields and 〈, 〉 is the metric, let [X,Y ]
denote their commutators. The Levi-Civita connection is torsion-free, i.e. we have

X〈Y, Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉.

We can then define the Riemannian curvature tensor in terms of the Levi-Civita
connection, being

R(u, v)w = ∇u∇vw −∇v∇uw −∇[v,u]w.

In this case, we may define the Ricci curvature tensor in local coordinates as

Ric = Rijdx
i ⊗ dxj ,

where
Rij = Rkikj .

The so-called Ricci flow is given by a ’parabolic evolution equation’

d

dt
gij(t) = −2Rij ,

where Rij is the Ricci curvature tensor and gij is the Riemann curvature tensor.

Definition A metric tensor takes a pair of tangent vectors v, w at points p ∈ M and
producing a scalar gp(v, w) with the following conditions

1. gp is bilinear., i.e. gp(av1+bv2, w) = agp(v1, w)+bgp(v2, w), and gp(v, aw1+bw2) =
agp(v, w1) + bgp(v, w2).

2. gp is symmetric, i.e. gp(v, w) = gp(w, v).

3. gp is nondegenerate, i.e. for every v 6= 0, there exists a corresponding w such that
gp(v, w) 6= 0.

Remark The Riemannian metric structure gives an example of a metric tensor, as does
the Ricci curvature tensor.

More generally, metric tensors allow us to define geometric notions such as length
and angle on manifolds.
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6.2 Two Theorems on Ricci Flow

The study of Ricci flow involves looking at the time-evolution of Ricci curvature on
vector fields.

Below are two of Hamilton’s foundational results on Ricci flow, we will simply state
them without proof. Then we will give a brief explanation as to how these are useful in
proving the Geometrization Conjecture.

Theorem 6.1 (Short-Time Existence and Uniqueness) 1. If g0 is smooth on
M , then there exists some ε dependent on g0 such that there is a unique solution
g to the Ricci flow equation on [0, ε) with g(0) = g0.

2. There is a so-called ’curvature characterization ’ of singularity information, i.e. if
there is a unique solution to the Ricci flow equation on [0, T ) but not on any larger
interval, then exists x for which the norm of the curvature tensor R(x, t) of g(t) is
unbounded as t→ T .

This proves that in a neighborhood of 0, the Ricci flow equation has a solution.
This will become important, as Perelman constructs ways to remove singularities in the
time-evolution of the solution.

Theorem 6.2 (Non-Negative Ricci Curvature) Let X be a compact connected 3-
manifold with positive semidefinite Ricci curvature. Then one of these situations occurs.

1. If the Ricci curvature is positive definite for all t small, it develops a singularity
in finite time, i.e. the family of metrics is no longer defined on the entirety of
X from a certain time onwards. As the singularity develops, the diameter of the
manifold goes to 0. Rescaling the family of metrics so that all diameters are 1 leads
to a family of metrics converging smoothly to a metric of constant positive definite
curvature. In particular, the manifold is diffeomorphic to a spherical space-form.

2. There exists a finite cover of the Riemannian manifold which, with the induced
metric, is a metric product of a compact surface of positive sectional curvature
with S1. This is true for all Riemannian metrics g(t), which develop singularities
in real time. Here the manifold in question is either S2×S1 or the connected sum
of two copies of RP 3.

3. The metric is flat and both sides of the evolution equation are constant.

In particular, all manifolds described here do satisfy the conclusions of the Ge-
ometrization Conjecture.

Results and definitions are taken from [6] and [8].
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6.3 Perelman’s Argument

This section is based strongly off of [8].
Perelman’s attack on the Geometrization Conjecture involves looking at the finite-

time singularities that arise from solving the Ricci flow equation. Hamilton proved that
the Ricci flow equation has a unique solution in a neighborhood of 0.

Now there are two types of finite-time singularity on the manifold. The first type is
classified as those components of the manifold whose metrics are shrinking in a controlled
way. The second type consists of a long, thin tube diffeomorphic to S2 × [a, b] or the
union of such a tube with a cap of positive curvature on the end. Perelman’s surgery
process then consists of going to this singular time, removing all regions of the first type
(i.e. the components of the manifolds) and perform surgery near the ’large’ ends of the
long thin tubes to replace them with more standard metrics on the disk.

The combined topological effect of this procedure is to remove some components
known to satisfy Thurston’s Geometrization Conjecture, as well as performing surgery
on the other components, which is equivalent to some form of direct sum decomposition.
It then follows that if the manifold post-surgery satisfies Thurston’s Geometrization
Conjecture, then so does that manifold pre-surgery. Then one can take the result post-
surgery and work the Ricci flow on that.

Perelman now claims that based on time-evolution as t→∞, there is an analoguous
theorem valid for Ricci flow with surgery. As manifolds associated to large time satisfy
Thurston’s Geometrization Conjecture, we see that the original manifold does also.

Now for the sole purposes of proving the Poincare Conjecture, there is no need for
this last part, as the Ricci flow with surgery vanishes after a finite time.
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